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1 Dimensional Analysis

1.1 Math models
Math theories are formulated based on 1.) empirical ob-
servations, 2.) invariance principles and dependency as-
sumptions, 3.) established theories and principles, and
4.) insightful guessing.

The invariance principles can constrain the closure mod-
els: 2 broadly useful invariance constraints are dimen-
sional invariance and coordinate invariance.

The validity of a model relationship can’t depend on
the arbitrary references (like units and coord. systems)
used to define the descriptors- because they’re arbitrary.
Measuring units (meters, etc) being arbitrary lead to the
principle of dimensional homogeneity. The principle
in which a physical system is invariant to the coordinate
system in which we describe it leads to tensor analysis.

For the Buckingham Pi Theorem, the null space is n −
m⇒ can form n-m dim-less quantities.

1.2 Tensor analysis
Tensors come in different ranks: 0.) scalars, 1.) vectors,
2.) homogeneous linear maps from vectors to vectors
(ex: Ax = b), n >2.) homogeneous linear maps from
m-rank tensors (0 < m < n) to n−m rank tensors.

Too much work to carry around the summations and ~ei,
so use Einstein summation convention.

1.) Tensors represented as indexed objects, e.g.
xi, yij , zijk

2.) In any term, an index can appear at most 2x
3.) Repeated index⇒ sum over that index
4.) Non-repeated index i⇒ mult with ~ei
Ex: Yijxjzj not valid because 2x repeated indices usu-

ally occur because (ej , ek) = 1 so the orthogonality is
pairwise and can only happen once.

Invariants of vectors/tensors are scalar fns of those vec-
tors/tensors that are invariant to the coordinate system in
which the tensors are expressed.

Two important results for rank-2 tensors in 3D are:
1.) Cayley-Hamilton theorem: a matrix is a soln to

its own char. eqn. i.e. An for n > 2 is a lin. comb. of

I, A,A2. Why is this interesting? (look in SAQ)
2.) There are only 3 independent invariants of a 3D

rank-2 tensor. e.g. Any scalar fn of a tensor A can be
expressed as a fn of its e-values. A “standard” set of
invariants are defined as the coefficients of the character-
istic eqn. i.e. the e-values λ of A are solutions of:

λ3 − I1λ
2 + I2λ− I3 = 0

where

I1 = Aii

I2 = 1
2(AiiAjj −AijAji)

I3 = det(A) = 1
6εijkεpqrAipAjqAkr

Another commonly used set of invariants is:

IA = Aii

IIA = −1
2AijAji

IIIA = 1
3AijAjkAji

Now, we can represent tensor fns, which we might use
to formulate a model of a tensor quantity. The Cayley-
Hamilton thm and the result on the number of indepen-
dent scalar invariants allows us to write any analytic ten-
sor fn B = F (A) (complicated) into 3 simpler things:

F (A) = γ1(IA)I + γ2(IA)A+ γ3(IA)A2

where γ(I1, I2, I3) are fns of the invariants of A.

Suppose a 3D rank-2 tensor A is a fn of a vector r, that
is A = F (r). What is the most general form of this fn?
Consider 2 arbitrary vectors a, b. We can form a scalar
fn

aiAijbj = f(a, b, r)

but the scalar fn f must be expressed in terms of the
invariants that can be formed from a, b, r. These are:

|a|, |b|, |r|, a · b, a · r, b · r

but f must be bilinear in a, b, so the only possibilities are
aibi and airibiri, which can be multiplied by an arbitrary
fn of r · r. Thus,

aiAijbj = g(|r|)(a · b) + h(|r|)(r · a)(r · b)
= ai(g(|r|)δij + h(|r|)rirj)bj

⇒ Aij = g(|r|)δij + h(|r|)rirj



1.3 Cross products and tensor consistency

With cross products in tensor notation, we introduce the
“alternating tensor” or “Levi-Civita Symbol”.

εijk


1 ijk = 123, 231, 312

−1 ijk = 132, 213, 321

0 otherwise

An issue with this tensor is that if we swap any 2 of our
basis vectors, we change the sign of the tensor ⇒ this
tensor is not coordinate system invariant. It is, however,
almost coordinate system invariant, up to a sign, so we
call it a pseudo-tensor (or pseudo-vector for vectors).
Ex: εijk is a 3rd rank pseudo-tensor.

Then the cross product is

(a× b)i = εijkajbk.

Note: if we apply the tensor again (introduce another
cross product in our term), the result would again be a
vector ((−1)2 = 1). Coordinate system invariance im-
poses the restriction that models for pseudo-vectors must
be expressed in terms of pseudo-vectors.

Ex: a×b = c×d and a = b×c×d are permissible/valid
models, but a = b× d is not.

Bottom line: tensor consistency and dimensional
consistency impose significant constraints on model
forms.

Tensor algebra is in the appendix.

2 Kinematics of Deformable Bodies

2.1 Motivation

The analog of F = ma is
∂
∂t

∫
Ω ρ~vdx =

∫
Ω
~fbdx+

∫
∂Ω

~fsdA

where ρ is the mass density, ~fb is the body force per unit
volume, and ~fs is the surface force per unit area.

Models for fs, fb are needed to complete the description
of the motion of the continuum. We neglect fb and only
focus on fs for now. We hypothesize that for solids, in-
ternal surface forces fs will depend on deformation (or
strain) and on the rate for fluids.

2.2 Solids
The material points within a deformable body is labeled
by a vector X , representing the position w.r.t. the origin
in some “ref config”.

The motion and deformation can be expressed by a fn
x = ϕ(X, t) (which is the spatial position of the material
pt X at time t). We require:

1.) ϕ is differentiable
2.) ϕ is bijective - there is a 1-1 correspondence

b/w pts in Ω0 and Ωt (except possibly at ∂Ω0)
3.) ϕ is orientation preserving (the material

can’t turn inside out), so det∇ϕ(X, t) > 0

The displacement is

u = ϕ(X)−X

which is a vector field. The deformation gradient is

F (X) = ∇ϕ(X) = I +∇u(X)

which is a rank-2 tensor Fij = ∂ϕi

∂Xj
= (∇ϕ)ij because

ϕ is a vector field. The motion is rigid if

ϕ(X) = ~a+Qx

where a ∈ R3, is a translation andQ (the rigid body rota-
tion) is a unitary tensor. This means the body is moving
but does not deform.

2.3 Deformation Tensor
Consider the deformation of differential line segments.
Let dX be a diff. segment in Ω0. It will be mapped to
dx = FdX . (For intuition, go to intuition pt 1.)

Non-rigid deformations will change the lengths of the
line segments. Considering the length of these segments,

dS2
0 = |dX|2 = dX · dX = dXidXi

dS2 = |dx|2 = (Fdx) · FdX = dXTF TFdX
⇒ dS2 = dXTCdX

Thus, we define the (right) Cauchy-Green deformation
tensor, a rank-2 tensorC that quantifies “stretching” (the
distortion) of continuum in different directions as

C = F TF

C is s.p.d. (For left Cauchy-Green deformation tensor,
go to pg 8 of textbook). The change in line segment
length is given by

dS2 − dS2
0 = dXTCdX − dXTdX



= dXT(2E)dX

where

E =
1

2
(C − I)

is the Green-St. Venant Strain Tensor, which denotes
the change in length of line segments. (For intuition, go
to intuition part 2.) Note: if ϕ is a rigid-body motion,
then E = 0.

