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GOAL-ORIENTED A-POSTERIORI ESTIMATION OF MODEL ERROR
AS AN AID TO PARAMETER ESTIMATION

PRASHANT K. JHA AND J. TINSLEY ODEN

Oden Institute for Computational Engineering and Sciences, The University of Texas at
Austin, Austin, TX 78712

Abstract. In this work, a Bayesian model calibration framework is presented that utilizes
goal-oriented a-posterior error estimates in quantities of interest (QoIs) for classes of high-
fidelity models characterized by PDEs. It is shown that for a large class of computational
models it is possible to develop a computationally inexpensive procedure for calibrating
parameters of high-fidelity models of physical events when the parameters of a low-fidelity
(surrogate) models are known with acceptable accuracy. The main ingredient in the pro-
posed model calibration scheme are goal-oriented a-posteriori estimates of error in QoIs
computed using a so-called lower fidelity model compared to those of an uncalibrated higher
fidelity model. The estimates of error in QoIs are used to define likelihood functions in
Bayesian inversion analysis. A standard Bayesian approach is employed to compute the
posterior distribution of model parameters of high-fidelity models. As applications, param-
eters in a quasi-linear second-order elliptic boundary-value problem (BVP) are calibrated
using a second-order linear elliptic BVP. In a second application, parameters of a tumor
growth model involving nonlinear time-dependent PDEs are calibrated using a lower fidelity
linear tumor growth model with known parameter values.

1. Introduction

In this work, a fundamental question in predictive computational science embodied in the
following scenario is addressed:

1. Given a high-fidelity model of a class of physical phenomena which possibly involves a
large number of unknown or poorly specified parameters; and

2. Given a lower-fidelity model (or a class of “surrogate models”) of the same physical events
which involves fewer parameters but for which the parameters are known with acceptable
precision; and

3. Further, suppose it is possible to derive a posterior error estimates in key quantities-
of-interest, the QoIs, (so-called “goal-oriented” estimates) estimating the error in the
predictions of the low-fidelity model compared to those of the high-fidelity model.

Then, can one use such estimates and calibrated lower fidelity models to infer values of the
parameters of the high-fidelity model? Further, can such parameter estimates be made in
the presence of uncertainties?

The issue of developing a-posteriori estimates of modeling error in QoIs was taken up
in [17–22], and generally reduces to estimates of the form,

(1.1) Q(u)−Q(u0) = R(u0; p) + r ≈ R(u0; p),

E-mail address: prashant.jha@austin.utexas.edu, oden@oden.utexas.edu.
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where Q(·) is the value of the QoI-functional on solutions u of the forward problem, u0

is an approximation of u provided as a solution of a computable surrogate or reduced-
fidelity model, R(u0; ·) is one of several possible forms of a residual functional defining the
misfit of the surrogate solution to the forward problem, p is the solution of the adjoint
problem associated with the forward problem operators and the QoI functional, p0 being
an approximation of p, and r = r(u, p, u0, p0) is the remainder term, often assumed to
be negligible, that involves second or higher derivatives of semilinear forms B defining the
forward problem and the QoI functional Q. We remark that several different forms of the
residual R(·; ·) can be considered depending on various simplifying assumptions.

In this exposition, the use of such error estimate as a source of data in Bayesian framework
for parameter estimation in the presence of uncertainties is explored. However, the success
of such inference methods, not surprisingly, depends upon the magnitude of the errors,
e0 = u − u0, in the surrogate approximation of the forward problem and the error ε0 =
p − p0 in the surrogate approximation of the adjoint problem. For sufficiently small errors
(e0, ε0), approximate residuals can be derived which employ approximations of these error
components determined by solutions of an auxiliary pair of linear variational problems. In
such cases, it is argued that quite accurate estimates of key parameters of the high-fidelity
model can be obtained at reasonable computational costs. Applications to a representative
of a class of quasi-linear elliptic boundary-value problems and to a class of time-dependent
models of tumor growth at the tissue scale are presented. Details on the implementation and
behavior of the Bayesian methodology for parameter estimation are given for these example
applications.

Following this introduction, a brief review of the theory of goal-oriented a-posteriori es-
timates of modeling error following [17, 18] is provided and new methods of approximating
the pair (e0, ε0) useful to the evaluation of estimates of parameters of the high-fidelity model
are presented. In Section 3, a Bayesian inversion framework for estimating parameters of
the high-fidelity model in the presence of uncertainty using the lower-fidelity solution and
the computable estimates of the QoI error is presented. Representative applications are
discussed in Section 4 together with details on the performance of Markov Chain Monte
Carlo (MCMC) calculations used for parameter estimations. Concluding comments are
collected in Section 5. Codes used to obtain the numerical results are available in this
https://github.com/prashjha/GoalOrientedModelCalibration.

2. Goal-Oriented Estimation of the Modeling Error

Consider the abstract nonlinear problem: Find u ∈ V such that

(2.1) B(u; v) = F(v), ∀v ∈ V ,

where B(·; ·) is a differentiable semilinear form on a Banach space V , which is linear in
arguments following the semicolon but possibly nonlinear in u, and F(·) is a given linear
functional on V . The primary goal in formulating and solving (2.1) is to determine features
of the solution characterized by another possibly nonlinear functional Q defined on V , the
quantity of interest. At the outset, it is assumed that (2.1) admits a unique solution u ∈ V
and that B(·; ·) and Q(·) are differentiable in the Gâteaux or functional sense to a high
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degree, generally three or more; that is, the limits such as

B′(u; v, p) = lim
η→0

η−1[B(u+ ηv; p)− B(u; p)],

B′′(u; q, v, p) = lim
η→0

η−1[B′(u+ ηq; v, p)− B′(u; v, p)],

B′′′(u; r, q, v, p) = lim
η→0

η−1[B′′(u+ ηr; q, v, p)− B′′(u; q, v, p)], ...(2.2)

and

Q′(u; v) = lim
η→0

η−1[Q(u+ ηv)−Q(u)],

Q′′(u; q, v) = lim
η→0

η−1[Q′(u+ ηq; v)−Q′(u; v)],

Q′′′(u; r, q, v) = lim
η→0

η−1[Q′′(u+ ηr; q, v)−Q′′(u; q, v)], ...(2.3)

exist, η ∈ R+. Following [4, 5, 17–20], it is useful to note that the QoI, Q(u), u being
the solution of the forward problem (2.1), can be computed using the following constrained
minimization problem: Find u ∈ V such that

