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This paper is dedicated to Professor Karl Pister on the occasion of his 95th birthday.

Abstract: We investigate primal and mixed u− p isogeometric collocation meth-
ods for application to nearly-incompressible isotropic elasticity. The primal method
employs Navier’s equations in terms of the displacement unknowns, and the mixed
method employs both displacement and pressure unknowns. As benchmarks for
what might be considered acceptable accuracy, we employ constant-pressure Aba-
qus finite elements that are widely used in engineering applications. As a basis
of comparisons, we present results for compressible elasticity. All the methods
were completely satisfactory for the compressible case. However, results for low-
degree primal methods exhibited displacement locking and in general deteriorated
in the nearly-incompressible case. The results for the mixed methods behaved
very well for two of the problems we studied, achieving levels of accuracy very
similar to those for the compressible case. The third problem, which we con-
sider a “torture test” presented a more complex story for the mixed methods in the
nearly-incompressible case.

Keywords: Isogeometric Analysis, Isogeometric Collocation, Nearly-incompressible
Elasticity

0 Tom Hughes’s personal dedication to Karl Pister.
I first heard of Professor Karl Pister from Dr. John Baylor, a scientist in the Research and Development

Laboratory, General Dynamics/Electric Boat Division (GD/EB) in Groton, Connecticut, in 1968. I had
joined GD/EB in 1967 and was befriended by John, who was considered the Laboratory “resident genius.”
Sometime in 1968 I decided that I wanted to return to school and obtain a PhD, and, in particular, I wanted
to do it at the University of California at Berkeley, where John had done his PhD. Karl Pister was John’s
PhD supervisor and John was enormously enthusiastic about Karl, the engineer and the man, and insisted
that Karl was the ideal supervisor for me. So, I wrote to Karl and he responded with a handwritten letter
inviting me to join what was known at the time as the “Pister Research Machine.” That was a thrill and the
beginning of a dream come true.
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In August of 1969 I left Connecticut and drove across country to Berkeley, and after I got settled, I went
to Davis Hall to let Professor Pister know I had arrived. I knocked on his door, he told me to come in, and
I entered and introduced myself. He said, “who are you?” I explained I was the guy from GD/EB that he
invited to join his group as a research assistant. He said “oh,” which amounted to an inauspicious start as a
member of the Pister Research Machine. After that, it got more interesting and better. In discussions with
Karl, I told him I already knew quite a bit about the finite element method from my work at GD/EB, but
what I wanted to focus on in my studies was mathematics and mechanics, and perhaps get back to the FEM
toward the end of my degree. Because both my degrees were in mechanical engineering and I had taken
some additional graduate courses in mechanics at the University of Connecticut while working at GD/EB,
Karl said that I should major in Engineering Science, which would give me maximum latitude to design my
own graduate program. Karl approved my proposed course programs every quarter and I had the time of
my life studying everything I wanted to study. I think if my wife had not gotten increasingly worried that I
might become a perpetual student and had not urged me to finish in the strongest possible terms, I might still
be taking courses at Berkeley to this day. Karl understood the intellectual journey I wanted to pursue and
gave me his full support. I had never experienced anything like the freedom and autonomy that Karl gave
me during my previous education. I would not be who I am today without Karl’s encouragement to broaden
my horizons, and do exactly what I wanted to do, and I am deeply indebted to him for the opportunities he
gave me.

After I finished my PhD degree and began teaching at Berkeley, Karl invited me to coteach one of the
graduate mechanics courses with him. I suggested that this would be an opportunity to combine mechanics
with modern mathematics relevant to computation and he enthusiastically agreed. I wrote some notes for my
parts of the course and off we went. I did not retain copies of my notes from that course but was reminded of
them by Professor Bob Taylor, who showed a sample from them during a plenary lecture he gave a few years
ago, entitled “My Fifty Years in the Finite Element Method,” at a US National Congress on Computational
Mechanics. Bob described the notes as emanating from the first Computational Mechanics course ever given
at Berkeley.

Karl supported me from the time I arrived at Berkeley and throughout my entire academic career. He
has been my role model in the way I pursue PhD education. What he did for me, I try to do for those
students that join my research group, giving them the encouragement and support to do what they want to
do. I believe it is the best guidance one can give intellectually ambitious, self-motivated students. I learned
that from Karl.

Karl Pister changed my life and set me on the direction that I took in pursuit of my life’s work. I learned
a great deal of mechanics from him, but much more about how to conduct myself as an academic and as a
person. He was indeed the perfect mentor for me. I know too that my experience was similar to that of the
many other students and individuals he guided throughout his long career.

Dear Karl, thank you so much for all you have done for me, and best wishes to you on your 95th

birthday.

1 Introduction
The problem of nearly-incompressible linear elasticity and the limit problem of incompressibility, gov-

erned by the Stokes equations, play important roles in engineering analysis. The equations of nearly-
incompressible elasticity are pertinent to the analysis of rubber materials, and the Stokes problem is the
standard model for slow viscous fluid flow and represents an important modeling step toward the develop-
ment of computational formulations of the full Navier-Stokes equations. Near-incompressibility also arises
in metal plasticity applications in which the elastic deformations are compressible, but plastic flow is mod-
eled as incompressible. The limit problem of incompressibility is appropriate for the elastic-plastic analysis
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of undrained soils. Given the physical importance of the nearly-incompressible model, it has been widely
studied in the finite element literature and a variety of approaches have been developed to achieve numerical
stability and overcome “mesh” locking, see, e.g., [1].

Recent works of Elguedj et al. [2, 3] have investigated NURBS-based isogeometric Galerkin formula-
tions based on B-bar and F-bar projection methods of nearly-incompressible small- and large-deformation
elasticity and plasticity problems. Success was achieved by employing displacement fields one polynomial
degree higher and one degree smoother than the volumetric strain field. The family of elements studied
were thus maximally smooth isogeometric “QpQp−1 elements” for p = 1,2,3,4. Thus the classical Q1Q0
element, first introduced in [4], often referred to as the “constant pressure” element and denoted q1 p0, was
the lowest-order member of the family studied. Due to the widespread use of this element in engineering
applications, it proved very useful as a benchmark against which the behavior of the higher-order approaches
could be measured.

