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1. Equations

The following equation sheets were provided by TA Gopal Yalla, http://users.oden.utexas.edu/~gopal/

teaching/2019_CSE389C.

Local Conservation Laws

Eulerian Lagrangian

Mass
∂%
∂t

+ div(%v) = 0 %0(X) = %(ϕ(X)) detF (X)

Lin. Momentum %

(
∂(~v)
∂t

+ ~v · grad~v

)
= div T + ~fb %0

∂2u

∂t2
= Div FS︸︷︷︸

P

+f0

Ang. Momentum T = TT S = ST

Energy %
(
∂e
∂t

+ ~v · grad e
)

= T : D + r − div ~q %0ė0 = S : Ė −Div ~q0 + r0

Entropy %
(
∂η
∂t

+ ~v · grad η
)

+ div
~q
θ
− r
θ
≥ 0 %0η̇0 + Div

~q0
θ
− r0

θ
≥ 0

Maxwell’s Equations

Integral Form Differential Form

Gauss’s Law ε0

∫
∂Ω

E · n dA = qΩ =

∫
Ω
ρ dx ε0∇ ·E = ρ

Faraday’s Law

∫
E · ds = − d

dt

∫
A

B · n dA ∇×E = −∂B

∂t

Amp.-Max. Law

∮
B · ds = µ0

∫
A

j · n dA+ µ0ε0

∫
A

n · ∂E

∂t
dA ∇×B = µ0j + µ0ε0

∂E

∂t

No Mag. Mono.

∫
∂Ω

B · n dA = 0 ∇ ·B = 0
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Kinematics of Deformable Bodies (pg)

1. u = ϕ(X)−X (16)

2. F (X) = ∇ϕ(X) = I +∇u(X) (16)

3. C = FTF (17)

4. E = 1
2(C − I) (17)

5. v = ẋ(ϕ−1(x, t), t) (21)

6.
Dψ
Dt =

∂ψ
∂t

+ v · gradψ (21)

7. L = grad v (22)

8. L = D +W (22)

9. D = 1
2

(
L+ LT

)
(22)

10. W = 1
2

(
L− LT

)
(22)

11. Lm = ḞF−1 (22)

12. Ḟ = grad vF = LmF (22)

13. ˙detF = detF div v (23)

14. Piola Transform (25)

T0(X) = [detF (X)]T (X)F (X)−T

15. Polar Decomposition Theorem (19)

F = RU = V R

– R orthogonal; U,V sym. P.D.

C = FTF = U2

Divergence Theorem (23)∫
Ω

div Ψ dx =

∫
∂Ω

Ψ · n̂ dA.

Reynold’s Transport Theorem (24)

d

dt

∫
ωt

Ψdx =

∫
ωt

∂Ψ

∂t
dx+

∫
∂ωt

Ψv · n̂dx

=

∫
ωt

(
∂Ψ

∂t
dx+ div(Ψv)

)
dx

Mass

1. M(B) =

∫
Ωt

%dx (32)

2.

∫
Ω0

%0(X)dX =

∫
Ωt

%(x)dx (32)

3. Material Conservation of Mass (38)

%0(X) = %(x) detF (X)

4. Spatial Conservation of Mass (33)

∂%(x)
∂t + div(%(x)v) = 0

Linear & Angular Momentum

1.
dI(B, t)
dt

=

∫
Ωt

%
dv

dt
dx = ~Fb + ~Fs (27)

2.

∫
Ωt

%
dv

dt
dx =

∫
Ωt

fdx+

∫
∂Ωt

σ(n) dA.

3. Cauchy’s Theorem

σ(n, x, t) = T (x, t)n T = T T

4. Cauchy Stress

T = (detF )−1PF T = (detF )−1FSF T

5. First Piola-Kirchoff Stress

P = (detF )TF−T = FS

6. Second Piola-Kirchoff Stress

S = (detF )F−1TF−T = F−1P

Energy

1. Total Energy = k + U

→ k = kinetic energy, U = internal energy.

2. Principle Consv. Energy
d

dt
(k + U) = P + Q̇.

→ Q = internal heating.

3. %
de

dt
= T : D − divq + r

4. %0ė0 = S : Ė −Divq0 + r0

→ r = heat per unit volume.
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2nd Law of Thermodynamics

1. Clausius-Duhem

%
dη

dt
+ div

q

θ
− r0

θ
%0η̇0 + Div

q0

θ
− r0

θ
> 0

→ θ =temp, η = entropy density

Constitutive Equations

1. Material Frame Indifference

x∗ = Qx+ c =⇒ T ∗ = QTQT

2. MFI Solids

F ∗ = QF detF ∗ = detF

3. MFI Fluids

T = −pI + 2µD

4. Coleman-Noll (Dissipative)

S = %0
∂Ψ

∂E
, η0 = −∂Ψ

∂θ
∂Ψ

∂∇θ
= 0, −1

θ
q0 · ∇θ ≥ 0

5. Coleman-Noll S = F (E) + I(Ė)

F (E) = %0
∂Ψ

∂E
, I(Ė) : Ė − 1

θ
q0 · ∇θ ≥ 0

Electromagnetic Waves

1. Coulomb’s Law

F = k
|q1||q2|
r2

, k =
1

4πε0

2. Gauss’s Law

qΩ = ε0

∮
∂Ω
E · n dA =

∫
Ω
ρ dx

ε0∇ · E = ρ

→ ρ = charge density

3. Ampere’s Law∮
B · ds = µ0ienclosed, i = current.

4. Ampere + Maxwell Law∮
B · ds = µ0i+ µ0ε0

d

dt
ΦE∮

B · ds = µ0

∫
A
j · n dA+ µ0ε0

d

dt

∫
A
E · n dA

∇×B = µ0j + µ0ε0
∂E

∂t

5. Faraday’s Law∮
E · ds = − d

dt

∫
A
B · n dA

∇× E = −∂B
∂t

6. No Magnetic Monopoles∫
∂Ω
B · n dA = 0

∇ ·B = 0

Waves

1. u(x, y) = µ0e
i(k·x−ωt)

→ µ0 = amplitude of wave

→ k = wave number

→ ω = angular frequency

→ λ = 2π/k =wave length

→ T = 2π/ω =period of oscillation

→ v = ω/k = wave speed

2. General Wave Equation
∂2u

∂t2
=

(
ω2

k2

)
∂2u

∂x2

3. Electromagnetic Waves

E = E0e
i(k·x−ωt), B = B0e

i(k·x−ωt)

→ ω/|k| =propagation speed

→ k̂ = k/|k| = direction on propagation

→ c = 1/
√
ε0µ0 = speed of light

4. Electromagnetic Wave Equation
∂2E

∂t2
=

1

µ0ε0
∆E

5. E-M Waves & Maxwell’s Equations

k · E = 0 =⇒ k · E0 = 0

k ·B = 0 =⇒ k ·B0 = 0

k × E = ωB =⇒ k̂ × E = cB

k ×B = − 1

c2
ωE =⇒ k̂ ×B = −1

c
E

E ·B = 0

|E0| = c|B0|

E ×B =
k

ω
|E|2 =

1

c
|E|2k̂
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Quantum Mechanics

1. E = ~w = hν

2. λ =
h

p

3. Wave Equation

Ψ(x, t) = ψ0e
i(px−Et)/~

→ Ψ(x, t) = ψ0e
i(kx−wt)

→ k = 2π/λ = p/~
→ w = 2πν = E/~

4. EΨ =

(
−~
i

∂

∂t

)
Ψ

5. pΨ =

(
~
i

∂

∂x

)
Ψ

6. Schrodinger’s equation (free particle)

i~
∂Ψ

∂t
+

~2

2m

∂2Ψ

∂x
= 0

→ E = p2/2m

7. Hamiltonian Operator H(q, p) = E

H(q, p) =
p2

2m
+ V (q) = − ~2

2m

∂2

∂x2
+ V (x)

8. Schrodinger’s equation (time independent)

Hψ = Eψ

→ E constant, i.e., eigenvalue

9. Schrodinger’s equation (general)

i~
∂Ψ

∂t
+

~2

2m

∂2Ψ

∂x2
− VΨ = 0

10. Ψ∗Ψ = |Ψ(x, t)|2 = ρ(x, t)

→
∫ ∞
−∞
|Ψ(x, t)|2dx = 1

→ d

dt

∫ ∞
−∞
|Ψ(x, t)|2dx = 0

Dynamic Variables & Observables

1. Dynamic Variable

Q = Q(q1, q2, · · · , qN ; p1, p2, · · · pN )

Q̃ = Q̃(q1, · · · , qN ;−i~ ∂

∂q1
, , · · · ,−i~ ∂

∂qN
)

2. 〈Q〉 = 〈Ψ, Q̃Ψ〉 =

∫
Ψ∗Q̃Ψdq

3. Hermitian

〈ψ,Aφ〉 = 〈Aψ, φ〉 ∀φ, ψ ∈ L2

4. σ2
Q = 〈Q2〉 − 〈Q〉2

5. Uncertainty Principle

σ2
Qσ

2
M ≥

(
1

2i

〈
[Q̃, M̃ ]

〉)2

Hydrogen Atom

1. The complete hydrogen wave functions

ψn`m = Rn`(r)Y`m(θ, φ)

n = 1, 2, . . . (describes energy level)

` = 0, 1, . . . , n− 1 (describes shape)

→ ` = s,p,d,f

m = 0,±1,±2, . . . ,±` (describes orienta-

tion)

Ab Initio Methods

1. Many Atom & Electron Systems

H = Te(r
N ) + TM (RM ) + VeM (rN , RM )

+ VMM (RM ) + Vee(r
N )

2. Born-Oppenheimer Approximation

ψ(rN , RM ) = ψe(r
N , RM )χ(RM )

•Helecψe(r
n, RM ) = Eelec(R

M )ψe(r
N , RM )

→ RM treated as parameter

•Eχ =
(
TM (RM ) + VMM (RM ) + Eelec(R

M )
)
χ

3. Hartree Method

h(ri)φi(ri) = eiφi(ri)

ψH(r1, . . . , rN ) = ψ1(r1)ψ2(r2) · · ·ψN (rN )

→ Solve ψi one at a time

→ ignore elec-elec interaction
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Spin & Angular Momentum

1. L = q × p, Lj = εrsjqr
~
i

∂

∂qs
, L2 = L2

1 + L2
2 + L2

3

2. [L1, L2] = i~L3, [L2, L3] = i~L1, [L3, L1] = i~L2

3. [L2, Li] = 0

4. L± = L1 ± iL2, L3(L±φ) = (µ± ~)L±φ

5. Assume for spin operator S

[S1, S2] = i~S3, [S2, S3] = i~S1, [S3, S1] = i~S2

6. S2qsm = ~2s(1 + s)qsm, S3qsm = ~mqsm

7. S1 =
~
2
σ1, S2 =

~
2
σ2, S3 =

~
2
σ3

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
8. Multielectron Systems

ψ±(r1, r2) = C (ψ1(r1)ψ2(r2)± ψ2(r1)ψ1(r2))

→ ψ+(r1, r2) = +ψ+(r2, r1) (Boson: Z-spin)

→ ψ−(r1, r2) = −ψ−(r2, r1) (Fermions: 1
2
Z-spin)

=⇒ ψ1 6= ψ2(Fermions)

9. Slater determinants → Simply a way to satisfy antisymmetry of wave functions.

Density Functional Theory

1. n(r) = N

∫
|ψ(r, r1, r2, . . . , rN−1)|2dr

→ pdf’s are indistinguishable.