(2.4) Q(u) = inf
v∈M
Q(v),

where

M = {v ∈ V : B(v; q) = F(q), ∀q ∈ V}.
The minimizer u corresponds to the first component of a saddle point (u, p) ∈ V × V of the
Lagrangian,

(2.5) L(u, p) = Q(u) + F(p)− B(u; p)

with p the Lagrange multiplier, or adjoint or dual variable corresponding to the choice Q of
the quantity of interest. The critical points (u, p) of L(·, ·) are such that L′((u, p); (v, q)) = 0,
∀(v, q) ∈ V × V , which are solutions of the equations:

B(u; q) = F(q), ∀q ∈ V ,
B′(u; v, p) = Q′(u; v), ∀v ∈ V .(2.6)

The first equation in (2.6) is recognized as the primal or forward problem (2.1) while the
second equation is the adjoint or dual problem for p with u specified. The adjoint problem
is thus a linear variational (weak) formulation for p given u and the quantity of interest
functional Q.

Let us now suppose that (2.1) is intractable for practical purposes so that we are led to
consider a different semilinear form B0(·; ·) on V × V that may be a coarser model of the
same physical event modeled by (2.1) with solutions u0 ∈ V0 ⊆ V , V0 being subspace of V .
Thus, a lower-fidelity problem is given by: Find u0 ∈ V0 such that

(2.7) B0(u0; v) = F(v), ∀v ∈ V0.

Following the same steps used to obtain (2.6), a constrained optimization problem for the
lower-fidelity surrogate model (2.7) can be formulated to arrive at these surrogate forward
and adjoint pair of equations,

B0(u0; q) = F(q), ∀q ∈ V0

B′0(u0; v, p0) = Q′(u0; v), ∀v ∈ V0.
(2.8)
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Again, B0(·; ·) is assumed to be differentiable. In many cases, V0 = V as (2.6) and (2.8) are
different models of the same physical events.

The primal and adjoint errors (e0, ε0) are defined as

(2.9) e0 = u− u0 and ε0 = p− p0.

The degree to which the reduced model solutions (u0, p0) fail to satisfy (2.6) is characterized
by the residuals, R(·; ·) and R̄(·; ·, ·), defined as:

R(u0; q) = F(q)− B(u0; q), ∀q ∈ V ,
R̄(u0; v, p0) = Q′(u0; v)− B′(u0; v, p0), ∀v ∈ V .(2.10)

While the fine and coarse models may produce solutions which are quite different, the error
in the quantities of interests, Q(u)−Q(u0), where Q(u) and Q(u0) are furnished by the two
models, is of primary importance. In this regard, the following theorem, proved in [17, 18],
relates the error Q(u)−Q(u0) in QoI to the residuals R(·; ·) and R̄(·; ·, ·):
Theorem 1. Given any approximation (u0, p0) of the solution (u, p) of (2.6), the following
a-posteriori error representation holds:

(2.11) Q(u)−Q(u0) = R(u0; p0) +
1

2

(
R(u0; ε0) + R̄(u0; e0, p0)

)
+ r1,

where

r1 =
1

2

∫ 1

0

{Q′′′(u0 + se0; e0, e0, e0)

−3B′′(u0 + se0; e0, e0, ε0)− B′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s− 1)s ds.

�

Next, the Lemma 1 in [17] is extended to show that higher order approximations of
R̄(u0; e0, p0) in terms of R(u0; ε0) can be obtained.

Lemma 1. Given any approximation (u0, p0) of the solution (u, p) of (2.6), there holds

(2.12) R̄(u0; e0, p0) = R(u0; ε0) + r2

and

(2.13) R̄(u0; e0, p0) = R(u0; ε0)−Q′′(u0; e0, e0) +B′′(u0; e0, e0, p0) +
1

2
B′′(u0; e0, e0, ε0) + r3,

where

r2 =

∫ 1

0

{B′′(u0 + se0; e0, e0, p0 + sε0)−Q′′(u0 + se0; e0, e0)} ds

and

r3 =

∫ 1

0

{
B′′′
(
u0 + se0; e0, e0, e0, p−

1

2
(1− s)ε0

)
−Q′′′(u0 + se0; e0, e0, e0)

}
(1− s) ds.

Equalities (2.12) and (2.13) are derived in Appendix A. Equation (2.12) is established
in [17] and (2.13) is derived through straightforward algebraic manipulations in Appendix A.
Proof of these two equations, as shown next, leads to variational problems that can be used
to compute the approximations of the errors (e0, ε0).
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Combining Theorem 1 and Lemma 1 to eliminate R̄(u0; e0, p0), the following pair of rep-
resentations of modeling error is obtained:

(2.14) Q(u)−Q(u0) = R(u0; p0) +R(u0; ε0) + r1 +
r2

2
,

and

(2.15) Q(u)−Q(u0) = R(u0; p0)+R(u0; ε0)−Q′′(u0; e0, e0)+B′′(u0; e0, e0, p0+ε0/2)+r1+
r3

2
.

The remainder terms in the above equations, in general, depend nonlinearly on the solutions
(u0, p0) and (u, p).

While (2.14) and (2.15) provide exact representations of error in the QoI, we may often
consider approximations of this error, as noted in [17,18], that can be more easily computed.
For example, R(u0; p0) is readily computable whenever u0 and p0 are known. In instances in
which the higher order terms, r1, r2, r3, may be neglected when e0 and ε0 are sufficiently small,
the following approximate error estimators are obtained, noting that R(u0; p0)+R(u0; ε0) =
R(u0; p):

(2.16) Q(u)−Q(u0) ≈ R(u0; p) =: Ξ1(u, u0)

and

(2.17) Q(u)−Q(u0) ≈ R(u0; p)−Q′′(u0; e0, e0) + B′′(u0; e0, e0, p0 + ε0/2) =: Ξ2(u, u0).

Clearly from Theorem 1 and Lemma 1 the remainder term in the Ξ1 approximation involves
B′′ and Q′′. On the other hand, in the Ξ2 approximation, the remainder term involves B′′
and Q′′′.
2.1. Approximation of solution error. The approximations Ξ1 and Ξ2 of the QoI error
depend on errors (e0, ε0) and therefore involve solution (u, p) of the fine problem (2.6).
To bypass solving the high-fidelity problem (2.6), a pair of linear variational problem for
approximations (ê0, ε̂0) of (e0, ε0) can be obtained, following [17]. In addition, a “second-
order” variational problem for approximations (ê0, ε̂0) of the error pair an be derived which
is nonlinear (quadratic) in ê0 but generally more accurate that the first-order approximation.

