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Abstract

A network modeling approach to educational mapping leads to a scal-
able computational model that supports adaptive learning, intelligent tu-
tors, intelligent teaching assistants, and data-driven continuous improve-
ment. Current educational mapping processes are generally applied at
a level of resolution that is too coarse to support adaptive learning and
learning analytics systems at scale. This paper proposes a network mod-
eling approach to structure extremely fine-grained statements of learn-
ing ability called Micro-outcomes, and a method to design sensors for
inferring a learner’s knowledge state. These sensors take the form of
fine-grained assessments and trackers that collect digital analytics. The
sensors are linked to Micro-outcomes as part of the network model, en-
abling inference and pathway analysis. One example demonstrates the
modeling approach applied to two community college subjects in College
Algebra and Introductory Accounting. Application examples showcase
how this modeling approach provides the design foundation for an intelli-
gent tutoring system and intelligent teaching assistant system deployed at
Arapahoe Community College and Quinsigamond Community College. A
second example demonstrates the modeling approach deployed in an un-
dergraduate aerospace engineering subject at the Massachusetts Institute
of Technology to support course planning and teaching improvement.

1 Introduction

Maps for education are numerous and diverse at many levels of scale. To give
examples: there are degree maps that showcase paths through different majors
[1], curriculum maps that trace subject sequences through a program’s offer-
ings [2], concept maps that show related topics for learners [10], and outcomes
maps that support accreditation [19] and learning path generation [12, 16, 20].
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Scalable educational mapping via network modeling involves identifying entities
and relationships amongst these entities, and representing them mathematically
as a graph [19]. In contrast to a traditional table-based format, the network
model explicitly represents relationships as first-class objects instead of as de-
rived properties of other objects. This is important because relationships among
elements of the model are essential to educational analytics (e.g., in pathway
analyses, in understanding how content relates to learning objectives, etc.) and
so the network model yields a flexible representation that enables visualization
and analysis of educational data at scale. When educational maps are used for
analytics and assessment, it is vital that their constituent entities and relation-
ships are of sufficient resolution to pinpoint a learner’s status and to move the
learner forward. It is also vital that these maps encompass notions of sensing
(i.e., inferring a learner’s state) and feedback (i.e., influencing a learner’s future
trajectory). This paper develops a modeling framework for architecting and
designing such a fine-grained sensor-enabled educational map, and illustrates
its potential use as a foundational model for an intelligent tutor and intelligent
teacher assistant.

In mapping a subject, entities can range from topical knowledge units to
learning outcomes. Learning outcomes are statements of what a learner should
be able to do; however, they are typically at a granularity level that is too
coarse to support adaptive learning. Coarse-grained learning material may con-
tain multiple sub-topics, learning activities and learning objectives, which can
lead to unclear meaning in connections between learning objectives [7, 13, 18]. In
contrast, adaptive learning systems and learning analytics require fine-grained
learning objects [3], since in order for adaptive learning systems to correctly
assess a learner’s state, the knowledge units used must be granular [1, 5, 8, 15].
In this paper, we introduce the notion of fine-grained learning entities that we
call Micro-outcomes. As Micro-outcomes are statements of a fine-grained skill
a learner should be able to do, they will provide an effective way to infer and
respond to a learner’s state. Amongst Micro-outcomes there are prerequisite
relationships, i.e., certain skills build on others. The idea of analyzing a knowl-
edge domain into constituent skills and recognizing that there are prerequisite
skills has long been a key idea in the concept of mastery learning [6]. Cavanagh
et al. similarly break one learning objective into multiple more granular pieces
that they call “learning bits” in order to design adaptive learning [4]. Here,
we use network models to structure the knowledge domain and represent the
prerequisite and organizational relationships amongst Micro-outcomes.