2.

∫
n(r)dr = N

3.

〈
ψ,

N∑
i=1

v(ri)ψ

〉
=

∫
v(r)n(r)dr

→ expected value of potential in field of nuclei.

4.

〈
ψ,

N∑
i=1

∑
j>i

U(ri, rj)ψ

〉
=
c

2

(
1− 1

N

)∫ ∫
n(r)n(r′)

|r − r′|
drdr′



2. Dimensional Analysis

When modeling complex systems, we commonly have a set of applicable, reliable

theories, which are not ”closed.” We then need ”Closure models,” often representing

effects and phenomena that are not accessible by the reliable theory.

Example: Continuum Mechanics:

Reliable Theory: Conservation laws

Closure Models: Constitutive models.

Reliable theory represents centuries of accumulated empirical knowledge, their

validity is generally not questioned for the problem at hand. Constitutive models are

basically ”made up” to be consistent with what is known and available data. This is

part of the challenge of mathematical modeling. These closure models can be formu-

lated with the i) Empirical observations, ii) Invariance principles and dependency

assumptions, iii) Established theories and principles, iv) insightful guessing.

The invariance principles can significantly constrain the closure models we for-

mulate. Let us consider two broadly useful invariance constraints: Dimensional

invariance and Coordinate invariance.

2.1 Dimensional Invariance (Homogeneity)

A mathematical model of a physical system is a set of relationships among mathe-

matical descriptors of that system.

Question 1: Consider an object as a physical system. What descriptors

might be useful?

Dimensions, measures on properties.

These descriptors (measures of properties) are defined in terms of certain arbi-

trary references. The principle of dimensional homogeneity is this: The validity of

a model relationship cannot depend on the arbitrary references used to define the

descriptors—because these descriptors are arbitrary!

Consider a relationship between two descriptors: A = B in some unit system

U. In the usual way, we can express the same descriptors in terms of a second unit

system U′, i.e. A′ = C ′AA and B′ = C ′BB where C ′A, C
′
B are conversion factors. To

be independent of our arbitrary unit system, we must have A′ = B′ =⇒ C ′A = C ′B.

But the unit system U′ is arbitrary, so it must be that C ′A = C ′B for conversion from

U to any other unit system U′.

This requirement of invariance to the unit system leads to the algebra of dimen-

sions. If two descriptors A and B have dimension (e.g. length, mass, time) denoted

7
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[A] and [B] respectively, then AB has dimensions [A][B] and A/B has dimensions

[A]/[B] where having the dimension [A][B] means that the conversion factor for

transforming units from U into U′ is C ′AC
′
B

Example: Area has dimensions of [length]2 or [L]2. Velocity has dimensions
[L]
[T ]

Example: Newton’s law implies F = ma, then dimensions of F are [M ] · [L]

[T ]2
=

[M ][L]

[T ]2

Example: Kinetic energy is given by 1/2mv2, thus dimensions of kinetic energy

are
[M ][L]2

[T ]2

This is of course trivial, but the requirement of dimensional homogeneity places

important constraints on any model of a physical system.

Consider a model of some physical system that asserts a relationship among n

descriptors of the system, x1, . . . , xn:

F (x1, x2, . . . , xn) = 0

which satisfies the constraint of invariance to the unit system. Generally, the vari-

ables will have dimensions that can be expressed in terms of a set of m < n inde-

pendent dimensions or fundamental units (e.g. mass, length, time).

We can choose m of the n variables (WLOG, x1, . . . , xm) that have independent

dimensions. Note that independent dimensions are analogous to linearly indepen-

dent vectors in linear algebra and can indeed be represented this way by expressing

each variable as a vector with coefficients equal to the power of a fundamental unit

present in its units. Now we are free to choose a unit system—so let us choose the

units in which x1, . . . , xm are all one. In these units the variables x̃i are given by,

x̃i =


1 i ≤ m

xi

m∏
j=1

x
Pij

j m < i ≤ n

where the powers Pij are chosen such that x̃i are dimensionless. The assumptions of

m independent dimensions and m variables with independent dimensions guarantees

that we can find appropriate Pij (Linear Algebra). Expressing the model in these

units gives,

F (1, . . . , 1︸ ︷︷ ︸
m

, x̃m+1, . . . , x̃n) = 0.

Since the first arguments are constants we can rewrite as,

F̃ (x̃m+1, . . . , x̃n) = 0.
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This is a big deal as we just reduced the dimensionality of our model by m.

This result is called the Buckingham Π Theorem because Buckingham used Πi

instead of x̃i but the result was obtained much earlier.

The variables x1, . . . , xm which we used to non-dimensionalize the remaining

variables are referred to as scaling variables.

Question 2: How do you choose scaling variables?

There is no exact set of rules, but typically you want to choose variables that

you believe will have the strongest or most direct impact on the phenomenon

you are trying to model. This is especially important when later trying

to simplify your model, if you chose an insignificant parameter it is then

difficult if not impossible to remove it without going back to square one and

re-picking scaling variables.

The bottom line. If the dependencies of a model are known or can be postulated,

dimensional analysis can be used to infer simpler models and consolidate data.
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2.2 Coordinate Invariance (Tensor Analysis)

Cartesian tensor representation (in 3-D). Let us define three mutually orthog-

onal unit vectors ~ei,

(~ei, ~ej) = ~ei · ~ej = δij :=

1 i = j

0 i 6= j

where (·, ·) denotes the inner product. Any vector ~x ∈ R3 can be represented as a

linear combination of these basis vectors,

~x =

3∑
i=1

xi~ei,

where xi ∈ R. Any x that can be represented in this way is called a rank-1 tensor

(scalars are rank-0 tensors).

A rank-2 tensor Y
¯̄

can be represented in terms of basis vectors by defining what

we call a tensor product. The tensor product of two vectors ~a and ~b—denoted ~a⊗~b
is the operator that assigns for each vector ~c the vector (~b · ~c)~a; that is,

~a⊗~b := (~b · ~c)~a.

Note that a tensor product is a homogeneous linear operator that maps a vector (~c

in the definition) to another vector (~a) scaled by the inner product of ~b and ~c.

In particular, we know that homogeneous linear operators on R3 are just 3 × 3

matrices, so rank-2 tenors can be represented using 3× 3 matrices. In particular,

Y
¯̄

=
3∑
i=1

3∑
j=1

Yij~ei ⊗ ~ej .

Taking the product of Y
¯̄

with some vector ~x gives,

Y
¯̄
~x =

3∑
i=1

3∑
j=1

3∑
k=1

Yij(~ei ⊗ ~ej)~ek xk

=
3∑
i=1

 3∑
j=1

3∑
k=1

Yijδjk~xk

~ei =
3∑
i=1

 3∑
j=1

Yij~xj

~ei = ~z, a vector.

But note this is a pain to carry around all the summations and unit vectors so we

adopt the Einstein summation convention.

Einstein summation convention:

Tensors are represented as indexed objects, e.g. xi, yij
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In any term, an index can appear at most twice

A repeated index implies summation over that index

A non-repeated index implies multiplication with unit vector with that index

Example:

zi = yijxj =
3∑
i=1

 3∑
j=1

yijxj

~ei.

Scalars and Invariants Invariants of vectors/tensors are just scalar functions of

those vectors/tensors. They are called invariants because they are invariant to the

coordinate system in which the tensors are expressed.

Example: Which of the following are scalar invariants?

aij

aii ←

bi

bibi ←

aijaji ←

For rank-2 tensors in 3-D, two important results:

The Cayley-Hamilton Theorem. A matrix is a solution to its own characteristic

equation. This means that An for n > 2 is a linear combination of I, A,A2 (A is a

rank-2 tensor).

The key point of this theorem is that any analytic tensor function of a tensor

F (A) is a linear combination of I, A,A2, with coefficients that are scalar functions

of the invariants of A.

There are only 3 independent invariants of a 3-D rank-2 tensor. This

implies that any scalar function of a tensor A can be expressed as a function of it’s

eigenvalues.

A ”standard set” of invariants are defined as the coefficients of the characteristic

equation. That is, the eigenvalues λ of A are the solutions of:

λ3 − I1λ
2 + I2λ− I3 = 0

where,

I1 = Aii

I2 =
1

2
(AiiAjj −AijAji)

I3 = det(A)
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Another commonly used set of invariants is:

IA = Aii

IIA =
1

2
(AiiAjj −AijAji)

IIIA = det(A).

The Cayley-Hamilton theorem, and the result on the number of independent

scalar invariants allows us to write any analytic tensor function F of a tensor A as,

F (A) = γ1(I1, I2, I3)I + γ2(I1, I2, I3)A+ γ3(I1, I2, I3)A2.

Suppose instead that a tensor A is a function of some vector r. What can we

say about the general form of this function?

Consider two arbitrary vectors a, r. Then,

aiAijbj = f(a, b, r),

but we know that the scalar function f must be expressed in terms of the invariants

that can be formed from a, b, r. These are,

|a|, |b|, |r|, aibi, airi, biri

Furthermore, the left hand side is clearly a bilinear function of a, b, thus we must

choose only scalar invariants which are bilinear in a, b; we are therefore limited to

airi, biri

Which can be multiplied by some function of |r|. This implies,

aiAijbj = g(|r|)a · b+ h(|r|)a · rb · r

which in turn implies that,

Aij = g(|r|) + h(|r|)rirj .

Cross products and tensor consistency. Finally, in dealing with cross products

in tensor notation we introduce the ”alternating tensor” or ”Levi-Cevita Symbol”

εijk =


1 if i, j, k is an even permutation of 1, 2, 3

−1 if i, j, k is an odd permutation of 1, 2, 3

0 otherwise.

(2.2.1)

The challenge in introducing this tensor is that if we swap any two of our basis

vectors we change the sign of this tensor—meaning this tensor is not coordinate
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system invariant. It is however almost coordinate system invariant, up to a sign,

thus we call it a ”pseudo-vector.” Note however that if we were to apply the tensor

again, (introduce another cross product in our term) that the result would again be

a vector (−12 = 1). Coordinate system invariance then imposes the restriction that

models for pseudo-vectors must be expressed in terms of pseudo-vectors.

Example: Which of the following would be a permissible/valid model?

a× b = c× d ←

a = b× d

a = b× c× d ←

We conclude this section by giving the tensor representation of vector calculus

differential operators:

Gradient: (∇ϕ)i =
∂ϕ
∂xi

Divergence: (∇ ·Ψ) = ∂Ψi
∂xi

Curl: (∇×Ψ) = εijk
∂Ψj

∂xi

(2.2.2)

Bottomline. Tensor consistency and dimensional consistency impose significant

constraints on model forms.