Since F = I +∇u, and C = F TF, then

E =
1

2
(∇u+∇uT +∇uT∇u).

SinceE is symmetric, it has real e-values and orthogonal
e-vectors. These e-vectors are the principal directions
of strain E. Note: the images of principal directions are
also mutually orthogonal. (For more information, go to
page 18 of the packet or pages 9, 20-23 of textbook.)
Note: C and E have the same e-vecs.

Now consider what happens to differential segments
aligned with a more general set of orthogonal bases. The
images of dS0~e

′
i that aren’t e-vecs of C and E aren’t mu-

tually orthogonal since the projn. along direction ~ei is
scaled according to λi which generally are not equal.

The apparent rotation of the non-principal basis vectors
is encoded in the off-diagonal elements of E when ex-
pressed in these coordinates. They are referred to as
shear strains γij and can be viewed as a consequence of
anisotropic stretching. The shear strain in the X1 − X2

plane is defined by the angle change γij
def
= π

2 − θ. Thus

sin γij =
2Eij√

1 + 2Eii
√

1 + 2Ejj
.

2.4 Relating shear and principal strain-the Polar
Decomposition Theorem

Consider the two following deformations:
For a given γ, the two can be related by a scalar α and
rotation angle θ. In particular, the 2 deformations will
have the same C and E. To understand why, let’s look at
the Polar Decomposition theorem, which says that for
any invertible F , ∃ unique R,U, V s.t.

1.) R is unitary (& orthonormal) [i.e. a rotation]
2.) U, V are s.p.d.
3.) F = RU = V R

Proof is on pg 19 of the textbook. Note: U and V are
the right and left stretch tensors, respectively.

When F is the deformation gradient:
1.) F = RU = V R

2.) C = F TF = UTRTRU = U2

3.) B = FF T = V RRTV T = V 2

⇒ C and B don’t depend on R ⇒ rotation doesn’t im-
pact C. This explains our example: in the shear case,
R 6= I and in the 2D distortion case, R = I . Thus, a
pure shear in 2D (first image) is the composition of a 2D
distortion (second image) and a rotation.

In general, the Polar Decomposition thm implies that any
local deformation as characterized by the deformation
gradient is composed of a distortion and a rotation so
the deformation tensors and strain tensors are inde-
pendent of rotation.

2.5 Fluids

We’re looking at the rate of deformation now. Consider
the motion as a fn of time:

1.) Lagrangian (material description) frame de-
scribes motion of a pt that originated at X
throughout time

ẋ = v(x) = ∂ϕ(X,t)
∂t

ẍ = a(x) = ∂2ϕ(X,t)
∂t2

2.) Eulerian (spatial description) frame desc-
ribes motion of particles passing thru pt x
throughout time

v(x) = ẋ(ϕ−1(x, t), t)

a(x) = ẍ(ϕ−1(x, t), t)



Now consider the material time derivative of some field
quantity ψ:

1.) Lagrangian

dψm(X, t)

dt
=
∂ψ

∂t

∣∣∣
X

2.) Eulerian (total derivative)

Dψ

Dt
:=

dψ(x, t)

dt

∣∣∣
X

=
∂ψ

∂t
+ v · gradψ

In the Eulerian description, we define the velocity gra-
dient tensor L as

L := gradv(x, t).

We can consider the rate of change of the (Lagrangian)
deformation gradient F now as

Ḟ = ∂
∂t∇ϕ(X, t) = ∇∂ϕ

∂t = ∇v
⇒ Fij = ∂vi

∂Xj
= ∂vi

∂xj
∂xi
∂Xj

Ḟ = gradvF = LmF

where Lm is L expressed in Lagrangian form. Note:

Lm = ḞF−1

can be decomposed into symmetric part D (strain-rate
tensor or deformation rate tensor) and anti-symmetric
part W (rotation-rate tensor) i.e.

L = D +W

D =
1

2
(L+ LT)

W =
1

2
(L− LT)

(1)

Under the assumption that Ωt is the ref. config (usually a
good assumption for fluids as the choice of Ω0 is some-
what arbitrary), D = Ė. Under these assumptions, D is
also rotation independent, which makes D a good candi-
date for modeling surface forces. (Note: for more, go to
intuition part 3.)

In addition to quantifying the strain and rotation rates,
we can quantify the rate of volume change as

˙detF = detF div v

where det F is the volume element in Ωt, and div v is the
rate of volume change.

2.6 Reynold’s Transport Theorem

Note: the divergence thm allows us to transition b/w vol-
ume and flux integrals. For some vector field Ψ,∫

Ω
divΨdx =

∫
∂Ω

Ψ · n̂dA

In writing conservation laws in an Eulerian description,
it will be convenient to determine the material deriva-
tive of an intensive quantity integrated over some vol-
ume. We want to know ∂

∂t

∫
ωt

Ψdx in a subdomain ωt.

The material occupying ωt was in some region ω0 ∈ Ω0,
and the region occupied by this material evolves contin-
ually with time, which makes the integral of interest hard
to evaluate.

This leads us to the Reynold’s Transport Theorem:

d

dt

∫
ωt

Ψdx =

∫
ωt

∂Ψ

∂t
dx+

∫
∂ωt

Ψv · ndA

where
∫
∂ωt

Ψv · ndA =
∫
ωt

div(Ψv)dx. The surface in-
tegral can be interpreted as the net flux of the Ψ quantity
carried by the material across the boundary of ω. (For
the derivation, go to intuition part 4.)

2.7 Piola Transformation

Let T = T (x) = T (ϕ(X)) be a tensor field defined on
G ∈ Ωt and T (x)n̂(x) the flux of T across ∂G, n̂(x)
being the unit normal to ∂G. We seek a relationship b/w
T0(X) and T (x) that will result in the same total flux
through the surfaces ∂G0 and ∂G, so that∫

∂G0

T0(X)n̂0(X)dA0 =

∫
∂G
T (x)n̂(x)dA

This relationship between T0 and T is called the Piola
Transformation. The above correspondence holds if

T0(X) = detF (X)T (x)F (X)−T = T (x)CofF (X)

This result can be used to establish the following corre-
spondence b/w surface normals at diff times:

n̂ =
CofFn̂0

||CofFn̂0||
.

Note: more info on pgs 15-18 of textbook.



3 Eulerian Conservation (Fluids)

In this chapter, will present the conservation laws in the
Eulerian reference frame.

3.1 Momentum

Conservation of momentum is the fundamental relation-
ship that describes motion of a body under the action of
force. Given a motion ϕ of a body B of mass density %,
the linear momentum I(B, t) of B at time t is

I(B, t) =
∫

Ωt
%vdx.

From Newton’s law,
dI(B,t)
dt = d

dt

∫
Ωt
%vdx =

∫
Ωt
%dvdt dx = Fnet,

where Fnet are the net forces on B. These forces are body
forces (Fb)–exerted volumetrically–and surface forces
(Fs). We now have

∂

∂t

∫
Ωt

%~vdx =

∫
Ωt

~fbdx+

∫
∂Ωt

~fsdA.

Let f(x, t) be the force per unit volume. Then body force
Fb is ~Fb =

∫
Ωt

~fb(x, t)dx (Ex: for gravity, f = %g).