A second challenge addressed in this paper is the need for sensors that pro-
vide observational data that support inference of a learner’s state. Sensors may
take the form of assessment questions or digital analytics that track a learner’s
or instructor’s actions. However, grain size is a known issue in assessment [14],
and it is recognized that fine-grained statements of learning goals tied to assess-
ments are essential to assessment design [9, 11, 17, 20]. Especially for formative
use cases, it is critical that assessments should be as fine-grained as possible,
ideally matching the granularity of the Micro-outcome being tested, so that pre-
cise data analytics can be collected and accurate feedback can be generated for
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the learner [7, 8, 15].
In this paper, we introduce a method to architect and design a network model

using our high-granularity Micro-outcomes together with a sensor layer for in-
ferring a learner’s state using high-granularity assessments and digital analytics.
The next section presents the theoretical framework: we begin by motivating
and architecting the network model, and explain how we design Micro-outcomes.
We then introduce the approach of a high-granularity assessment and/or digital
tracking analytics acting as a sensor, and show how these measurements link
to the network model. We apply the process of designing Micro-outcomes and
assessments to a specific instance of modeling Community College subjects in
College Algebra and Introductory Accounting, and describe the implementation
of the resulting network model and sensors applied to an intelligent tutoring sys-
tem and intelligent teaching assistant system in community college classrooms.
The paper presents a second example of the approach applied to develop a
network model and digital analytics sensor layer for an aerospace engineering
undergraduate subject at the Massachusetts Institute of Technology.

2 Educational Mapping via a Network Model
and Sensor Layer

This section first presents the network model that defines and connects fine-
grained Micro-outcomes. We then describe how we architect and design a sensor
layer on top of the base network model using fine-grained assessments and digital
analytics.

2.1 The network model

A network model is a set of entities and relationships arranged in a graph
structure in which entities are represented as vertices and relationships are rep-
resented as edges. Our previous work proposed an approach for mapping ed-
ucational data with network models to obtain powerful analytical capabilities
that come from making explicit the connections amongst entities in an educa-
tional system [17]. Examples of entities include: an educational institution, a
department, a subject, a learning module, a learning outcome, a concept, etc.

In the network model developed in this paper, we define the notion of a
Micro-outcome entity. We name a Micro-outcome for its granularity—it is a
statement describing an extremely fine-grained learning outcome. Learning out-
comes may be familiar to readers in education as statements of competencies;
however, in this case, it is important to emphasize that Micro-outcomes are
unlike common learning outcomes in this respect—Micro-outcomes are much
more fine-grained. For example, Table 1 highlights a few examples of typical
subject-level learning outcomes compared to our Micro-outcomes. The high
granularity of a Micro-outcome in our model makes the model powerful enough
to fuel many use cases, such as intelligent tutoring applications that pinpoint
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a user’s difficulties, recommendation engines that direct students to learning
resources, or evaluation tools.

Table 1: A typical learning outcome contrasted with high-granularity Micro-
outcomes.

Typical Learning Outcome

Solve algebraic equations and inequalities

Micro-outcomes

Divide both sides of an inequality by a positive number

Break absolute value into two expressions

Determine if a compound inequality is a union or intersection

The network model also represents the relationships between Micro-outcomes,
as well as the relationships between Micro-outcomes and other entities. Between
two Micro-outcomes there may be a has-prerequisite-of relationship that points
from one Micro-outcome to the other. This relationship represents the notion
that achieving one Micro-outcome is a prerequisite to achieving the next Micro-
outcome. While the notion of prerequisites is commonly used with general com-
petencies, explicitly highlighting prerequisite relationships amongst such gran-
ular Micro-outcomes is an enabler for designing sensing and adaptive feedback
strategies. Between two Micro-outcomes there may instead be an undirected is-
related-to relationship that indicates that the Micro-outcomes are related (e.g.,
they relate to similar skills), but not necessarily in a prerequisite manner.