In addition to Galerkin formulations, Isogeometric Analysis is also amenable to discretization by collo-
cation methods due to the increased smoothness of basis functions. The primary motivation for developing
collocation methods is computational efficiency, as they minimize the number of quadrature points to one
per node, independent of polynomial order. The study of isogeometric collocation methods was initiated
in [5] and further developed in [6, 7, 8, 9, 10, 11]. The efficiency of isogeometric collocation methods,
compared to finite element and isogeometric Galerkin methods, was studied in Schillinger et al. [12] and in
De Lorenzis et al. [13]. An observation made in this work was that collocation has advantages that increase
significantly with the degree of the basis. It may also be noted that the cost of formation of element arrays
for the standard Gaussian quadrature rules, involving O(p3) quadrature points per element in three dimen-
sions, is O(p9), which is prohibitively expensive for higher-degree elements. For collocation it is O(p3), the
optimal result, which becomes decisive at higher degree. However, the Galerkin method has always been
the gold standard as far as accuracy is concerned and it is difficult to make sweeping generalizations about
it compared with collocation. This is especially true in light of recent developments that considerably speed
up the isogeometric Galerkin method by utilizing weighted quadrature, sum factorization and row or col-
umn formation and assembly attaining O(p4) cost; see Hiemstra et al. [14], or reduced quadrature schemes
which require only two points per parametric direction regardless of the discretization order by exploiting
the concept of variational collocation [15, 16].

Mixed methods constitute perhaps the most important finite element technology for addressing con-
strained media problems, such as the equations of nearly-incompressible elasticity. However, there have
been very few studies of mixed isogeometric collocation methods for problems of this type. In a previous
work, the authors considered a mixed isogeometric collocation formulation of nearly-incompressible elas-
ticity and plasticity in which the entire stress field is approximated in addition to the displacement field
[17]. Models of this type also have relevance to the analysis of viscoelastic fluids in the Eulerian formula-
tion. However, perhaps the most studied mixed formulation of nearly-incompressible elasticity is the one
in which pressure is approximated in addition to displacements. This is the primary focus of this paper,
which we believe is the first time this model has been investigated from the standpoint of isogeometric
collocation. We also consider a so-called primal formulation in which we employ the standard displace-
ment equations unaltered. For the primal formulation we consider maximally smooth NURBS displacement
fields of polynomial degree p = 2,3, ...,7. For the mixed elements, we consider displacement fields of de-
gree p = 3,4, ...,7 and pressures one degree lower. Herein, we refer to these discretizations as QpQp−1.
As a benchmark for acceptable accuracy of a mixed formulation in compressible and nearly-incompressible
cases, we present q1 p0-results from the commercial finite element code Abaqus. For sufficiently high-degree
collocation results we obviously expect faster convergence results, so this is utilized to provide a context,
but not a comparison.

To gauge the performance of the methods, we present results for three linear, isotropic, elasticity prob-
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lems; two two-dimensional problems and one three-dimensional problem. In all cases the NURBS geometry
map is non-affine. We do not present mathematical error estimates. To the best of our knowledge, the only
rigorous proofs of stability, convergence and error estimates for collocation methods are those presented in
[5] and they are only valid in one dimension. Our computational results in multidimensions were consis-
tent with the mathematical results for one dimension, but the generalization of the mathematical theory to
multiple dimensions, to the best of our knowledge, remains an open problem.

The first two-dimensional problem utilizes a plane strain manufactured solution that is divergence-free
with zero displacement boundary conditions, i.e., homogeneous Dirichlet boundary conditions. The body
force derived from the manufactured solution is proportional to the shear modulus, µ , and is independent
of the other Lamé parameter λ . This problem may be thought of as providing insight into cases that are
dominated by shear deformations, such as occur in plasticity.

The second two-dimensional problem is the classical, internally pressurized, plane strain, thick-walled
cylinder problem. The exact solution to this problem involves both distortional and dilatational deforma-
tions. All boundary conditions are of Neumann type. The applied internal pressure is constant and indepen-
dent of both µ and λ .

The third problem may be thought as a “torture test.” We employ a three-dimensional domain with ho-
mogeneous Dirichlet boundary conditions and assume a manufactured solution that has both distortional and
dilatational components of the same order, resulting in body force loading with both µ- and λ -proportional
components. In the nearly-incompressible case, taken as λ/µ = 104 herein, this results in a very large and
dominant pressure loading. The physical relevance of this problem may be questioned, but it does let us ex-
plore another aspect of element behavior besides locking in nearly-incompressible cases, namely, “pressure
robustness,” a concept introduced by Alexander Linke and investigated by him and his collaborators in a
number of recent works; see, e.g., [18] and references therein.

An outline of the remainder of the paper follows: In Section 2 we describe the collocation methods for
linear, isotropic elasticity. In Section 2.1 we present the primal formulation and in Section 2.2 we present the
mixed formulation. Numerical results for the two-dimensional problems and the three-dimensional problem
are presented in Sections 3 and 4, respectively. Conclusions and a summary of results are presented in
Section 5.

2 Isogeometric collocation for linear elasticity
In this section, following the presentation of [19], we apply the ideas of isogeometric collocation to

linear elasticity problems. Primal and mixed u− p formulations are described. The problem we consider
is represented in Fig. 1 and consists of an elastic body Ω ⊂ Rd subjected to body forces f, to prescribed
displacements g on a portion of the boundary ΓD, and to prescribed tractions h on the remaining portion ΓN ,
with Γ = ΓD

⋃
ΓN the boundary of the domain, and with ΓD

⋂
ΓN = /0. Suitable regularity requirements are

assumed to hold for f, g, and h.

2.1 Primal formulation
The primal (i.e., displacement-based) formulation of the small-strain linear elastostatic problem in

strong form (Navier’s equations) is given by

−∇ ·
(
C∇

Su
)
= f, in Ω, (1)

complemented by the Dirichlet boundary conditions

u = g, on ΓD, (2)

and by the Neumann boundary conditions(
C∇

Su
)
·n = h, on ΓN , (3)
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Figure 1: Sketch of a generic elastic body Ω subjected to volume forces f, to prescribed displacements g on
a portion of the boundary ΓD, and to prescribed tractions h on the remaining portion ΓN .

where u(x) is the unknown displacement field (x being the position vector), ∇S is the symmetric part of the
gradient operator ∇, n is the unit outward normal to the boundary of the domain, and C is the fourth-order
elasticity tensor defined as follows:

C= 2µI+λ I⊗ I, (4)

where I and I are the fourth- and second-order identity tensors, respectively, and λ and µ are the Lamé
constants.