3.2 Cauchy Stress Theorem

Forces exerted on external surfaces may have different
origins, but they enter the formulation in the same way.
Let σ be the force per unit area acting on the body occu-
pying Ωt. In addition to external forces, there are inter-
nal forces (which depend on not just the pt that Γ passes
thru but also the orientation of Γ) that can be imposed on
the many surfaces passing thru any material pt.

To identify a model (dependencies) for surface stresses
σ, we introduce the Cauchy Hypothesis and Cauchy
Stress Theorem (proof on pg. 37 of txt and 9/16/19).

The Cauchy Hypothesis states ∃ a vector field σ(~x, t, n̂)
that defines force/area (stress) at pt x in Ωt which de-
pends on the normal (outward pointing) n̂ to the surface
∂Ω. Newton’s laws imply σ = σ(~x, t, n̂) = −σ(~x, t, n̂).

The Cauchy Stress theorem says that if
1.) body forces fb are continuous on Ω

2.) σ(~x, t, n̂) is continuously differentiable w.r.t. n̂ at
constant x

3.) σ(~x, t, n̂) is cont. diff. w.r.t. x at constant n̂
then ∃ a tensor field T (x, t) s.t. σ(~x, t, n̂) = T (x, t)n
and T (x, t) = T (x, t)T . T (x, t) is a rank-2 tensor that
maps the normal vector to force per unit area on ∂Ω.

Now we can write the surfaces forces Fs as

~Fs =

∫
∂Ωt

T (x, t) · n̂dAt.

3.3 Eulerian Conservation of Momentum
Substituting the Cauchy Stress Tensor T for ~fs and ap-
plying the Divergence Thm, we get

d

dt

∫
Ω
%~vdx =

∫
Ω

~fbdx+

∫
Ω

divTdx

Applying Reynold’s transport thm to the term on the
LHS and combining integrands, we get∫

Ω

[
∂(%~v)

∂t
+ div(%~v ⊗ ~v)− ~fb − divT

]
dx = 0.

Since Ω is arbitrary, the integrand must be zero for the
integral to be zero. This leads us to the PDE

∂(%~v)

∂t
+ div(%~v ⊗ ~v)− ~fb − divT = 0.

The tensor div(%~v⊗~v) is not symmetric, so there’s some
ambiguity on how the divergence operator should be ap-
plied. Writing in Cartesian tensor notation removes the
ambiguity:

∂%~vi
∂t

+
∂%~vi~vj
∂xj

− ~fbi −
∂Tij
∂xj

= 0.

3.4 Modeling the Cauchy Stress Tensor T
Since the strain-rate tensor D is independent of rotations
of the underlying coordinate system, it is a good can-
didate to model surface stresses σ for fluids. Thus, we
assume the dependence of T on D s.t.

T = T (D).

Applying the Cayley-Hamilton thm, we get

T = aI + bD + cD2

where a, b, c are scalar fns of the 3 scalar invariants of
D. It’s difficult to quantify all these fns experimentally
or otherwise, so we assume T is a linear fn of D.

This assumption leads to the defn of Newtonian Fluids.
This is a fair assumption for a wide class of fluids (like
water, oil, and others) but is a poor one for others, in-
cluding important fluids like blood. However, models
for these non-Newtonian fluids often rely on similar as-
sumptions.



Linearity implies c = 0 and b =constant (since scalar
invariants of D depend on D). The only scalar invariant
of D linear in D is tr[D], so a must be a linear fn. of
tr[D]. (i.e. a = α+ βtr[D]). Now we have

T = αI + βtr[D]I + γD

where α, β, γ are constants (in D). We can rewrite as

T = pI + κtr[D]I + 2µ

(
D − tr[D]

3
I

)

where p is hydrodynamic pressure, κ is bulk viscosity,
and µ is shear viscosity. Note: tr[D] = divv. (For more
info, go to intuition pt 5.)

3.5 Eulerian Conservation of Mass

In the ref. config., the mass is given by

M0(B) =
∫

Ω0
%0dX.

At time t, the mass is

M(B) =
∫

Ωt
%(x, t)dx

where % is the mass density field. We have that∫
Ω0
%0(X)dX =

∫
Ωt
%(x)dx.

The Eulerian conservation of mass can be obtained by
observing that the above eqn implies

d
dt

∫
Ωt
%(x)dx = 0.

Applying Reynold’s transport theorem to %(x), we get∫
Ωt

[
∂%(x)
∂t + div(%(x)v)

]
dx = 0.

And since Ωt is arbitrary, we get

∂%(x)

∂t
+ div(%(x)v) = 0.

3.6 Eulerian Conservation of Energy

Let ε be the total energy per unit volume. The energy
eqn will follow the general outline:

d
dt

∫
Ωt
εdx = Sources.

Then we have
d
dt

∫
Ωt

(κ+ U)dx = P + Q̇

where

κ = 1
2

∫
Ω0
%0u̇ · u̇dX = 1

2

∫
Ωt
%v · vdx

and

U =
∫

Ω0
%0e0(X, t)dX =

∫
Ωt
%e(x, t)dx.

Note: e is the internal energy density per unit mass.

The internal energy equation is

d

dt

∫
Ωt

%edx =

∫
Ωt

(T : D + r − div~q)dx

which enforces the first law of thermodynamics. Apply-
ing Reynold’s transport thm on the LHS, we get the dif-
ferential form of (Eulerian) internal energy conservation

∂%e

∂t
+ div(%e~v) = T : D + r − div~q.

where r is the volumetric heating rate, ~q is the heat flux,
and T : D denotes the contraction of T and D (or the
trace of their product). (Derivation is on pg 34 of notes
and 46 of textbook.)

3.7 Thermodynamics and Entropy
The second law of thermodynamics (the entropy S of
a closed system cannot decrease) is not a conservation
eqn. Instead, it is a constraint on the internal energy eqn–
we are interested in entropy constraining the direction of
heat flow.

Let Q be the heat added to a system at constant temper-
ature θ between times t2 > t1. Then the second law of
thermodynamics implies

S(t2)− S(t1)− Q̇
θ ≥ 0.

When equality holds, a process is reversible. In classical
thermodynamics, the change in entropy b/w two states of
a system measures the quantity of heat received per unit
temperature. For the time evolution, we have

dS
dt −

Q̇
θ ≥ 0.

For a continuum, we define η as the entropy density per
unit mass, so

S =
∫

Ωt
%ηdx

and
d
dt

∫
Ωt
%ηdx+

∫
∂Ωt

~q·n̂
θ dA−

∫
Ωt

r
θdx ≥ 0.

Note: for where Q̇, look at the conservation of energy
equation (on pg 34 of the notes). Applying the diver-
gence thm to the surface integral and applying Reynold’s
transport thm, we get the Eulerian Entropy eqn

∫
Ωt

[
∂%η

∂t
+ div(%η~v) + div

~q

θ
− r

θ

]
dx ≥ 0.



Since Ωt is arbitrary, we can get the Clausius Duhem
Inequality

∂%η

∂t
+ div(%η~v) + div

~q

θ
− r

θ
≥ 0.

4 Lagrangian Conservation (Solids)

Now, we define similar conservation laws for a La-
grangian frame that are more convenient in dealing wit
solids.