Referring to the derivations given in the Appendix A, particularly (A.5), and ignoring
the higher order terms, i.e. B′′, there holds, for any q ∈ V , B′(u0; e0, q) ≈ R(u0; q). Simi-
larly, ignoring the higher order terms in (A.10), there holds, for any v ∈ V , B′(u0; v, ε0) ≈
R̄(u0; v, p0). This leads to the following variational problems for (e0, ε0):

Given any approximation (u0, p0) of the solution of (2.6), find (ê0, ε̂0) ∈ V2 such that, for
all (v, q) ∈ V2, there holds

B′(u0; ê0, q) = R(u0; q),

B′(u0; v, ε̂0) = R̄(u0; v, p0).
(2.18)

Similarly, referring to the derivations given in Appendix A, particularly (A.8), and ignoring
the higher order term, there holds, for any q ∈ V , B′(u0; e0, q) + 1

2
B′′(u0; e0, e0, q) ≈ R(u0; q).

And ignoring the higher order terms in (A.11), for any v ∈ V , the following holds,

B′(u0; v, ε0)−Q′′(u0; e0, v) + B′′(u0; e0, v, p) ≈ R̄(u0; v, p0)

or
B′(u0; v, ε0)−Q′′(u0; e0, v) + B′′(u0; e0, v, p0) + B′′(u0; e0, v, ε0) ≈ R̄(u0; v, p0)
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Arguing as before, the following variational problems are obtained:
Given any approximation (u0, p0) of the solution of (2.6), find (ê0, ε̂0) ∈ V2 such that, for

all (v, q) ∈ V2, there holds

B′(u0; ê0, q) +
1

2
B′′(u0; ê0, ê0, q) = R(u0; q),

B′(u0; v, ε̂0)−Q′′(u0; ê0, v) + B′′(u0; ê0, v, ε̂0) = R̄(u0; v, p0)− B′′(u0; ê0, v, p0).
(2.19)

Remark 1. The two versions of equations for the approximate error pair (ê0, ε̂0), (2.18)
and (2.19), can be obtained directly from the forward and dual problems, (2.6), by simply
performing the Taylor series expansion of B(u; v) and B′(u; v, p) about u0. For example, to
obtain (2.18)1, subtracting B(u0; q) from the both sides in (2.6)1 and proceeding as follows
to get

B(u; q)− B(u0; q) = F(q)− B(u0; q) = R(u0; q)

⇒ B′(u0; e0, q) +

∫ 1

0

B′′(u0 + se0; e0, e0, q)(1− s) ds = R(u0; q).

In the above calculation, (2.18)1 is recovered by discarding B′′. The following equality is
used in deriving the above relation:

B(u; q)− B(u0; q) = B′(u0; e0, q) +

∫ 1

0

B′′(u0 + se0; e0, e0, q)(1− s) ds.

Proceeding in a similar fashion and using higher-order relations for B(u; q)−B(u0; q), (2.19)1

can be established. The equations for ε0 can also be established in a similar manner.

Remark 2. The pair of equations in (2.18) define generally solvable linear variational prob-
lems for approximations of the error functions e0 and ε0 that, when solved and introduced
into the residuals, greatly reduce the computational cost of computing goal-oriented esti-
mates.

Remark 3. To compute the error in the QoIs using either the exact error representation in
(2.14) and (2.15) or the approximate representations (2.16) and (2.17), a version of the fine
problem must be solved. For example, given (u0, p0) of the coarse model, the errors (e0, ε0)
can be computed directly by solving the fine problem (2.6) for (u, p). Alternatively, (2.18)
can be solved to compute approximations of errors (e0, ε0). Out of these two choices, the
latter is generally preferable as it involves decoupled linear equations for (e0, ε0).

2.2. Simplified estimates using the approximation of solution error. In this section,
the quality of estimates Ξ1 and Ξ2 when the errors (e0, ε0) are replaced by the approximate
errors (ê0, ε̂0) is probed. By combining Theorem 1 and Lemma 1 with the variational problem
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(2.18)1, one can show that

Q(u)−Q(u0) = R(u0; p0) +
1

2
R(u0; ε0) +

1

2
R̄(u0; e0, p0) + r1

= R(u0; p0) + R̄(u0; e0, p0) + r1 −
r2

2

= B′(u0; ê0, p0) +Q′(u0; e0)− B′(u0; e0, p0) + r1 −
r2

2

= Q′(u0; ê0) +
[
Q′(u0; e0 − ê0)− B′(u0; e0 − ê0, p0) + r1 −

r2

2

]
.(2.20)

Thus, in addition to the remainder terms r1 and r2, additional error terms arise due to the
approximation of e0 by ê0. Similarly, by combining (2.19)1 and Theorem 1 and Lemma 1,
the following can be shown:

Q(u)−Q(u0) = Q′(u0; ê0) +
1

2
Q′′(u0; ê0, ê0)

+

[
Q′(u0; e0 − ê0) +

1

2
Q′′(u0; e0 + ê0, e0 − ê0)− B′(u0; e0 − ê0, p0)

−1

2
B′′(u0; e0 + ê0, e0 − ê0) + r1 −

r3

2

]
.(2.21)

Effectively, in both estimates, the remainder terms (all terms inside the square brackets)
depend on Q′ and B′.
Remark 4. From the above equations, it is observed that if the error approximation ê0 is
known and employed in (2.20) and (2.21), and if the terms in the square brackets including
Q′′(u0; ê0, ê0) are negligible, then Q′(u0; ê0) may provide readily computable estimate of QoI
error, Q(u) −Q(u0). These additional approximations are explored in specific applications
in Section 4.

3. Bayesian Model Calibration Using Goal-Oriented A-Posteriori
Estimates

The goal of using parameterized computational models to simulate events that take place
in the physical universe, as noted repeatedly, are the quantities of interests. In the context
of the present exposition, the QoIs, Q(u(θ)), delivered by a “high-fidelity model” which
has parameters θ ∈ Θ ⊂ Rm, is sought. To cope with uncertainties in the observational
data y and the imperfection in the model itself, Baye’s rule is employed and a likelihood
probability density, πlike(y|θ), describing the probability distribution of the data conditioned
on the parameters θ, is sought. But the observational data to which we have access is often
insufficient to reliably calibrate the high-fidelity model: it may only be used to calibrate
a lower-fidelity surrogate which may deliver with acceptable accuracy a QoI, Q(u0(θ0)),
θ0 ∈ Θ0 ⊂ Rm0 being the vector of parameters in the lower-fidelity model. This low-fidelity
filter of data then provides the only apparent connection with observational data available.
So, the data, y, is taken to be

(3.1) y = Q(u0(θ0)).