In this paper, the collocation approach is applied in the context of Isogeometric Analysis (IGA), and
B-splines or NURBS [20] are used to represent both geometry and problem variables in an isoparametric
fashion [21, 22].

The basic ingredient for the construction of B-spline and NURBS basis functions is the knot vector,
i.e., a set of non-decreasing coordinates in the parameter space: Ξ = {ξ1 = 0, ...,ξn+p+1 = 1}, where p is
the degree of the B-spline and n is the number of basis functions. In the present work, we always employ
so-called open knot vectors, where the first and the last knots have multiplicity p+1. Basis functions formed
from open knot vectors are interpolatory at the ends of the parametric interval [0,1] but are not, in general,
interpolatory at interior knots.

The construction of the IGA collocation method is obtained following [6] by seeking an approximation
uM for the unknown displacement field u of the elastic problem in the form

uM =
M

∑
i=1

ϕ̂i

(
G−1(x)

)
ūi, (5)

where ϕ̂i, i = 1, . . . ,M, are the tensor-product B-spline basis functions which, following the isoparametric
paradigm, are also used to represent the geometry of the problem. More precisely, we consider

{ϕ̂1, . . . , ϕ̂M} (6)

to be a set of basis functions defined on Ω̂ := [0,1]d , d being the number of dimensions, such that the
physical domain Ω in (1) can be described by a global geometry function,

G : Ω̂→Ω, G(t) :=
M

∑
i=1

ϕ̂i(t)ci, ci ∈ Rd , t ∈ Ω̂, (7)

where ci ∈Rd are the control points. We assume that the map G is a bijection. The unknown vectors ūi ∈Rd

are referred to as displacement coefficients, or control variables. Expression (5) is substituted into equations
(1)–(3).
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Let us assume for simplicity that d = 2. We denote by m1 and m2 the number of basis functions in the
two parametric directions. Then M = m1m2 is the total number of unknown coefficients per displacement
component. We choose M collocation points τkl , k = {1, . . . ,m1}, l = {1, . . . ,m2} located at the images of
the tensor-product Greville abscissae of the knot vectors.3.

The Greville abscissae [23] related to a univariate spline space of degree p and knot vector Ξ =
{ξ1, ...,ξn+p+1} are points of the parametric space defined as:

ξ̄i =
ξi+1 +ξi+2 + ...+ξi+p

p
. (8)

The Greville abscissae are simple to compute and have proven effective in many applications. However,
there are other possibilities with interesting properties (e.g., [16, 24]). In the two-dimensional primal case,
2M scalar equations are needed to determine the displacement coefficients. In the patch interior Ω, we
obtain 2(m1−2)(m2−2) scalar equations by collocating equation (1) at the points τkl , k = {2, . . . ,m1−1},
l = {2, . . . ,m2−1}:[
∇ ·
(
C∇

SuM
)
+ f
]
(τkl) = 0, τkl ∈Ω. (9)

At the Dirichlet boundary ΓD we impose

uM(τkl) = g(τkl), τkl ∈ ΓD. (10)

To enforce Neumann boundary conditions, equation (3) is collocated at the points τkl ∈ ΓN according to the
following strategy, see [7]:[(
C∇

SuM
)
·n−h

]
(τkl) = 0, τkl ∈ edge⊂ ΓN . (11)[(

C∇
SuM

)
·nL−hL](τkl)+

[(
C∇

SuM
)
·nR−hR](τkl) = 0, τkl ≡ corner⊂ ΓN , (12)

where nL and nR are the unit outward normals of the two edges meeting at the corner, and hL and hR are
the respective imposed tractions. In addition, we refer the reader to [7] for a detailed discussion on the
conditions to be imposed in more complicated situations, like at the interfaces of multi-patch geometries.

We note that, as has been shown in [25], the above “basic” approach to imposing Neumann boundary
conditions may lead to difficulties in situations when non-uniform meshes are adopted. In such cases,
alternative methods for imposing Neumann boundary conditions should be adopted, and in [25] two effective
strategies are described.

2.2 Mixed u− p formulation
A mixed u− p4 formulation is readily obtained starting from the equilibrium equations in differential

form (1)–(3), written in terms of displacements, and introducing the “pressure-like” variable p = −λ∇ ·u,
yielding:{
−µ∆u−µ∇(∇ ·u)+∇p = f, in Ω,

∇ ·u+ p/λ = 0, in Ω,
(13)

complemented by the Dirichlet boundary conditions

u = g, on ΓD, (14)

3In the three-dimensional setting (d = 3), we proceed in a completely analogous way, considering the third paramet-
ric direction (e.g., the M = m1m2m3 collocation points will be indicated as τklm, with k={1, ...,m1}, l={1, ...,m2},
m={1, ...,m3}).

4Throughout, the most popular symbols for both spline degree and pressure are used, namely p; The differentiation
between the two is made clear by the context.
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and the Neumann boundary conditions

2µ∇
Su ·n− pn = h, on ΓN . (15)

We note that in the incompressible limit (λ → +∞) p corresponds to the hydrostatic pressure. Otherwise,
p is simply a scalar field defined by equation (132). See [1], Chapter 4, for elaboration. Despite this, in the
remainder of the paper, we simply refer to p as the “pressure.”

In the mixed formulation we need to represent the pressure field in a similar, but not, in general, identical
way as the displacement field. So we assume the pressure field takes the form

pN =
N

∑
i=1

ψ̂i

(
G−1(x)

)
pi. (16)

The pi are called the pressure coefficients, or pressure control variables, and the ψ̂i are the corresponding
B-spline or NURBS basis functions. Note, as per our assumption, in general, ψ̂i are different than the ϕ̂i

basis functions of the displacement field. Expression (16) is now to be substituted into equations (13) and
(15).