4.1 Mass
We start with∫

Ω0
%0(X)dX =

∫
Ωt
%(x)dx.

The integral in x can be transformed into an integral in
X since x = ϕ(X) and dx = detFdX where detfdX is
the ratio of differential volume dx to dX. We get∫

Ω0
(%0(X)− %(ϕ(X))detFdX = 0.

Since Ωt is arbitrary, we get

%0(X) = %(ϕ(X))detF (X).

4.2 Momentum
For reference, here is the Eulerian conservation eqn:∫

Ω

[
∂(%~v)
∂t + div(%~v ⊗ ~v)− ~fb − divT

]
dx = 0.

To get a Lagrangian representation, we can “transform”
from x to X like we did for the Lagrangian conservation
of mass eqn. This works for the first three terms, but
for the last term, we need a way to relate the changing
orientation and size (stretching) of differential areas. We
can use the Piola Transform to find a tensor field that can
achieve this. We get

DivT0 = divTdetF.

Observe∫
Ω0

DivT0dX =
∫

Ω0
divTdetFdX =

∫
Ω divTdx.

From the divergence thm, we get∫
∂Ω0

T0n̂0dA0 =
∫
∂Ω T n̂dA.

4.3 Piola-Kirchhoff Stress Tensors
T is a linear transformation from n̂ (CC) to a CC
force/CC area. T0 is a linear transformation of a nor-
mal n̂0 (RF) to a CC force/RF area. (Note: more info on
Piola Transformation in section 2.7.)

T0 is given the symbol P (X), the first Piola-Kirchhoff
Stress Tensor s.t.

P = detFTF−T = TCofF.

Now we can write

%0
∂2u
∂t2

= DivP + f0

where

f0 = f(ϕ(X))detF.

Note: P is not symmetric (since F and therefore its co-
factor are not symmetric), but since P = detFTF−T,
then PF T = detFT is symmetric. A symmetric tensor
is also recovered if we map the CC force/RF area to a RC
force/RF area. Then we get the second Piola-Kirchhoff
Stress Tensor

S = F−1P = detFF−1TF−T. |

We can write

%0
∂2u
∂t2

= DivFS + f0.

T : maps from CC n̂ to CC force/CC area.

P : maps from RC n̂0 to CC force/RC area.

S: maps from RC n̂0 to RC force/RC area.

4.4 Energy

The derivation is on pg 42 of the notes. The Lagrangian
energy conservation eqn is

%0ė0 = S : Ė − Div~q0 + r0

where

e0 = e(ϕ(X))

r = r0detF
div~q = Div~q0

~q0 = (CofF )T~q.

Note: e0 is not scaled by the volume ratio detF as it is
measured per unit mass, not per unit volume.

The entropy eqn can be transformed by combining trivial
analogues of the preceding transformations to get

%0η̇0 + Div
~q0

θ
− r0

θ
≥ 0

which is the Lagrangian Clausius Duhem Inequality.



5 Constitutive Equations (Closure Models)

Now we want to use the eqns we developed to deter-
mine the behavior of a body. However, since the laws
affect different materials in different ways, we have too
many unknown variables and too few eqns. To complete
the problem (to “close” the system of eqns), we must
supplement the basic eqns with constitutive equations.
These constitutive eqns impose constraints on the possi-
ble responses of the material body. We need constitutive
models for T, ~q, e, and η.

We require our constitutive models follow these princi-
ples:

1.) Determinism: no dependence on the future state,
only on the history

2.) Material Frame Indifference (MFI): invariance
to changes in the ref. frame, i.e. no dependence on
rigid motions (uniform velocity or rotation)

3.) Physical Consistency: cannot violate conserva-
tion laws or Clausius Duhem inequality (2nd law)

4.) Material Consistency: if the material is invariant
to a group of “unimodular” transformations (e.g.
rotations; reflections; continuous rotation group or
isotropy), then constitutive model must also be in-
variant to these transformations

5.) Local Action: constitutive models depend only on
“local” state; essentially depends on the state and
finite number of spatial derivatives at a pt

6.) Dimensional Consistency: dimensional and co-
ordinate invariance

7.) Other considerations: well-posedness (existence
or there exists solns to the problems resulting from
use of the eqns), equipresence

5.1 Application of MFI to T for Solids
Two observers can be moving or rotating differently. The
motion observed by one observer, x(t), is related to the
motion observed by the second observer, x∗(t) by

x∗(t) = Q(t)x(t) + c(t)

where Q and c do not depend on x, and Q is unitary. A
constraint is

T ∗ = QTQT.

This implies that the relationship T = T (F ) must satisfy

T (QF ) = QT (F )QT

for allQ(T ). Any constitutive relationship for T depend-
ing on F must take the form

T = T (F ) = FU−1T (U)U−1F T .

Note: derivation is on page 46 of notes.

5.2 Restricted Classes of Constitutive Relations

1.) Thermo-elastic: for this class of constitutive rela-
tions, we assume that quantities T, ~q, e, η at a pt depend
only on present values of the following state variables at
the pt

Solids: F, θ,∇θ
Fluids: D, θ,∇θ, ρ

2.) Homogeneity: for this class of constitutive eqns, we
assume all the material pts of the body are composed of
the same material (ref. config. uniform) so no explicit
dependence on X.

5.3 Application of MFI to Fluids

An ideal fluid (said to be incompressible) is one in
which the motions are isochoric (volume preserving),
density % = constant, and T is isotropic, i.e.

T = −p(x, t)I

which satisfies MFI since I commutes with tensor oper-
ations (note dependence of %, θ suppressed here). In a
viscous fluid, T = −PI + F(L) where L = gradv and
dependence on %, θ has been repressed.

MFI for a fluid requires

F(QLQT + Ω) = QF(L)QT

where L∗ = QLQT + Ω or

F(QDQT) = QF(D)QT

for an isotropic fluid where D∗ = QDQT. This is a
Stokes fluid.

If we assume F is linear in D (because the particles
move fast and aren’t very far apart), we obtain the gen-
eral form for a Newtonian Fluid

T = −pI + 2µ

(
D − 1

3
tr[D]I

)
+ κtr[D]I

where p is the (hydrostatic) pressure, µ is the (shear) vis-
cosity and κ is the bulk viscosity (commonly assumed to
be 0). P, µ, κ depend on %, θ. The bulk viscosity repre-
sents the irreversibility of volume change and is typically
small for fluids at reasonable conditions.



In the special case of incompressible flow (which is
valid in the limit as ||~v||c → 0 with c is the speed of sound.
In this limit,

tr[L] = div~v = 0⇒ tr[D] = 0
% = constant

T = −pin + Tvisc where tr[Tvisc] = 0

where a constitutive relation is needed for Tvisc, and Pin is
determined by divv = 0. For a Newtonian fluid, Tvisc =
2µD.

5.4 2nd Law Consistency For Solids
We must adhere to the 2nd law of thermodynamics (sat-
isfy Clausius Duhem inequality in section 4.4). We use
the Coleman-Noll method which places restrictions on
the nature of constitutive eqns imposed by the 2nd law.

Start with the Helmholtz free energy ψ = e− θη where
e is internal energy density, η the entropy density, θ the
absolute temp. Note: this eqn is useful to work with be-
cause it puts into one variable three things we don’t know
(η is in the 2nd law of thermodynamics, so it makes sense
to include it; we include e because it exposes the vari-
ables we want to model; we include θ for dimensions).

