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Abstract

This paper presents a non-intrusive data-driven approach for model reduction
of nonlinear systems. The approach considers the particular case of nonlinear
partial differential equations (PDEs) that form systems of differential-algebraic
equations (DAEs) when lifted to polynomial form. Such systems arise, for ex-
ample, when the governing equations include Arrhenius reaction terms (e.g., in
reacting flow models) and thermodynamic terms (e.g., the Helmholtz free energy
terms in a phase-field solidification model). Using the known structured form of
the lifted algebraic equations, the approach computes the reduced operators for
the algebraic equations explicitly, using straightforward linear algebraic opera-
tions on the basis matrices. The reduced operators for the differential equations
are inferred from lifted snapshot data using operator inference, which solves
a linear least squares regression problem. The approach is illustrated for the
nonlinear model of solidification of a pure material. The lifting transformations
reformulate the solidification PDEs as a system of DAEs that have cubic struc-
ture. The operators of the lifted system have affine dependence on key process
parameters, permitting us to learn a parametric reduced model with operator
inference. Numerical experiments show the effectiveness of the resulting reduced
models in capturing key aspects of the solidification dynamics.

Keywords: Reduced Order Model, Nonlinear Model Reduction, Lifting
Transformations, Differential Algebraic Equation, Proper Orthogonal
Decomposition, Operator Inference, Additive Manufacturing, Solidification.

1. Introduction

Model reduction is effective in reducing the computational cost of simulat-
ing complex systems but remains a challenging task when the governing physics
exhibit highly nonlinear dynamics. Variable transformations combined with
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data-driven learning of the reduced model operators have emerged as one strat-5

egy to address the challenges of nonlinear model reduction [1, 2]; however, for
a large class of systems, including those that arise in reacting flow and phase-
field models, the desired variable transformations lead to systems of differential
algebraic equations (DAEs). This paper considers the form of the DAEs that
arise in lifting a nonlinear system to polynomial form and exploits that structure10

to extend the Operator Inference (OpInf) approach of [3] to these lifted DAE
systems.

As a driving application, we consider a solidification process in metal addi-
tive manufacturing. Additive manufacturing is a process during which a three-
dimensional part is built via the layer-by-layer deposition of material according15

to its digital model. Additive manufacturing’s layer-wise process adds value by
allowing for the manufacturing of components with complex geometries that are
either infeasible or difficult to build by conventional manufacturing processes.
However, the additive manufacturing process takes place over a wide range of
length scales and time scales, making numerical simulations computationally20

expensive. Further, uncertainty quantification is essential since the structure
and properties of the resulting components are sensitive to process parameter
variations [4]. Thus, reduced models are key enabler to making control, opti-
mization, and uncertainty quantification computationally feasible for additive
manufacturing.25

Our target problem poses several challenges for existing model reduction
methods. First, the transport-dominated physics of the solidification interface
result in highly localized changes in the state solution with time. Classical
projection-based model reduction methods that seek approximations of the state
in a linear subspace (see e.g., [5–8]) require many modes to achieve accuracy in30

a problem such as this one, rendering the resulting reduced models inefficient.
Second, the forward solidification model, a coupled system of nonlinear partial
differential equations (PDEs) comprising a phase-field equation and a heat equa-
tion, has a strong nonlinear dependence on the process parameters. Classical
projection-based model reduction methods that use hyper-reduction methods35

(such as the Empirical Interpolation Method [9] and the Discrete Empirical In-
terpolation Method [10]) will require many interpolation points to approximate
the nonlinear terms, again rendering the resulting reduced models inefficient.

Methods based on variable transformations are becoming an effective al-
ternative for model reduction of nonlinear systems of PDEs. These approaches40

draw upon the notion that the introduction of auxiliary variables (often referred
to as “lifting”) can lead to a reformulation of the governing equations in a struc-
tured form. For example, [11] shows how general nonlinear ODEs can be written
as so-called “polynomial ordinary differential systems” through the introduction
of additional variables. In biology, variable transformations called “recasting”45

are used to transform nonlinear ODEs to the so-called S-system form, a poly-
nomial form that is faster to solve numerically [12]. Approaches based on the
Koopman operator lift a nonlinear dynamical system to an infinite-dimensional
space in which the dynamics are linear [13, 14]. Ref. [15] introduced the idea of
reformulating nonlinear dynamical systems in quadratic form for model reduc-50
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tion and showed that the number of auxiliary variables needed to lift a system
to quadratic-bilinear form is linear in the number of elementary nonlinear func-
tions in the original state equations. The work in [15] shows that a large class of
nonlinear terms that appear in engineering systems (including monomial, sinu-
soidal, and exponential terms) may be lifted to quadratic form. Lifting has been55

extended to model reduction of problems governed by PDEs and shown to be a
competitive alternative to hyper-reduction methods [1, 16]. Yet, for many prac-
tical applications it is neither feasible nor desirable to explicitly transform the
high-fidelity PDE solver, which motivates the use of non-intrusive data-driven
model reduction. The advantage of data-driven approaches is that they com-60

pute the reduced model directly from snapshot data, without needing access to
the high-fidelity operators [3, 17–20]. The Lift & Learn method of [2] combines
lifting of a nonlinear PDE with data-driven learning of the reduced model via
the OpInf method of [3], so that variable transformations are applied only to
snapshot data and not to the high-fidelity PDE solver itself.65

For several classes of nonlinear PDEs, the particular form of the nonlinear
terms means that lifting will lead to a system of DAEs. For example, this is the
case for the Arrhenius reaction terms in the tubular reactor example of [1]. It is
also the case for the nonlinear thermodynamic dependencies in the solidification
model considered in this paper. It is well known that reduction of DAEs is chal-70

lenging and that the algebraic equations require special treatment [21, 22]. In
some applications the DAEs can be reformulated as a system of differential equa-
tions and model reduction techniques are applied to the index-reduced ODEs
[23], but these approaches often lead to stiff systems [24]. Another approach
taken in the literature is index-aware model reduction in which the nonlinear75

DAE is linearized about a stationary solution, the linearized DAE is decoupled
into the differential and algebraic parts, and model reduction is applied to each
part individually [24, 25]. These existing DAE model reduction approaches are
intrusive; here we formulate a non-intrusive data-driven approach. When the
algebraic equations arise through the lifting process, they take on a particular80

structured form. In this paper we elicit that structured form and we exploit it
to learn the resulting reduced model via non-intrusive operator inference. In
particular, we show that the reduction of the lifted algebraic equations can be
computed explicitly using only manipulations of the low-dimensional basis vec-
tors, while the reduction of the differential equations follows the OpInf approach85

of [3].
Section 2 of this paper presents the lifting of a nonlinear system of PDEs to

polynomial form and discusses the form of the algebraic equations that arise.
Section 3 develops the proposed non-intrusive operator inference approach for
the lifted system of DAEs. Section 4 presents application of the approach to90

solidification of a pure metal. Finally, concluding remarks are presented in
Section 5.
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2. Nonlinear Model Reduction via Lifting to Polynomial Form

This section first presents the general projection-based reduction of a nonlin-
ear system and discusses its computational challenges. We then discuss lifting of95

nonlinear systems to systems with polynomial terms with particular attention
to the differential-algebraic structure that arises for several classes of nonlinear
equations. We derive the form of the reduced model of the lifted DAE system.

2.1. Projection-based nonlinear model reduction

Our goal is to derive reduced-order models of systems of nonlinear PDEs.
We consider the case where we have a system of dq PDEs. To keep the presen-
tation of our model reduction approach general, we consider the semi-discrete
system of nonlinear ordinary differential equations (ODEs) that arises from spa-
tial discretization of the PDEs of interest:

q̇ = f (q) , q (0) = q0, (1)

where q(t) ∈ Rndq is the ndq-dimensional semi-discrete state vector, with n the100

number of degrees of freedom in the spatial discretization, and f : Rndq → Rndq
is the discretized nonlinear function. The time interval of interest is t ∈ [0, tf ]
and q0 is the specified state initial condition. We refer to (1) as the full-order
model (FOM).

To construct a projection-based reduced model, we define a basis matrix105

U ∈ Rndq×r, where r � ndq is the reduced model dimension. Using the proper
orthogonal decomposition (POD) method of snapshots [26], this is done by con-
structing a set ofK solution snapshots of (1), Q =

[
q (t0) q (t1) · · · q (tK−1)

]
.

The POD basis is comprised of the r left singular vectors of Q corresponding
to the r largest singular values. That is, given the singular value decomposition110

Q = ΘΣΨ> in which the diagonal matrix Σ contains the singular values of Q
in non-increasing order, then Θ contains as its columns the left singular vectors
of Q and the POD basis is given by the first r columns of Θ, i.e., U = Θ1:r. The
POD basis is orthonormal, i.e., U>U = Ir×r, where Ir×r denotes the identity
matrix of dimension r × r.115

The POD reduced model is derived by forming the POD approximation of
the state, q ≈ Uq̂, and then performing a Galerkin projection to yield

˙̂q = f̂ (q̂) , q̂ (0) = U>q0, (2)

where q̂ ∈ Rr is the reduced-order state, and f̂ (q̂) = U>f (Uq̂) ∈ Rr. Although
(2) is a low-dimensional system of order r � dqn, it is not computationally
efficient. The issue lies in the evaluation of the reduced nonlinear function
f̂ which still scales with the dimension of the FOM, because to evaluate it we
need to transform the reduced state q̂ back to the full-order state space, evaluate120

the nonlinear function, and then project the full-order nonlinear function f back
to the reduced space.

To resolve this computational complexity issue arising with nonlinear model
reduction, one common approach in the literature is the introduction of another
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layer of approximation (commonly referred to as hyper-reduction), which limits125

the evaluation of the nonlinear function to a subselection of sampling points
[9, 10, 27–30]. Among existing hyper-reduction methods, the discrete empirical
interpolation method [10] (DEIM) has been used broadly in the literature for a
wide range of nonlinear model reduction applications [31–35]. It has been shown
in [36, 37] that for highly nonlinear functions, the number of sampling points130

required for hyper-reduction is relatively high compared to the dimension of the
FOM, undermining the efficacy of the resulting reduced model.

2.2. Lifting transformations

An alternative nonlinear model reduction approach is to employ variable
transformations to expose system structure, so that hyper-reduction is not135

needed [1, 2, 15]. For nonlinear models of polynomial form, Operator Inference
(OpInf) [3] is a non-intrusive approach to model reduction where the reduced op-
erators are learned from data through least-squares minimization. For nonlinear
PDEs with general nonlinearity, one can lift the governing nonlinear PDEs—
that is, introduce auxiliary variables—to an equivalent polynomial structure,140

thus making the lifted system well-suited for OpInf, and then construct the
reduced model for the lifted form via the OpInf learning scheme [2].

The lifting happens at the PDE level. For some specialized cases, transfor-
mations can be found that preserve the number of PDE unknowns (dq) in the
transformed equations, but in general the lifting transformation increases the145

number of PDE unknowns (and correspondingly the number of equations) in
the lifted form, to dl > dq. This is because auxiliary variables are introduced
to recast the nonlinear terms. In what follows, we consider the case where the
lifting map introduces additional auxiliary variables (i.e., dl > dq). According
to Gu [15] many nonlinear systems can be lifted to an exact equivalent polyno-150

mial representation; however, for many of the nonlinear terms that appear in
scientific and engineering application, lifting leads to algebraic equations. This
means that the resulting lifted system has a DAE form. Algebraic equations
can also arise due to an imposed constraint on either the polynomial degree
of the lifted formulation or the number of introduced auxiliary variables. For155

example, the tubular reactor example of [1] has Arrhenius reaction terms that
can be lifted to quartic form as a set of ODEs or to quadratic form as a set
of DAEs. Since the fourth-order operator in the quartic reduced model leads
to an operator inference problem with O(r4) degrees of freedom, it is typically
desirable to bring the system to quadratic form. In this paper, we explicitly160

consider the form of the DAE system and its algebraic constraints that arise in
such cases, and we formulate an OpInf approach that learns reduced models in
this setting.

Following [2], we define a lifting map T : Rndq → Rndl that transforms the
native PDE state q ∈ Rndq into a lifted state of dimension ndl. We partition the
lifted state into its components corresponding to the differential equations, de-
noted y, and its components corresponding to the algebraic equations, denoted
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z. That is, the lifted state is [
y
z

]
∈ Rndl .

To ease notation, we will present the case where the lifting of the PDEs leads
to one algebraic equation (i.e., z ∈ Rn) and dl − 1 differential equations (i.e.,
y ∈ Rn(dl−1)); however, it is straightforward to see how the method applies to
cases with multiple algebraic equations. We write the state y as

y =



y(1)

y(2)

...
y(m)

...
y(dl−1)


∈ Rn(dl−1), y(m) =



y
(m)
1
...

y
(m)
l
...

y
(m)
n


∈ Rn, (3)

where the notation y(m) denotes the semi-discretization of the mth lifted state
component, and thus forms an n-dimensional block component of the vector165

y. The notation y
(m)
l denotes the value of this mth state component at the

lth discretization point (e.g., corresponding to the lth spatial point for a finite
difference discretization or the lth finite element basis function, etc.).

2.3. Lifting to a system of DAEs with polynomial terms

Consider the case where the lifting map T leads to cubic form in the lifted
equations.1 The lifted equations can therefore be notionally written as

ẏ = C + A

[
y
z

]
+ H

([
y
z

]
⊗
[

y
z

])
+ G

([
y
z

]
⊗
[

y
z

]
⊗
[

y
z

])
,

(4)

z = C + Ay + H (y ⊗ y) + G (y ⊗ y ⊗ y) , (5)

although it is important to note that we do not discretize the lifted PDEs; we170

present this form only to motivate the form of the reduced model. In (4) and (5),
the symbol ⊗ denotes the Kronecker product (following the notation from [38]).

The operators C ∈ Rn(dl−1), A ∈ Rn(dl−1)×(ndl), H ∈ Rn(dl−1)×(ndl)2 , and
G ∈ Rn(dl−1)×(ndl)3 are respectively the constant, linear, quadratic, and cubic
operators of the differential equations in the lifted system. Similarly, C ∈ Rn,175

A ∈ Rn×[(dl−1)n], H ∈ Rn×[n(dl−1)]2 , and G ∈ Rn×[n(dl−1)]3 are respectively the
constant, linear, quadratic, and cubic operators corresponding to the algebraic
equation in the lifted system corresponding to the constants of the polynomial

1Note that we consider the cubic case because it arises in our additive manufacturing
example problem in Section 4, but it is straightforward to see how our approach applies to
systems with at most quadratic terms, as well as systems with higher-order polynomial terms.
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algebraic equation. Note that the governing equations are typically sparse with
respect to the underlying variables (e.g., the number of two-way and three-way180

interactions among the dl variables is typically quite small, so that H, G, H,
and G will contain a large number of zero blocks).

The projection-based reduced model of the DAE system (4) and (5) preserves
the cubic structure, giving

˙̂y = Ĉ + Â

[
ŷ
ẑ

]
+ Ĥ

([
ŷ
ẑ

]
⊗
[

ŷ
ẑ

])
+ Ĝ

([
ŷ
ẑ

]
⊗
[

ŷ
ẑ

]
⊗
[

ŷ
ẑ

])
,

(6)

ẑ = Ĉ + Âŷ + Ĥ (ŷ ⊗ ŷ) + Ĝ (ŷ ⊗ ŷ ⊗ ŷ) , (7)

where ŷ ∈ Rr1 , ẑ ∈ Rr2 are the reduced state vectors for the differential and
algebraic equations, respectively. That is, given a POD basis V ∈ Rn(dl−1)×r1
for the differential states y and another POD basis W ∈ Rn×r2 for the algebraic
states z, the approximation of the full-order states in the POD subspace is:[

y
z

]
≈
[

V 0
0 W

] [
ŷ
ẑ

]
. (8)

Our task now is to determine the reduced model defined by (6) and (7) by

inferring the reduced operators Ĉ ∈ Rr1 , Â ∈ Rr1×(r1+r2), Ĥ ∈ Rr1×(r1+r2)2 ,
Ĝ ∈ Rr1×(r1+r2)3 , Ĉ ∈ Rr2 , Â ∈ Rr2×r1 , Ĥ ∈ Rr2×r21 , and Ĝ ∈ Rr2×r31 .185

3. Operator Inference for Lifted Differential Algebraic Equations

This section presents our approach for learning the operators of the reduced
model defined by (6) and (7). The differential equations (6) use the standard
OpInf approach from [3], as discussed in Section 3.1. In Section 3.2, we develop
a tailored approach for the algebraic equations (7), which exploits the particular190

structure of the lifted system.

3.1. Operator Inference for differential equations

To determine the reduced model for the differential equations in (4), we use

the regularized OpInf approach of [39] to infer the reduced operators Ĉ ∈ Rr1 ,

Â ∈ Rr1×(r1+r2), Ĥ ∈ Rr1×(r1+r2)2 , and Ĝ ∈ Rr1×(r1+r2)3 . The steps of the195

approach are as follows:

Step 1: Snapshots of the state vector of the original high fidelity model (1) are
generated at K time steps to build the state snapshot matrix for the original
variables, Q ∈ Rndq×K .200

Step 2: The lifting transformations defined by the lifting map T are applied to
the snapshots. For each snapshot q, we generate[

y
z

]
= T(q),
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resulting in the lifted snapshot data for the differential and algebraic equations,
contained in the lifted snapshot matrices Y ∈ Rn(dl−1)×K and Z ∈ Rn×K re-
spectively.

205

Step 3: Compute the POD basis matrices for the lifted snapshots using singular
value decomposition:

Y = Θ1Σ1Ψ
>
1 , V = (Θ1)1:r1 ∈ Rn(dl−1)×r1 , (9)

Z = Θ2Σ2Ψ
>
2 , W = (Θ2)1:r2 ∈ Rn×r2 , (10)

where V and W are the POD basis matrices for Y and Z, respectively. The
size of the bases r1 and r2 are chosen by assigning a threshold for the relative
cumulative energy of the POD modes. That is, choose r1 (respectively r2) so

that ε =
(∑r1

i=1 σ
2
i

)
/
(∑K

i=1 σ
2
i

)
is greater than the specified tolerance, where

σi is the ith singular value of Σ1 (respectively Σ2).210

Step 4: Project the lifted snapshot matrices Y and Z onto their correspond-
ing POD subspaces, to obtain the coordinates of the lifted snapshots in the
POD bases. Estimate numerically the time derivative for the snapshots of the
differential states:

Ŷ = V>Y =

 | | |
ŷ (t0) ŷ (t1) · · · ŷ (tK−1)
| | |

 ∈ Rr1×K , (11)

˙̂
Y =

 | | |
˙̂y (t0) ˙̂y (t1) · · · ˙̂y (tK−1)
| | |

 ∈ Rr1×K , (12)

Ẑ = W>Z =

 | | |
ẑ (t0) ẑ (t1) · · · ẑ (tK−1)
| | |

 ∈ Rr2×K . (13)

Step 5: Infer the reduced model operators for the differential states from snap-
shot data via OpInf by posing a least squares problem in a minimum residual
sense:

min
Ĉ,Â,Ĥ,Ĝ

∥∥∥∥1KĈ> + Ŝ>Â> +
(
Ŝ� Ŝ

)>
Ĥ> +

(
Ŝ� Ŝ� Ŝ

)>
Ĝ> − ˙̂

Y>
∥∥∥∥2
F

,

(14)

where Ŝ> =
[

Ŷ> Ẑ>
]
∈ RK×(r1+r2) collects the differential and algebraic

snapshot matrices in a single matrix, 1K is a column vector of length K of
values of unity, and � denotes the Khatri-Rao product of two matrices (which
is also known as column-wise Kronecker product [38]).215

As shown in [3], (14) decomposes into r independent least squares problems,
one for each row of the reduced system. This reduces the computational cost of
the OpInf problem and also lowers the amount of training data required, since
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the number of coefficients to be inferred in each least squares problem scales with
r3 rather than r4. For the cubic structure in (14), the number of unknowns for220

each least squares problem is at most s = 1+r+r (r + 1) /2+r (r + 1) (r + 2) /6
(with r = r1 +r2), where we account for the elimination of the redundant terms

arising from the commutativity of multiplication within Ĥ and Ĝ. The number
of unknown coefficients in the OpInf regression problem can be reduced further
by constructing a separate POD basis for each physical variable, which leads to a225

block diagonal POD basis matrix. As noted before, the governing equations are
typically sparse with respect to the underlying variables and a block diagonal
POD basis preserves this sparsity. Using a separate POD basis also has the
advantage of being able to select a different number of modes for each variable,
although its sparsity-preserving advantage can be offset by an increase in the230

total number of modes required to achieve a desired accuracy level.
The least-squares problem of (14) is noisy. Sources of noise include the

errors introduced due to numerical approximation of the time derivatives
˙̂
Y,

closure error due to the disregarded POD modes, and any potential model
mis-specification error. Thus, to avoid overfitting the operators to the data,235

regularization is needed as discussed in [39].

3.2. Reduced representation of the algebraic equations

We now present the approach for deriving the reduced operators Ĉ, Â, Ĥ,
and Ĝ of the algebraic equation (7). Our approach leverages the known structure
of the algebraic equations that arise during the lifting of the original nonlinear
system to polynomial form. In particular, the algebraic equations have a point-
wise structure because they arise from lifted equations that specify definitional
relationships between lifted continuous variables (this will be illustrated in our
example in Section 4). We can expand the terms in the algebraic equations (5)
in a component-wise summation format as

z = C +

dl−1∑
i=1

A(i)y(i) +

dl−1∑
i=1

dl−1∑
j=i

H(i,j)y(i) ⊗ y(j)

+

dl−1∑
i=1

dl−1∑
j=i

dl−1∑
k=j

G(i,j,k)y(i) ⊗ y(j) ⊗ y(k), (15)

where y(i) denotes the semi-discretization of the ith lifted state component as
defined in (3), and A(i) ∈ Rn×n, H(i,j) ∈ Rn×n2

, and G(i,j,k) ∈ Rn×n3

denote
the corresponding blocks within the operators of (5). The summation format of
(15) accounts for all possible linear, quadratic and cubic terms in the algebraic
equation. But in practice, the algebraic equations are generally sparse and only
include a few terms (further discussed in Section 4). Written in this form, we
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have

C = c1n, (16)

A(i) = a(i)In×n, (17)

H(i,j) = h(i,j)
[

e1 0n×n e2 0n×n · · · 0n×n en
]
n×n2 , (18)

G(i,j,k) = g (i,j,k)
[

e1 0n×(n2+n) e2 0n×(n2+n) · · · 0n×(n2+n) en
]
n×n3 ,

(19)

where 0α×β represents a zero block with α rows and β columns, ep is a column
vector of length n with all zeros and a unity value at the pth row, and c, a(i),
h(i,j) and g (i,j,k) are scalar constants in the algebraic equation. We can then
exploit this form to determine the reduced model operators

Ĉ = W>C = cW>1n, (20)

Â(i) = W>A(i)V(i) = a(i)W>V(i). (21)

Ĥ(i,j) = W>H(i,j)
(
V(i) ⊗V(j)

)
, (22)

Ĝ(i,j,k) = W>G(i,j,k)
(
V(i) ⊗V(j) ⊗V(k)

)
, (23)

where V(i) denotes the partitioning of the POD basis V (whether it is block
diagonal or not) in the same format as (3):

V =



V(1)

V(2)

...
V(m)

...
V(dl−1)


, (24)

where each block V(i) has dimension n× r1. The computation of Ĉ in (20) and

Â in (21) use straightforward products of the POD basis matrices V and W.
Since each row of the operators H(i,j), and G(i,j,k) contains only one non-zero
element as shown in (18) and (19), computation of the reduced operators Ĥ(i,j)

and Ĝ(i,j,k) can be achieved efficiently and without having to first construct
the corresponding full-order operators. Given (18) and (22) for the quadratic

operator, and (19) and (23) for the cubic operator, Ĥ(i,j) and Ĝ(i,j,k) can be

10



written as

Ĥ(i,j) = h(i,j)W>



V
(i)
1 ⊗V

(j)
1

V
(i)
2 ⊗V

(j)
2

...

V
(i)
l ⊗V

(j)
l

...

V
(i)
n ⊗V

(j)
n


, Ĝ(i,j,k) = g (i,j,k)W>



V
(i)
1 ⊗V

(j)
1 ⊗V

(k)
1

V
(i)
2 ⊗V

(j)
2 ⊗V

(k)
2

...

V
(i)
l ⊗V

(j)
l ⊗V

(k)
l

...

V
(i)
n ⊗V

(j)
n ⊗V

(k)
n


,

(25)

where V
(i)
l denotes the lth row of V(i).

4. Application: Solidification Process in Additive Manufacturing

We test the efficacy of the proposed method for a solidification process in240

metal additive manufacturing. The additive manufacturing process takes place
over a wide range of length scales and time scales, and it is sensitive to vari-
ations in process parameters. Numerical simulations of the additive manufac-
turing process are computationally expensive, making it a challenge to achieve
control, optimization, and uncertainty quantification. Reduced-order modeling245

is thus a critical enabler for achieving models that are sufficiently accurate and
computationally efficient. Section 4.1 presents the target problem of phase-field
simulation of the solidification process. Section 4.2 derives the lifting transfor-
mation map to expose cubic polynomial structure in the solidification model.
Section 4.3 presents numerical experiments that test the efficacy of the proposed250

model reduction method.

4.1. Phase Field Simulation of Solidification

This study uses Kobayashi’s solidification model [40] for pure materials in
which the evolution of the order parameter is represented by the Allen-Cahn
(also known as time-dependent Ginzburg-Landau) equation. The governing
equations are{

u̇ = ∇. (K∇u) + LH φ̇, on (0, tend]× (0, `)

τ φ̇ = ξ2∆φ− p′ (φ)− q (u, φ) , on (0, tend]× (0, `) ,
(26)

where the phase-field order parameter, φ (x, t), characterizes the phase at spatial
location x at time t and u (x, t) is the temperature. The phase-field equation
accounts for the evolution of the interface in an implicit manner where φ = 0 and
1 represent the liquid and solid phases, respectively, and φ = 0.5 is considered
to be the location of the interface. LH is the non-dimensional latent heat, K
is the thermal diffusivity, τ is the relaxation parameter, ξ represents the width
of the diffuse interface, ` is the length of the one-dimensional physical domain,
and tend is the final time. The terms p′ (φ) and q (u, φ) appearing in (26) arise
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respectively from the differentiation of the first and second terms of the free
energy density with respect to φ. The Helmholtz free energy density used in
this study is [40]

f (u, φ) =
1

4
φ2 (1− φ)

2
+

(
1

3
φ3 − 1

2
φ2
)
m (u) , (27)

where

m (u) =
β

2
m0 (u) , with m0 (u) = tanh [γ (uM − u)] , (28)

where β < 1 is the parameter that controls the magnitude of m and γ is the
parameter controlling the rate of change of m about the melting temperature
uM . The constraint β < 1 is to enforce |m (u)| < 1/2 which guarantees that
the Helmholtz free energy f acquires local minimum at liquid (φ = 0) and solid
(φ = 1) phases, and a local maximum at φ = 1/2 −m. Given the free energy
density (27), we have

p′ (φ) =
1

2
φ (1− φ) (1− 2φ) , q (u, φ) = φ (φ− 1)m (u) , (29)

where p (φ) = f (φ, uM ) = 1
4φ

2 (1− φ)
2
, and the prime denotes differentiation

with respect to φ. Note that the definition of m in (28) is not a unique choice
[40]; other monotonically decreasing continuous functions of u can be used for255

m as long as |m (u)| < 1/2.
Homogeneous Neumann boundary conditions are imposed on the tempera-

ture and order parameter. In this study the initial conditions are chosen to be:

φ(x, 0) = φ0 =

{
1 0 ≤ x ≤ x0
0 x0 < x ≤ `

u(x, 0) = u0 = uMφ0

(30)

where x0/` is the initial solid fraction, and the temperature in the solid phase is
considered to be equal to the melting temperature uM . The initial conditions are
chosen such that u ≤ uM , hence the system will be driven towards solidification.

In this study, the thermal diffusivity is taken to depend on the phase of
the material through an interpolation function h (which satisfies h (0) = 0 and
h (1) = 1):

K (φ) = K0 (1− h (φ)) +K1h (φ) , (31)

whereK0, andK1 represent the thermal diffusivity of the liquid and solid phases,260

respectively. The selected interpolation function is h (φ) = 6φ5 − 15φ4 + 10φ3

where h′ (φ) = 120p (φ) [4].
Figure 1 shows an example result of the phase-field simulation of the solid-

ification phenomena. The figure depicts the evolution of the temperature and
order parameter in time over the one-dimensional spatial domain (` = 1). Sharp265

changes in the order parameter occur along the interface (the dashed line), and
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the interface moves in time. Because of the existence of the latent heat term in
the heat equation (26), abrupt changes along the interface are also evident in
the temperature field. The moving front nature of the solidification phenomena
makes it a challenging problem for model reduction.

Figure 1: Phase-field simulation of the solidification phenomena of a pure material (LH = 1.0,
K0 = 1.0, K1 = 0.1, ξ = 0.01, τ = 0.0003, uM = 1.0, β = 0.9, x0 = 0.1, ` = 1). The dashed
line represents the location of the interface. Note: the horizontal axis corresponds to the
physical domain, and the vertical axis represents the time.

270

4.2. Lifting Transformation

We define a lifting map that lifts the nonlinear governing equations (26) to
a polynomial system with cubic form. We define the auxiliary variables

K = K0 + (K1 −K0)
(
6φ5 − 15φ4 + 10φ3

)
p =

1

4
φ2 (1− φ)

2

p′ =
1

2
φ (1− φ) (1− 2φ)

p′′ = 3φ (φ− 1) +
1

2
m0 = tanh [γ (uM − u)]

z = −γ
(
1−m2

0

)
.

(32)
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The lifted state is then defined with y =
[
u φ K p p′ p′′ m0

]>
, and

z = −γ(1−m2
0). This leads to the lifted equations

u̇ = ∇. {K∇u}+
LH
τ

[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)]
τ φ̇ = ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)
K̇ =

120 (K1 −K0)

τ
p

[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ =

1

τ
p′
[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ′ =

1

τ
p′′
[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ′′ =

3

τ
(2φ− 1)

[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṁ0 = z

(
∇. {K∇u}+

LH
τ

[
ξ2∆φ− p′ − β

6
m0

(
p′′ − 1

2

)])
z = −γ

(
1−m2

0

)

(33)

Note that these equations form a DAE system with cubic form. The lifting
introduces no approximations (but assumes that the necessary derivatives exist).
Also note that these equations will not be discretized or solved, but rather
provide the guiding structure for formulating the operator inference problem.275

To derive the reduced model, we construct the POD basis matrix in a block-
diagonal manner

V =

 V(u) 0 0
0 V(φ) 0
0 0 V(aux)

 , W = W(aux), (34)

with a separate basis for temperature (V(u) ∈ Rn×ru), the order parameter

(V(φ) ∈ Rn×rφ), the five auxiliary differential variables (V(aux) ∈ R5n×rdaux), and
the auxiliary algebraic variable (W(aux) ∈ Rn×raaux). We use reduced dimensions
of ru to approximate the temperature, rφ to approximate the order parameter,
rdaux to approximate the auxiliary differential variables, and raaux to approximate280

the auxiliary algebraic variable. The size of bases V and W is r1 = ru+rφ+rdaux
and r2 = raaux, respectively.

Using the approximation (8), we seek a reduced model with the cubic struc-
ture (6)–(7). For the particular lifting transformations that arise here, the only
non-zero terms in the summations of (15) are the constant term C with scalar
c = −γ, and one quadratic term H(7,7) with scalar h(7,7) = γ. This latter
term corresponds to the coefficient multiplying m2

0 (recall that m0 is the sev-
enth state variable in the lifted formulation of (33)). Hence the reduced-space
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representation of the algebraic equation is

ẑ = Ĉ + Ĥ(7,7) (ŷ ⊗ ŷ) , Ĉ = −γWT1n, Ĥ(7,7) = γWT


V

(7)
1 ⊗V

(7)
1

V
(7)
2 ⊗V

(7)
2

...

V
(7)
n ⊗V

(7)
n

 .
(35)

This illustrates that the terms Ĉ and Ĥ(7,7) can be derived explicitly from
the basis matrices V and W in the offline stage (i.e., the reduced-space rep-
resentation of the algebraic equation does not need to be learned via operator285

inference).

4.3. Parametric reduced model simulations

We conduct parametric studies considering variations in the latent heat, LH ,
and the parameter γ appearing in the thermodynamic term (28). Both LH and γ
appear explicitly in the lifted equations (33). In addition, γ appears in the initial290

conditions for the evolution of auxiliary variable m0. Other parameters are set
to the values τ = 0.0003, ξ = 0.01, β = 0.9, uM = 1.0, K0 = 1, and K1 = 0.1.
The one-dimensional spatial domain has length ` = 1 and is discretized into
n = 1000 cells (chosen to ensure that the diffuse interface is sufficiently resolved
with 1/n = ξ/10) . The timestep for numerical simulations is ∆t = 8.33×10−7.295

Simulations are initialized by setting the initial solid fraction to cover 10% of
the spatial domain (i.e., φ(x, 0) = 1 for x < 0.1 and φ(x, 0) = 0 otherwise) and
the initial temperature profile is such that the solidified region is at melting
temperature, and the remainder of the spatial domain is at the undercooling
temperature of zero as defined in (30). The final time for the simulations is300

chosen to be tend = 0.03.
The OpInf minimization problem (14) is augmented with Tikhonov regular-

ization to guard against ill conditioning. The criterion for choosing the optimal
regularization parameter is to minimize the relative error between the reduced
model predictions and the full order snapshots of the original variables (i.e.,305

temperature and order parameter) over a set of regularization parameters. This
approach leads to stable reduced models. The L-curve criterion, which is often
used in the literature to select the optimal regularization parameter, resulted
here in unstable reduced models for a number of the studied cases.

For the first set of numerical results, we set γ = 10 and vary the latent heat
between LH = 0 and LH = 1. The specific snapshots generated for training and
testing use the following values:

Ltrain
H = {0.0, 0.1, · · · , 0.9, 1.0}, Ltest

H = {0.05, 0.15, · · · , 0.85, 0.95}.