Denoting by n1 and n2 the number of pressure basis functions in the two parametric directions, N =
n1n2 is the total number of unknown coefficients for the pressure. We choose N collocation points τ p

jh,
j = {1, . . . ,n1}, h = {1, . . . ,n2} located at the images of the tensor-product Greville abscissae of the knot
vectors for the pressure field. In this case, 2M+N scalar equations are needed to determine the displacement
and pressure coefficients.

In the patch interior Ω, we obtain 2(m1−2)(m2−2)+n1n2 scalar equations by collocating equations
(13) at the points τ u

kl and τ p
jh, k = {2, . . . ,m1−1}, l = {2, . . . ,m2−1} and j = {1, . . . ,n1}, h = {1, . . . ,n2}

as follows:{
[µ∆uM +µ∇(∇ ·uM)−∇pN + f]

(
τ u

kl

)
= 0, τ u

kl ∈Ω,

[∇ ·uM + pN/λ ]
(
τ p

jh

)
= 0, τ p

jh ∈Ω.
(17)

The Dirichlet and the Neumann boundaries are treated analogously to the primal case previously de-
scribed. In particular, to enforce Neumann boundary conditions, equation (15) is collocated at the points
τ u

kl ∈ ΓN according to the following strategy:[(
2µ∇

SuM
)
·n− pNn−h

]
(τ u

kl) = 0, τ u
kl ∈ edge⊂ ΓN , (18)[(

2µ∇SuM
)
·nL− pNnL−hL

](
τ u

kl

)
+
[(

2µ∇SuM
)
·nR− pNnR−hR

](
τ u

kl

)
= 0,

τ u
kl ≡ corner⊂ ΓN .

(19)

3 Numerical results in 2D
The isogeometric collocation method is tested on two classical plane-strain elasticity problems: The

first one entails homogeneous Dirichlet boundary conditions on the whole boundary, while the second one
presents mixed Dirichlet and Neumann boundary conditions. Both benchmarks are implemented for an
annular shape to include a non-trivial geometry map between the parametric and the physical domain.

For each problem we consider both compressible (λ/µ = 1) and nearly incompressible (λ/µ = 104) sit-
uations and we report convergence plots for all the unknown fields of the u− p formulation. After presenting
the results obtained with the primal collocation formulation, clearly affected by locking in the nearly incom-
pressible regime, the improvements produced by using the u− p collocation approach are shown. Unequal
order approximations for the displacement and pressure fields are investigated. The polynomial order of the
shape functions used for the displacement field is taken one order greater than that of the shape functions
of the pressure field, i.e., we use QpQp−1 elements. The idea is similar to the Taylor-Hood element of the
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Galerkin method. In that case both the displacement and pressure are C0-continuous. Here the displacement
and pressure are Cp−1-continuous and Cp−2-continuous, respectively. Formulations of this type have been
used successfully in isogeometric Galerkin methods, see [2, 3].

In Fig. 2 the positions of the collocation points of the displacement and pressure fields are represented
for the Q3Q2 case (m1=m2=10, n1=n2=9) for the quarter of annulus geometry considered in the following
examples.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2: Position of the collocation points for the displacement field (blue stars) and pressure field (red cir-
cles) for the case of same meshes, Q3Q2 elements; number of displacement collocation points: m1=m2=10,
n1=n2=9.

Additionally, we compare the isogeometric collocation results obtained with finite element solutions
obtained using a hybrid u-p formulation in Abaqus (Simulia, Dassault Systémes, Providence, USA), namely
CPE4H elements, adopting piecewise bilinear displacement and constant pressure approximation. This
element is a variant of the classical q1 p0 element [4].

3.1 Quarter of an annulus with non-uniform body load and homogeneous Dirichlet boundary conditions
For the first benchmark, we refer to [6] and we consider a quarter of an annulus as sketched in Fig. 3,

with an external radius Re = 4 and an internal radius Ri = 1.

The domain is exactly represented by a single NURBS patch and is assumed to be clamped. Follow-
ing [26], we assign a divergence-free manufactured solution in terms of displacement components, which
satisfies the prescribed boundary conditions:{

ue
1 = 10−6x2y4

(
x2 + y2−16

)(
x2 + y2−1

)(
5x4 +18x2y2−85x2 +13y4 +80−153y2

)
ue

2 = −2 ·10−6xy5
(
x2 + y2−16

)(
x2 + y2−1

)(
5x4−51x2 +6x2y2−17y2 +16+ y4

)
.

The load is then calculated starting from the manufactured solution.

3.1.1 Primal formulation

In Fig. 4, we report for λ/µ = 1 and λ/µ = 104 the convergence plots of the L2-norm of the displace-
ment error u∗ defined as

u∗ =

√
||ue

1−uh
1||2 + ||ue

2−uh
2||2

||ue
1||2 + ||ue

2||2
, (20)
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Figure 3: Quarter of an annulus with non-uniform body load and homogeneous boundary conditions.

where the superscript e stands for the exact displacement components, while the superscript h is used to
indicate the components of the approximated displacement field. Primal pressures are derived from p =
−λ (∇ ·u). The exact pressures in this example are zero. Consequently, the pressure errors are reported as
the absolute values.
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Figure 4: Primal formulation. Convergence plot of the L2-norm of the displacement and pressure error for
the quarter of an annulus with non-uniform body load and homogeneous boundary conditions problem for
λ/µ = 1 and λ/µ = 104.

In Fig. 4, we also report the convergence plots of the L2-norm of the pressure error p∗.
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Remark. Throughout, convergence rates are determined from the two points of the convergence plots
corresponding to the two finest meshes.

It is clear that, in the nearly incompressible regime, i.e, when λ/µ = 104, severe volumetric locking
appears when using quadratic and cubic basis functions. For higher degrees (i.e., p > 3), the rates of con-
vergence are the same as those obtained for λ/µ = 1, while the absolute errors are two to four orders of
magnitude higher. The same observations can be made from Table 1 summarizing displacement and pressure
error convergence rates and values.