Subtracting the cons. eqn for e from θ times the
Clausius-Duhem inequality for η, we get

−%dψ
dt
− %ηdθ

dt
+ T : D − ~q

θ
· gradθ ≥ 0.

In the ref. config. this takes on the form

−%0ψ̇0 − %0η0θ̇ + S : Ė − ~q0

θ
· ∇θ ≥ 0.

Suppose the Helmholtz free energy eqn takes the form
ψ0 = Ψ(E, θ,∇θ).

Then
ψ̇0 = ∂Ψ

∂E : Ė + ∂Ψ
∂θ θ̇ + ∂Ψ

∂∇θ · ∇θ̇.
Substituting this into the previous inequality, we get,
(S−%0

∂Ψ
∂E ) : Ė−%0(∂Ψ

∂θ +η0)θ̇−%0
∂Ψ
∂∇θ ·∇θ̇−

~q0
θ ·∇θ ≥ 0

For this inequality to hold for rates (Ė, θ̇,∇θ̇) of arbi-
trary sign, it is sufficient (and convenient) that the coef-
ficients of the rates vanish, so

S = %0
∂Ψ
∂E , η0 = −∂Ψ

∂θ , ∂Ψ
∂∇θ = 0

and
−~q0

θ · ∇θ ≥ 0.

In the current config. we have −~q · gradθ ≥ 0. Now
we have constitutive eqns for S and η0. The free energy

cannot depend on the gradient of the temperature, and
heat must flow from hot to cold.

In this case where S = %0
∂Ψ
∂E , the strain is non-

dissipative (i.e. work done on the body to affect deforma-
tion can be recovered). More generally, S may depend
on Ė, which will lead to dissipation. Then

S = F(E) + I(Ė)

where

F(E) = %0 = ∂Ψ
∂E

and

I(Ė) : Ė − ~q0
θ · ∇θ ≥ 0.

Note: the assumption that S = %0
∂Ψ
∂E implies that in-

stead of idenifying a tensor fn to model S, we may be
able to identify a scalar fn. In particular, the previ-
ous equality assumes that material deformations are re-
versible.

5.5 2nd Law Consistency for Fluids

For a viscous fluid in the Eulerian representation, we as-
sume Ψ depends on θ, gradθ only, and T = I(D) where

I(D) : D − q
θ · gradθ ≥ 0.

Then

η = −Ψ
θ , ∂Ψ

∂grad θ = 0

leads to µ, κ > 0.

Returning to the governing eqn for a Newtonian fluid,
the constitutive law for T is

T = −pI + 2µD̃ + κtr[D]

where D̃ = D− 1
3 tr[D]I is the deviatoric part ofD (con-

structed s.t. tr[D̃ = 0).Most often we have the following
dependencies,

µ = µ(θ), κ = 0, p = p(%, θ)

5.6 Navier Stokes Equations

The compressible eqns are

∂%

∂t
+ div(%~v) = 0

%
∂~v

∂t
+ %~v · grad~v = −grad p + div(2µD̃)

+grad(κdiv~v)

%Cν
∂θ

∂t
+ %Cν~v · gradθ = −pdiv~v + 2µD̃ : D

+κ(div~v)2 + div(kgradθ)

(2)



where ∂e
∂θ = Cν is the specific heat at a constant vol-

ume. Note: the derivation is on pg 52 of the notes, and
IC and BC’s and more info on pg 53-54. This system
is now closed if we have constitutive relations for pa-
rameters µ, κ, k and an eqn of state (e.g. ideal gas law)
for p. The following dependencies are commonly used:
p(θ, %), µ(θ), k(θ), κ = 0.

For incompressible Navier Stokes, we have

%0
∂~v

∂t
+ %0~v · grad~v = −gradp′ + µ0∆~v + ~f

div~v = 0
(3)

5.7 Heat Equation

Take what we did with energy and heat flux, i.e. dedθ = Cν
and ~q = −kgradθ. Then if there is no deformation, we
get

%Cν
∂θ

∂t
= div(κgradθ) + r

where k > 0 required by the 2nd law.

5.8 Elasticity

For a deformable body (solid) with uniform θ, no heat
flux (~q = 0), homogeneous, and isotropic: the free en-
ergy constitutive dependence simplifies to ψ = Ψ(E).
We then call ψ the stored energy fn (or strain energy
fn). This is a hyperelastic constitutive relation.

Since Ψ is an isotropic scalar fn of a tensor, it must take
the following form

Ψ = W (IE , IIE , IIIE).

Then

S = ∂Ψ
∂E = ∂W

∂IE
∂IE
∂E + ∂W

∂IIE
∂IIE
∂E + ∂W

∂IIIE
∂IIIE
∂E .

For example, ∂Eii
∂Ejk

= δjk (because Eii = E11 + E22 +

E33) implies that ∂IE∂E = I. Similarly, we should get
∂IIE
∂E = tr[E]I − E

∂IIIE
∂E = 1

2(tr[E]2 − tr[E2])I + (E2 − tr[E]E).

The eqns become

%0
∂2u

∂t2
= Div

(
(I +∇u)

∂W

∂E

)
+ f0

E =
1

2
(∇u+∇uT +∇uT∇u).

(4)

5.9 Linear Elasticity
Assume all displacements are small. Then non-linear
terms become negligible, so

E ≈ e = 1
2(∇u+∇uT).

The Lamé eqns are

(λ+ µ)
∂2uk
∂xi∂xk

+ µ
∂2ui
∂xi∂xk

+ ~f0i = %0
∂2ui
∂t2

.

The linearized eqns are

%0
∂2ui
∂t2

=
∂

∂Xj

(
Eijk`

∂uk
∂X`

+ ~f0,i

)
.
For an isotropic material, the most general form is

Eijk` = λδijδkl + µ(δikδj` + δi`δjk)

and µ, λ are the Lamé constants

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

E is Young’s Modulus and ν is Poisson’s ratio. Then
S = λtr[E]I + 2µE = λdivu+ u(∇u+∇uT).

Finally, notice that as ν → 1
2 , then λ → ∞, so for S to

remain finite, tr[E]→ 0 and divu→ 0.



6 Terms

Body forces: acting on material points of the body by
its environment. Ex: weight-per-unit volume exerted by
the body by gravity or forces per unit volume exerted by
am external magnetic field

Buckingham Pi theorem: if there is a physically mean-
ingful equation involving a certain number n of physical
variables, then the original equation can be rewritten in
terms of a set of p = n − k dimensionless parameters
π1, π2, ..., πp constructed from the original variables

Cauchy-Green deformation tensor: gives us the
square of local change in distances due to deformation,
i.e. dx2 = dX ·C · dX; the right and left tensors cap-
ture only the stretching part of a deformation, not the
rotation

Cauchy Hypothesis: there exists a vector-valued sur-
face force density σ(n̂, x, t) (called the stress vector
field) giving the force per unit area on an oriented sur-
face Γ through x with unit normal n̂ at time t; the stress
vector does not depend on the curvature of the boundary
(assume the curvature is so big that the small intermolec-
ular forces look flat)

Clausius Duhem Inequality: a way of expressing the
2nd law of thermodynamics; is particularly useful in de-
termining whether the constitutive relation of a mate-
rial is thermodynamically allowable; is a statement con-
cerning the irreversibility of natural processes, especially
when energy dissipation is involved