The other entities in our model are Content, Module, and Subject. A Module
is a grouping of similar Micro-outcomes. This grouping is formally represented
by a has-parent-of relationship pointing from a Micro-outcome to a Module.
Similarly, a Subject is a grouping of Modules, and this grouping is also formally
represented by a has-parent-of relationship pointing from a Module to the Sub-
ject entity. Content is related to the Micro-outcomes it addresses through ad-
dresses relationships. Figure 1 depicts the schematic of our network model with
Subject, Module, Content, and Micro-outcome entities, and the relationships
amongst these entities.

2.2 Architecture and design of the sensor layer

Drawing inspiration from networked systems, the sensor layer overlays the base
network. The purpose of the sensor layer is to sense a learner’s status on
each node in the network as the learner traverses through the network. The
sensor layer can be composed of Assessments, where an Assessment is a question
designed to infer the learner’s state relative to the Micro-outcomes targeted by
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Figure 1: Schematic showing nodes (entities) and edges (relationships) in base
network model.

that Assessment. The sensor layer can also include Trackers, which collect
digital analytics about a learner’s or instructor’s actions (e.g., clickstream, page
view counts, time on a particular screen, etc.). Figure 2 illustrates the notion
of an Assessment or a Tracker serving as a sensor for a Micro-outcome.

Figure 2: Assessments (left) and Trackers (right) act as sensors for inferring
learner state relative to a Micro-outcome.

Trackers are code implementations designed to collect interaction informa-
tion on a learner’s actions, such as click interactions and time spent on a page. In
the network model depicted in Figure 2, a Tracker measures actions executed on
Content. Inferences about learner state leverage the underlying network model,
using the addresses relationships that connect Content to Micro-outcomes.

Assessments can be multiple-choice or free-response, word-based or graph-
ical, written or verbal. Because Assessments need to gather information on a
learner’s achievement of a Micro-outcome, an Assessment must have the same
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level of (high) granularity as a Micro-outcome. When a learner responds to
an Assessment, the learner’s response is collected as sensor data; the sensor
data contains information on the learner’s capability of the targeted Micro-
outcome, and crucially, why the learner provided his/her response. To assess
the “why” of the response, the base network model comes into play: recall
that Micro-outcomes have prerequisite relationships to each other. Therefore,
a gap of understanding in a prerequisite Micro-outcome is a possible reason
why the learner answered incorrectly. The sensors must be designed using the
base network model to enable inference of which prerequisite Micro-outcome
underlies a learner’s gap. This takes the form, for example, of distractor ques-
tions that target a particular prerequisite gap. Given the sensor data (learner’s
response) the inference of the learner’s state can be based on a manually hard-
coded rule, e.g., Response X always maps to (prerequisite) Micro-outcome A; it
can be algorithmically-determined, e.g., an AI system can classify the response
as belonging to one of the prerequisite Micro-outcomes; it can be binary, e.g.,
belonging to Micro-outcome A or not; or it can be probabilistic, e.g., belong-
ing to Micro-outcome A with probability p. The existence of the base network
model enables this determination. It also provides the model to determine the
appropriate feedback to guide a learner through the network.

The sensor data collected provides input data to infer the learner’s state
relative to each Micro-outcome targeted by the Assessments. Here, another in-
ference can be made to evaluate the learner’s achievement of the Micro-outcome.
The determination can be binary, i.e., “Achieved or Not Achieved”; it can be
categorical, e.g., “Strongly Achieved, Moderately Achieved, Not Achieved”; it
can be probabilistic, e.g., “Achieved with probability p”; or it can be mixtures
of the above. Furthermore, the inference can be made with a long-memory
process, in which a student’s repeated attempts at a given Micro-outcome are
tracked and remembered in the computation, or the inference can be made inde-
pendently of previous historical data. Crucially, the base network layer joined
with the sensor layer enables this inference of student state to be made at a
high level of granularity. In the following sections, we demonstrate how this
provides a foundation for an intelligent teacher assistant and for analytics that
drive teaching improvements.

