
Oden Institute REPORT 202109

May 2021

Model-Constrained Deep Learning Approaches for
Inverse Problems

by

Tan Bui-Thanh

Oden Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Tan Bui-Thanh, "Model-Constrained Deep Learning Approaches for Inverse Problems," Oden
Institute REPORT 21-09, Oden Institute for Computational Engineering and Sciences, The University of Texas at
Austin, May 2021.



MODEL-CONSTRAINED DEEP LEARNING APPROACHES FOR
INVERSE PROBLEMS∗

TAN BUI-THANH†

Abstract. Deep Learning (DL), in particular deep neural networks, by design is purely data-
driven and in general does not require physics. This is the strength of DL but also one of its key
limitations when applied to science and engineering problems in which underlying physical prop-
erties—such as stability, conservation, and positivity—and desired accuracy need to be achieved.
DL methods in their original forms is not capable of respecting the underlying mathematical mod-
els or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven
science and engineering problems, such as inverse problems, typically have limited experimental or
observational data, and DL would overfit the data in this case. Leveraging information encoded
in the underlying mathematical models, we argue, not only compensates missing information in
low data regimes but also provides opportunities to equip DL methods with the underlying physics
and hence obtaining higher accuracy. This short paper introduces several model-constrained DL
approaches—including both feed-forward DNN and autoencoders—that learn not only information
hidden in the training data but also in the underlying mathematical models to solve inverse problems.
We present and provide intuitions for our formulations for general nonlinear problems. For linear
inverse problems and linear networks, the first order optimality conditions show that our model-
constrained DL approaches can learn information encoded in the underlying mathematical models,
and thus can produce consistent or equivalent inverse solutions, while naive purely data-based coun-
terparts cannot.

Key words. Inverse problem, optimization, model-constrained, deep learning, deep neural
network.

1. Introduction. Inverse problems are pervasive in scientific discovery and de-
cision making for complex, natural, engineered, and societal systems. They are per-
haps the most popular mathematical approaches for enabling predictive scientific sim-
ulations that integrate observational/experimental data, simulations and/or models
[20, 13, 27]. Many engineering and sciences systems are governed by parametrized par-
tial differential equations (PDE). Computational PDE-constrained inverse problems
faces not only the ill-posed nature—namely, non-existence, non-uniqueness, instabil-
ity of inverse solutions—but also the computational expense of solving the underlying
PDE. Computational inverse methods typically require the PDE to be solved at many
realizations of parameter and the cost is an increasing function of the parameter di-
mension. The fast growth of this cost is typically associated with the curse of the
dimensionality. Inverse problems for practical complex systems [1, 20, 14, 5, 15] how-
ever possess this high dimensional parameter space challenge. Thus, mitigating the
cost of repeatedly solving the underlying PDE has been one of paramount importance
in computational inverse problems.

The field of Machine Learning (ML) typically refers to computational and sta-
tistical methods for automated detection of meaningful patterns in data [2, 26, 19].
While Deep Learning (DL) [9], a subset of machine learning, has proved to be state-of-
the-art methods in many fields of computer sciences such as computer vision, speech

∗Submitted to the editors DATE.
Funding: This work was partially funded by the National Science Foundation awards NSF-

1808576 and NSF-CAREER-1845799; by the Defense Thread Reduction Agency award DTRA-
M1802962; by the Department of Energy award DE-SC0018147; and by 2020 ConTex award; and by
2018 UT-Portugal CoLab award.
†Department of Aerospace Engineering and Engineering Mechanics, The Oden Institute for Com-

putational Engineering and Sciences, UT Austin, Austin, Texas (tanbui@ices.utexas.edu, https:
//users.oden.utexas.edu/∼tanbui/).