Closure model: a model made to close a set of equa-
tions; often representing effects and phenomena that are
not accessible by theory (a set of eqns is closed when the
number of variables is reduced to the number of govern-
ing eqns)

Cofactor: for any matrix A= [Aij ] of order n and for
each row i and col j, let A′ij be the matrix of order n− 1
obtained by deleting the ith row and jth col of A. let
dij = (−1)i+jdet A′ij . then the matrix

Cof A= [dij ]

is the cofactor matrix of A and dij is the (i, j) cofactor
of A. Note: Cof F = (det F) F−T (pg 7 of txtbook)

Constitutive models: are “made up” to be consistent
with what is known and available data; a relation be-

tween two physical quantities that is specific to a ma-
terial approximate the response of material to external
stimuli; mathematical description of how materials re-
spond to various loadings

D (strain-rate tensor): describes how fluid is deform-
ing/stretching (how it’s strained); a physical quantity that
describes the rate of change of the deformation of a ma-
terial

Deviatoric: the stress tensor σij can be expressed as the
sum of two other stress tensors–(1) a mean hydrostatic
stress tensor or volumetric stress tensor or mean normal
stress tensor, πδij , which tends to change the volume of
the stressed body; and (2) a deviatoric component called
the stress deviator tensor, sij , which tends to distort it.

Dimensional homogeneity: a principle; quality of eqns
having quantities of same units on both sides

Dissipation: taking the kinetic energy and turning it into
heat, which raises the entropy of the system; the result of
an irreversible process that takes place in homogeneous
thermodynamic systems. Ex: heat transfer is dissipative
because it is a transfer of internal energy from a hotter
body to a colder one

Energy: the quality of a physical system (e.g. a de-
formable body) measuring its ability to do work; a
change in energy in causes work to be done by the forces
acting on the system and a change in energy in time pro-
duces a rate of work (i.e. power)

Entropy: a thermodynamic quantity representing the
unavailability of a system’s thermal energy for conver-
sion into mechanical work, often interpreted as the de-
gree of disorder or randomness in the system

Eulerian (description of) velocity: the velocity at a
fixed place x ∈ R3 is the speed and direction (at time
t) of particles flowing thru the place x

Flux: rate of flow through a surface or substance; for
transport phenomena, flux is a vector quantity, describ-
ing the magnitude and direction of the flow of a sub-
stance or property

Green-St. Venant Strain Tensor: denotes the change
in length of line segment; gives a measure of the defor-



mation of a material (Note: for more, go to intuition pt
2)

Helmholtz free energy: a thermodynamic potential that
measures the useful work obtainable from a closed ther-
modynamic system at a constant temperature and vol-
ume (isothermal, isochoric)

Homogeneous deformation: a deformation is homoge-
neous if F = C =constant; the deformation gradient
is (uniform) independent of the coordinates; all straight
lines in the solid remain straight under the deformation;
planes deform to planes, cubes (no matter how large) de-
form to parallelepipeds, and spheres deform to ellipsoids
Thus, every point in the solid experiences the same shape
change; Ex: volume preserving uniaxial extension, sim-
ple shear, rigid rotation thru angle about axis

Hyperelastic: a type of constitutive model for ideally
elastic material for which the stress–strain relationship
derives from a strain energy density function; the elastic
deformation can be extremely large

Incompressible flow (isochoric flow): a flow in which
the material density is constant within a fluid parcel—an
infinitesimal volume that moves with the flow velocity;
the divergence of the flow velocity is zero. Note: in-
compressible flow does not imply that the fluid itself is
incompressible

Inviscid fluid (ideal fluid): a nonviscous fluid (a fluid
for which all surface forces exerted on the boundaries
of each small element of the fluid act normal to these
boundaries); the stress tensor reduces to the pressure;
in the dynamics of an inviscid fluid, 1) no restraints are
placed on the tangential component of the flow at a solid
bounding surface, and 2) there is no dissipation of ki-
netic into thermal energy within the fluid; where an in-
viscid fluid flows along a surface, that surface is said to
be a free slip surface.

Isotropic: invariant to rotation; having a physical prop-
erty which has the same value when measured in differ-
ent directions

Lagrangian (description of) velocity: the velocity of a
material pt is the time rate of change of the position of
the pt as it moves along its path

Mean free path: average distance an atom/molecule

travels before colliding with another one; this is a char-
acteristic time scale

Momentum: the quantity of motion of a moving body,
measured as a product of its mass and velocity

Newtonion Fluids: fluids where internal stresses depend
linearly on strain-rate; a fluid whose viscosity does not
change with rate of flow

Principal direction and values: eigenvectors and
eigenvalues; for the Cauchy Green deformation ten-
sor, the principal directions indicate the direction of the
stretching and the values are how much the material is
stretched in the principal direction

Principal invariant: principal invariants of the second
rank tensor A are the coefficients of the characteris-
tic polynomial; do not change with rotations of the co-
ordinate system (they are objective, or in more mod-
ern terminology, satisfy the principle of material frame-
indifference)

Reynold’s number: the ratio between the viscous forces
in a fluid and the inertial forces; used to help predict
flow patterns in different fluid flow-situations; at low
Reynolds numbers, flows tend to be dominated by lam-
inar (sheet-like) flow, while at high Reynolds numbers
turbulence results from differences in the fluid’s speed
and direction, which may sometimes intersect or even
move counter to the overall direction of the flow (eddy
currents)

Scaling variables: the variables x1, ... , xm used to non-
dimensionalize the remaining variables

Shear strain: the ratio of the change in deformation to
its original length perpendicular to the axes of the mem-
ber due to shear stress

Shear stress: the component of stress coplanar with a
material cross section; arises from the force vector com-
ponent parallel to the cross section of the material; nor-
mal stress, on the other hand, arises from the force vector
component perpendicular to the material cross section on
which it acts

Simple shear: a deformation in which parallel planes in
a material remain parallel and maintain a constant dis-



tance, while translating relative to each other

Stokes fluid: has all the same constraints as a Newtonian
fluid but does not have to be linear in D

Strain: a description of deformation in terms of relative
displacement of particles in the body that excludes rigid-
body motions

Stress: a physical quantity that expresses the internal
forces that neighbouring particles of a continuous mate-
rial exert on each other

Surface forces: the contact of the boundary surfaces of
the body with the exterior universe or contact of internal
parts of the body on surfaces that separate them (ex. on
pg 31 of textbook)

Vorticity: a pseudovector field that describes the local
spinning motion of a continuum near some point (the
tendency of something to rotate), as would be seen by
an observer located at that point and traveling along with
the flow; can be expressed as ~w = ∇× ~u (here it is de-
fined as the curl of the flow velocity ~u); more on pg 22
of notes

W (rotation rate tensor): describes how the fluid is ro-
tating

7 Short Answer Questions (SAQ)

7.1 Questions from notes

What is a math model? How are they formulated?
Why are they useful? A math model is a relationship
between quantities (or among mathematical descriptors
of that system). They can be formulated by empirical
observations- from these, we derive math “theories” to
describe the data. They can help understand and predict
phenomena.