3. Kinematics of Deformable Bodies

3.1 Motivation

Continuum mechanics applies a form of Newton’s law to a continuum, rather than

discrete masses. Instead of ~F = m~a we use:

d ~M

dt
= ~F , where ~M = m~v

Consider some domain Ω within the material (continuum):

Question 1: What is the momentum of the material in Ω? What forces

are acting on it?

The momentum is the sum (integral) of momentum of constituent particles.

Two types of forces are considered, body and surface forces.

The analog of ~F = m~a (conservation of momentum) is:

∂

∂t

∫
Ω
%~v dx =

∫
Ω

~fb dx+

∫
∂Ω

~fs dA

where % is the mass density, fb is the body force per unit volume acting on Ω, and

fs is the surface force per unit area acting on ∂Ω.

Question 2: What physical phenomena might fb and fs represent?

fb: gravity,

fs: stress, pressure,

Consider two subdomains of a continuum material, Ω1,Ω2. Neglecting body

forces (their model will depend on corresponding ”force fields”) we can ask what

the momentum of the material is on either subdomain and write the conservation

of momentum for each:

∂

∂t

∫
Ω1

%~v dx =

∫
∂Ω1

~fs1 dx

∂

∂t

∫
Ω2

%~v dx =

∫
∂Ω2

~fs2 dx

14
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Question 3: What should fs1, fs2 depend on? How would this be different

for a fluid or solid? Should fs1, fs2 be the same at points where ∂Ω1, ∂Ω2

intersect?

The key point here is that fs will depend on the orientation of the curve

(surface) ∂Ω (i.e. the surface normal of the boundary). For solids we care

about deformation, for fluids we care about rate of deformation. The surface

forces will not be the same where domains intersect since they will depend

on the orientation of the boundary.

Models for fs, fb are needed to complete the description of the motion of the

continuum. We again neglect fb, focusing only on fs for now. In particular, we

hypothesize that for solids, internal surface forces fs will depend on deformation—

or strain. For fluids, we hypothesize instead that internal surface forces fs will

depend on the rate of deformation—or strain-rate. The insight behind such choices

will become clear eventually, but for now we build up the analytic tools necessary to

define continuum motion, paying particular attention to developing representations

for strain and strain-rate that we will use to model surface forces.
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3.2 Solids

Material configurations and motion. Consider a deformable body B. The

material points within B can be labeled by a vector X representing the position

with respect to the origin in some ”reference configuration” occupying some region

Ω0 ⊂ R3.

The motion and deformation of the body can then be expressed at some time

t by a function x = ϕ(X, t). ϕ(X, t) is bijective and it cannot turn the material

inside-out, thus

det (∇ϕ(X, t)) > 0.

The deformation of the body is denoted

Deformation

u = ϕ(X)−X (3.2.1)

where the dependence of u, ϕ on t has been neglected. Note that ϕ is a vector

field, so its gradient ∇ϕ is a rank-2 tensor. This rank-2 tensor will be called the

deformation gradient and denoted:

Deformation Gradient

F (X) = ∇ϕ(X) = I +∇u(X) (3.2.2)

or equivalently,

Fij(X) =
∂ϕi
∂Xj

= δij +
∂ui
∂Xj

The motion is rigid if the body does not deform. This requires

ϕ(X) = ~a+Qx,

where a ∈ R3 is a translation and Q is a unitary tensor—a rigid body rotation.
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Question 4: Should the internal surface forces be affected by rigid body

motion? Why or why not?

No they shouldn’t since the continuum is not compressed or altered, just

shifted and rotated.

Deformation and Strain. We now consider the deformation of differential line

segments. Let dX denote a differential segment in the reference configuration, it

will be mapped to

dx = FdX.

The deformations we are interested in (non-rigid body) will result in changes of the

lengths of line segments. Considering the length of these segments,

dS2
0 = |dX|2 = dX · dX = dXidXi

dS2 = |dx|2 = (FdX) · FdX = dXT FTF︸ ︷︷ ︸
C

dX = dXi F
T
ijFjk︸ ︷︷ ︸
Cik

dXk

Thus we define the Cauchy-Green deformation tensor, a rank-2 tensor C that

quantifies ”stretching” of continuum in different directions as

Cauchy-Green Deformation Tensor

C = FTF. (3.2.3)

Tensor C is symmetric positive definite. Additionally, we can define the Green-St.

Venant strain tensor E that denotes the change in length of line segments as

Green-St. Venant Strain Tensor

E =
1

2
(C − I). (3.2.4)

Note that tensor C can be viewed as the dilation of a line segment, while E denotes

(half) the actual change in length of the segment (e.g. a segment stretched to a

ratio of 1.1 times it’s original size only changed .1 in length–1.1 would be value of

C in this direction, .1 would be (twice) the value of E in this direction). Thus if ϕ

is a rigid-body motion, then E = 0.

Principle values and directions of deformation. Since E is symmetric it has

real eigenvalues and orthogonal eigenvectors. These eigenvectors are the principle
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coordinates or principle directions of strain E. In this coordinate system, E =

Eij~ei ⊗ ~ei and

Eij =

{
1
2(λ2

i − 1) if i = j

0 if i 6= j
(3.2.5)

where λ2
i are the eigenvalues of C and it is customary to write λ2

i since C = FTF .

Since E = 1
2(C − I), eigenvectors (principle directions) ~ei are also eigenvectors of

C corresponding to λ2
i . Consider how the differential line segments in the principle

directions transform into the current configuration:

Note in particular that the images of principle directions are also mutually orthog-

onal.

Question 5: Why are the images of vectors ~ei also mutually orthogonal?

By the properties of SVD of C, see conditions for orthogonality of right

singular vectors V .

Shear strains (non-principle deformations). Now consider what happens to

differential segments aligned with a more general set of orthogonal bases:

The images of dS0~ei
′, that are not the eigenvectors to C and E are not mutually

orthogonal since the projection along direction ~ei is scaled according to λi which

generally are not equal.

The apparent rotation of the non-principle basis vectors is encoded in the off-

diagonal elements of E when expressed in these coordinates. They are referred to

as shear strains γij and can be viewed as a consequence of anisotropic stretching.
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The following equations for shear strains are not given in the notes but are included

here in case they come in handy:

Shear Strain

sin γij =
2Eij√

1 + 2Eii
√

1 + 2Ejj
.

Angle γij measures the deviation of the angle between ~ei, ~ej from perpendicular.

Relating shear and principle strain—the Polar Decomposition Theorem.

Consider two deformations:

For a given γ the two can be related by a scalar α and rotation angle θ. In particular,

the two deformations will have the same C and E.

Theorem 3.2.1 (Polar Decomposition Theorem). For any invertable F , ∃ unique

R,U, V s.t.

1. R is unitary (i.e. a rotation)

2. U, V are symmetric positive definite

3. F = RU = V R.

The proof is outlined on pg. 19 of the book.

When F is the deformation gradient:

Polar Decomposition

F = RU = V R

C = FTF = UTRTRU = U2

B = FFT = RV V TRT = V 2
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So the left and right deformation gradients do not depend on R. This is clearly

the explanation for our example: in the shear case, R 6= I; in the distortion case,

R = I. Thus a pure shear in 2-D is the composition of a 2-D distortion and a

rotation.

In general, the Polar Decomposition Theorem implies that any local deformation

as characterized by the deformation gradient is composed of a distortion and a

rotation—thus deformation tensors and strain tensors are independent

of rotation.

Question 6: Recall—we started this discussion expecting internal forces to

depend on the deformation, is the deformation tensor/strain tensor a good

candidate for this dependence?

Yes.

note. This theorem has significant real-world consequences. For example, consider

a rod in torsion (think a drive shaft or a bolt with a wrench applied to it). Picture

a differential material element on the surface of the rod, it is in nearly pure shear.

The principle stresses and directions are then a 45◦ rotation from the axis of the

rod. This is often how failure occurs in shafts under torsion, note the nearly 45◦

angle of the fault in the following image.
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3.3 Fluids

We now turn our attention to modeling internal surface forces in fluids. Note that

fluids may undergo deformation without carrying residual stresses into a new refer-

ence configuration (e.g. think water bottle being shaken). Thus for fluids we consider

the dependence of internal surface forces on the rate of deformation instead.

Consider the motion as a function of time:

ẋ = v(x) = ∂ϕ
∂t

ẍ = v(x) = ∂2ϕ
∂t2

}
Lagrangian (material description)

v(x) = ẋ
(
ϕ−1(x, t), t

)
a(x) = ẍ

(
ϕ−1(x, t), t

) }Eulerian (spatial description)

(3.3.1)

The Lagrangian frame describes the motion of a point that originated at X

throughout time. The Eulerian frame describes the motion of particles passing

through point x throughout time.

Now consider the material time derivative of some field quantity Ψ in each frame

of reference. Elementry multivariate chain rule gives:

Lagrangian:
dΨm(X, t)

dt
=
∂Ψm

∂t
+
∂Ψm

∂xi

∂Xi

∂t
=
∂Ψm

∂t
=
∂Ψ

∂t

∣∣∣∣
X

Eulerian:
dΨ(x, t)

dt

∣∣∣∣
X

=
∂Ψ

∂t

∣∣∣∣
x

+
∂Ψm

∂xi

∂xi
∂t

∣∣∣∣
X

=
∂Ψ

∂t
+ vi

∂Ψ

∂xi
=
∂Ψ

∂t
+ v · grad Ψ

We write these relations again for clarity,

Lagrangian:
dΨm(X, t)

dt
=
∂Ψ

∂t

∣∣∣∣
X

Eulerian:
dΨ(x, t)

dt

∣∣∣∣
X

=
∂Ψ

∂t
+ v · grad Ψ

In the Eulerian description, it is convenient to have a special nomenclature for
d
dt

∣∣∣
X

, we define:

Total Derivative

DΨ

Dt
:=

dΨ

dt

∣∣∣∣
X

=
∂Ψ

∂t
+ v · grad Ψ, (3.3.2)

as the so-called material time derivative, or substantial derivative.
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Quantifying rates of deformation. In the Eulerian description we define the

velocity gradient tensor L as

Velocity Gradient Tensor

L := grad v (3.3.3)

We can consider the rate of change of the (Lagrangian) deformation gradient F

now as:

Ḟ =
∂

∂t
∇ϕ = ∇∂ϕ

∂t
= ∇v

=⇒ Ḟij =
∂vi
∂Xj

=
∂vi
∂xj

∂xi
∂Xj

,

thus

Ḟ = grad vF = LmF (3.3.4)

where Lm is L expressed in Lagrangian frame. We can also observe the identity

Lm = ḞF−1 (3.3.5)

We note that L can be decomposed into symmetric part D and anti-symmetric

part W , i.e.

L = D +W. (3.3.6)

where,

D =
1

2

(
L+ LT

)
(strain-rate tensor)

W =
1

2

(
L− LT

)
(rotation-rate tensor)

(3.3.7)

(3.3.8)

Note that Wv = 1
2ω × v where ω = curl v is the vorticity.

We will now illustrate the reason behind the naming of the symmetric part D

(strain-rate tensor) and anti-symmetric part W (rotation-rate tensor).