3 An Intelligent Teacher Assistant for Commu-
nity College Courses in College Algebra and
Introductory Accounting

This section presents the development of two specific instances of the network
model and sensor layer in the mapping of community college subjects. These
mappings provide a foundation for an intelligent teacher assistant system used in
the Fly-by-Wire project. Fly-by-Wire was deployed at two community colleges
(Arapahoe Community College in Colorado, U.S.A. and Quinsigamond Com-
munity College in Massachusetts, U.S.A.) over a period of three years, involving
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eight faculty members and 189 students across two subjects, College Algebra
and Introductory Accounting. It is beyond the scope of this paper to detail the
Fly-by-Wire project; here, we focus on the development of the network model
and sensors, and how they form the basis of the intelligent feedback system.

Constructing the base network map

We map the subjects of College Algebra and Introductory Accounting as taught
statewide in the Colorado Community College System. Our network model
has three types of entities: Subject, Module, and Micro-outcome. Figure 3
shows the College Algebra Module “Inverse Functions” and some of its Micro-
outcomes. After applying the mapping process, we obtain network models with
the numbers of entities and relationships shown in Table 2.

Figure 3: The “Inverse Functions” Module and some of its Micro-outcomes in
College Algebra. Highlighted outcome is again shown in Figure 5. Note: most
has-parent-of relationships to “Inverse Functions” have been omitted in the
figure for clarity.

Architecting and designing the sensor layer

The next step is to design the Assessments constituting the sensor layer. To
construct an Assessment, we use our network map: first, we choose a node of
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Table 2: Summary dimensions of the maps and sensor layers of College Algebra
and Introductory Accounting.

Entities College Algebra Introductory Accounting

Subject 1 1

Module 41 17

Micro-outcome 403 186

Relationships

has-parent-of 444 203

has-prerequisite-of 446 157

Sensors

Total number of
Assessments

1091 384

Average number
of Assessments per
Micro-outcome

2.71 2.06

type Micro-outcome that is one of the most synthesizing Micro-outcomes, i.e.,
it draws from a long chain of prerequisites. Formally, this is done by computing
the topological sort of the graph and identifying the nodes with the highest rank
induced by outgoing edges of type has-prerequisite-of.

Starting with the most synthesizing Micro-outcome (with highest rank), we
create a multiple-choice question designed to evaluate the learner’s mastery
of the Micro-outcome. We chose the multiple-choice format since students in
the College Algebra course are accustomed to multiple-choice questions, but
as described earlier, our framework generalizes to other types of questions. A
multiple-choice question is composed of the question wording itself and the set
of answer choice options. Within the set of choice options, there is one correct
answer, and at least one incorrect answer. Designing the incorrect answers is
key; for this we use our base network map. Using the network map, we iden-
tify the prerequisite Micro-outcomes that lead to the targeted Micro-outcome.
Formally, we follow the has-prerequisite-of relationships to one hop away from
the starting node. Given a particular prerequisite, we construct an incorrect
answer that might result if the learner has not met that prerequisite. We do
this for all prerequisites. Recall that there can be many different methods of
determining why an incorrect response was given. In this particular instance, we
deterministically assign each incorrect option to a prerequisite Micro-outcome,
however, our modeling approach is generalizable to other methods of determi-
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nation. Figure 4 illustrates the schematic of a multiple-choice Assessment with
incorrect options that link to prerequisite Micro-outcomes. A concrete example
of one such Assessment is shown in Figure 5; the top half shows the Assess-
ment with its incorrect options (b, c and d), and the bottom half displays the
Micro-outcomes that are linked to each incorrect option.

Figure 4: Schematic showing how a multiple-choice Assessment with incorrect
options is linked to prerequisite Micro-outcomes

Figure 5: A screenshot from our technology of a multiple-choice Assessment for
College Algebra with incorrect options (b, c and d) linked to their respective
Micro-outcomes

The above describes the construction of one Assessment. To construct the
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next Assessment, we look to the next Micro-outcome for which to write the
Assessment by traversing the graph in a breadth-first search. This yields a
collection of Assessments in which there is at least one Assessment for every
Micro-outcome. Table 2 summarizes the numbers of resulting Assessments for
each Subject.