Consider an object as a physical system. What de-
scriptors might be useful? Dimensions, measures on
properties

In many (most) situations, we know (or think we
know) the fundamental laws that govern the physical
systems we want to model. In principle, this should
be all we need, but practically, why is it not? When
modeling complex systems, we commonly have a set of
applicable reliable theories, which are not “closed”. We
then need “closure models”, often representing effects
and phenomena that are not accessible by theory.

Why is the Cayley-Hamilton thm interesting? Sup-
pose we want to model B = F (A) where we postulate
that a tensor is a fn of another tensor. Well, any ana-
lytic tensor fn of a tensor F (A) is a linear combination
of I, A,A2 with coefficients that are scalar fns of the in-
variants of A.

In continuum mechanics, apply Newton’s law F =
ma to a continuum, rather than discrete masses. Why
might this be useful? What continua might be of in-
terest? it is locally homogeneous in other words if you
subdivide it sufficiently many times, all sub-divisions
have identical properties (eg mass density)

7.2 Kinematics of Deformable Bodies

What is the momentum of the material in Ω? What
forces are acting on it? The momentum is the sum (in-
tegral) of momentum of constituent particles. Two types
of forces are considered: body and surface forces.

What physical phenomena might ~fb and ~fs repre-
sent? ~fb: gravity, ~fs: stress or pressure

Consider 2 subdomains of a continuum material,
Ω1,Ω2. Looking at the following eqns, what should
~fs1 and ~fs2 depend on? How would this be different



for a fluid or a solid? Should ~fs1, ~fs2 be the same at
points where ∂Ω1, ∂Ω2 intersect?

∂
∂t

∫
Ω1
ρ~vdx =

∫
∂Ω1

~fs1dA1

∂
∂t

∫
Ω2
ρ~vdx =

∫
∂Ω2

~fs2dA2

The key point here is that fs will depend on the orien-
tation of the curve (surface) ∂Ω (i.e. the surface normal
of the boundary). For solids, we care about deformation,
while for fluids, we care about rate of deformation. The
surface forces will not be the same where domains in-
tersect since they will depend on the orientation of the
boundary.

7.3 Solids

Should the internal surface forces be affected by rigid
body motion? No, they shouldn’t since the continuum
isn’t compressed or altered, just shifted and rotated.

Why are the images of vectors ~ei also mutually or-
thogonal? By the properties of the SVD of C, see con-
ditions for orthogonality of right singular vectors V.

Recall (in section 2.4)-we started that discussion ex-
pecting internal forces to depend on the deformation.
Is the deformation tensor/strain tensor a good candi-
date for this dependence? Yes (for a solid).

7.4 Fluids

Internal surface forces that depend on deformation
make sense for solids. Do they make sense for fluids?
If not, what makes sense? No they don’t. Fluids may
undergo deformation without carrying residual stresses
into a new ref config. (e.g. shaken water bottle), so we
consider the dependence of internal surface forces on the
rate of deformation instead.

When is the incompressible approximation good?
When the flow velocity is small compared to the speed
of sound.

7.5 Momentum

What is momentum? Recalling our formulation of
Newton’s law in a continuum however we can write
dm~v
dt = ~F , thus it can also be seen as the integral of force.

In particular, when no force is applied, momentum re-
mains constant-Newton’s first law. It is this relation that
we seek to conserve when we speak of momentum con-
servation.

7.6 Mass
What is mass? How is it measured? It’s a property
of a body that is a measure of the amount of material it
contains and causes it to have weight in a gravitational
field (or a measure of how much stuff is in an area). It
can be measured as density times volume.

How areM0 andMt related? Why? They are the same
since the mass of particles does not change and Ωt tracks
particles thru space.

7.7 Energy
What constitutes the energy of a continuum? What
are the possible sources? The energy consists of ki-
netic energy κ (the energy due to motion) and internal
energy U (energy due to “everything else”, like deforma-
tion, temperature, etc). Possible sources include power,
or rate of work (P) and heating rate Q̇. Note: the in-
ternal energy depends on the deformation, temperature
gradient, and other physical entities. This precise form
of this dependency varies from material to material and
depends on the physical “constitution” of the body.

What does T : D mean? Looking at the boundary
forces, part of the surface work went into kinetic energy.
T : D is the part that did not go into kinetic energy–it
went into the internal energy. It may be dissipation or
elastic energy storage.

7.8 Linear Elasticity
What do Young’s Modulus (E) and Poisson’s ratio
(ν) mean? If there is uniaxial loading, Young’s Mod-
ulus is the ratio between stress in the loading direction
to the deformation. Poisson’s ratio is the ratio of strain
and direction orthogonal to the strain (ratio of transverse
contraction strain to longitudinal extension strain in the
direction of stretching force). We’re looking at a situa-
tion where when a material is stretched in one direction
it tends to get thinner in the other two directions. These
are used instead of and because these are quantities that
can be measured through experiments.



7.9 Gopal’s Questions

Why is dimensional consistency important in the pro-
cess of model development? Allows us to directly com-
pare quantities to other physical quantities of the same
kind, and we don’t want the validity of our model to de-
pend on the arbitrariness of units.

Why is tensorial consistency important in the process
of model development? The tensorial invariance of our
quantities are preserved.

How should you determine which scaling variables to
choose in the process of dimensional analysis? Why
is it useful to choose scaling variables this way? There
is no exact set of rules, but typically, you want to choose
variables you believe will have the strongest or most di-
rect impact on the phenomenon you are trying to model
(or accounts most for the variability of the system). This
is especially important when later trying to simplify your
model. If you chose an insignificant parameter, it is then
difficult if not impossible to remove it without going
back to square one and re-picking scaling variables.

Is the number of variables important? The most im-
portant part is having the right variables. If you have
too many, you unnecessarily complicate your model. If
you miss relevant variables, you’ll get an inconsistent
model/won’t capture the true dynamic of the system.
Side note: we can simplify models by eliminating vari-
ables that are dependent on other things or placing con-
straints on the model. Ex: if we assume helicopters are
all proportional (radius, thickness of paper, tail length),
we can remove a lot of the geometric variables for the
helicopters.

How does dimensional analysis help? It reduces the
number of parameters to model on.

What is a second rank tensor? Can you give an ex-
ample? A second rank tensor is a homogeneous linear
map from a vector to a vector. An example is a matrix or
the stress tensor T which maps a normal n to a force per
unit area.

How many invariants can a 2nd rank tensor have?
The dimension of the space the tensor is in, so we usually
use/have 3.

The models we’ll formulate are rightly called math-

ematical models-but people commonly refer to com-
putational models. What is the difference? A compu-
tational model is a mathematical model in computational
science that requires extensive computational resources
to study the behavior of a complex system by computer
simulation. A mathematical model is a description of a
system using mathematical concepts and language (can
be solved analytically).

What is the Cauchy-Green deformation tensor?
What does it express? It is a rank-2 deformation tensor
C that quantifies “stretching” (the distortion) of contin-
uum in different directions. It is C = F TF .

How is the Green-St Venant Tensor related to the
Cauchy Green Tensor? The Green-St Venant Tensor
gives the change in line segments, and it is half of the
distance between C and I .

What do the principal values and directions of C rep-
resent? The principal directions indicate the direction of
the stretching, and the principal values are how much the
material is stretched in the principal direction.