Consider a the rate of change of a differential line segment dS, but first note

that
∂

∂t
(dX · CdX) = dX · ∂C

∂t
dX = dX · ∂

∂
(FTF )tdX

= dX · (ḞTF + FTḞ )dX

= dX · ((LF )TF + FT(LF ))dX

= dX · (FT(L+ LT)F )dX.
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Then,
∂dS2

∂t
= dX ·

[
(FT(L+ LT)F )dX

]
= (FdX) ·

[
(L+ LT)(FdX)

]
= (dx) ·

[
(L+ LT)(dx)

]
= 2(dx) · [Ddx]

Thus the strain-rate tensor is exactly what it claims to be, the rate that segments

are stretched (strained). At the beginning of this section we hypothesized the depen-

dence of surface forces on the rate of deformation. It can be shown (see homework)

that under the assumption that the current configuration is the reference configu-

ration (usually a good assumption for fluids as the choice of reference configuration

is somewhat arbitrary), D = Ė. Under these assumptions the tensor D is also ro-

tation independent. The strain-rate tensor D could therefore be a good candidate

for modeling such forces (foreshadowing).

In addition to quantifying the strain and rotation rates, we can quantify the rate

of volume change as

˙detF = detF div v. (3.3.9)

This identity will come in handy shortly.

Divergence theorem. Before continuing we briefly note the Divergence Theorem,

which will allow us to transition between volume and flux integrals. Let Ψ represent

some vector field, then

Divergence Theorem∫
Ω

div Ψ dx =

∫
∂Ω

Ψ · n̂ dA. (3.3.10)

Reynold’s Transport Theorem. Conserved quantities like mass, momentum,

and energy are carried by the material. In writing conservation laws for continua in

an Eulerian description it will be convenient to determine the material derivative of

an intensive quantity integrated over some volume. Let Ψ be the quantity of interest.

We want to know ∂
∂t

∫
ωt

Ψdx in some subdomain ωt corresponding to a subdomain

ω0 in the reference configuration. In particular we note that the preceeding integral

is difficult to evaluate because the domain of integration is changing with time. The

following identity provides the multivariate analogue of the Leibniz rule (for 1D

integrals with varying bounds of integration).

The material occupying ωt at time t was in some region ω0 ∈ Ω0 in the reference

configuration—and the region occupied by this material evolves continually in time

as shown.
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The time derivative we want is of the material occupying ωt at time t, but following

the material. So we can write,

d

dt

∫
ωt

Ψdx =
d

dt

∫
ω0

Ψm detFdX =

∫
ω0

d

dt

(
Ψm detF

)
dX

=

∫
ω0

(
∂Ψm

∂t
+ v · grad Ψm

)
detFdX +

∫
ω0

Ψm
˙detFdX

The term inside the first integral is obtained for the time derivative of Ψm using the

multivariate chain rule, as Ψm is dependant on variables (x(t), t). Switching back

to the Eulerian integral,

=

∫
ωt

(
∂Ψ

∂t
+ v · grad Ψ

)
detFdx+

∫
ωt

Ψ div vdx

=

∫
ωt

(
∂Ψ

∂t
+ div(Ψv)

)
detFdx

Finally, applying the divergence theorem we get,

Reynold’s Transport Equation

d

dt

∫
ωt

Ψdx =

∫
ωt

∂Ψ

∂t
dx+

∫
∂ωt

Ψv · ndx

=

∫
ωt

(
∂Ψ

∂t
dx+ div(Ψv)

)
dx (3.3.11)

This result is known as Reynold’s Transport Theorem. The surface integral can

be interpreted as the net flux of the Ψ quantity carried by the material across the

boundary of ω.

The Piola Transformation. The Piola transform is detailed on pg. 17 of the book

and will be considered in more detail later. While we do not go into detail here,

we note the main equality and the resulting transformation for surface normals that

will allow us to internal surface forces between reference and current configurations.
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The following identity holds for tensor fields defined at two times, T0 at t0 and

T at t: ∫
∂Ω0

T0(X)n̂0(X) dA0 =

∫
∂Ω
T (x)n̂(x) dA (3.3.12)

if the following equality is satisfied:

T0(X) = [detF (X)]T (X)F (X)−T.

This result can be used to establish the following correspondence between surface

normals at different times:

n̂ =
CofF n̂o
||CofF n̂o||

. (3.3.13)



4. Eulerian Conservation (Fluids)

As we return to conservation laws for continua we could proceed in various ways.

In particular, each of the conservation laws we derive will have both Eulerian and

Lagrangian forms. While it may in some sense be natural to develop these two

representations simultaneously, our focus here is on constructing a model for con-

tinuum mechanics. For fluid mechanics the choice of reference domain is somewhat

arbitrary so we often prefer an Eulerian or spatial representation. For solid me-

chanics however, material largely maintains the same spatial relation (locally) as

some reference configuration and a Lagrangian approach is often desired. For this

reason we have decided to present Eulerian conservation laws in this chapter, and

defer Lagrangian conservation for the next. Note however that the derivations in

this chapter are not necessarily limited to fluids until we begin constructing models

and assume dependencies.

This chapter proceeds as follows: We begin by developing Eulerian conserva-

tion of momentum to derive overarching fluid mechanical equations. In defining

momentum conservation we introduce the concept of surface stresses σ, and we de-

viate slightly from rigorous derivation of conservation to define a model for surface

stresses that will lead to the famous Navier-Stokes equations for Newtonian flu-

ids. We then return to conservation to develop Eulerian representations of mass

conservation and energy conservation. These later conservation laws lead to equa-

tions commonly studied under the guise of thermodynamics in engineering fields.

In particular we hope to emphasize the inextricable connection between these fields

through conservation laws.

26
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4.1 Momentum

Question 1: What is momentum?

Recalling our formulation of Newton’s law in a continuum however we can

instead write dm~v
dt

= ~F , thus it can also be seen as the integral of force. In

particular when no force is applied momentum remains constant—Newton’s

first law. It is this relation that we seek to conserve when we speak of

momentum conservation.

Conservation of momentum is the fundamental relationship that describes mo-

tion of a body under the action of force. The momentum of a body, denoted I(B, t),
is given by

I(B, t) =

∫
Ωt

%v dx.

From Newton’s law,

dI(B, t)
dt

=
d

dt

∫
Ωt

%v dx =

∫
Ωt

%
dv

dt
dx = Fnet, (4.1.1)

where Fnet are the net forces on body B. As described in the claimed in the begin-

ning of the previous chapter, these forces are body forces (Fb)—exerted volumetri-

cally, and surface forces (Fs)—exerted on the boundary of a region. Writing this

relationship as before (in the previous chapter) we have,

∂

∂t

∫
Ωt

%~v dx = ~Fb + ~Fs =

∫
Ωt

~fb dx+

∫
∂Ωt

~fs dA (4.1.2)

Body Forces. Let f(x,t) be the force per unit volume, then the body force Fb is

~Fb =

∫
Ωt

fb(x, t)dx.

Example: for gravity, f = %g.

Surface Forces. Forces exerted on external surfaces may have different origins but

they enter the formulation in the same way. Let σ be the force per unit area acting

on the body occupying Ωt.

For external forces, we can consider this to be imposed at the surface of an actual

body. Momentum must be conserved everywhere, so (4.1.2) must hold for any

subdomain Ω of the material, not just for those domains whose boundaries align

with physical boundaries. Thus in addition to imposed forces, we will have internal

forces—that can be imposed on the many surfaces passing through any material
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point. Note in particular that these internal forces depend not only on the point at

which a surface passes through, but the orientation of the surface passing through

that point (as can be reasoned by considering material anisotropy and the varying

force responses obtained in different orientations).

The following hypothesis and theorem identify a model (dependencies) for sur-

face stresses σ.

Cauchy Hypothesis: There is a vector field σ(~x, t, n̂) that defines the force/area

(stress) at point x in the current configuration, which depends on the normal (out-

ward pointing) n̂ to the surface ∂Ω. Newton’s laws imply that

σ = σ(~x, t, n̂) = −σ(~x, t,−n̂).

Theorem 4.1.1 (Cauchy Stress Theorem). Assume the following conditions:

1. body forces fb continuous on Ω

2. σ(~x, t, n̂) is continuously differentiable w.r.t. n̂ at constant x

3. σ(~x, t, n̂) is continuously differentiable w.r.t. x at constant n̂

Then ∃ a tensor field T (x, t) 3 σ(~x, t, n̂) = T (x, t)n, and T (x, t) = T (x, t)T where

T (x, t)n is a rank-2 tensor that maps normal vector to force per unit area on surface

of Ω.

The proof of the Cauchy Stress Theorem can be found on pages 37-38 of the book,

but the basic idea is to consider a differential tetrahedron and apply conservation

of momentum and conservation of angular momentum.

In short, this theorem allows us to represent the surface stress σ as the product

of a (rank-2) tensor T (x, t) and surface normal n̂. Surface forces Fs then take the

form

~Fs =

∫
∂Ωt

T (x, t) · n̂ dAt.
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While we yet lack a model for the tensor T , in terms of the displacements and

displacement rates that were the subject of the previous chapter we begin to have

some idea of the form such a model might take. We will develop this model in

time—for fluids in this chapter and for solids in the next—but first we further

develop momentum conservation (4.1.2).

Eulerian (Spatial) Conservation of Momentum. Substituting the Cauchy

stress tensor T representation of surface forces and applying the Divergence Theorem

equation (4.1.2) can now be written,

d

dt

∫
Ω
%~v dx =

∫
Ω

~fb dx+

∫
Ω

div T dx.

We wish to derive a differential form of this relationship, thus aim to combine

each of these integrands under a single integral. We can achieve this by applying

Reynold’s transport theorem to the term on the right hand side yielding:∫
Ω

∂(%~v)

∂t
+ div(%~v ⊗ ~v) dx =

∫
Ω

~fb dx+

∫
Ω

div T dx

and combining integrands,

Momentum Conservation (Eulerian)

∫
Ω

[
∂(%~v)

∂t
+ div(%~v ⊗ ~v)− ~fb − div T

]
dx = 0. (4.1.3)

Since Ω was arbitrary, this immediately implies the differential form,

Differential Momentum Conservation (Eulerian)

∂(%~v)

∂t
+ div(%~v ⊗ ~v)− ~fb − div T = 0. (4.1.4)

This is the Eulerian representation (since Ω was the current configuration domain).

As tensor %~v ⊗ ~v is not symmetric however there is some ambiguity to how the

divergence operator should be applied. Writing this relationship instead in Cartisean

tensor notation removes the ambiguity:

Differential Momentum Conservation (Eulerian)

∂%~vi
∂t

+
∂%~vi~vj
∂xj

− ~fbi −
∂Tij
∂xj

= 0. (4.1.5)
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We still lack a model for T . However, once we have developed such a model

we will see that under certain assumptions (4.1.5) will take the form of the famous

Navier-Stokes equations. We turn our attention to developing such a model.

Modeling the Cauchy Stress Tensor T . In Chapter 3 we hypothesized that the

internal surface forces in fluids are dependent on the rate of deformation or strain.