1

mailto:tanbui@ices.utexas.edu
https://users.oden.utexas.edu/~tanbui/
https://users.oden.utexas.edu/~tanbui/


2 TAN BUI-THANH

recognition, natural language processing, etc. Its presence in the scientific computing
community is, however, mostly limited to off-the-shelf applications of deep learn-
ing. Unlike classical scientific computational methods, such as finite element methods
[6, 4, 8], in which solution accuracy and reliability are guaranteed under regularity
conditions, standard DL methods are often far from providing reliable and accurate
predictions for science and engineering applications. The reason is that though ap-
proximation capability of deep learning, e.g. via Deep Neuron Networks (DNN), is
as good as classical methods in approximation theory [7, 11, 18, 12], DL accuracy is
hardly attainable in general due to limitation in training. It has been shown that the
training problem is highly nonlinear and non-convex, and that the gradient of loss
functions can explode or vanish [10], thus possibly preventing any gradient-based op-
timization methods from reliably converging to a minimizer. Even when converged,
the prediction of the (approximate) optimal deep learning model can be prone to
over-fitting and can have poor generalization error.

Many data-driven inverse problems in science and engineering problems have lim-
ited experimental or observational data, e.g. due to the cost of placing sensors (e.g.
each oil well can cost million dollars) or the difficulties of placing sensors in certain
regions (e.g. deep ocean bottoms). DL, by design, does not require physics, but
data. This is the strength of DL. It is also the key limitation to science and engi-
neering problems in which underlying physics need to be respected (e.g. stability,
conservation, positivity, etc) and higher accuracy is required. In this case, purely
data-based DL approaches are prone to over-fitting and thus incapable of respecting
the physics or providing desired accuracy. Similar to least squares finite element meth-
ods [3], we can train DL solution constrained by the PDE residual as a regularization
[25, 22, 23, 24, 29, 28, 16, 21]). The resulting DL models can learn solutions that at-
tempt to make the PDE residual small. This physics-informed neural network (PINN)
approach directly approximates the PDE solution in infinite dimensional spaces such
as L1 or L2. While universal approximation results (see, e.g., [7, 11, 18, 12]) could
ensure any desired accuracy with sufficiently large number of neurons, practical net-
work architectures are moderate in both depth and width, and hence the number
of weights and biases. Therefore, the accuracy of PINN can be limited. Moreover,
for parametrized PDEs—that are pervasive in design, control, optimization, inference,
and uncertainty quantification—training a PINN that is generalized for both spatial
accuracy and accuracy in high-dimensional parameter spaces is not trivial [17].

For inverse problems, the object of interest is not the solution of parametrized
PDE, per say, but some observable integrated Quantity of Interest (QoI) of the solu-
tion. Since the solution depends on the parameter, QoI is a function of parameter.
The mapping from parameter to some observable QoI is known as the parameter-to-
observable map. Unlike the solution, QoI does not depend on spatial or temporal
variables but only on the parameter. Moreover, for most of engineering and sciences
application the dimension of QoI or observational data is typically much less than
that of the solution.

The paper is organized as follows. section 2 describes notations. In section 3 we
briefly introduce nonlinear inverse problems, and a data-driven naive DL approach
(NDL) and solution for linear network and linear inverse problem are presented. The
goal of section 4 is to present a model-constrained DNN (MCDNN) approach designed
to learn the inverse map while being constrained by the forward map of the underlying
discretized PDE. Then, we present two model-constrained decoder approaches to learn
the inverse map in section 5 and a model-constrained encoder approach in section 6.
We conclude the paper with future research directions in section 7.



MODEL-CONSTRAINED DEEP LEARNING APPROACHES FOR INVERSE PROBLEMS 3

2. Notations.
• Boldface lower cases are for (column) vectors.
• Uppercase letters are for matrices. I is the identity matrix, whose size is clear

from the context in which it appears.
• nt is the number of training scenarios/data.
• m is dimension (number of rows) of the parameter vector u.
• n is dimension (number of rows) of each observable data vector y.
• U ∈ Rm×nt is the parameter matrix concatenating available parameter u.
• Y ∈ Rn×nt is the data matrix concatenating available data y.
• {U, Y } or {Y,U} is the training data set.
• 1 ∈ Rnt is the column vector with all ones.
• ‖·‖ denotes standard Euclidean norm for vectors and Frobenius norm for

matrices.
• u is the vector of parameters in the underlying parametrized PDEs.
• w is the solution of the underlying parametrized PDEs.
• θ is the vector of all weights and biases of DNN.
• G denotes general nonlinear parameter-to-observable or forward map.
• G is preserved to denote a linear parameter-to-observable or forward map.
• y denotes the vector observational data.