Following standard statistical arguments [13–15], let g denote the actual physical reality of
an event to be predicted by our model; i.e., the “ground truth”. Then data y = f(g, ε),
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f(·, ·) describing a “noise model” and ε the experimental noise. Assuming a linear additive
model, f(g, ε) = g + ε, gives

(3.2) y = Q(u0(θ0)) = g + ε.

The high-fidelity model predicts the truth g as Q(u(θ)), which may differ from reality
due to model inadequacy or modeling error. Assuming a linear additive models of modeling
error, the following relates the model prediction to the ground truth,

(3.3) g = Q(u(θ)) + γ(θ),

where γ = γ(θ) is the modeling error (or “modeling inadequacy”) which depends on the
parameters θ. Combining (3.2) and (3.3), the ground truth can be eliminated to give

(3.4) y − ε = g = Q(u(θ)) + γ(θ) ⇒ y −Q(u(θ)) = ε+ γ(θ) =: ε̄.

Noting that y = Q(u0(θ0)), the total error ε̄, the sum of noise and model inadequacy, is
equal to the goal-oriented error.

If ρ(ε̄) denotes the probability density of ε̄ and πlike(y|θ) is the likelihood probability of
data y conditioned on given model parameters θ, then

πlike(y|θ) = ρ(ε̄) = ρ(y −Q(u(θ))) = ρ(Q(u0(θ0))−Q(u(θ))).

As a first approximation, it is reasonable to assume that ρ is Gaussian with zero mean,
ρ ∼ N (0, σ), so that

(3.5) πlike(y|θ) =
1

σ
√

2π
exp

[
−|Q(θ0;u0)−Q(θ;u)|2

2σ2

]
,

where σ is the standard deviation. Thus, the likelihood depends upon the error in the
QoI and this is estimated using the calculations described in the previous section. Then the
posterior probability density of the parameters θ of the high fidelity model is given by Baye’s
rule,

(3.6) πpost(θ|y) =
πlike(y|θ)πprior(θ)

πevid(y)
,

where πprior(θ) is a prior probability density of the parameters and πevid(y) is the evidence
density

πevid(y) =

∫
Θ

πlike(y|θ)πprior(θ) dθ.

In computations presented in the next section, a version of MCMC methods is applied to
generate samples of the posterior of the model parameters using (3.6).

4. Applications

In this section, the method of model parameter estimation described earlier is applied to
two classes of problems. The first application involves a nonlinear boundary-value problem
defined in a 2D domain. The model parameters of the fine (nonlinear) model are inferred
using as the coarse model a simple linearized model. The second application is concerned with
the tissue-scale tumor growth models. Specifically, a transient nonlinear partial differential
equation modeling tumor growth as the fine model and a surrogate model characterized by
a transient linear partial differential equation is considered.
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4.1. Quasi-linear second order elliptic boundary-value problem. Let Ω = (0, 1)2

be an open square domain with boundary ∂Ω. Consider the following quasi-linear elliptic
problem as the fine model: Find u = u(x) ∈ V := {v ∈ H1(Ω) : u = 0 on ∂Ω} such that

(4.1)

∫
Ω

{
κ(1 + u2)∇u · ∇v + αuv

}
dx =

∫
Ω

fv dx, ∀v ∈ V ,

where κ > 0 and α are parameters, f ∈ V ′ is the source term, x = (x1, x2) ∈ Ω, and
dx = dx1 dx2. Here, it is assumed that the problem (4.1) is well-posed and a unique
solution exists in V . Associated with this problem, forms B and F are defined as follows

(4.2) B(u; v) =

∫
Ω

{
κ(1 + u2)∇u · ∇v + αuv

}
dx, F(v) = (f, v) =

∫
Ω

fv dx.

Further, the volume average of the solution u is taken as the quantity of interest, i.e.,

(4.3) Q(u) =

∫
Ω

u dx.

In this case, the model parameters are θ = (κ, α), and

B′(u; v, p) =

∫
Ω

{
κ(1 + u2)∇v · ∇p+ 2κuv∇u · ∇p+ αvp

}
dx, Q′(u; v) = Q(v).

A linear elliptic problem is taken as a coarse problem: Find u0 ∈ V0 := V such that

(4.4) B0(u0; v0) = F(v0), ∀v0 ∈ V0

with

B0(u0, v0) =

∫
Ω

κ0∇u0 · ∇v0 dx.

Here, κ0 is the diffusion coefficient assigned a fixed value of 0.25. The forcing function f ∈ V ′
in both nonlinear and linear BVPs is fixed as follows

f = f(x) = 10 cos2(4πx1) cos2(4πx2), x = (x1, x2) ∈ Ω.

4.1.1. Comparing various goal-oriented error estimates. In this section, the various
goal-oriented estimates are calculated for the example problem (4.1) and compared in order
to assess their accuracy. For the numerical approximation of PDEs in (4.1) and (4.4), a
quadrilateral finite element approximations on a mesh of 50 × 50 elements with first-order
shape functions are employed. Newton’s method is used to solve the discrete nonlinear
problem (4.1). All computations are performed using the Fenics library [2, 11].

First the forward and dual problem (2.8) corresponding to the linear BVP (4.4) are solved
to obtain (u0, p0). In this case, Q(u0) =

∫
Ω
u0 dx = 0.33577. Next, the QoI error estimates

Ξ1 and Ξ2 defined in (2.16) and (2.17), respectively, are compared with the “exact” error in
the QoI. To do this, the parameters in the nonlinear model (4.1) are set to κ = 0.25, α = 10.

(i) Calculating estimates using the solution of the fine model. In this case, (u, p)
is obtained by solving (2.6) corresponding to (4.1). Using u, Q(u) and the “exact” QoI
error are found to be

Q(u) = 0.1163 ⇒ Q(u)−Q(u0) = Q(e0) = 0.1163− 0.33577 = −0.21947.
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With (u, p) in hand and (u0, p0) known, the errors are readily available and using these
the two estimates of the QoI error are found to be

Q(u)−Q(u0) ≈ Ξ1(u, u0) = −0.2069,

Q(u)−Q(u0) ≈ Ξ2(u, u0) = −0.22468.