The base network map comprising all Micro-outcomes, Modules, and their
relationships, as well as the sensor layer comprising all Assessments and their
linkages, can be freely accessed at the Open Ed Graph APIs website.1

Deploying an intelligent tutor and teacher assistant

This network map and sensor layer form the foundations for the Fly-by-Wire
Student App, an intelligent tutoring web and mobile application designed for
formative assessment, and the Fly-by-Wire Instructor App, an intelligent tu-
toring and analytics system to help instructors identify and address areas of
misunderstanding.

On the FbW Student App, students were assigned between five and seven
synthesizing Micro-outcomes per homework assignment. Recall from the pre-
vious section that a synthesizing Micro-outcome is one with highest rank as
computed using the base network model. For each Micro-outcome, the app dis-
played an Assessment targeting the given Micro-outcome. Figure 6 shows an
assignment that targets the Micro-outcome “Determine the vertex of a parabola
given its function and axis of symmetry.” This particular Micro-outcome syn-
thesizes six prerequisite Micro-outcomes. In the figure, the user is on the first
Assessment, which corresponds to the targeted Micro-outcome.

If the student answers an Assessment incorrectly, the app presents another
Assessment that addresses the Micro-outcome that is linked to the incorrect
response. In this way, the student is guided in a depth-first search through
the network; this results in the student most quickly getting to the most fun-
damental Micro-outcomes (i.e., the ones with lowest rank) that are the cause
of their initial incorrect response. Here, we see a concrete instance of how an
Assessment functions as a sensor, in which fine-grained data are being collected
as the student interacts—the incorrect response, the time spent on a given As-
sessment, and any other interaction or selections the student may have with a
given answer option. These fine-grained sensor data are possible only because
the Assessments and their linked Micro-outcomes have correspondingly high
resolution.

The Fly-by-Wire Instructor App uses the sensor data generated during stu-
dent interaction on the Student App. The Instructor App highlights Micro-
outcomes with which students had difficulty, and offers guidance for how to ad-
dress these areas of weakness by highlighting the directed acyclic graph (DAG)
formed by these Micro-outcomes and their prerequisites. For instance, consider
the example shown in Figure 7: The synthesizing Micro-outcome that 11 of 22
students did not achieve was “Find all of the zeros of a polynomial function.”

1http://mapping.mit.edu/projects/open-ed-graph/
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Figure 6: The Fly-by-Wire Student App delivers multiple-choice questions de-
signed as sensors to infer student state on the network of Micro-outcomes.

The graph shown is the full DAG of the Micro-outcome and its prerequisites,
and the highlighted path shows the prerequisite Micro-outcomes with which
most students had difficulty. Using this network map, the instructor can then
address these specific Micro-outcomes using a variety of instructional methods.

4 Fine-grained Micro-outcome Map to Support
Learning Analytics in a Sophomore Engineer-
ing Subject

This section presents the development of a network model and sensor layer for
the sophomore class Signals and Systems as taught in the aerospace engineering
undergraduate degree program at the Massachusetts Institute of Technology
in Fall 2017. In this example, digital analytics are the high-resolution sensors
that track learning behavior and topical flow to assist in course planning and
teaching improvement.

4.1 Constructing the base network map

The Signals and Systems subject has 36 measurable outcomes, defined by de-
partmental curriculum planning. To construct a network model, we break these
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Figure 7: The Fly-by-Wire Instructor App assimilates sensor data and highlights
the directed acyclic graph of the Micro-outcomes with which most students had
difficulty.