3. Forward and inverse problems. We denote by u ∈ Rm the parameters
sought in the inversion, by w ∈ Rs the forward states, by G : Rs → Rn the forward
map (computing some observable quantity of interest), and by y ∈ Rn the observa-
tions. For the clarity of the exposition, we assume there is no observation noise or
error, thus

(3.1) y := G (w (u)) + η,

where η takes into account the possibility that G (w (u)) is not adequate and/or there
are noises/errors in observational data. The parameter-to-observable (PtO) map is
the composition of the forward map G and the states, i.e. G◦w. However for simplicity
of the exposition, we do not distinguish it from the forward map and thus we also
write G : Rm 3 u 7→ G (u) := G (w (u)) ∈ Rn. The forward states are the solution of
the forward equation

(3.2) F (u,w) = f ,

Assume that (3.2) is well-posed so that, for a given set of parameters u, one
can (numerically) solve for the corresponding forward states w = w (u) := F−1 (f).
In the forward problem, we compute observational data y via (3.1) given a set of
parameter u. In the inverse problem, we seek to determine the unknown parameter
u given some observational data y, that is, we wish to construct the inverse of G.
Since m is typically (much) larger than for many practical problems, the parameter-
to-observable map G is not invertible even when G is linear. The inverse task is
thus ill-posed and notoriously challenging as a solution for u may not exist (non-
existence), even when it may, it is not unique (non-uniqueness) nor continuously
depends on the data y (instability). An approximate solution is typically sought via
(either deterministically or statistically) regularization.

Given the popularity of emerging machine learning, in particular deep learning,
methods, we may attempt to apply pure data-driven DL, or naive DL (NDL), to learn



4 TAN BUI-THANH

the (ill-posed) inverse of G, e.g.,

(3.3) min
b,W

1

2
‖U −Ψ (Y,W,b)‖2 +

α1

2
‖W‖2 +

α2

2
‖b‖2 ,

where Ψ is DNN with weight matrix W and bias vector b and the last two terms
are regularizations for weights and biases with nonnegative regularization parameters
α1 and α2. This approach completely disregards the underlying mathematical model
(3.1)-(3.2). In particular, even for linear inverse problem—y = Gu and there is no
error in computing the data so that Y = GU—and linear DNN, it is not clear if the
NDL approach (3.3) could recover a solution of the original inverse problem

(3.4) min
u

∥∥yobs −Gu∥∥2
in an interpretable sense. Indeed, suppose that we choose a linear activation function
such that the DNN model Ψ (Y,W,b) for leaning the inverse map can be written as
WY +B, where B := b1T . It is easy to see that the optimal weight W 0 and bias b0

for (3.3) is given as

W 0 =

[
GU

(
I − 1

nt − α2
11T

)
UTGT + α1I

]−1

U

(
I − 1

nt − α2
11T

)
UTGT

b0 =
1

1− α2/nt

(
I −W 0G

)
u,

where u := 1
nt
U1. Thus the NDL inverse solution for a given testing/observational

data yobs is given by

(3.5) uNDL = W 0yobs + b0,

which is not clearly seen as a solution to the original inverse problem (3.4) in some
sense.

This could be claimed as an advantage of the DNN approach. However, DNN
can be seen as an “interpolation” method and thus can generalize well only for sce-
narios that have been seen in or are closed to the training data set {U, Y }. This
implies a possible enormous amount of training data to learn the inverse of a highly
nonlinear forward model (3.1)-(3.2). In practical sciences and engineering problems,
this extensive data regime is unfortunately rarely the case due to the cost of placing
sensors (e.g. each oil well can cost million dollars) or the difficulties in placing sen-
sors in certain regions (e.g. deep ocean bottoms). In order for a DNN to generalize
well in insufficient data regimes, it should be equipped with information encoded in
the forward model (3.1)-(3.2) that is not covered in the data set. In other words,
it is natural to require DNN to be aware of the underlying mathematical models (or
discretizations) in order for it to be a reliable and meaningful tool for sciences and
engineering applications. The question is how to inform DNN about the underlying
models?

In the following, as an effort to train DNN to learn not only information hidden
in the training data but also the underlying models, we explore several model-aware
DNN approaches to learning the inverse of PtO map G. Though the approaches
are designed for general nonlinear problems, our focus here is on linear PtO map as
it provides insights into if learning the inverse map via model-aware DNN is at all
possible.



MODEL-CONSTRAINED DEEP LEARNING APPROACHES FOR INVERSE PROBLEMS 5

4. Model-Constrained Deep Neural Network (MCDNN) for learning
the inverse map. We propose the learn the inverse map via DNN constrained by
the forward map as

(4.1) min
b,W

1

2
‖U −Ψ (Y,W,b)‖2 +

α

2
‖Y − G (Ψ (Y,W,b))‖2 ,

where Ψ is DNN learning the map from observable data y to parameter u with weight
matrix W and bias vector b. Unlike the naive pure data-driven DNN approach (3.3),
(4.1) makes the DNN Ψ aware that the training data is generated by the forward
map G. This is done by requiring the output of the DNN—approximate unknown
parameter u for a given data y as the input—when pushed through the forward
model reproduces the data y. The model-aware term α

2 ‖Y − G (Ψ (Y,W,b))‖2 can
be considered as a physics-informed regularization approach for DNN (compared to
the non-physical regularizations in (3.3)).

To provide some intuition for our MC-DL approach let us choose a linear activa-
tion function such that the DNN model Ψ (Y,W,b) for leaning the inverse map can
be written as WY + B, where B := b1T . We also assume that the forward map is
linear, i.e., y = Gu and there is no error in computing the data so that Y = GU .
For linear inverse problem with linear DNN, the model-constrained training problem
(4.1) becomes

(4.2) min
b,W

1

2
‖U − (WY +B)‖2F +

α

2
‖Y −G (WY +B)‖2F ,

where the subscript F denotes the standard Frobenius norm.

Lemma 4.1. Suppose that Y has full row rank. The optimal solution W I and bI

of the DNN training problem (4.2) satisfies

bI =
(
I + αGTG

)−1
[
I − UY T

(
Y Y

T
)−1

G

]
u,

W I =
(
I + αGTG

)−1
[
UY

T
(
Y Y

T
)−1

+ αGT
]
,

where u := 1
nt
U1 and y := 1

nt
Y 1 are the column-average of the training parameters

and data, Y := Y − y1T , and U := U − u1T .

Corollary 4.2. Suppose that Y has full row rank and α > 0. For a given
testing/observational data yobs, the DNN inverse solution uMCDL of (4.2) is given by

uMCDL =
(
I + αGTG

)−1
[
u+ UY

T
(
Y Y

T
)−1 (

yobs − y
)

+ αGTyobs
]

which is exactly the solution of the following regularized linear inverse problem

min
u

1

2

∥∥yobs −Gu∥∥2 +
1

2α
‖u− u0‖2 ,

where

u0 = u+ UY
T
(
Y Y

T
)−1 (

yobs − y
)
.

The results of Corollary 4.2 shows that the MDDL inverse solution uMCDL is equiv-
alent to a Tikhonov-regularized inverse solution with a special reference parameter
u0 that depends on the training set {U, Y } and the given observational data yobs.
In other words, the modal-constrained deep learning MCDNN approach provides data-
informed Tikhonov-regularized inverse solutions.



6 TAN BUI-THANH

5. Model-Constrained Decoder (MCdecoder) for learning the inverse
map. Let us denote by Ψe (·,We,be) the encoder with weight We and bias be, and
by Ψd (·,We,be) the decoder with weight Wd and bias bd. We wish to train a model-
constrained decoder (MCdecoder) in the following sense

(5.1)

min
be,We,bd,Wd

α

2
‖Y −Ψe (U,We,be)‖2 +

1

2
‖U −Ψd (Ψe (U,We,be) ,Wd,bd)‖2 +

β

2
‖Y − G (Ψd (Ψe (U,We,be) ,Wd,bd))‖2 ,

where the first term forces the encoder to map the parameter u to observation y.
The second term requires the decoder after taking the encoder output as its input
reproduce the parameter. The third term is to ensure that the autoencoder system
cannot be arbitrary but to obey the forward map. That is, the output of the decoder,
which approximates the parameter, after going through the underlying forward map
must reproduce the data. Thus, unlike standard autoencoder approach which is purely
data-driven, our proposed autoencoder has the parameter as its input, the observational
data as its latent variable, and its output aware of the forward map. For linear NN
and linear inverse problem, the MCdecoder formulation (5.1) reduces to

(5.2) min
be,We,bd,Wd

1

2
‖U −Wd (WeU +Be)−Bd‖2F +

α

2
‖Y −WeU −Be‖2F +

β

2
‖Y −GWd (WeU +Be)−GBd‖2F ,

where Be := be1
T and Bd := bd1

T .

Definition 5.1 (Equivalent inverse solution). An inverse solution û is equivalent
to the true underlying parameter u∗ if

G (û) = G (u∗)

Lemma 5.2. The following combination of We
MCdecoder,bMCencoder

e ,Wd
MCdecoder,bMCdecoder

d

satisfying

bMCdecoder
e = 0, bMCdecoder

d = 0, We
MCdecoder = G, and Wd

MCdecoderG = I,

is a stationary point of the lost function in the MCdecoder formulation (5.2).

That is, the encoder weight matrix We
MCdecoder in Lemma 5.2 is exactly the forward

map G and the decoder weight matrix Wd
MCdecoder is a left inverse of the forward

map. In this case, given a new data yobs, the decoder returns an equivalent inverse
solution.

A variant of (5.1) is given by

(5.3) min
be,We,bd,Wd

J :=
1

2
‖U −Ψd (Ψe (U,We, Be) ,Wd, Bd)‖2 +

β

2
‖Ψe (U,We, Be)− G (Ψd (Ψe (U,We, Be) ,Wd, Bd))‖2 ,



MODEL-CONSTRAINED DEEP LEARNING APPROACHES FOR INVERSE PROBLEMS 7

which, for linear neural network and linear inverse problem, becomes

(5.4) min
be,We,bd,Wd

J :=
1

2
‖U −Wd (WeU +Be)−Bd‖2 +

β

2
‖WeU +Be −GWd (WeU +Be)−GBd‖2 ,

Lemma 5.3. The following combination of We
MCdecoder,bMCencoder

e ,Wd
MCdecoder,

and bMCdecoder
d satisfying

bMCdecoder
e = N

(
Wd

MCdecoder
)
, bMCdecoder

d = 0, G×Wd
MCdecoder = I,

and We
MCdecoder ×Wd

MCdecoder = I,

is a stationary point of the lost function in the MCdecoder formulation (5.4). Here,
N (·) denotes the null space. In addition, if

That is, the decoder weight matrix Wd
MCdecoder is a right inverse for both the forward

map G and the encoder weight matrix We
MCdecoder.

Definition 5.4 (Consistent inverse solution). An inverse solution û is consistent
if it reproduces the data yobs when pushed through the forward map G, i.e.,

G (û) = yobs.

The trained decoder in Lemma 5.3 thus provides consistent inverse solutions.