(ii) Calculating estimates using the approximate errors. In this case, the approximate
errors (ê0, ε̂0) are computed by solving (2.18). Using (ê0, ε̂0), u and p can be approximated
as u ≈ u0 + ê0 and p ≈ p0 + ε̂0. The QoI and the error in the QoI are

Q(u) = 0.12306 ⇒ Q(u)−Q(u0) = Q(ê0) = 0.12306− 0.33577 = −0.21271.

On the other hand, the estimates of the QoI errors are

Q(u)−Q(u0) ≈ Ξ1(u, u0) = −0.21272,

Q(u)−Q(u0) ≈ Ξ2(u, u0) = −0.21272.

Clearly, the two estimates are very close to the “exact” error, Q(u)−Q(u0) = −0.21947.

In the above results, approach (ii), in which (ê0, ε̂0) are utilized, is clearly more efficient
than (i) as in this case only the linear problem (2.18) is solved for errors (ê0, ε̂0). For the
case in which errors (ê0, ε̂0) are used to estimate the QoI error, the three estimates, Q(ê0),
Ξ1, and Ξ2, show good agreement with the exact QoI error of −0.21947; however, computing
Q(ê0) is simpler and more straightforward and requires solving for only forward error, ê0.
Therefore, in the calibration calculations below, Q(ê0), is used as the estimate of the QoI
error and only the variational problem (2.18)1 corresponding to ê0 is solved.

4.1.2. Calibration of the fine model. Let θ0 = (κ0) and θ = (κ, α). A log-normal prior
πprior(θ) for θ with ln-mean and ln-std of (−0.6535, 2.5475) and (0.1997, 0.5003), respectively,
is assumed and the standard deviation of noise, σ, is set to 0.01. With the likelihood defined
in (3.5), the Hippylib [23,24] library is used to compute the approximate posterior probability
density function πpost(θ|y) using the Bayes rule. To generate samples, four MCMC chains
are used with the maximum number of samples drawn for each chain set to 5000. The total
number of posterior samples from all chains after discarding 50 percent of initial accepted
samples (burn-in) is 2766.

In Figure 1, the cost, error in QoI (Q(θ, u) − Q(θ0, u0) ≈ Q′(u0; ê0) = Q(ê0)), and the
sample acceptance rate during the MCMC computation for one of the chains are shown.
In Figure 2, the prior and posterior densities are compared. The mean and the standard
deviation of the posterior samples are µθ = (0.118, 2.628) and σθ = (0.018, 0.433), respec-
tively. Particularly, the QoI with parameters θ = µθ is Q(u) = 0.334 and the error in
QoI, Q(u) − Q(u0), is −0.0013 (−0.4 percent of Q(u0)). At the mean parameter µθ, the
approximate QoI error is Q(ê0) = −0.0016, i.e., −0.46 percent of Q(u0).

4.1.3. Reliability of the calibration under the QoI error approximation. In the
calibration of the model in the previous section, the estimate Q(ê0) of Q(u) − Q(u0) is
used and, therefore, solving the fine problem was avoided. Obviously, the use of such an
approximation in the calibration steps as opposed to the “exact” in the QoI could affect the
accuracy of the posterior samples. This leads to the question: How do the two posterior
samples, one in which the approximate QoI error is employed and another in which the QoI
error is computed exactly (up to discretization error), differ?

To answer this, the MCMC sampling described in Subsection 4.1.2 is repeated but now
the QoI difference Q(u)−Q(u0) is computed exactly by solving the fine problem for u. The
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(c) Sample acceptance rate.

Figure 1. Results from one MCMC chain. In (A), the cost associated with
the accepted samples is shown. In (B), the QoI error associated with the
accepted samples is shown. The rate of sample acceptance is shown in (C).
Initially the cost and the error in QoI is very high, but later are stabilized so
that the mean is close to a constant value.

posterior densities for the two cases are shown in Figure 3. The mean and standard deviation
of posterior samples in two cases are

(approx) µθ = (0.118, 2.628), σθ = (0.018, 0.433),

(“exact”) µθ = (0.119, 2.616), σθ = (0.02, 0.475).

In this example, the estimate Q(ê0) of the QoI error is seen to produce reasonably accurate
representation of the posteriors for the parameters θ.
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Figure 3. The posterior probability density functions for the case in which
the QoI error is approximated byQ(ê0) and in which the QoI error is computed
exactly by solving the fine problem.

4.2. Tumor growth model. An application of these modeling error estimation methods
of particular interest in the present study is that of modeling tumor growth in living tissue,
an application in which data for calibration of model parameters is notoriously difficult to
obtain. Towards this goal, a high-fidelity model based on nonlinear PDE, the so-called
Allen-Cahn phase field equation, introduced originally in the context of modeling phase
changes in binary alloys [1], is first presented. Phase-field models including Allen-Cahn and
Cahn-Hilliard equations have been used extensively to model the tissue-scale tumor growth,
see [3, 6–10, 12, 16]. The model in this application describes the evolution of tumor with
volume fraction, u = u(t,x), where t ∈ [0, tF ] is the time interval of interest and x ∈ Ω ⊂ R2

is the point on the tissue domain Ω. Next, a low-fidelity model based on a linear PDE
describing the evolution of tumor volume fraction u0 = u0(t,x) is considered. This low-
fidelity model is based on the assumption that tumor growth is governed by diffusion and
with proliferation defined as a linear function of the tumor volume fraction.

4.2.1. Models of tumor growth. Consider a two-dimensional tissue-scale model of tumor
growth over a time interval (0, tF ) in which a colony of tumor cells occupies a domain
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Ω = (0, 1)2. The tumor volume fraction u = u(t,x) is assumed to be governed by the
Allen-Cahn equation, for all t ∈ (0, tF ),x ∈ Ω,

(4.5)
∂u

∂t
= ε∇ · (∇u)−Ψ′(u) + λpu(1− u)f − λdu,

where ε is the interfacial width between the tumor and the external cellular tissue, Ψ =
Ψ(u) = Cu2(1 − u)2 is a double-well energy, λp the proliferation rate of tumor cells, f =
f(t,x) a nutrient source, and λd the death rate of tumor cells. In this application, a fixed
form of f is prescribed as

f(t,x) = exp[−1.5x1], x = (x1, x2).