The reasoning for this hypothesis is that fluids can be deformed from a starting

configuration and will again settle in a different configuration with no tendency to

return to the starting configuration. Also in Chapter 3 we derived a relationship for

the so-called strain-rate tensor D. Such a tensor is independent of rotations of the

underlying coordinate system and is a good candidate to model surface stresses σ

in the context of fluids. We assume therefore the dependence of T on D,

T = T (D).

Thus we have a rank-2 tensor T as a function of another rank-2 tensor D. Without

assuming anything about the structure of either quantity we can apply the Cayley-

Hamilton Theorem (discussed in Chapter 2) to get a general form of the relationship

as:

T = aI + bD + cD2

where a, b, c are scalar functions of the three scalar invariants of D. It would be

difficult to quantify all these functions experimentally or otherwise, so we make the

following assumption:

Assume: T is a linear function in D.

This assumption leads to the definition of Newtonian Fluids, fluids where internal

stresses depend linearly on strain-rate. This is a fair assumption for a wide class of

fluids including water, oil, and others, but is a poor assumption for others including

some important fluids including blood. However, models for these non-Newtonian

fluids often rely on very similar assumptions, we will point out where one might

modify this assumption to include a broader class of fluids.

From the assumption of linearity, we can immediately remove the dependence of

T on c, as the D2 term is not linear. Similarly, since scalar invariants of D depend

on D, the scalar function b must necessarily be constant. Finally, only one scalar

invariant of D is linear in D, i.e. tr[D], so function a must be a scalar multiple of

tr[D], possibly plus some constant. This gives the form,

T = α+ βtr[D] + γD

where α, β, γ are constants (in D). We can rewrite this expression in the form

T = P + κ tr[D]I + 2µ

(
D − tr[D]

3
I

)
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where constants are now given the names,

P– Hydrodynamic pressure

κ– Bulk viscosity

µ– Shear viscosity

The bulk viscosity κ is commonly assumed to be zero. This is the standard model for

internal stresses of Newtonian fluids; substituting this model for T into (4.1.5) gives

the Navier-Stokes equations as promised. To modify this model for non-Newtonian

fluids, a common practice is to make µ a function of an invariant of D. The class

of fluids that this extends to are known as shear-thinning or shear-thickening fluids,

since the shear-viscosity is a function of shear-rate.

If we were to substitute T into (4.1.5) note that we would have three equations,

one for each component of velocity (plus three equations imposing the symmetry

of T )—but we have a number of unknowns including: vi, %, P, κ, µ. It turns out

that parameters µ will depend on additional variables like temperature T , but this

will be dealt with later when we consider energy conservation. The point here is

that our system is severely under-determined. We now derive additional equations

for conservation of mass and conservation of energy but note that this pattern of

under-determined-ness will persist, necessitating constitutive equations (the topic

of Chapter 6).
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4.2 Mass

We consider the conservation of mass first as it is fairly straight-forward to derive.

Question 2: What is mass? How is it measured?

A measure of how much stuff is in an area. It can be measured as density

times volume.

Consider a body B occumpying a domain Ω0 in the reference configuration. Its

mass is given by

M0(B) =

∫
Ω0

%0dX,

where %0 is the mass density field in the reference configuration. At some time t the

same body occupies Ωt and has mass density %(x, t). At time t, the mass is

M(B) =

∫
Ωt

%(x, t)dx. (4.2.1)

Question 3: How are M0 and Mt related? Why?

They are the same since the mass of particles does not change and Ωt tracks

particles through space.

We then have that ∫
Ω0

%0(X)dX =

∫
Ωt

%(x)dx (4.2.2)

Until now we have not limited ourselves to a Lagrangian or Eulerian frame and the

preceeding analysis holds for both. We again defer the Lagrangian formulation for

now, as the Eulerian formulation is often desired for fluids.

Eulerian (Spatial) Conservation of Mass. The Eulerian (spatial) conservation

of mass can be obtained by observing that (4.2.2) implies that

d

dt

∫
Ωt

%(x)dx = 0

Recalling Reynold’s transport theorem for a general field Ψ,

∂

∂t

∫
ω

Ψdx =

∫
ω

∂Ψ

∂t
dx+

∫
∂ω

Ψv · ndx

and applying it to the density field %(x) we get the spatial description of conservation

of mass, ∫
Ωt

[
∂%(x)

∂t
+ div(%(x)v)

]
dx = 0,

and since Ωt is arbitrary we get,
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Mass Conservation (Eulerian)

∂%(x)

∂t
+ div(%(x)v) = 0. (4.2.3)

To better understand the meaning of this expression, we can re-express it using

the divergence theorem on some spatial region ω.∫
ω

∂%(x)

∂t
dx︸ ︷︷ ︸

rate of change of mass in ω

= −
∫
∂ω
%v · n̂dA︸ ︷︷ ︸

rate at which mass leaves ω
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4.3 Energy

Another conserved quantity of interest is the energy. Let ε be the total energy per

unit volume. Then energy conservation will follow the general outline of :

d

dt

∫
Ωt

εdx = Sources.

Question 4: What constitutes the energy of a continuum? What are the

possible sources?

The energy consists of kinetic energy κ and internal energy U . Possible

sources include power, or rate of work denoted P and heating rate Q̇.

Thus we have simply that

d

dt

∫
Ωt

(κ+ U) = P + Q̇.

Writing out this relationship in a concrete form we get,

d

dt

∫
Ωt

ε︷ ︸︸ ︷(
%~v · ~v

2
+ %e

)
dx =

P︷ ︸︸ ︷∫
Ωt

~f · ~v dx+

∫
∂Ωt

~σ · ~v dA+

Q̇︷ ︸︸ ︷∫
Ωt

r dx−
∫
∂Ωt

~q · n̂,

where, e is the internal energy per unit volume, r is the volumetric heating rate,

and q is the heat flux (with ~q pointing into the volume, or opposing n̂). We begin

to analyze this by expanding the stress term in P:∫
∂Ωt

~σ · ~v dA =

∫
∂Ωt

T n̂ · ~v dA =

∫
∂Ωt

viTijnjdA

=

∫
Ωt

∂viTij
∂xj

dx =

∫
Ωt

(
vi
∂Tij
∂xj

+ Tij
∂vi
∂xj

)
dx

=

∫
Ωt

(v · div T + T : grad v) dx

=

∫
Ωt

(v · div T + T : D) dx,

Where T : D denotes the contraction of T and D, or the trace of their product. so,

P =

∫
Ωt

~v ·
(

div T + ~f
)
dx+

∫
Ωt

T : Ddx.

But, from momentum conservation,

div T + ~f = %
d~v

dt
+ div(%~v ⊗ ~v)

so,

P =

∫
Ωt

~v ·
(
%
d~v

dt
+ div(%~v ⊗ ~v)

)
dx+

∫
Ωt

T : Ddx
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which, by expanding terms, adding the Eulerian conservation of mass equation,

refactoring gives, and finally applying Reynold’s transport theorem to the field Ψ =
%~v · ~v

2

P =
d

dt

∫
Ωt

%~v · ~v
2

dx+

∫
Ωt

T : Ddx.

Note now that the left hand side in this term is equal to the kinetic energy term in

ε. The equality between these terms is known as the conservation of kinetic energy,

or the kinetic energy equation and is redundant with momentum conservation, so

we can cancel these terms. To get Q̇ into a form amenable to our analysis we simply

apply the divergence theorem to the right most term, giving

Q̇ =

∫
Ωt

r − div ~q dx.

Combining now all these terms into the conservation of energy equation, and

cancelling the kinetic energy terms as noted we arrive at the internal energy equa-

tion,

Internal Energy Equation (Eulerian)

d

dt

∫
Ωt

%e dx =

∫
Ωt

(T : D + r − div ~q) dx (4.3.1)

which enforces the first law of thermodynamics. Applying Reynolds transport the-

orem on the left we arrive at the differential form of (Eulerian) internal energy

conservation,

Differential form of Internal Energy Conservation (Eulerian)

∂%e

∂t
+ div(%e~v) = T : D + r − div ~q (4.3.2)

Thermodynamics and Entropy. As any student of thermodynamics will know

however, there is also a second law of thermodynamics which must be satisfied. This

law—that the entropy of a closed system cannot not decrease—is not a conserva-

tion equation, but rather a constraint on the internal energy equation. Entropy,

a measure of the microscale randomness in a system, is a somewhat non-intuitive

concept compared to other quantities we have thus far encountered. We neglect a

rigorous definition here, however a simple explanation of this law is that things do

not become more ordered absent some input of energy. Physical manifestations of

this law are everywhere: gas fills a room on its own, liquids mix, and heat flows from



CHAPTER 4. EULERIAN CONSERVATION (FLUIDS) 36

hot to cold regions. Here we are particularly interested in entropy in constraining

the direction of heat flow.

From thermodynamics we have the notion of ”Thermodynamic state variables”

Temperature (absolute)− θ

Entropy− S

If we denote Q as the heat added to a system at a constant temperature θ,

between times t2 > t1 then the second law of thermodynamics implies,

S(t2)− S(t1)− Q

θ
≥ 0.

When equality holds a process is reversible. The concept of reversibility is key in

determining theoretical limits of performance and underlies measures of efficiency

in engineering. For the time evolution we have,

2nd Law of Thermodynamics (Entropy Equation)

dS

dt
− Q̇

θ
≥ 0 (4.3.3)

For a continnum, we define the variable η as the entropy per unit mass, thus

S =

∫
Ωt

%η dx

and,
d

dt

∫
Ωt

%η dx+

∫
∂Ωt

~q · n̂
θ

dA−
∫

Ωt

r

θ
dx ≥ 0.

Finally, applying the divergence theorem to the surface integral, and applying

Reynold’s transport theorem we have,

Entropy Equation (Continuum, Eulerian)

∫
Ωt

[
∂%η

∂t
+ div(%η~v) + div

~q

θ
− r

θ

]
dx ≥ 0. (4.3.4)

and, since the domain Ωt is arbitrary we get,

Clausius Duhem Inequality (Eulerian)

∂%η

∂t
+ div(%η~v) + div

~q

θ
− r

θ
≥ 0. (4.3.5)
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Note that in defining our system of conservation equations we have introduced

many more unknowns than equations. We will eventually remedy this in Chapter

6 where we develop constituitive or closure equations for our system. Note that up

until this point we have made very few assumptions, only in defining our model for

surface stresses σ and in defining our model for the resulting Cauchy stress tensor

T . Thus, while we noted this representation is especially useful for fluids, it is valid

for any continuum material.



5. Lagrangian Conservation (Solids)

The have up to now defined conservation equations for momentum, mass, and energy

in an Eulerian frame. We now turn to defining similar conservation laws for a

Lagrangian frame that are more convenient in dealing with solids.

5.1 Mass

We begin with conservation of mass due to its simplicity. We start with relationship

(4.2.2), given here for reference∫
Ω0

%0(X)dX =

∫
Ωt

%(x)dx.