measurable outcomes into 195 Micro-outcomes. We group the Micro-outcomes
in 25 Modules. Each Micro-outcome is addressed by a specific section (or sec-
tions) in the lecture notes; such a section is designated as an entity of type
Content. The entities in our network model are thus Subject, Module, Micro-
outcome, and Content. A grouping of Micro-outcomes in a Module is repre-
sented mathematically by a has-parent-of relationship. Similarly, the grouping
of Modules to form the Subject is represented by a has-parent-of relationship.
The relationship between Micro-outcomes is represented by an undirected is-
related-to relationship. The relationship between Content and Micro-outcomes
is represented by an addresses relationship. Table 3 shows the number of entities
and relationships for the MIT Signals and Systems subject. Figure 8 visualizes
the Signal and Systems map with Micro-outcomes grouped into 25 Modules. 2

4.2 Architecting and designing the sensor layer

The base network map in this application is implemented as a web application
for student learning. Shown in Figure 9, the web application displays click-

2The interactive map can be accessed at http://mapping.mit.edu/mit-signals-
systems/map-view
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Table 3: Properties of the network model for the subject Signals and Systems
as taught in the aerospace engineering undergraduate degree program at the
Massachusetts Institute of Technology in Fall 2017.

Entities Relationships

Subject 1 has-parent-of 382

Module 25 addresses 198

Micro-outcome 195 is-related-to 137

Content 124

able Micro-outcomes arranged by Module; a click to a Micro-outcome takes the
learner to a Content page that addresses the specific Micro-outcome. In addi-
tion to displaying as a “list view” as shown in Figure 9, the network map is also
displayed as a “map view” as shown in Figure 10. This is made possible via
architecting the data backend with separation of concerns against any frontend
applications.

The next step is to design the Trackers constituting the sensor layer in this
application. Trackers are code implementations designed to collect interaction
information on a learner, such that this information can be used downstream for
learning analytics and decision-making. We attach a Tracker to every piece of
Content as was shown in Figure 2, and collect the following pieces of information:
the timestamp of when the learner visits the piece of Content, the location and
device of the visit, the unique identifier of the learner, the time spent on page,
click interactions on page, and the duration of time on page. Crucially, in
addition to information collected on the current node, the Tracker also collects
information on the next node, that is, the next Micro-outcome that the learner
clicks to. This linked structure enables pathway analysis and inference across
the entire graph. Figure 11 illustrates a single pathway undertaken by a learner
in a single visiting session. Pathway analyses are valuable in helping to identify
sources of student misunderstandings as well as foundational topics that relate
to a large number of other Micro-outcomes. For example, in Figure 11, the
Micro-outcome “Determine the Fourier series expansion of a periodic signal”
is one that relates to many other Micro-outcomes in the Signals and Systems
subject.
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Figure 8: A visualization of the map of the subject Signals and Systems as
taught in the aerospace engineering undergraduate degree program at the Mas-
sachusetts Institute of Technology in Fall 2017.

Figure 11: Interaction pathway of a single student session. The student first
visits the List View, clicks to two Micro-outcomes (#1 and #2), then visits
Micro-outcome #3, and finally goes back to Micro-outcome #1.

5 Conclusion

This paper has presented an approach for modeling fine-grained learning ob-
jectives (Micro-outcomes), their organizational entities, and organizational and
prerequisite relationships in a network model, and then designing a sensor layer
of equally fine-grained Assessments and Trackers on top of the base network
map. The resulting map is a structured graph with fine-grained Assessments
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Figure 9: The map is used to create a web application that enables searching
of Micro-outcomes, arranged by Module and linked to Content pages.

that provide high-fidelity sensing of a learner’s state on the map. The high-
resolution nature of the model enables adaptive learning systems, intelligent tu-
toring systems, and other forms of learning analytics. The examples presented
in this paper showcase only two applications possible with the base network map
and accompanying sensors. Many other applications, particularly for adaptive
learning systems and learning analytics, can leverage this scalable modeling
approach.

An outstanding challenge is that articulating such fine-grained statements of
learning outcomes and constructing valid assessments require domain expertise
and much time. However, we note that if the resulting data is stored in a
technology stack that is platform-independent and is accessible via APIs, the
data is easily maintained and can be scaled to many other applications. Our
APIs 3 are one example of such a technology stack.
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