3.1.2 Mixed u− p formulation

The results obtained with the mixed u− p collocation method are reported in terms of convergence
plots of the L2-norms of displacement and pressure errors in Fig. 5. Note that the exact solution for the
pressure is pe = 0, therefore, for this example, p∗ cannot be normalized and represents the absolute error:
p∗ = ||pe− ph||= ||ph||, that is the L2-norm of the numerical pressure.
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Figure 5: Mixed formulation (QpQp−1). Convergence plot of the L2-norm of the displacement and pressure
error for the quarter of an annulus with non-uniform body load and homogeneous boundary conditions
problem for λ/µ = 1 and λ/µ = 104.

Fig. 5 shows that no difference is observed in the displacement errors when moving from the compress-
ible to the nearly incompressible regime. As also reported in Table 1, moving from λ/µ = 1 to λ/µ = 104,
very similar error values are obtained using both coarse and fine meshes.

Fig. 5 also shows that, while the orders of convergence of the pressure error are not affected by the
nearly incompressible regime, their values are higher. We may observe that the errors obtained by the
Abaqus q1 p0 element for displacements are comparable with those of the isogeometric collocation Q3Q2
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Table 1: Quarter of an annulus with non-uniform body load and homogeneous boundary conditions prob-
lem: L2-norm displacement and pressure error convergence rates and values for coarsest and finest meshes.

Convergence rates
Displacements Pressures

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 2.0 2.0 - - 2.0 2.0
2 2.0 1.0 - - 2.0 1.3 - -
3 2.0 1.0 2.0 2.0 2.0 1.5 2.0 2.0
4 4.1 4.1 4.1 4.0 4.0 4.0 4.0 4.2
5 4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.2
6 6.2 6.3 6.2 6.1 6.2 6.2 6.2 6.5
7 6.4 6.4 6.4 6.3 6.4 6.3 6.4 6.4

Displacement errors
Coarsest Mesh (20 x 20) Finest Mesh (160 x 160)

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 7.4 10−2 5.5 10−2 - - 1.2 10−3 8.3 10−4

2 1.2 10−1 9.4 10−1 - - 1.6 10−3 2.7 10−1 - -
3 2.3 10−1 9.1 10−1 2.2 10−1 1.8 10−1 3.2 10−3 2.3 10−1 3.2 10−3 2.6 10−3

4 4.9 10−3 9.9 10−1 4.7 10−3 2.6 10−3 9.9 10−7 3.8 10−4 9.7 10−7 6.1 10−7

5 2.9 10−3 5.5 10−1 2.9 10−3 1.8 10−3 4.1 10−7 8.2 10−5 4.0 10−7 2.8 10−7

6 9.9 10−5 8.9 10−2 9.1 10−5 5.3 10−5 2.0 10−10 9.3 10−8 2.0 10−10 7.0 10−11

7 4.4 10−5 2.6 10−2 4.2 10−5 2.0 10−5 3.0 10−11 1.4 10−8 3.0 10−11 2.0 10−11

Pressure errors
Coarsest Mesh (20 x 20) Finest Mesh (160 x 160)

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 4.8 10−1 2.5 - - 6.5 10−2 3.3 10−1

2 5.2 10−3 2.7 - - 7.3 10−5 4.8 10−1 - -
3 7.9 10−3 3.2 7.5 10−3 4.4 10−2 1.2 10−4 4.6 10−1 1.1 10−4 6.3 10−4

4 1.8 10−4 8.6 10−1 1.3 10−4 6.0 10−3 4.1 10−8 3.1 10−4 2.9 10−8 5.7 10−7

5 1.1 10−4 7.0 10−1 9.9 10−5 7.2 10−4 1.6 10−8 8.7 10−5 1.4 10−8 8.2 10−8

6 3.2 10−6 2.5 10−2 2.5 10−6 2.5 10−4 6.0 10−12 4.1 10−8 5.0 10−12 7.0 10−11

7 1.5 10−6 7.1 10−3 1.4 10−6 4.7 10−5 10−12 7.0 10−9 10−12 7.0 10−12

† Abaqus q1 p0 element

case. However, the pressures of the Abaqus q1 p0 element are substantially worse both in convergence rate
and absolute values.



12 CMES,2021, vol, no

3.2 Infinitely long, pressurized thick-walled cylinder
As a second example, we consider the infinitely long and internally pressurized thick-walled cylinder,

studied in [6]. Exploiting the symmetry of the problem, we can consider only one quarter of the full domain,
as represented in Fig. 6. As the cylinder is infinitely long, the problem can be solved as a two-dimensional
plane strain problem. As in the previous example, we select an external radius Re = 4 and an internal radius
Ri = 1.

p
i

Γ4 Γ1

Γ2

Γ3

Figure 6: Infinitely long, pressurized thick-walled cylinder.

The boundary conditions, depicted in Fig. 6, are:

(σ ·n) ·τ = 0 and u2 = 0 on Γ1

σ ·n = 0 on Γ2

(σ ·n) ·τ = 0 and u1 = 0 on Γ3

(σ ·n) ·τ = 0 and (σ ·n) ·n = h̄i on Γ4,

(21)

where τ is the unit tangent vector. The exact solution in terms of displacements (in radial and circumferential
directions) is:

ur
e =C1(

h̄i

r
+C2r)

uθ
e = 0,

(22)

where r indicates the radial position, C1 =
(1+ν)R2

eR2
i

E(R2
e−R2

i )
, and C2 = (1−2ν)

h̄i

R2
e
. The Young’s modulus E and

the Poisson’s ratio ν are defined in terms of the Lamé constants as: E =
µ(3λ +2µ)

λ +µ
and ν =

λ

2(λ +µ)
.

The aim of this test is to check whether mixed boundary conditions have an impact on the results.

3.2.1 Primal formulation

The convergence plot of the L2-norm of the displacement error u∗r defined as

u∗r =

√
||ue

r−uh
r ||2

||ue
r ||2

, (23)
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where ue
r and uh

r are the exact and approximate radial displacement components, respectively, is reported in
Fig. 7 for λ/µ = 1 and λ/µ = 104, along with the convergence plot of the L2-norm of the pressure error p∗,
defined as

p∗ =

√
||pe− ph||2
||pe||2

, (24)

where pe and ph are the exact and approximate pressures, respectively. In the primal formulation case,
pressures are derived from displacements.
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Figure 7: Primal. Convergence plot of the L2-norm of the displacement and pressure error for the infinitely
long, pressurized thick-walled cylinder problem for λ/µ = 1 and λ/µ = 104.