The integral in x can be transormed into an integral in X since x = ϕ(X) and

dx = detFdX. The factor detF can be understood as the ratio of differential

volume dx to dX We thus have that∫
Ω0

(%0(X)− %(ϕ(X)) detFdX = 0

From which we can conclude (since Ωt is arbitrary) that

Mass Conservation (Lagrangian)

%0(X) = %(ϕ(X)) detF (X). (5.1.1)

This is the Lagrangian or material description of the conservation of mass.

38
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5.2 Momentum

We give the Eulerian conservation equation again here for reference,∫
Ω

∂(%~v)

∂t
+ div(%~v ⊗ ~v)− ~fb − div T dx = 0.

To obtain a Lagrangian representation of momentum conservation equivalent to

(4.1.3), we can perform a change of variable, i.e. ”transform” from x to X. For

the first three terms of (4.1.3) this is a straight forward process, again multiplying

by a factor detF to transform differential volumes dx to differential volumes dX.

However, for the last term in (4.1.3) we need a way to relate the changing orientation

and size (stretching) of differential areas. The goal is to find a tensor field T0(X) 3
DivT0 = detF div T . The Piola transform presented briefly at the end of Chapter 3

provides the appropriate tool to accomplish this objective.

Piola Transform. The derivation of the Piola transform is given on pages 16-18

of the book. The result is, if

T0(X) = [detF (X)]T (X)F (X)−T,

then

Piola Transform

DivT0 = div T detF.

Observe, ∫
Ω0

DivT0 dX =

∫
Ω0

div T detF dX =

∫
Ω

div T dx.

and by the divergence theorem,∫
∂Ω0

T0n̂0 dA0 =

∫
∂Ω
T n̂ dA

Tensor T is a linear transformation from n̂ (CC) to a CC force/CC area. Tensor

T0 is a linear transformation of a normal n̂0 (RC) to a CC force/RC area. Since

T0 = CofF , ||CofF || is the area scaling from the reference configuration to the

current configuration. The direction of CofF n̂o is then in the direction of n̂, and

n̂ =
CofF n̂o
||CofF n̂o||

.

Tensor T0 is given the symbol P (X), the first Piola-Kirchhoff Stress Tensor,
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1st Piola-Kirchhoff Stress Tensor

P = detF TF−T = T CofF (5.2.1)

We can now have the tools to rewrite the conservation of momentum equation

(4.1.3) in Lagrangian form,

Momentum Conservation (Lagrangian)

%0
∂2u

∂t2
= DivP + f0 (5.2.2)

where,

%0 = %
(
ϕ(X)

)
detF

f0 = f
(
ϕ(X)

)
detF.

But note, tensor P is not symmetric (since F and therefore its cofactor are not

symmetric). But, since P = detFTF−T, it follows that PF T = detF T is symmetric

(since detF is a scalar and T is symmetric). A symmetric tensor is also recovered

if we map the CC force/RC area to an RC force/RC area. This is accomplished by

pre-multiplication of F−1, and we define the second Piola-Kirchhoff Stress Tensor

S in this way.

2nd Piola-Kirchhoff Stress Tensor

S = F−1P = detF F−1TF−T (5.2.3)

In terms of S momentum conservation becomes,

Momentum Conservation (in terms of S)

%0
∂2u

∂t2
= Div FS︸︷︷︸

P

+f0 (5.2.4)

The tensor S is a linear transformation of a normal n̂0 (RC) to an RC force/RC

area (fully RC map).
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5.3 Energy

We conclude with the derivation of Lagrangian energy conservation (and entropy

equation). We proceed by treating each of the following terms in order.

∫
Ωt

∂%e

∂t
+ div(%e~v)︸ ︷︷ ︸

(i)

dx =

∫
Ωt

T : D︸ ︷︷ ︸
(ii)

+ r︸︷︷︸
(iii)

−div ~q︸︷︷︸
(iv)

dx

(i) Observe,

∂%e

∂t
+ div(%e~v) = %

(
∂e

∂t
+ div(e~v)

)
= %

(
∂e

∂t
+ ~v · grad e

)
= %

De

dt
= %ė

= %0ė0

where the integrals have been neglected and,

%0 = %
(
ϕ(X)

)
detF

e0 = e
(
ϕ(X)

)
.

Note that e0 is not scaled by the volume ratio detF as it is measured per unit

mass not per unit volume.

(ii) ∫
Ωt

T : Ddx =

∫
Ω0

T : grad v detF dX

= Tij
∂2ϕi
∂Xk∂t

∂Xk

∂xj
detF

= TijḞikF
−1
kj detF

= Ḟik

(
TijF

−T
jk detF

)
= ḞikPik = ḞikFijSjk

=
(
FTḞ

)
: S

= Ė : S = S : Ė

where the integrals have again been neglected after the first line.

(iii)

r = r0 detF
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(iv) See homework,

div ~q = Div ~q0

where,

~q0 = (CofF )T ~q

Substituting the preceding relationships we arrive at the Lagrangian conservation

of internal energy,

Energy Conservation (Lagrangian)

%0ė0 = S : Ė −Div ~q0 + r0 (5.3.1)

Finally, the entropy equation can be transformed by combining trivial analogues

of the preceeding transformations,

Clausius Duhem Inequality (Lagrangian)

%0η̇0 + Div
~q0

θ
− r0

θ
≥ 0 (5.3.2)



6. Constitutive Equations (Closure Models)

Consider the Eulerian conservation equations (note that this form of Eulerian con-

servation is obtained by applying product rule and applying conservation of mass,

it does not simply assume % is time independent as this is not generally true):

Eulerian Conservation

Mass
∂%
∂t

+ div(%v) = 0

Lin. Momentum %

(
∂(~v)
∂t

+ ~v ◦ grad~v

)
= div T + ~fb

Ang. Momentum T = TT

Energy %
(
∂e
∂t

+ ~v · grad e
)

= T : D + r − div ~q

Entropy %
(
∂η
∂t

+ ~v · grad η
)

+ div
~q
θ
− r
θ
≥ 0

Given initial conditions, we want to solve these equations for evolution of vari-

ables describing state of the continuum (body). Note however that we have far more

unknowns than equations.

Counting unknowns we have,

% ~v(or u) T ��
~f e ~q �r η θ Total

1 3 6 �3 1 3 �1 1 1 ��20 16

where the crossed out variables are not counted because they are determined by

external data and other physical phenomenon (e.g. gravity, E&M, chemistry), and

the conservation of angular momentum equation implying the symmetry of T is used

to reduce the number of unknowns in T to 6.

Now counting equations we note,

Mass Momentum Energy Total

1 3 1 5

Thus we clearly require additional relationships. We begin by identifying quan-

tities that characterize the state of the body (5 we hope) that we will call state

variables. A convenient choice is,

Solids: %, ~u (v = u̇), θ (or e)

Fluids: %,~v, θ (or e)

We need to formulate relationships to determine remaining quantities from these.

These relationships are:

43



CHAPTER 6. CONSTITUTIVE EQUATIONS (CLOSURE MODELS) 44

• determined by properties of the material

• models of phenomena (atomic) not represented in the continuum approxima-

tion

We need consitituitive models for:

T − inner atomic forces and/or momentum diffusion

~q − heat conduction

e− thermodynamics and inner atomic forces

η − thermodynamics

In addition to dimensional and coordinate invariance, we will require that our

constitutive models follow these principles:

1.) Determinism – no dependence on the future state.

2.) Material Frame Indifference (MFI) – invariance to changes in the reference

frame, i.e. no dependence on rigid motions (uniform velocity or rotation)

3.) Physical Consistency – cannot violate conservation laws or Clausius Duhem

(2nd law)

4.) Material Symmetry – If the material is invariant to a group of ”unimodu-

lar” transformations (e.g. rotations; reflections; continuous rotation group or

isotropy) then constitutive model must also be invariant to these transforma-

tions

5.) Local Action – Constitutive model depends only on ”local” state; essentially

depends on the state and finite number of spatial derivatives at a point.

6.) Dimensional Consistency – dimensional and coordinate invariance

7.) Other Considerations – well-posedness, Equipresence
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6.1 Application of MFI to T for Solids.

Two observers can be moving or rotating differently. The motion observed by one ob-

server, x(t) is related to the motion observed by the second observer, x?(t) through,

x?(t) = Q(t)︸︷︷︸
rotation

x(t) + c(t)︸︷︷︸
translation

where Q and c do not depend on x. Since rotations are unitary transformations, it

must be that

QT(t) = Q−1(t).

We expect (hypothesize) the Cauchy stress tensor T to depend on x, X, and t

(or equivalently u, t). But, note, to have T independent of c(t) we instead need to

consider derivatives of u, i.e. F and other higher order derivatives.

Suppose Q = I, c 6= 0, c(0) = 0. Then MFI and locality principles require that

T = T
(
F,((((

((((
(

higher derivatives, X
)

and where we have assumed that T depends only on the first derivative of u, F .

Thus we have,

T (X, τ) = T
(
F (X, τ), X

)
for τ ≥ t

Now Suppose Q 6= I. Observe,

F ? = QF and detF ? = detF

with

n? = Qn =⇒ σ?(n?) = Qσ(n).

We know that σ(n) = Tn and σ?(n?) = T ?n? thus we get that

σ?(n?) = T ?n? = Qσ(n) = QTn = QTQTn?

which implies that,

MFI Constraint

T ? = QTQT. (6.1.1)

But note, this implies that the relationship

T = T (F )

must have the property that
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MFI Constraint (Solids)

T (QF︸︷︷︸
F ?

) = Q T (F )QT (6.1.2)

for all Q(t).

Notice that for C = FTF ,

C? = FTQT︸ ︷︷ ︸
F ?T

QF︸︷︷︸
F ?

= C.

We need to satisfy (6.1.2) and will thus make an educated guess that the relation

takes the form,

T (F ) = F T̂ (C)FT. (6.1.3)

Then

T (QF ) = QF T̂ (C)FTQT = Q T (F )QT

satisfies (6.1.2) so is consistent with MFI.

Finally, because of the polar decomposition theorem, F = RU where R is or-

thonormal and U is symmetric and positive definite. So MFI implies,

T (U) = T (RTF ) = RT T (F )R =⇒ T (F ) = RT T (U)R

Recalling that C = U2, R = FU−1, and RT = U−1FT we have that

T (F ) = F U−1 T
(
C

1
2

)
U−1︸ ︷︷ ︸

T̃ (C)

FT = F T̂ (C)FT

where the last equality follows from (6.1.3) and since U = C
1
2 we can write,

T̂ (C) =
(
C

1
2

)−1
T
(
C

1
2

)(
C

1
2

)−1

so this is the only form satisfying MFI.