In more general cases, f could represent the solution of a reaction-diffusion equation gov-
erning the evolution of nutrients in the tissue domain [6–10, 16]. Homogeneous Neumann
boundary condition is assumed for u, i.e.,

∇u · n = 0, ∀x ∈ ∂Ω,∀t,
where n is the unit outward normal to the boundary ∂Ω. At t = 0, tissue is assumed to
carry a spherical tumor and, therefore, the initial condition for u takes the form

u(0,x) = ū(x) :=

{
1, if |x− xc| < rc,

0, otherwise,

for x ∈ Ω. Let xc = (0.5, 0.5), rc = 0.2821 (so that
∫

Ω
ū(x) dx = 0.25).

Low-fidelity model. Suppose u0 = u0(t,x) is the tumor volume fraction obtained by solv-
ing the linear reaction-diffusion equation given by,

(4.6)
∂u0

∂t
= D∇ · (∇u0) + λp0u0f − λd0u0, ∀t ∈ (0, tF ], x ∈ Ω,

where D is the diffusivity of tumor cells, λp0 the proliferation rate, and λd0 the death rate. It
is assumed that u0 satisfies the same boundary and initial condition as u.

4.2.2. Weak formulation. To cast the PDE-based model into an appropriate functional
setting, the function spaces U and V are introduced as follows

(4.7) U = L2(0, tF ;H1(Ω)), V = {v ∈ U : ∂tv ∈ U ′},
where U ′ = L2(0, tF ;H1(Ω)′) is the dual of U (similarly, H1(Ω)′ is the dual of H1(Ω)). The
norm of v ∈ U is given by

‖v‖2
U =

∫ tF

0

‖v(t)‖2
H1(Ω) dt, ‖u‖2

H1(Ω) = ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω)

and

‖w‖2
V = ‖w‖2

U + ‖∂tw‖2
U ′ ,

where the norm of v ∈ U ′ is

‖v‖2
U ′ =

∫ tF

0

‖v(t)‖H1(Ω)′ dt, ‖v‖H1(Ω)′ = sup
w∈H1(Ω)

< v,w >

‖w‖H1(Ω)

.

Here < v,w > denotes duality pairing on H1(Ω)′ ×H1(Ω).
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Let V0 = V , the solution space for the low-fidelity model, and let us assume that the weak
solutions u and u0 of (4.5) and (4.6), respectively, are in V and V0. The semilinear form
B : V × V → R associated with (4.5) is given by

(4.8) B(u; v) = (u(0), v(0)) +

∫ tF

0

〈∂tu, v〉 dt+A(u, v) +N (u; v),

where A : V ×V → R is the bilinear form and N : V ×V → R is the semilinear form defined
as

A(u, v) =

∫ tF

0

{
(ε∇u,∇v) +

(
λdu, v

)}
dt

and

N (u; v) =

∫ tF

0

{−(λpu(1− u)f, v) + (Ψ′(u), v)} dt.

The linear form F : V → R is taken to be

(4.9) F(v) = (ū, v(0)).

With the above notations, the weak form of (4.5) reduces to the general form given by
(2.6)1. The parameters in the high-fidelity model are θ = (λp, λd, ε, C). A bilinear form
B0 : V × V → R associated with the low-fidelity problem (4.6) is defined as, for u0, v0 ∈ V0,

B0(u0, v0) = (u0(0), v0(0)) +

∫ tF

0

{
〈∂tu0, v0〉+ (D∇u0,∇v0)− (λp0u0f, v0) +

(
λd0u0, v0

)}
dt.

With this B0 and F , the weak form of (4.6) is given by (2.8)1. The parameters in the linear
model are θ0 = (λp0, λ

d
0, D).

For the adjoint formulation, and to compute errors using (2.18) or (2.19), B′(u; v, p) and
B′′(u : q, v, p) are needed. It can be shown that, for u, v, p ∈ V ,

B′(u; v, p) = lim
η→0

η−1[B(u+ ηv; p)− B(u; p)]

= (p(tF ), v(tF ))−
∫ tF

0

〈∂tp, v〉 dt+A(v, p) +N ′(u; v, p),
(4.10)

where

N ′(u; v, p) =

∫ tF

0

{(Ψ′′(u)v, p)− (λp(1− 2u)vf, p)} dt.

Further, for any u, v, p, q ∈ V , it can be shown that

B′′(u; q, v, p) = lim
η→0

η−1[B′(u+ ηq; v, p)− B(u; v, p)] = N ′′(u; q, v, p)

=

∫ tF

0

{(Ψ′′′(u)vq, p) + (2λpvqf, p)} dt.

To establish (4.10), the following identity, given in [22], is essential: for any function u ∈ V ,
it is true that u ∈ C([0, tF ];L2(Ω)) and, therefore, the following integration by parts formula
holds, for any u, v ∈ V ,∫ tF

0

〈∂tu, v〉 dt = (u(tF ), v(tF ))− (u(0), v(0))−
∫ tF

0

〈∂tv, u〉 dt.
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4.2.3. Quantity of interests and the adjoint formulation. Consider a general linear
quantity of interest functional Q : V → R of the form

Q(u) = (q̄, u(tF )) +

∫ tF

0

〈q̃, u〉 dt,(4.11)

where q̄ ∈ H1(Ω) and q̃ ∈ U ′ are given a-priori. In the above equation, (·, ·) denotes the
L2(Ω)-inner product and 〈·, ·〉 duality-pairing on U ′ × U .

In the definition of Q, q̄ and q̃ are given fixed functions that characterize the tumor volume
average at the final time and the temporal average of tumor volume averages at selected times
as the QoI,

(4.12) q̄(x) =
1

|Ω| and q̃(t,x) =
1

|Ω|
No∑
i=1

1

∆τo
χ[τo,i,τo,i+∆τo](t),

where |Ω| = meas(Ω), No the number of observation time points, ∆τo the temporal width
to compute time average, χA = χA(t) is the indicator function of set A such that χA(t) = 1
if t ∈ A and 0 otherwise, and 0 ≤ τo,i ≤ tF −∆τo, i = 1, 2, ..., No, observation times. With
above definitions, for u ∈ V , the term∫ tF

0

〈q̃, u〉 dt =
No∑
i=1

1

∆τo

∫ τo,i+∆τo

τo,i

[
1

|Ω|

∫
Ω

u(t,x) dx

]
dt

is the sum of the temporal average of volume average of u at observation times τo,i.
The adjoint problem. Following the standard procedure described in Section 2, the adjoint
problem reads:

Given the solution u ∈ V the of forward problem (2.6)1 associated with the high-fidelity
tumor model (4.5), find p ∈ V such that for all v ∈ V

B′(u; v, p) = Q′(u; v) = Q(v)

or, in expanded form,

(p(tF ), v(tF ))−
∫ tF

0

〈∂tp, v〉 dt+A(v, p) +N ′(u; v, p) = (q̄, v(tF )) +

∫ tF

0

〈q̃, v〉 dt.(4.13)

This completes the derivation of a weak formulation of the high-fidelity tumor model.