As expected, for the primal formulation, in the nearly incompressible regime, i.e., when λ/µ = 104,
severe volumetric locking appears when using quadratic and cubic basis functions. When p is equal to 4, we
observe that coarse meshes lead to significant errors and the obtained convergence rate is suboptimal both
for displacements and pressures. For higher degrees (i.e., p > 4), the rates of convergence are the same as
those obtained for λ/µ = 1, while the absolute errors are three orders of magnitude higher, as summarized
by error values reported in Table 2.

3.2.2 Mixed u− p formulation

The same trends observed in the previous benchmark are observed also in this case. In particular, op-
timal behavior in terms of both displacement and pressure errors is recovered in the nearly incompressible
regime, as shown in Fig. 8. Both displacement and pressure errors listed in Table 2 are very similar when
moving from λ/µ = 1 to λ/µ = 104. Displacement finite element errors (using again the Abaqus q1 p0 ele-
ment) are approximately one order of magnitude smaller than those obtained with isogeometric collocation
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Table 2: Infinitely long, pressurized thick-walled cylinder problem: L2-norm displacement and pressure
error convergence rates and values for coarsest and finest meshes.

Convergence rates
Displacements Pressures

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 2.0 2.0 - - 1.0 1.0
2 2.0 1.0 - - 2.0 1.2 - -
3 2.0 0.7 1.9 1.9 2.0 0.8 2.0 2.0
4 4.0 4.0 4.0 4.0 4.0 3.9 4.0 4.0
5 4.0 3.9 4.0 3.9 4.1 4.1 4.1 4.1
6 5.8 5.7 5.8 5.8 5.9 5.9 5.9 5.9
7 6.0 5.9 6.0 5.9 6.1 5.7 6.1 6.1

Displacement errors
Coarsest Mesh (20 x 20) Finest Mesh (160 x 160)

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 1.4 10−3 1.7 10−3 - - 1.9 10−5 2.4 10−5

2 5.6 10−3 9.6 10−1 - - 7.0 10−5 5.6 10−1 - -
3 1.7 10−2 9.8 10−1 1.1 10−2 8.1 10−3 3.3 10−4 4.7 10−1 2.2 10−4 1.8 10−4

4 3.9 10−4 7.4 2.7 10−4 2.5 10−4 7.9 10−8 2.2 10−4 5.4 10−8 4.9 10−8

5 1.5 10−4 6.4 10−1 9.7 10−5 7.8 10−5 3.6 10−8 1.0 10−4 2.4 10−8 2.1 10−8

6 3.2 10−6 1.4 10−2 2.1 10−6 2.6 10−6 3.0 10−11 8.3 10−8 2 10−11 2.0 10−11

7 2.2 10−6 5.5 10−3 1.5 10−6 1.1 10−6 10−11 3.7 10−8 8.0 10−12 7.0 10−12

Pressure errors
Coarsest Mesh (20 x 20) Finest Mesh (160 x 160)

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 4.6 10−2 6.9 10−2 - - 5.0 10−3 7.6 10−3

2 3.5 10−2 4.1 - - 4.7 10−4 1.4 - -
3 5.9 10−2 6.1 3.9 10−2 5.1 10−2 8.7 10−4 2.0 5.8 10−4 7.5 10−4

4 9.7 10−4 4.9 101 5.3 10−4 6.6 10−4 1.9 10−7 8.1 10−4 1.1 10−7 1.4 10−7

5 4.6 10−4 3.4 2.7 10−4 3.6 10−4 8.7 10−8 3.8 10−4 5.7 10−8 7.6 10−8

6 1.9 10−5 9.8 10−2 9.5 10−6 1.4 10−5 10−10 4.6 10−7 5.8 10−11 7.9 10−11

7 7.9 10−6 4.1 10−2 5.1 10−6 6.9 10−6 3.0 10−11 2.0 10−7 1.9 10−11 2.5 10−11

† Abaqus q1 p0 element

with the Q3Q2 elements, but more than two orders of magnitude higher when p > 3. Pressure finite element
errors are always greater than those obtained with collocation.

To better understand the performance of the u− p method in the nearly-incompressible regime, since
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Figure 8: Mixed formulation (QpQp−1). Convergence plot of the L2-norm of the displacement and pressure
error for the infinitely long, pressurized thick-walled cylinder problem problem.

everything varies only radially, line plots for the Q3Q2 and Q4Q3 cases of displacement and pressure results
versus the radius are reported in Figs. 9 and 10, respectively. While the radial displacement solution shows
accurate results also for coarse meshes independent of the considered polynomial degree, the pressure results
for the Q3Q2 case are less accurate for coarse meshes, but quickly improve under mesh refinement. Much
improved pressure behavior is observed for the Q4Q3 case. For higher order cases there are no discernible
errors on the scales of the plots for all meshes.
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Figure 9: Line plots of displacement with different meshes versus the radius for the case Q3Q2 and Q4Q3
(see square markers of the convergence plot in the top, λ/µ = 104).
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Figure 10: Line plots of pressure with different meshes versus the radius for the case Q3Q2 and Q4Q3 (see
square markers of the convergence plot in the top, λ/µ = 104).
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4 Numerical results in 3D
We tested the u− p formulation on a 3D example and compared with Abaqus C3D8H elements, which

are 8-node linear, hybrid, constant pressure elements. We again refer to this element as the q1 p0 element.
The considered solid depicted in Fig. 11 is characterized by the following dimensions: Ri = 1, Re = 4, H =
1, and is fully clamped on its entire boundary. We assign a manufactured solution in terms of displacement
components, which satisfy the prescribed boundary conditions, which is not divergence free.

u1e = x2y2
(
z2− z

)(
x2 + y2−1

)(
x2 + y2−16

)
u2e = u1e

u3e = u1e.

The load is then calculated starting from the manufactured solution and imposing equilibrium. We note
that in the nearly-incompressible case the pressure loading will be amplified by a factor of 104. We remark
that the results obtained behaved similarly to a 2D version of this problem, indicating that the dimension of
the problem is not a significant influencer.

R

R

H

i

e

Figure 11: Three dimensional quarter of annulus.