In this last expression we have expressed U as C
1
2 to make the dependence on C

explicit as hypothesized in (6.1.3). We have finally that any constitutive relationship

for T depending on F must take the form (expressed now in terms of U) of

MFI Solids

T = T (F ) = FU−1T (U)U−1FT (6.1.4)
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6.2 Restricted Classes of Constitutive Relations

Thermo-elastic. For this class of constitutive relations we assume that quantities

T, ~q, e, η at a point depend only on present values of the following state variables at

the point:

Solids: F, θ,∇θ

Fluids: D, θ,∇θ, ρ

Homogeneity. For this class of constitutive relations we assume we have the same

material everywhere (reference configuration uniform) so no explicit dependence on

X.
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6.3 Application of MFI to Fluids

A fluid is a material for which dependence of the Cauchy stress tensor T on deforma-

tion limited to dependence on detF . As a consequence, the reference configuration

becomes irrelevant. Also since %0 = detF%, the dependence on detF is already

included with dependence on % in an Eulerian representation.

An ideal fluid (also inviscid fluid) is one in which T is isotropic, i.e.

Stress in Ideal Fluid

T = −P(x, t)I (6.3.1)

which clearly satisfies MFI requirements since I commutes with tensor operations

(note dependence of %, θ suppressed here). From thermodynamics, a constitutive

model for P in terms of % at θ is an ”equation of state.”

In a viscous fluid, T = −PI + F(L) where L = grad v and dependence on %, θ

has been suppressed.

MFI Considerations. Observe,

L = ḞF−1 = grad v

and

L? = Ḟ ?(F ?)−1 = QLQT + Ω

where Ω = Q̇QT is the rotation rate. But note,

Ω + ΩT = Q̇QT +QQ̇T =
˙

QQT = İ = 0

thus,

Ω = −ΩT. (Antisymmetric)

Considering MFI we can see that

MFI Fluid

F(

L?︷ ︸︸ ︷
QLQT + Ω) = QF(L)QT

Thus, by eliminating Ω in the equation above and (and recalling D = 1
2(L + LT))

we see (this follows because applying MFI to D = 1
2(L+ LT) gives D? = QDQT)

F(L) = F(D)

We then need that
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MFI Fluid (Stokes)

F(

D?︷ ︸︸ ︷
QDQT) = QF(D)QT

for an isotropic fluid—this is a Stokes fluid.

If we further assume that F is linear in D we obtain the general form for a

Newtonian Fluid,

Stress in Newtonian Fluid

T = −PI + 2µ

(
D − 1

3
tr[D]I

)
+ κtr[D]I

where,

P− pressure

µ− viscosity (shear viscosity)

κ− bulk viscosity (commonly assumed to be 0)

and P, µ, κ can depend on %, θ. The bulk viscosity represents the irreversibility

of volume change and is typically small for fluids at reasonable conditions (thus

assumed to be zero).

Special case of incompressible flow. Valid in the limit as ||~v||c → 0 with c is

the speed of sound. In this limit:

div~v = 0 =⇒ tr[D] = 0

% = constant

T = −Pin + Tvisc where tr[Tvisc] = 0

where constitutive relation needed for Tvisc, and Pin determined by div v = 0. For

a Newtonian fluid, Tvisc = 2µD.
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6.4 2nd Law Consistency

We must adhere to the second law of thermodynamics, i.e. satisfy the Clausius-

Duhem inequality,

%
∂η

∂t
+ div

~q

θ
− r

θ
≥ 0

For solids (Coleman-Noll). One approach to enforce the 2nd law in solids is

the so-called Coleman-Noll approach.

Consider the Helmholtz free energy

Ψ = e− θη.

We develop a relation for Ψ by subtracting the conservation equation for e from θ

times the conservation constraint (Clausius-Duhem) for η:

−
(
%
∂e

∂t
− T : D − r + div ~q = 0

)
+

(
%θ
∂η

∂t
+ θ div

~q

θ
− r ≥ 0

)

− %dΨ

dt
− %ηdθ

dt
+ T : D − ~q

θ
· grad θ ≥ 0

or, in expressed in the reference configuration

− %0Ψ̇0 − %0η0θ̇ + S : Ė − ~q0

θ
· ∇θ ≥ 0. (6.4.1)

Suppose,

Ψ0 = ψ(E, θ,∇θ)

Then

Ψ̇0 =
∂ψ

∂E
: Ė +

∂ψ

∂θ
θ̇ +

∂ψ

∂∇θ
· ∇θ̇.

Substituting this into (6.4.1) we obtain that,(
S − %0

∂ψ

∂E

)
: Ė − %0

(
∂ψ

∂θ
+ η0

)
θ̇ − %0

∂ψ

∂∇θ
· ∇θ̇ − ~q0

θ
· ∇θ ≥ 0

However, notice that this must hold for arbitrary sign of Ė, θ̇,∇θ̇, so it is con-

venient to let coefficient on these be zero,

S = %0
∂ψ

∂E
, η0 = −∂ψ

∂θ
,

∂ψ

∂∇θ
= 0.

Then we have simply that

−~q0

θ
· ∇θ ≥ 0.
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Rearranging and switching back to the current configuration we see,

−~q · grad θ ≥ 0

Thus heat must flow from hot to cold.

In this case where S = %0
∂ψ
∂E the strain is non-dissipative—i.e. work done on the

body to affect deformation can be recovered.

More generally S may depend also on Ė, which will lead to dissipation. Then,

S = F(E) + I(Ė)

where

F(E) = %0
∂ψ

∂E
and

I(Ė) : Ė − ~q0

θ
· ∇θ ≥ 0.

Before considering 2nd law consistency for fluids we note that the above assump-

tion that

S = %0
∂ψ

∂E
implies that instead of identifying a tensor function to model S we may instead be

able to identify scalar function. In particular the previous equality assumes that

material deformations are reversible. In the case of material deformations in the

elastic regime this is fair assumption. We will return to this later.

For fluids. For a viscous fluid in the Eulerian representation, we assume ψ depends

on θ, grad θ only. That is, ψ(θ, grad θ). We have,

T = I(D)

where,

I(D) : D − q

θ
· grad θ ≥ 0.

Then

η = −ψ
θ

∂ψ

∂ grad θ
= 0

leads to µ, κ > 0.

We return to the governing equation for a Newtonian fluid. The Newtonian

constitutive law for T is

T = −PI + 2µD̃ + κtr[D]

where D̃ = D = 1
3tr[D]I is the deviatoric part of D (constructed such that tr[D̃] =

0). Most often we have the following dependencies,

µ = µ(θ) κ = 0 P = P(%, θ)
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e.g. P = %Rθ, (ideal gas)

We also have the Fourier heat conduction law,

Fourier’s Law

~q = −k grad θ (6.4.2)

where k = k(θ) is the thermal conductivity of the material.

For a thermally perfect material, we have that e = e(θ) and

Specific Heat

de

dθ
= Cν (6.4.3)

If we additionally assume the material is Callorically perfect, i.e.

Cν = constant

we get

e = Cνθ.

Substituting these into the Eulerian equations we get the Navier-Stokes equa-

tions,

Navier Stokes Equations

∂%

∂t
+ div(%~v) = 0

%
∂~v

∂t
+ %~v · grad~v = − gradP + div(2µD̃) + grad(κdiv~v)

%Cν
∂θ

∂t
+ %Cν~v · grad θ = −Pdiv~v + 2µD̃ : D

+ κ (div~v)2 + div(k grad θ)

(6.4.4)

This system is now closed if we have constitutive relations for parameters µ, κ, k

and an equation of state (e.g. ideal gas law) for P. The following dependencies are

commonly used: P(θ, %), µ(θ), k(θ), κ = 0.

Additionally, to be able to solve this set of differential equations we need initial

and boundary conditions.
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Initial Conditions include:

%(x, 0) = %0(x) ~v(x, 0) = ~v0(x) θ(x, 0) = θ0(x)

Boundary Conditions include:(
PI + κdiv~vI + 2µD̃

)
n = ~g(x, t)

~v = ~v(x, t)

}
or

−κ∇θ · n = g(x, t)

θ = θ(x, t)

}
or

There are many other equivalent forms. For example:

Conservative form of momentum equation

∂(%~v)

∂t
+ div(%~v ⊗ ~v) = − gradP + 2 div(µD̃) + grad(κdiv~v)

Conservative form of energy equation

∂(%E)

∂t
+ div(%~vE) = −div(P~v) + 2 div(D̃~v) + div(κ grad θ)

where, E = 1
2~v · ~v.

The Navier Stokes (N-S) equations describe a wide variety of observed phenom-

ena in fluids including: turbulence, sound waves—compression waves traveling at

speed a, where a2 = ∂P
∂%

∣∣∣
S

If we non-dimensionalize these equations the natural scaling is,

x̂ =
x

δ
v̂ =

~v

~v0
%̂ =

%

%0

P̂ =
P

%0a2
0

t̂ =
t~v0

δ
θ̂ =

θ

θ0

(6.4.5)

where a0 is the speed of sound at reference thermodynamic conditions.

Rewriting the momentum equation we have,

%̂
∂v̂

∂t̂
+ %̂v̂ · ĝradv̂ =

1

M2
ĝradP̂ +

1

Re
d̂ivT̂visc (6.4.6)

where M = ~v0
a0

and Re=
%0~v0δ
µ0

. In the limit as M → 0, for the pressure gradient

term to be finite we must have

P̂ = P̂0(t)︸ ︷︷ ︸
ord. 1 & ind. of x

+ M2P̂′(x, t)︸ ︷︷ ︸
ord. 1 pressure fluctuates
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from equations of state P = P(%, θ) (e.g. ideal gas P = %Rθ) thus, suggests that

θ̂ = 1 +M2θ′(x, t)

%̂ = 1 +M2%′(x, t)

though other behaviors are possible—leading to different equations.

Keeping terms of order 1 only in (6.4.6) gives,

%̂
∂v̂

∂t̂
+ %̂v̂ · ĝradv̂ = −ĝradP̂′ +

1

Re
d̂ivT̂visc.

For mass conservation,

∂%̂

∂t̂
+ v̂ · ĝrad%̂ = −%̂d̂ivv̂ =⇒ d̂ivv̂ = 0

Thus,

T̂visc = 2µ̂
ˆ̃
D + κ̂d̂ivv̂I

= û
(

ĝradv̂ + ĝradv̂T
)

+

(
κ̂− 2

3
µ̂

)
�
�
�0︷︸︸︷

div v̂ I

Further µ̂→ 1 and d̂iv(ĝradv̂T) = ĝrad(d̂ivv̂) = 0, therefore

d̂ivTvisc = d̂ivĝradv̂ = ∆̂v̂,

the vector Laplacian.

%̂
∂v̂

∂t̂
+ %̂v̂ · ĝradv̂ = −ĝradP̂′ +

1

Re
∆̂v̂.

Note that

P = P0(t) + P′(x, t)

=⇒ P̂ =
P0(t)

%0a2
0

+
P′0
%0a2

=⇒ P′

%a2
= M2P̂′

=⇒ P̂′ =
P′

%v2
0

Expressing everything back in dimensional variables

Incompressible Navier Stokes

%0
∂~v

∂t
+ %0~v · grad~v = − gradP′ + µ0∆~v + ~f

div~v = 0

(6.4.7)
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These are the incompressible Navier Stokes Equations—note that no constitutive

relations for P′ are needed. We still need boundary and initial conditions however.