Why are constitutive equations required/important
in developing models for the physical world? What
processes are being represented by the constitutive
equations? They are made to be consistent with what
is known (and available data), and are complementary
eqns to the balance and kinematic eqns. They’re impor-
tant because they are mathematical simplifications of a
quite complex physical behavior (and we can’t get an
“exact” model). The processes we’re representing with
constitutive eqns. are T, ~q, e, and η.

What is a Newtonian Fluid? It is a fluid where its in-
ternal stresses depend linearly on strain-rate, and its vis-
cosity does not change with the flow rate.

What is a fluid? How is our description of the stress
tensor different for fluids versus solids? Why? A fluid
is a substance that has no fixed shape and yields easily
to external pressure; a gas or (especially) a liquid. Our
stress tensor for fluids depends on the strain-rate tensor
while the stress tensor for solids depends on the strain
(amount of deformation). T depends on the strain rate
because fluids may undergo deformation without carry-
ing residual stresses into a new ref config. (e.g. shaken
water bottle).



What do the stress tensor T, the first Piola-Kirchhoff
Stress Tensor, and the second Piola-Kirchhoff Stress
Tensor represent? T maps from CC n̂ to CC force/CC
area. P maps from RC n̂0 to CC force/RC area. S maps
from RC n̂0 to RC force/RC area.

8 Intuition

8.1 Deformation Tensor

Let’s consider the deformation of differential line seg-
ments. Let dX be a differential segment in Ω0. It will be
mapped to dx = FdX .

Note: The distance between two close points in Ω0 is
dX = X2−X1 = X+dX−X, and the distance for Ωt

is dx = ϕ(X2)− ϕ(X1). If dx > dX, there is a stretch,
and if dx < dX , there is compression.

We write dx = FdX because the length of the line seg-
ment in Ωt is the length of the line in Ω0 transformed,
with the transformation described by F (I think).

8.2 Green-St. Venant Strain Tensor

Note that tensor C can be viewed as the dilation of a
line segment, while E denotes (half) the actual change in
length of the segment.

Ex: a segment [of length 1] stretched to a ratio of 1.1
times its original size only changed 0.1 in length. 1.1
would be C in this direction, and 0.1 is twice the value
of E in this direction.

8.3 Strain Rate Tensor

Consider a rate of change of a differential line segment
dS, but first note that

∂
∂t(dX · CdX) = dX · ∂C∂t dX

= dX · ∂∂t(F
TF )dX

= dX · (Ḟ TF + F T Ḟ )dX

= dX · ((LF )TF + F T (LF ))dX

= dX · (F T (L+ LT )F )dX

Then,
∂dS2

∂t = dX · [(F T (L+ LT )F )dX]

= (FdX) · [(L+ LT )(FdX)]

= (dx) · [(L+ LT )(dx)]

= 2(dx) · [Ddx]

Note: dX is in Ω0 so it doesn’t depend on time, and
FdX is a line segment in Ωt. So the rate of stretch can
be written in terms of line segments in Ωt. Ω0 becomes
irrelevant, which is convenient because everything gets
tangled for a fluid.

8.4 Reynold’s Transport Theorem

The time derivative we want is of the material occupying
ωt at time t, but following the material. So we can write

d
dt

∫
ωt

Ψdx = d
dt

∫
ω0

ΨmdetFdX



=
∫
ω0

d
dt(ΨmdetF )dX

=
∫
ω0

(∂Ψm
∂t +v ·gradΨm)detFdX+

∫
ω0

Ψm
˙detFdX

The term inside the first integral is obtained for the time
derivative of Ψm using the multivariate chain rule (**),
as Ψm depends on variables (x(t), t). Switching back to
the Eulerian integral,

=
∫
ωt

(∂Ψ
∂t + v · gradΨ)dx+

∫
ωt

Ψdivvdx
=
∫
ωt

(∂Ψ
∂t + div(Ψv))dx

** The following shows the multivariate chain rule ap-
plied to Ψm :

dΨm(x(t),t)
dt = ∂Ψm

∂x
∂x
∂t + ∂Ψm

∂t
∂t
∂t

= ∂Ψm
∂t + v · gradΨm

8.5 Newtonian Fluids
For Newtonian Fluids, we have

T = p+ κtr[D]I + 2µ

(
D − tr[D]

3
I

)
where p is hydrodynamic pressure, κ is bulk viscosity,
and µ is shear viscosity.

κ is commonly assumed to be zero. This is the standard
model for internal stresses of Newtonian fluids; substi-
tuting T into the the differential momentum conservation
equation

∂%~vi
∂t

+
∂%~vi~vj
∂xj

− ~fbi −
∂Tij
∂xj

= 0.

gives the Navier-Stokes eqns. To modify this model for
non-Newtonian fluids, a common practice is to make µ a
fn of an invariant of D. The class of fluids that this ex-
tends to are known as shear-thinning or shear-thickening
fluids, since the shear-viscosity is a fn of shear-rate.

Note that substituting T into the above equation results
in 3 eqns, one for each component of velocity (plus 3
eqns. imposing the symmetry of T)-but we have a num-
ber of unknowns including: vi, %, p, κ, µ. It turns out that
µ will depend on additional variables like temperature θ,
but this will be dealt with later when we consider energy
conservation. Basically: our system is severely under-
determined.

9 Appendix

9.1 Invariants
The scalar-, vector-, and tensor-valued functions φ,~a,T
of the scalar variable φ, vector variable ~v, and second-
order tensor variable B are isotropic fns if

φ(Q~v) = φ(~v) φ(QBQT) = φ(B)

~a(φ) = Q~a(φ) ~a(Q~v) = Q~a(~v)

~a(QBQT) = Q~a(B)

T(φ) = QT(φ)QT T(Q~v) = QT(~v)QT

T(QBQT) = QT(B)QT

for all orthogonal tensors Q. For more information and
the integrity bases, go to packet.

9.2 Scientific Units

9.3 Dimensional Analysis
These are the steps to using the Buckingham Pi Theo-
rem.

1.) Count number of variables and state the dimen-
sions of each of the variables

2.) Determine the fundamental dimensions
3.) Number of pi groups is p = n−m where n is

number of variables and m is number of dimen-
sions

4.) Choose m scaling variables
5.) Scale the other variables with the variables from

(4) (can do this by putting the dimensions for each
variable into a matrix and solving for the null set)



Other considerations
1.) The final eqn is obtained in the form of π1 =

f(π2, ..., πn−m)
2.) The π groups must be independent of each other

and no group should be formed by multiplying to-
gether powers of other groups.

9.4 Tensor Algebra
Vector calculus:

1.) Gradient: (∇φ)i = ∂
∂xi

increases tensor rank by 1
2.) Divergence: ∇ · v = ∂vi

∂xi
decreases tensor rank by

1
3.) Curl: ∇× v = εijk

∂vj
∂xi

Kronecker Delta and Levi-Civita identities:
1.) δii = 3
2.) δijδjk = δik
3.) εijkεijm = 2δkm
4.) εijkεimn = δjmδkn − δjnδkm
5.) εijkεijk = 6

Tensor identities:
1.) (a⊗ b)c = (b · c)a
2.) (a⊗ b)T = b⊗ a
3.) (a⊗ b)(c⊗ d) = (b · c)(a⊗ d)
4.) (u⊗ v) : (q ⊗ p) = (u · q)(v · p)
5.) Av · u = v ·ATu