4.3. Verification of the estimates and calibration of the tumor growth model. The
parameters in the low-fidelity tumor model are assumed to be known with reasonable accu-
racy. For the demonstration of the proposed model calibration approach, a non-dimensional
setting with the tissue domain Ω = (0, 1)2 and time t in the interval (0, 1) is considered.
For the temporal discretization, an implicit time marching scheme with the time step of
∆t = 0.005 is employed. For the spatial discretization, a uniform mesh of quadrilateral ele-
ments of size h = 1/50 is considered and continuous first order finite element approximations
on this mesh are employed. All computations are performed using the Fenics library [2,11].
The known values of parameters in the low-fidelity model and parameters associated with
the high-fidelity model are listed in Table 1.
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Table 1. Model parameters for the low and high fidelity models. For the
high-fidelity model parameters, θ = (λp, λd, ε, C), a log-normal prior, i.e.,
ln(θ) ∼ N (µ,Σ2), is assumed, where µ = ln(θ̄) + (0.16, 0.16, 0.16, 0.16),
θ̄ = (0.5, 0.1, 0.01, 1), and Σ2 = diag(0.16, 0.16, 0.16, 0.16).

Parameter Value Description

λp0 0.2 Growth rate (LF)
λd0 0.1 Death rate (LF)
D 0.05 Diffusivity (LF)
λp ∼ Lognormal Growth rate (HF)
λd ∼ Lognormal Death rate (HF)
ε ∼ Lognormal Interfacial energy constant (HF)
C ∼ Lognormal Double-well energy constant (HF)
No 4 Number of QoI observation time points

{τo,i}No
i=1 {0.2, 0.4, 0.6, 0.8} Time points in QoI

∆τo 0.05 Time interval in QoI

4.3.1. Goal-oriented error estimates. As in the first application, the accuracy of goal-
oriented estimates, specifically Q′(u0; ê0), is first verified. Towards this end, the parameters
in the high-fidelity model are assigned specific values; let θ = θtest = (0.5, 0.1, 0.01, 1). The
low-fidelity parameters θ0 = (λp0, λ

d
0, D) and remaining parameters are fixed and given in

Table 1. At the outset, the low-fidelity problem is solved for (u0, p0) and the QoI from the
low-fidelity model is computed as Q(u0) = 1.143.
Exact QoI error (up to discretization error). The high-fidelity problem with the pa-
rameters θtest is solved and the QoI is found to be Q(u) = 1.059. And the error in the QoI
is Q(u)−Q(u0) = −0.084. Next, the approximate error, ê0, is computed by solving (2.18)1.
With ê0 in hand, the QoI error is estimated to be

Q(u)−Q(u0) ≈ Q′(u0; ê0) = Q(ê0) = −0.097,

and, since u ≈ u0 + ê0, Q(u) ≈ 1.046.
Thus, use of the approximate error ê0 produces a QoI agreeing with that of the HF

model up to two digits of accuracy (difference between the approximate Q(u) and the exact,
ignoring discretization error, Q(u) is within 1.3 percent of the “exact” Q(u)). Further, the
approximate value of −0.097 for Q(u)−Q(u0) differs by only 1.2 percent of the “exact” Q(u).
These results encourage us to consider the computationally cheaper problem of solving for
approximate error ê0 and using it to approximate Q(u) − Q(u0). This route is followed in
the model calibration results presented in the next section.

4.3.2. Calibration of the high-fidelity tumor model. Let θ0 be fixed according to
Table 1. A log-normal prior for the high-fidelity model parameters θ = (λp, λd, ε, C), i.e.,
ln(θ) ∼ N (µ,Σ2), is considered, where µ = ln(θ̄)+(0.16, 0.16, 0.16, 0.16), θ̄ = (0.5, 0.1, 0.01, 1),
and Σ2 = diag(0.16, 0.16, 0.16, 0.16). For the standard deviation of noise, let σnoise = 0.01.
As in the case of the first application, the HippyLib [23, 24] library is used for the MCMC
simulation. Four MCMC chains with the maximum number of the samples drawn in each
chain fixed to 5000 is considered. After discarding the initial 50 percent of the samples
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(c) Sample acceptance rate.

Figure 4. Results from one MCMC chain. In (A), the cost associated with
the accepted samples is shown. In (B), the QoI error associated with the
accepted samples is shown. The rate of sample acceptance is shown in (C).
The cost and the QoI errors are seen to stabilize as more posterior samples are
drawn indicating the convergence of the MCMC iterations.
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Figure 5. The prior and posterior probability density functions along with
the mean are shown.

(burn-in) in each of the chain, simulation produced a total of 1272 number of posterior
samples.

In Figure 4, the cost, the QoI error using the approximation Q′(u0; ê0), and the sam-
ple acceptance rate for one of the chains are shown. In Figure 5, the prior and posterior
densities are shown. The mean and the standard deviation of the posterior samples are
µθ = (0.845, 0.087, 0.011, 0.963) and σθ = (0.168, 0.028, 0.005, 0.435), respectively. The QoI
error, Q(u)−Q(u0) ≈ Q(ê0), at θ = µθ, is −0.017, i.e., −1.4 percent of Q(u0).

5. Conclusion

In this work, a Bayesian approach for the calibration of parameters of a higher-fidelity
PDE-based model with given parameters of a lower-fidelity model is presented. The tech-
nique works in the other direction as well; i.e., one can calibrate the lower-fidelity model if
the higher-fidelity model is known. The central component of the proposed technique is the
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utilization of the goal-oriented error estimates. These estimates allow one to solve simpler
linear problems for error components and to compute the error in quantities of interest ap-
proximately, but often with a very good accuracy. The efficacy of the proposed approach is
demonstrated by applying it to the two nontrivial examples.