Initial Conditions:

need ~v(x, 0) = ~v0(x) with div~v0 = 0

Boundary Conditions: several types for example

1. Inflow – ~v is specified

2. Walls – ~v = 0 (no-slip condition)

3. Free stream – Tviscn = 0 (no stress)

4. Outflow – Tviscn = 0
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6.5 Heat Equation

Take what we did with energy and heat flux, i.e.

de = Cνdθ ~q = −k grad θ,

then if there is no deformation we get,

Heat Equation

%Cν
∂θ

∂t
= div(κ grad θ) + r (6.5.1)

with k > 0 required by the 2nd law.
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6.6 Elasticity

For a deformable body (solid) with uniform θ, no heat flux (~q = 0), homogeneous,

and isotropic.

The free energy constitutive dependence simplifies to

Ψ = ψ(E).

We then call Ψ the stored energy function or strain energy function. This is a

hyperelastic constitutive relation.

Since ψ is an isotropic scalar function of a tensor it must take the following form:

ψ = W
( invariants︷ ︸︸ ︷
IE , IIE , IIIE

)
.

Then,

S =
∂ψ

∂E
=
∂W

∂IE

∂IE
∂E

+
∂W

∂IIE

∂IIE
∂E

+
∂W

∂IIIE

∂IIIE
∂E

.

For example, ∂Eii
∂Ejk

= δjk implies that ∂IE
∂E = I.

Similarly we should get

∂IIE
∂E

= tr[E] I − E

∂IIIE
∂E

=
1

2

(
tr[E]2 − tr[E2]

)
I +

(
E2 − tr[E]E

)
Equations then become,

Elasticity Equations

%0
∂2u

∂t2
= Div

(
(I +∇u)

∂W

∂E

)
+ F0

E =
1

2

(
∇u+∇uT +∇uT∇u

)
.

(6.6.1)
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6.7 Linear Elasticity

Assume all displacements are small, then non-linear terms become negligible,

E ≈ e =
1

2

(
∇u+∇uT

)
.

What do Young’s Modulus and Poisson’s ratio mean? Consider a cylinder under

uni-axial loading. In the central region, far from clamped ends must have,

S11 =
F

A
, S22 = S33 = 0.

Also,
∂u2

∂x2
=
∂u3

∂x3

due to isotropy. Then,

S11 = (2µ+ λ)
∂u1

∂x1
+ 2λ

∂u2

∂x2

S22 = λ
∂u1

∂x1
+ (2µ+ 2λ)

∂u2

∂x2
= 0

=⇒ ∂u2

∂x2
=

λ

2µ+ 2λ

∂u1

∂x1
= −ν ∂u1

∂x1

then we have,

S11 =
(
2µ+ λ(1− 2ν)

)∂u1

∂x1
= E

∂u1

∂x1

If ∂2u
∂t2

is zero these are the Lamé equations,

Lamé Equations

(λ+ µ)
∂2uk
∂xi∂xk

+ µ
∂2ui
∂xi∂xk

+ ~f0i = %0
∂2ui
∂t2

(6.7.1)

These describe many important phenomena such as elastic wave propagation. Bound-

ary conditions – no displacement, specified traction. Furthermore, if S is linear in

E, in general

W =
1

2
Eijk`ek`eij

and

Sij =
∂W

∂eij
= Eijk`ek`

and symmetry requires that,

Eijk` = Ejik` = Eij`k = Ek`ij
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thus,

Sij = Eijk`
∂uk
∂X`

So we have finally that,

Linearized Lamé Equations

%0
∂2ui
∂t2

=
∂

∂Xj

(
Eijk`

∂uk
∂X`

)
+ ~f0,i (6.7.2)

For an isotropic material, most general form is

Eijk` = λδijδk`+ µ (δikδj` + δi`δjk)

and µ, λ and the Lamé constants

λ =
νE

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)

E is Young’s Modulus, ν is Poisson’s ratio.

Then

S = λtr[E] I + 2µE = λ div u+ u
(
∇u+∇uT

)
Finally, notice that for ν → 1

2 , then λ → ∞; so for S to remain finite, tr[E] → 0

and div u→ 0.
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Let ( ) ( ) ( ) 3 3, , : →a r b r F r     be vector fields, ( ) ( ) 3, u :ϕ →r r    be scalar fields,     [see B&T, p.168] 

ϕ∇    grad  ϕ=        
jx
ϕ∂

∂
             

∇⋅a     div = a        k k
kj

j k

a a
 

x x
δ

∂ ∂
=

∂ ∂
  

   ∇×a     curl  = a         k
ijk

j

a
x

ε
∂
∂

 

    ϕ∇ ⋅ ∇   2 div grad    ϕ ∆ϕ ϕ= ≡ ≡ ∇    
i i

i i

 
x x

ϕ ϕ∂ ∂
= ∂ ∂

∂ ∂
          Laplacian operator  

   ϕ∇×∇    curl grad   ϕ=   = 0      vanishes identically 

   ( )∇ ∇ ⋅a   grad div = a       
2

j k
jk

i k i k

a a
 

x x x x
δ

∂  ∂∂
=  ∂ ∂ ∂ ∂ 

 

   ( )∇ ⋅ ∇×a   div curl  = a   0=      vanishes identically 

   ( )∇× ∇×a   curl curl  = a       
2

m m
ijk klm ijk klm

j l j l

a a   
x x x x

ε ε ε ε
 ∂ ∂∂

= ∂ ∂ ∂ ∂ 
  

 1.  ( )∆ ϕ ψ ∆ϕ ∆ψ+ = +  

 2.  ( )ϕ ψ ϕ ψ∇ + = ∇ +∇        ( )grad grad gradϕ ψ ϕ ψ+ = +  

 3.  ( ) ( ) ( )∇ ∇ ⋅ + = ∇ ∇⋅ +∇ ∇ ⋅  a b a b     ( )grad div  grad div grad div + = +a b a b  

 4.              

 5.                  

 6.          

 7.  ( )( ) ( ) ( )∇× ∇× + = ∇× ∇× +∇× ∇×a b a b    ( ) ( ) ( )curl curl curl curl curl curl+ = +a b a b   

 8.           

 9.  ( )ϕψ ψ ϕ ϕ ψ∇ = ∇ + ∇        ( )grad grad gradϕψ ψ ϕ ϕ ψ= +      

10.          

 11.         

 12.           

13.  ( ) ( ) ( )
2  Laplacian∇

∇× ∇× = ∇ ∇⋅ − ∇ ⋅∇a a a


     ( ) ( )


Laplacian

curl curl  grad div  ∆= −a a a        

14.  ( ) ( ) ( ) ( ) ( )∇ ⋅ = × ∇× + × ∇× + ⋅∇ + ⋅∇a b a b b a a b b a   
 

diadic diadic

    = ∇ + ∇a b b a  

 15.  ( ) ( ) ( )∇× × = ∇ ⋅ − ∇ ⋅a b a b b a      ( )curl   div  div× = −a b a b b a      

For composite functions ( )fϕ   r  and ( )f  a r , the chain rule is applied  

16.  ( ) df f
df
ϕϕ∇ = ∇  r         ( ) dgrad  f grad  f

df
ϕϕ =  r   

17.  ( ) ( ) df f
df

∇⋅ = ∇ ⋅  
aa r        ( ) ddiv f grad  f

df
= ⋅  

aa r       

 18.  ( ) ( ) df f
df

∇× = ∇ ×  
aa r        ( ) dcurl  f grad  f

df
= ×  

aa r  

c∈

( )∇ ⋅ + = ∇ ⋅ +∇ ⋅a b a b ( )div div div+ = +a b a b

( )c c∇⋅ = ∇ ⋅a a ( )div c cdiv=a a

( )∇× + = ∇× +∇×a b a b ( )curl curl curl+ = +a b a b

( ) ( )ϕ∇× ∇× +∇ = ∇× ∇×a a ( ) ( )curl curl grad curl curlϕ+ =a a

( )ϕ ϕ ϕ∇ ⋅ = ∇ ⋅ + ⋅∇a a a ( )div div gradϕ ϕ ϕ= + ⋅a a a

( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×a b b a a b ( )div curl curl× = ⋅ − ⋅a b b a a b

( ) ( )ϕ ϕ ϕ∇× = ∇× +∇ ×a a a ( )curl curl gradϕ ϕ ϕ= + ×a a a

( ) ( ) ( )m
ijk klmi i i

j l

a          tensor notations for #13.
x x

ε ε
 ∂∂

∇× ∇× = = ∇ ∇⋅ − ∇ ⋅∇           ∂ ∂ 
a a a

∗

∗
( ) ( ) ( )

Laplacian of a vector field can be calculated
 

using gradient, divergence and curl operators
∇⋅∇ = ∇ ∇⋅ −∇× ∇×a a a
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                                                                Coordinate Systems 

Cartesian coordinates   ( )x, y,z  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cylindrical coordinates  ( )r , ,zθ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x r cosθ=  
y r sinθ=  
z z=  

 
2 2 2r x y= +  

ytan
x

θ =  

z z=  

Spherical coordinates   ( )r , ,φ θ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x r cos sinφ θ=  
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2 2 2 2r x y z= + +  

ytan
x

φ =  

2 2 2
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r x y z

θ = =
+ +

 

Basic vectors 
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r = cos sin sin sin cosφ θ φ θ θ+ +e i j k  
= - sin cosθ θ φ+e i j  
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Line elements     dx,dy,dz  

Differential areas 

xdA  =  dydz  

ydA  =  dxdz  

zdA  =  dxdy  

Differential volume 

dV  =  dxdydz  

Arc length 
2 2 2 2ds dx dy dz= + +  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 dr,rd ,dzθ  
 
 

rdA  =  rd dzθ  
dA  =  drdzθ  

rdA  =  rd drθ  
 
 
dV  =  rdrd dzθ  
 
 

2 2 2 2 2ds  =  dr r d dzθ+ +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dr, r sin d , rdθ φ θ  
 
 

2
rdA  =  r sin d dθ φ θ  

dA  =  r sin d drφ θ φ  

dA  =  d dφ ρ φ ρ  
 

2dV  =  r sin d d drθ φ θ  
 
 

2 2 2 2 2 2ds  =  dr r sin d r dθ φ θ+ +  
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Gradient u∇  
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x y z
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r z
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r r zθθ
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e e e  
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∂ ∂ ∇ + ∂ ∂ 

 

                
2 2
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1 u u
r zθ

∂ ∂
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                  ( )u r, ,φ θ  
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 ∂ ∂ ∂
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u 1 u 1 u=  
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∂ ∂ ∂
e e e  

 

2 2
2
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r rr
∂ ∂ ∇ + ∂ ∂ 

 

2

2 2 2 2
1 u 1 usin
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θ

θ θθ φ θ
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vector field ( )F r  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Divergence  
div = ∇ ⋅F F  
 
 
 
 
 
 
 
 
 
curl  = ∇×F F  
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x y z
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                         y xF F
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∂ ∂
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       ( )r zF ,F ,Fθ  
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x yF F sin F cosθ θ θ= +  

z zF F=  
 

x rF F cos F sinθθ θ= −  

y rF F sin F cosθθ θ= +  

z zF F=  
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