Additional Modeling Problems

1. Consider the following displacement field for a material body:

$$
u_{1}=0, \quad u_{2}=2 X_{1}^{2}, \quad u_{3}=4 X_{2}^{2}
$$

(a) Show that this deformation is possible in a continuously deformable body.
(b) Determine the inverse mapping: $X=\varphi^{-1}(x, t)$.
2. A tensor Q is orthogonal if it preserves inner products

$$
Q u \cdot Q v=u \cdot v,
$$

for vectors u, v. Prove that a necessary and sufficient condition that Q be orthogonal is:

$$
Q^{T}=Q^{-1}
$$

3. Prove the following identities:

$$
\begin{align*}
\nabla \times \nabla \phi & =0 \tag{1}\\
\nabla \cdot(\nabla \times v) & =0 \tag{2}
\end{align*}
$$