While in this work the lower-fidelity model is assumed to be deterministic, there are
useful scenarios where the lower-fidelity model is known but with some uncertainties in its
parameters. The extension of the proposed approach to this case is straight-forward. Another
interesting avenue is the application of this approach to multifidelity Monte Carlo methods
in which the models of varying fidelities are used to perform faster MCMC sampling.
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Appendix A. Proof of Lemma 1

Proof. The following Taylor expansion of a possibly nonlinear functional Q : V → R with
appropriate regularity is first noted. Let u, u0 ∈ V and e0 = u− u0, then

Q(u)−Q(u0) =

∫ 1

0

Q′(u0 + se0; e0) ds(A.1)

= Q′(u0; e0) +

∫ 1

0

Q′′(u0 + se0; e0, e0)(1− s) ds(A.2)

=
1

2

[
Q′(u0; e0) +Q′(u; e0) +

∫ 1

0

Q′′′(u0 + se0; e0, e0, e0)(s− 1)s ds

]
.(A.3)

Suppose now that (u0, p0) is any approximation of the solution (u, p) of problem (2.6). Since
u satisfies F(q)− B(u; q) = 0 for all q ∈ V , for any q ∈ V , the following holds,

R(u0; q) = F(q)− B(u0; q) = F(q)− B(u; q) + B(u; q)− B(u0; q) = B(u; q)− B(u0; q).
(A.4)

Now, using (A.2), it is easy to show that

B(u; q)− B(u0; q) = B′(u0; e0, q) +

∫ 1

0

B′′(u0 + se0; e0, e0, q)(1− s) ds

and, therefore, from (A.4), it can be shown that

(A.5) B′(u0; e0, q) = R(u0; q)−
∫ 1

0

B′′(u0 + se0; e0, e0, q)(1− s) ds.
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Further, using (A.3), the following relation can also be obtained,
(A.6)

B(u; q)− B(u0; q) =
1

2

[
B′(u0; e0, q) + B′(u; e0, q) +

∫ 1

0

B′′′(u0 + se0; e0, e0, e0, q)(s− 1)s ds

]
.

Term B′(u; e0, q) can be estimated further, using (A.2), as follows

B′(u; e0, q) = B′(u0; e0, q) + B′(u; e0, q)− B′(u0; e0, q)

= B′(u0; e0, q) + B′′(u0; e0, e0, q) +

∫ 1

0

B′′′(u0 + se0; e0, e0, e0, q)(1− s) ds.(A.7)

Combining above equation and (A.6) with (A.4) gives

R(u0; q) =
1

2

[
2B′(u0; e0, q) + B′′(u0; e0, e0, q) +

∫ 1

0

B′′′(u0 + se0; e0, e0, e0, q)((1− s) + (s− 1)s) ds

]
.

Thus, for any q ∈ V , it is shown that

(A.8) B′(u0; e0, q) = R(u0; q)− 1

2
B′′(u0; e0, e0, q)−

1

2

∫ 1

0

B′′′(u0 +se0; e0, e0, e0, q)(1−s)2 ds.

Now consider R̄. For any v ∈ V , it is shown that

R̄(u0; v, p0) = Q′(u0; v)− B′(u0; v, p0)

= Q′(u0; v)−Q′(u; v) +Q′(u; v)− B′(u0; v, p0)

= Q′(u0; v)−Q′(u; v) + B′(u; v, p)− B′(u0; v, p0)

= −[Q′(u; v)−Q′(u0; v)] + [B′(u; v, p)− B′(u0; v, p)] + [B′(u0; v, p)− B′(u0; v, p0)]

= −[Q′(u; v)−Q′(u0; v)] + [B′(u; v, p)− B′(u0; v, p)] + B′(u0; v, ε0),(A.9)

where, in the second step, Q′(u; v) = B′(u; v, p) for all v ∈ V is used.
It remains to establish (2.12). From (A.1), one has

Q′(u; v)−Q′(u0; v) =

∫ 1

0

Q′′(u0 + se0; e0, v) ds,

B′(u; v, p)− B′(u0; v, p) =

∫ 1

0

B′′(u0 + se0; e0, v, p) ds.

Combining above with (A.9) gives

R̄(u0; v, p0) = B′(u0; v, ε0) +

∫ 1

0

{B′′(u0 + se0; e0, v, p)−Q′′(u0 + se0; e0, v)} ds.(A.10)

Taking q = ε0 in (A.5) produces

B′(u0; e0, ε0) = R(u0; ε0)−
∫ 1

0

B′′(u0 + se0; e0, e0, ε0)(1− s) ds.

Now, substituting v = e0 in (A.10), taking into account the above relation, and noting
p− (1− s)ε0 = p0 + sε0 gives (2.12).
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The relation (2.13) can be derived from (A.9) and previous estimates. Applying (A.2) to
Q′ and B′ gives

Q′(u; v)−Q′(u0; v) = Q′′(u0; e0, v) +

∫ 1

0

Q′′′(u0 + se0; e0, e0, v)(1− s) ds,

B′(u; v, p)− B′(u0; v, p) = B′′(u0; e0, v, p) +

∫ 1

0

B′′′(u0 + se0; e0, e0, v, p)(1− s) ds.

Substituting the above into (A.9) gives

R̄(u0; v, p0) = B′(u0; v, ε0)−Q′′(u0; e0, v) + B′′(u0; e0, v, p)

+

∫ 1

0

{B′′′(u0 + se0; e0, e0, v, p)−Q′′′(u0 + se0; e0, e0, v)}(1− s) ds(A.11)

Taking q = ε0 in (A.8) produces

B′(u0; e0, ε0) = R(u0; ε0)− 1

2
B′′(u0; e0, e0, ε0)− 1

2

∫ 1

0

B′′′(u0 + se0; e0, e0, e0, ε0)(1− s)2 ds.

Substituting v = e0 in (A.11) and using above relation, it can be shown that

R̄(u0; e0, p0)

= R(u0; ε0)− 1

2
B′′(u0; e0, e0, ε0)−Q′′(u0; e0, e0) + B′′(u0; e0, e0, p) +

∫ 1

0

{B′′′(u0 + se0; e0, e0, e0, p)

−Q′′′(u0 + se0; e0, e0, e0)− 1

2
B′′′(u0 + se0; e0, e0, e0, ε0)(1− s)

}
(1− s) ds

= R(u0; ε0)−Q′′(u0; e0, e0) + B′′(u0; e0, e0, p0) +
1

2
B′′(u0; e0, e0, ε0)∫ 1

0

{
B′′′
(
u0 + se0; e0, e0, e0, p−

1− s
2

ε0

)
−Q′′′(u0 + se0; e0, e0, e0)

}
(1− s) ds.

This completes the poof of the lemma. �


