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Implicitly filtered LES is inherently under resolved.•  

The Fourier cutoff filter, combined with the discrete derivative operators, define the resolved 
scales whose dynamics are accurately represented. 

•  

Here, we investigate the statistical effects of these poorly resolved scales on the energy balance in 
homogeneous, isotropic turbulence in the context of inhomogeneous resolution and dispersion error.

•  

1st Derivative Spectrum

An a priori statistical requirement should be imposed on the flow so that the energy spectrum is sufficiently 
small for these poorly represented scales. 

•  
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 FiltersB2 − B1B1

 Numerical FiltersB2 − B1B1

Acts as a filter for scales whose dynamics are poorly represented.  •  

Operates as a hyper-viscosity, e.g., , without needing to resort to higher order 

numerics.

B7
2 − B7

1 B7
1 ∼ Δ8 d10

dx10•  

Readily available as the  and  operators are already required by the governing equations.B2 B1•  

The  operators scales to the resolvability of each mode.B2 − B1B1•  
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u0 = sin(20x)exp(−5(x − π)2)

Δ = 2π/256 Δ = 2π/32
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Inhomogeneous resolution introduces non-local 
wavenumber interactions.

“It is generally accepted that the energy cascade in the 
internal range in dominated by interactions local in wave 
number, so that most of the energy is transferred between 
similar scales through triad interactions amongst wave 
vectors of about the same length”

- Waleffe (1991) “The nature of triad interactions in 
homogeneous turbulence

•  

•  

   1D Advection Example

Particularly damaging to the energy balance as, 
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•  

•  

   1D Advection Example

Particularly damaging to the energy balance as, 
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  Statistical Description of Commutation Error

Consider LES of isotropic turbulence convecting at constant velocity  through a grid with vary 
resolution. If the resolution is varying over length scales that are long compared to the resolution scale, 
the flow can be considered in a frame moving at velocity , with varying Fourier cutoff filter . The 
evolution of the resolved turbulence kinetic energy  is:

U

U κc(x)
k>

Dk>

Dt
= E(κc(x), t)Uj

∂κc

∂xj
+ ∫

κc(x)

0

∂E(κ, t)
∂t

dκ}}

Dissipation from 
commutator

Dissipation from 
SGS

A commutation model should have information about the mean velocity and the gradient of grid change.•  

Ideally, the commutation model should only affect scales near the cutoff wavenumber.•  
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Dui

Dt
= − ∂i p + ν∂j∂jui + ∂j(CsΔ2(2SlmSlm)1/2Sij)

Dui

Dt
= − ∂i p + ν∂j∂jui + C1Δ4/3ε1/3∂j∂jui + C2Δ2(2SlmSlm)1/2(B2 − B1B1)ui

Homogeneous, Isotropic Turbulence Example

2π /32

2π /16

Δ(x)

Inhomogeneous, isotropic resolution changing 
in the x-direction

1D energy spectra in z for each x-location

E(κz) =
1
2 ∫ ϕii(x, κy, κz)dκz

•  

•  

ν = 0ε = 1 , ⟨u⟩ = 0,

7th order Bspline used in each direction•  
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Homogeneous, Isotropic Turbulence Example

2π /32

2π /16

Δ(x)

Energy pile up due to resolution inhomogeneity

ν = 0ε = 1 , ⟨u⟩ = 0,



Dui

Dt
= − ∂i p + ν∂j∂jui + C1Δ4/3ε1/3∂j∂jui + (C2Δ2(2SlmSlm)1/2 + C3Δ |Uk

∂Δ
∂xk
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Mean convection example: 
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∂Δ
∂xk
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Fine Coarse
(Δ = 2π /64) (Δ = 2π /16)

κz κz κz κz κz
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i(κ

z)
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Energy pile up causes numerical instability near resolution 
change with just subgrid stress model
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Statistical Effects of Dispersion Error
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T< ii
(κ

)

Consider homogeneous, isotropic turbulence with uniform resolution and a mean convection velocity:

T<
jj = κℓ (δjk −

κ̃j κ̃k

κ̃mκ̃m ) Re {i∑
κ′ 

⟨ ̂̄uj(κ) ̂̄u*k (κ′ ) ̂̄u*ℓ(κ − κ′ )⟩}

T<
jj (κα) = ∑

κβ

∑
κγ

T<
jj (κα, κβ, κγ, t)

Energy spectra in the direction of convection are deficient in scales that experience significant 
dispersion error. 

•  

Corresponding transfer spectra tend to zero in poorly resolved scales.•  

An energy pile up occurs in well resolved mode as energy is not transferred to larger wavenumber.•  

Phenomenon scales with both convection velocity and order of accuracy of numerics.•  
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Statistical Effects of Dispersion Error
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The evolution equation for the instantaneous energy is

The time- and space-Fourier transformed energy transfer function is 

To simplify the analysis, consider triad interactions between wave modes whose frequency directly correspond 
to the mean convection velocity  (i.e., mean velocity dominates turbulent fluctuations). Then  
becomes

ω = − Ujκ̃j
̂T(κ, ω)

Orthogonality implies:
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Conclusion
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The presence of resolved scales whose dynamics are incorrectly represented can corrupt 
the flow throughout the domain.

•  

Understanding how these errors manifest in LES is crucial for the development of robust 
turbulence models.

•  

An a priori statistical requirement should be imposed on the flow so that the energy 
spectrum is sufficiently small for scales at which aliasing or dispersion are significant. 

•  



Thank you for listening and stay safe! 
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