The basis matrices V(u), V(φ), V(aux), and W(aux) are constructed by concate-310

nating snapshots of the respective variables from all training simulations with
∆t = 8.33 × 10−7. Figure 2 shows the POD singular values (normalized by
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the largest singular value in each case) and the energy in the neglected modes

(1 −
∑r
i=1 σ

2
i∑n

i=1 σ
2
i
) for a given basis size. Due to the moving front nature of the

solidification phenomena, the decay of the singular values is slow, which makes315

this a challenging problem for model reduction.

Figure 2: Left: the decay in the singular values of the snapshot matrices for temperature,
order parameter, and auxiliary states in differential and algebraic form, varying the latent
heat. Right: energy in the neglected POD modes for a given basis size.

Figure 3 shows the sizes of each component of the basis matrices in (34) for
increasing retained POD energy. As indicated in Figure 2, the singular value
decay rate for the auxiliary variables is slower than that for the temperature and
order parameter, and therefore the auxiliary states have a larger contribution320

to the total basis sizes in Figure 3.

Figure 3: POD basis sizes for variations in the latent heat at different levels of retained POD
energy.
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The reduced model is used to compute temperature and order parameter
fields using (8). We also compute the interface location in a post-processing
step, defined by the point at which φ = 0.5 and computed by interpolating the
estimated order parameter field. We assess the reduced model performance by
plotting relative errors for each of temperature, order parameter, and interface325

location in Figure 4. In each case, the relative error is defined by the norm of
the difference between full and reduced solutions divided by the norm of the
full model solution. The figure shows the mean relative errors averaged over all
snapshots in the test set, as well as the relative errors for the LH values at which
the reduced model performs the best (minimum error) and the worst (maximum330

error). Mean, minimum, and maximum relative errors are also plotted for the
training set. The relative errors in temperature and order parameter decrease
with the increase in the size of the POD basis, as expected. The interface
location is not directly approximated by the POD basis, and while its accuracy
improves, the error reduction is less than that observed for temperature and335

order parameter.

Figure 4: Relative errors in temperature (left), order parameter (middle), and interface loca-
tion (right) for varying latent heat.

Figure 4 shows that the spread of the relative error for the test set is smaller
than that of the training set, and that (unexpectedly) the test set has lower mean
relative error than the training set. This is an artifact of the latent heat values
selected in Ltrain

H and Ltest
H . As Figure 5 shows for two different basis sizes,340

the error is larger for the training set endpoint values LH = 0 and LH = 1.
Following typical reduced modeling best practices, the test set was chosen to
interpolate the training set and so has lower errors at its endpoints.

We present a final numerical example that studies variation of the γ term
appearing in the thermodynamical driving force q. The latent heat is set to
LH = 1.0. The snapshots generated for training and testing use the following
values:

γtrain = {0.25, 0.75, · · · , 4.75, 5.25}, γtest = {0.5, 1.0, · · · , 4.5, 5.0}.
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Figure 5: Variation of the temperature relative error versus LH for two values of the retained
energy over the training set (solid line) and the test set (dashed line).

The global basis matrix is determined from concatenating the snapshots for all
parameter values in the training set.345

Figure 6 shows the normalized singular values and energy in the neglected
POD modes as we increase the size of the basis components of (34) and the
sizes of these basis components are shown in Figure 7. Again, we see the slower
decay in the singular values for the auxiliary variables, requiring their basis sizes
to be larger than those for the temperature and order parameter. The reduced350

model relative errors are plotted in Figure 8. The reduced model error decays
more rapidly for this case than it did for variations in the latent heat. This is
consistent with the singular value decay rates, which illustrate that varying the
latent heat leads to a more complicated set of snapshot dynamics.

Figure 6: Left: the decay in the singular values of the snapshot matrices for temperature,
order parameter, and auxiliary states in differential and algebraic form, varying γ. Right:
energy in the neglected POD modes for a given basis size.
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Figure 7: POD basis sizes for variations in γ at different levels of retained POD energy.

5. Concluding Remarks355

This paper has proposed and demonstrated a non-intrusive data-driven model
reduction method that addresses the DAE structure arising in lifting nonlinear
systems to polynomial form. The approach provides a new alternative for model
reduction of highly nonlinear systems for which more classical hyperreduction
techniques may be ineffective. The approach is effective for the studied solidifi-360

cation problem; however, the relatively slow decay of the POD singular values
points to the inefficiencies of representing transport-dominated dynamics in a
static linear basis. A fruitful direction of future work is to combine the ap-
proach proposed here with a localized [41, 42] and/or adaptive basis [43–45],
although it remains an open question how to achieve this in a non-intrusive365

way. The solidification model also highlights the interesting question of how
to optimally define the low-dimensional basis. Using a separate basis for each
physical quantity preserves the sparsity of the lifted PDEs, but may come at
a cost of increased total reduced model dimension. The results presented here
used four separate bases—one for temperature, one for order parameter, one370

for the auxiliary differential variables, and one for the auxiliary algebraic vari-
able. Through numerical experiments, this choice was found to provide a good
tradeoff between block sparsity and overall reduced model dimension, leading to
efficiency in the resulting reduced models. Formalizing the process of optimal
basis design is another necessary area of future research.375
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