Remark 5.5. Though we are interested in the inverse solution, the decoder Ψd,
designed in (5.1)–(5.3) as an approximate inverse map, is the primary object of inter-
est. Should approximating the forward map G (u) be also a goal (such as for forward
propagation of uncertainty), the encoder Ψe (·,We,be), once trained, can be used as
an approximate forward map by design. In fact for linear inverse problems and linear
neural networks, Lemma 5.2 shows that the encoder could be exactly learn the forward
map in formulation (5.1) while Lemma 5.3 shows that the encoder could indirectly
learn (since the decoder is a right inverse for both the forward map G and the encoder
weight matrix We

MCdecoder) the forward map in formulation (5.3).

6. Model-constrained Encoder (MCencoder) for learing the inverse
map. Recall in section 5 we train the decoder to learn the inverse map. The training
is regularized by requiring the encoder to behave similar to the forward map. In this
section, we reverse the autoencoder structure, that is, we train the encoder to learn
the inverse map and the training is regularized by requiring the decoder to behave
like the forward map. Similar to (5.1) we wish to train a model-constrained encoder
by solving the following optimization problem.

(6.1) min
be,We,bd,Wd

α

2
‖U −Ψe (Y,We, Be)‖2 +

1

2
‖Y −Ψd (Ψe (Y,We, Be) ,Wd, Bd)‖2

+
β

2
‖Y − G (Ψe (Y,We, Be))‖2 ,

where the first term forces the decoder, as a surrogate to the inverse map, to transform
observation y to parameter u. The second term requires the decoder, after taking the



8 TAN BUI-THANH

encoder output as its input, reproduce the observation. The third term is to ensure
that the autoencoder system cannot be arbitrary but be constrained the underlying
forward map. That is, the output of the encoder, which approximates the parameter,
after going through the forward map must reproduce the data. For linear NN and
linear inverse problem, the MCencoder formulation (5.3) becomes

(6.2) min
be,We,bd,Wd

J :=
1

2
‖Y −Wd (WeY +Be)−Bd‖2F +

α

2
‖U −WeY −Be‖2F +

β

2
‖Y −GWeY −GBe‖2F ,

Theorem 6.1. At least one combination We
MCencoder,bMCencoder

e ,Wd
MCencoder,

and bMCencoder
d satisfying

bMCencoder
e = u−We

MCencodery,

bMCencoder
d = y −Wd

MCencoderu,

We
MCencoder = We

MCencoderWd
MCencoderWe

MCencoder,

We
MCencoder = We

MCencoderGWe
MCencoder.

Wd
T [I −WdWe] = α

[
We − UY

T
(
Y Y

T
)−1

]
+ βGT (I −GWe) ,

is a stationary point of the optimization problem (6.2). In addition, if Y has full row
rank, all stationary points, including optimal solutions, obey the above four identities.

Clearly, Any
(
We

MCencoder,Wd
MCencoder

)
satisfying

GWe
MCencoder = I,

Wd
MCencoderWe

MCencoder = I.

is also a valid stationary point of (6.2).

Theorem 6.1 says that, once trained, the encoder weight matrix We
MCencoder of the

MCencoder formulation (6.2) can have forward map G as its generalized inverse and
the decoder weight matrix Wd

MCencoder behaves similar to the forward map in the
sense that both are generalized inverses of We

MCencoder. In particular, this holds true
at optimal solutions when the data is sufficiently rich, i.e., Y has full row rank. Note
that this is not an entirely impractical assumption as the number of rows of Y is
typically much smaller than the number of rows of U . Theorem 6.1 also indicates
that the encoder weight matrix being a right inverse of the forward map G and the
decoder weight matrix Wd

MCencoder is a favorable possibility. In this case, we have

G
(
We

MCencoderyobs + bMCencoder
e

)
= yobs = Gu∗,

which shows that the encoder is an approximate inverse map whose inverse solution
is consistent as it exactly reproduces the observation yobs when pushed through the
forward map.