Primal formulation. In Fig. 12 the convergence plots of the L2-norm of the displacement5 and pressure
error are shown for the primal formulation. As observed in the 2D examples, the displacement error exhibits
locking for p = 2 and p = 3 when λ/µ = 104, while pressure seems to not be significantly affected by the
nearly-incompressible constraint, as also shown by error convergence rates provided in Table 3. In compar-
ison with the two 2D problems previously solved, the present results are qualitatively similar with respect to
displacements, clearly manifesting locking in the nearly-incompressible case; however, the pressure results
are quite different, indicating only slightly larger errors for the nearly-incompressible case compared with
the compressible case, λ/µ = 1.

5The L2-norm of the displacement error u∗ is now defined as:

u∗ =

√
||ue

1−uh
1||2 + ||ue

2−uh
2||2 + ||ue

3−uh
3||2

||ue
1||2 + ||ue

2||2 + ||ue
3||2

, (25)

where ue
1, ue

2, and ue
3 are the exact displacement components, while uh

1, uh
2, and uh

3 are the approximated displacement
ones.
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Figure 12: Primal formulation. Convergence plot of the L2-norm of the displacement and pressure error for
the 3D quarter of an annulus with non-uniform body load and homogeneous Dirichlet boundary conditions
problem for λ/µ = 1 and λ/µ = 104.

Mixed u-p formulation. In Fig. 13 the convergence plots of the L2-norm of the displacement and pressure
error are shown for the mixed formulation. For the mixed collocation formulation, the displacement and
pressure results for λ/µ = 1 are about the same as for the primal formulation, as reported in Table 3.

We note though that Abaqus q1 p0 element produces substantially greater errors for pressure. For the
case λ/µ = 104 the pressure results are all similar to those at λ/µ = 1. However, the displacement results
at λ/µ = 104 are significantly in error and generally worse than for the primal formulation. This was
not seen in either of the 2D cases presented earlier. As mention earlier, this behavior is not attributable
to the problem being 3D as an analogous version of this problem in 2D behaved similarly. Surface plots
obtained by cutting the domain with the plane highlighted in Fig. 14 are shown to better understand the
u− p method results in the nearly incompressible regime. The first component of the displacement solution
is shown. The left column of Fig. 14 highlights the inaccurate behavior of coarse meshes, while in the right
column an improvement upon refinement is observed. Similar results are obtained for the other displacement
components.

Normally, we are inclined to attribute inaccurate displacement results for the nearly-incompressible
case to locking, but this does not seem to be what is occurring here, in fact, quite the opposite. Note the
amplitude of the color bars in each frame and compare with that of the exact solution. The coarse and fine
mesh results are converging toward exact from above. For the Q5Q4 case the results are visibly the same as
exact and the color bar values are likewise the same as exact.
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Figure 13: Mixed formulation (QpQp−1). Convergence plot of the L2-norm of the displacement and pres-
sure error for the 3D quarter of an annulus with non-uniform body load and homogeneous Dirichlet boundary
conditions problem for λ/µ = 1 and λ/µ = 104.

The coarse mesh results are enormously in error, both qualitatively and with respect to amplitude. For
Q3Q2, the amplitude error is approximately one order of magnitude; the displacements are simply much too
large, the antithesis of locking.

What is the explanation for the results of this problem? One might observe that the specification of
the problem is somewhat contradictory. The material characterization is nearly-incompressible, indicated
by the ratio of the Lamé parameters, λ/µ = 104. However, the manufactured solution does not respect this
characterization in that its divergence is of the same order as its deviatoric component. The upshot is that the
applied forces have a pressure component four orders of magnitude greater than the forces proportional to µ .
It is clear from the large displacement response that those forces are being balanced partially by deviatoric
deformations.

In addition to the unphysical nature of this problem we may point out that the results of the Abaqus
q1 p0 element are much the worst in error, both for displacements and pressure, and this element is widely
used and considered appropriate for broad classes of real-world applications. However, we take the results
of this problem to be cautionery, and indicative of the fact that both Galerkin and collocation results for
mathematically well-posed problems may prove wanting in certain extreme cases. As a rule of thumb, it is
clear that higher-order collocation results are significantly better than lower order, but even for higher order,
sufficient mesh refinement of results is still necessary to obtain very accurate results.
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Table 3: 3D quarter of an annulus with non-uniform body load and homogeneous Dirichlet boundary con-
ditions problem: L2-norm displacement and pressure error convergence rates and values for coarsest and
finest meshes.

Convergence rates
Displacements Pressures

Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 2.0 2.0 - - 1.3 1.4
2 2.1 0.3 - - 1.7 1.8 - -
3 2.2 0.3 2.2 2.1 2.1 2.1 2.1 1.9
4 4.5 4.4 3.3 3.3 4.9 4.4 3.6 3.3
5 4.7 4.9 4.7 4.5 4.6 4.7 4.6 4.4

Displacement errors
Coarsest Mesh (10 x 10 x 10) Finest Mesh (35 x 35 x 35)
Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 2.2 10−2 5.7 101 - - 1.7 10−3 4.5
2 1.9 10−2 3.5 10−1 - - 1.1 10−3 2.8 10−1 - -
3 4.1 10−2 5.1 10−1 2.6 10−2 8.9 2.4 10−3 3.3 10−1 1.7 10−3 8.2 10−1

4 1.3 10−3 6.1 10−1 1.2 10−3 4.6 2.0 10−6 3.5 10−3 8.5 10−6 4.0 10−2

5 1.1 10−3 1.4 9.0 10−4 1.2 9.5 10−7 1.1 10−3 6.4 10−7 7.9 10−4

Pressure errors
Coarsest Mesh (10 x 10 x 10) Finest Mesh (35 x 35 x 35)
Primal Mixed u-p Primal Mixed u-p

p
λ/µ 1 104 1 104 1 104 1 104

1† - - 3.8 10−1 3.9 10−1 - - 7.9 10−2 7.9 10−2

2 4.0 10−2 4.8 10−2 - - 2.7 10−3 3.0 10−3 - -
3 2.3 10−2 6.0 10−2 1.8 10−2 2.6 10−2 1.6 10−3 3.5 10−3 1.2 10−3 10−3

