Control of Uncertain Autonomous Systems with Intermittent Feedback


Control of Uncertain Autonomous Systems with Intermittent Feedback
Tuesday, February 12, 2019
11AM – 12:30PM
POB 2.402 (Electronic)

Warren Dixon

Autonomous systems use closed-loop feedback of sensed or communicated information to meet desired objectives. Meeting such objectives is more challenging when autonomous systems are tasked with operating in uncertain complex environments with intermittent feedback. This presentation explores different analysis methods that quantify the effects of intermittent feedback with respect to stability and performance of the autonomous agent. Various scenarios are considered where the intermittency results from natural phenomena or adversarial actors, including purposeful intermittency to enable new capabilities. Specific examples include intermittency due to occlusions in image-based feedback and intermittency resulting from various network control problems.

Prof. Warren Dixon received his Ph.D. in 2000 from the Department of Electrical and Computer Engineering from Clemson University. He worked as a research staff member and Eugene P. Wigner Fellow at Oak Ridge National Laboratory (ORNL) until 2004, when he joined the University of Florida in the Mechanical and Aerospace Engineering Department where he currently holds the Newton C. Ebaugh professorship. His main research interest has been the development and application of Lyapunov-based control techniques for uncertain nonlinear systems. His work has been recognized by a number of early career, best paper, and student mentoring awards. He is a Fellow of ASME and IEEE for his contributions to control of uncertain nonlinear systems.

Hosted by Ufuk Topcu