7. Conclusions. We argue that in order for a DNN to generalize well in insuf-
ficient data regimes, it should be equipped with information encoded in the under-
lying mathematical modles that is not covered in the data set. In other words, it



MODEL-CONSTRAINED DEEP LEARNING APPROACHES FOR INVERSE PROBLEMS 9

is natural to require DNN to be aware of the underlying mathematical models (or
discretizations) in order for it to be a reliable and meaningful tool for sciences and
engineering applications. To this end, we have presented several model-constrained
DL approaches—using both feed-forward DNN and autoencoders—to learn inverse
solutions while being aware of the forward model under consideration. The first order
optimality conditions for the proposed model-constrained DL approaches can respect
the physics. In particular, They can provide consistent or equivalent inverse solutions
of the original inverse problems. Ongoing work is to investigate the second order
optimality conditions and to extend the result to nonlinear inverse problems.

Acknowledgments. We would like to thank Sheroze Sheriffdeen, Jonathan Wittmer,
Hwan Goh, and Co Tran for fruitful discussions.

REFERENCES

[1] O. M. Alifanov. Inverse Heat Transfer Problems. Springer Verlag, Berlin, Heidelberg, New-
York, 1994.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[3] Pavel Bochev and Max Gunzburger. Least-Squares Finite Element Methods, volume 166. 01
2006.

[4] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer
Verlag, Berlin, Heidelberg, New York, second edition, 2002.

[5] Tan Bui-Thanh, Carsten Burstedde, Omar Ghattas, James Martin, Georg Stadler, and
Lucas C. Wilcox. Extreme-scale UQ for Bayesian inverse problems governed by
PDEs. In SC12: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2012. Gordon Bell Prize finalist,
http://users.ices.utexas.edu/%7Etanbui/PublishedPapers/sc12.pdf.

[6] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied
Mathematics. SIAM (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-
Holland, Amsterdam; MR0520174 (58 #25001)].

[7] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, Dec 1989.

[8] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements, volume 159
of Applied Mathematical Sciences. Spinger-Verlag, 2004.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[10] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

[11] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[12] Jesse Johnson. Deep, skinny neural networks are not universal approximators. In International
Conference on Learning Representations, 2019.

[13] Jari Kaipio and Erkki Somersalo. Statistical and Computational Inverse Problems, volume 160
of Applied Mathematical Sciences. Springer-Verlag, New York, 2005.

[14] Dimitri Komatitsch, Jeroen Ritsema, and Jeroen Tromp. The spectral-element method, Be-
owulf computing, and global seismology. Science, 298:1737–1742, 2002.

[15] Matthieu Lefebvre, Ebru Bozda, Henri Calandra, Judy Hill, Wenjie Lei, Daniel Peter, Norbert
Podhorszki, David Pugmire, Herurisa Rusmanugroho, James Smith, and Jeroen Tromp. A
data centric view of large-scale seismic imaging workflows. Supercomputing (SC) 13, 2013.
Invited paper.

[16] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[17] Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G.
Johnson. Physics-informed neural networks with hard constraints for inverse design, 2021.

[18] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power
of neural networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

http://www.deeplearningbook.org


10 TAN BUI-THANH

[19] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learn-
ing. The MIT Press, 2012.

[20] Dean S. Oliver, Albert C. Reynolds, and Ning Liu. Inverse theory for petroleum reservoir
characterization and history matching. Cambidge University Press, 2008.

[21] Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[22] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686 – 707, 2019.

[23] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of non-
linear partial differential equations. Journal of Computational Physics, 357:125 – 141,
2018.

[24] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear dif-
ferential equations using gaussian processes. Journal of Computational Physics, 348:683 –
693, 2017.

[25] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part ii): Data-driven discovery of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017.

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014.

[27] Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation.
SIAM, Philadelphia, PA, 2005.

[28] Rohit K. Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network surrogate models
for high dimensional uncertainty quantification. Journal of Computational Physics, 375:565
– 588, 2018.

[29] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed
neural networks. Journal of Computational Physics, 2019.