4 1.3 10−3 1.6 10−3 1.8 10−3 7.8 10−3 1.6 10−6 3.3 10−6 5.7 10−6 4.3 10−5

5 6.5 10−4 1.8 10−3 7.8 10−4 2.2 10−3 4.7 10−7 1.5 10−6 3.8 10−7 5.9 10−7

† Abaqus q1 p0 element



22 CMES,2021, vol, no

               Exact solution (u1) 

 
 
 
 
 
 

u1 coarse mesh (10x10x10) fine mesh (35x35x35) 

 

  

 

  

 

  

1

2

3

Q
4Q

3
 

 
Q

5Q
4
 

 

Q
3Q

2
 

Figure 14: 3D quarter of an annulus with non-uniform body load and homogeneous Dirichlet boundary
conditions problem: Surface plots of the first displacement component u1 for different orders and meshes
(λ/µ = 104).
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We would now like to describe what we have seen from a mathematical point of view, termed “pressure
robustness,” and thoroughly developed by Alexander Linke and his collaborators; see, e.g., [18] and refer-
ences therein. Pressure robustness is an additional attribute to inf-sup stability asked of a discrete scheme
by Linke. It can be stated for our problem as follows: part of the force scaled by λ is increased, holding
µ fixed, the numerical displacement solution should be O(1), that is independent of λ . Our results clearly
indicate this is not the case, and so we conclude none of the methods considered is pressure robust. In all
cases they are O(λ ) but perhaps mollified by some power of the mesh parameter h. Over the small range of
meshes considered for this problem, 10x10x10 to 35x35x35, we might expect roughly three orders of mag-
nitude deterioration of the solution with λ and this is the case. In the array of standard primal and mixed
finite elements used in structural mechanics, the combination of inf-sup stability and pressure robustness is
elusive. We note, however, that stabilized methods seem to alleviate this issue when most others fail, but
their use in structural mechanics has been limited despite widespread use in fluids.

5 Conclusions and summary of results
In this paper we have investigated the behavior of isogeometric collocation methods in linear, isotropic

elasticity with emphasis on the behavior in the nearly-incompressible case, taken as λ/µ = 104 herein,
where λ and µ are the Lamé parameters. We also presented results for the compressible case, taken as
λ/µ = 1 herein, for comparison. Two formulations of the problem were considered; the primal formulation
utilizing the Navier equations of elasticity, and the mixed, displacement-pressure formulation. For the primal
formulation we investigated NURBS based models of polynomial degree p = 2,3, ...,7. For the mixed
elements, we considered displacement fields of degree p = 3,4, ...,7 and pressures one degree lower, a
combination that has been shown to be effective previously in isogeometric Galerkin methods [2, 3]. The
primal formulation, when implemented in a standard, low-degree, Galerkin finite element method, is well
known to suffer from displacement “locking.” The mixed formulation has been used to design both low-
and high-degree finite elements that alleviate locking and have been successfully applied to engineering
problems. The three numerical examples we considered herein asked similar questions of the isogeometric
collocation methods. For context, we presented results for constant pressure Abaqus elements that are
known not to lock and are widely used in engineering analysis.

A general statement about the results is that for the compressible case, there were no surprises. Both
primal and mixed cases presented consistent convergence patterns, with higher-degree basis functions ex-
hibiting greater accuracy.

For all problems studied, consistent patterns also emerged for the primal formulation. Locking was
observed when λ/µ = 104 for p = 2 and 3. Higher-degree cases behaved better but the absolute values
of displacement errors for the nearly-incompressible case were typically orders of magnitude higher than
for the compressible case, despite convergence rates being the same. We conclude from these results that
isogeometric collocation with the primal formulation is not effective for nearly-incompressible applications.

For the mixed formulation, applied to the two-dimensional problems, very good results were obtained in
all cases. Even for the lowest degree case, Q3Q2, displacement errors were commensurate with the Abaqus
q1 p0 element in magnitude and exactly the same in rate of convergence, namely, O(h2); for pressures, the
mixed collocation results were more accurate in magnitude and in rate, and again O(h2). The higher-degree
cases were much more accurate. Convergence rates for both displacement and pressure were the same and of
O(hp) and O(hp−1), for even and odd numbered elements, respectively, and there was very little difference
in error amplitudes for the nearly incompressible and compressible cases.

The three-dimensional problem presented a more complex story for the mixed method. The loading in
this case had both λ - and µ-proportional terms, and the λ term dominated in the nearly-incompressible case.
For the λ/µ = 1 case, all results behaved as expected. The pressure results did not degrade substantially
for the λ/µ = 104 case compared with the λ/µ = 1 case. However, the displacement results were roughly
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three orders of magnitude worse in magnitude, although the rates of convergence were the same. It appears
that the “constant” in the displacement error is order λ , perhaps mollified by a power of h. One might have
initially assumed that this was due to locking, but scrutiny of the results indicated it was quite the opposite;
the displacements were much too large. The explanation is as follows: The λ -proportional body force term
is precisely a pressure gradient, but the discrete pressure-gradient term in the mixed methods failed to fully
balance it. Part of the burden was shifted to the µ-term, thus producing displacements of order λ/µ .

The poor performance of mixed methods of the type studied here, when subjected to body forces that
are gradients of a scalar, has been described as a lack of “pressure robustness” by Alexander Linke and
collaborators [18]. Unfortunately, lack of pressure robustness is the rule rather than the exception and it
seems to be at odds with most “inf-sup” stable methods. It has been suggested that “stabilized methods,”
which accommodate any combination of displacement and pressure basis functions, in particular equal-
order, might be able to alleviate stability and pressure robustness issues simultaneously, and we hope to
investigate this in future work; see, e.g., Hughes et al. [27, 28].

For all the problems studied, we presented corresponding results using Abaqus with q1 p0 elements.
These elements are widely used in practice and provide a benchmark for what may be considered acceptable
in engineering applications. The results for the lowest-degree mixed collocation method, Q3Q2, were com-
mensurate in accuracy with the q1 p0 element for displacements, but considerably more accurate for pres-
sures. The higher-degree mixed collocation methods were substantially more accurate for both, as might
have been anticipated. We do not suggest this is an equitable comparison, but rather it serves as an indica-
tion that the mixed collocation methods achieve a level of accuracy that makes them viable for engineering
computations.
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