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Abstract

Quadrilateral layouts on surfaces are valuable in texture mapping, and essential in generation of quadrilateral

meshes and in fitting splines. Previous work has characterized such layouts as a special metric on a surface or as a

meromorphic quartic differential with finite trajectories. In this work, a surface quadrilateral layout is alternatively

characterized as a special immersion of a cut representation of the surface into the Euclidean plane. We call this a

quad layout immersion. This characterization, while posed in smooth topology, naturally generalizes to piecewise-

linear representations. As such, it mathematically describes and generalizes integer grid maps, which are common in

computer graphics settings. Finally, the utility of the representation is demonstrated by computationally extracting

quadrilateral layouts on surfaces of interest.

1. Introduction

Recently, an extensive amount of research has been devoted to redefining parametric domains
(reparameterizing) of surfaces. While the motivation for this work varies greatly (from texture
mapping to structured finite element mesh extraction to rebuilding trimmed spline geometries),
dozens of works have explored how to partition unstructured, less-optimal discretizations into ones
with better structure. Of particular interest are partitions into quadrilateral domains. These
segmentations are ideal for texture mapping [5, 30], for use as meshes in solving PDEs [2, 16,
33], and for rebuilding trimmed splines [21, 40]. Particularly, the booming field of isogeometric
analysis—which aims to streamline the engineering design through analysis process [22]—cannot
achieve its ultimate goal of a streamlined engineering workflow without a clear way to convert
trimmed computer-aided design models into well-structured quadrilateral partitions of surfaces
using splines without any trimming operations [21, 27].

While the ultimate goal of extracting a quadrilateral layout on a surface is clear, methods to
extract such a layout differ greatly; [5] provides a good overview of current methods. Recently, ad-
vances in the theory of layout generation have led to a Renaissance in well-structured quadrilateral
mesh generation. For example, a quadrilateral layout on a surface has been shown to be equivalent
to a special Riemannian metric with cone singularities [14] (called a “quad mesh metric”) and also
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rene.hiemstra@ibnm.uni-hannover.de (René R. Hiemstra), hughes@oden.utexas.edu (Thomas J.R. Hughes)



Figure 1: A quadrilateral layout on a surface (left) is equivalent to an immersion of the surface (right)
after cutting it to disk topology (shown as curves in blue) and cutting to cone singular points (shown as
curves in red). Here, the red point and the blue point are cone singularities with cone angles 3π

2 and 5π
2 ,

respectively. The quadrilateral layout itself is formed by mapping lines of constant u and v coordinates
in an immersed representation of the surface (on the right) to the original cut surface (on the left). The
quadrilateral layout is completed after invoking the quotient space topology on the cut surface to return
the topology to the uncut version.

to a meromorphic quartic differential [25]. Both works led to computational algorithms, driven by
theory, to extract quadrilateral layouts.

In this work, a quad mesh metric (hereafter called a quad layout metric to emphasize that it is
typically not piecewise linear) on a surface is shown to be equivalent to a special kind of immersion
on a cut representation of the surface. A representative immersion on an annulus is depicted in
Figure 1.

The isometric immersion proposed in this paper generalizes the concept of an “integer grid map,”
which can currently be considered the state-of-the-art in high quality all-quadrilateral mesh genera-
tion and computation of quadrilateral layouts [4, 6, 9, 18]. Compared with the proposed immersion,
integer grid maps feature additional, extensive integer constraints. Computational techniques in-
volve mixed-integer programming and are typically computationally intensive. Furthermore, the
integer-valued constraints at singularities can cause undesirable distortion particularly when the
target mesh element sizes are large. We show that integer grid maps are a subset of the potential
class of quadrilateral layout-generating immersions. This alternative characterization unites exist-
ing integer grid map theory with parameterization techniques applying topological path constraints
between singularities (e.g. [8, 10, 21, 39]). Furthermore, it generalizes the potential framework in
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Figure 2: A parametric quadrilateral is mapped to various topological surfaces, with colored boundaries
and contours indicating the precise mapping. Note that while each of these mappings is not injective on
the boundary (or even locally injective at one node for the teardrop shape), each defines a single-patch
quad layout. Additional examples of quad layouts are given in Section 3.

which researchers may operate to extract quad layouts and, possibly, mitigates some of the disad-
vantages of integer grid maps.

The outline of the paper is as follows. First, a quad layout is shown to be equivalent to a special
immersion mapping in Section 2. Afterwards, Section 3 will show some simple computational
results based on the mathematical theory. This layout can then be directly utilized for operations
such as spline fitting, texture mapping, or piecewise linear quadrilateral mesh extraction. Finally,
Section 4 will summarize results and discuss future areas of research.

2. An Equivalent Representation

Here we describe how a quadrilateral layout (a.k.a. a quad layout) is equivalent to a special
immersion, which we call a quad layout immersion. We assume that the reader has a graduate-level
understanding of material from algebraic topology and differential geometry. The supplementary
material to this article gives a brief primer for those desiring a high-level overview. Furthermore,
we assume that all surfaces are orientable and compact, but possibly with boundary.

2.1. The Quad Layout Metric

For the sake of clarity, a quad layout is first defined.
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Definition 2.1 (Quad Layout). Let S be a surface and take I2 = [0, 1]× [0, 1] to be the closed unit
square. Accompanying I2 is a natural cell structure in which nodes are points in I2 with integer-
valued coordinates in both u and v, arcs are line segments attached to adjacent nodes with constant u
or v coordinate, and a patch is attached to the square skeleton in the basic manner. Let φ : I2 → S
be a homeomorphism on I̊2 and a continuous local injection on each arc. Given a finite set of
disjoint closed unit squares I2

i with mappings φi : I2 → S, the cellular structure induced on the
image space is defined to be a quad layout if

• Each point in the interior of a patch has a unique preimage defined by one (and only one) φi.

• No cell of higher dimension is mapped to the same domain as the interior of a cell of lower
dimension. (Here, the interior of a node is taken to be itself.)

As such, a T-mesh is not a quad layout because a node of a patch is mapped to the interior of an
arc of another. By construction, all bilinear quadrilateral meshes are quad layouts. Furthermore,
representations such as an annulus with a single patch, a torus with a single patch, and a patch
with adjacent arcs identified (each depicted in Figure 2) are quad layouts (with a single patch),
despite having points on their boundaries mapped to the same locations. Additional examples of
quad layouts are presented in Figure 1 and in Section 3.

For the purposes of this paper, a quad mesh will be a quad layout in which each map φ is linear
in u and in v. A well-structured quad layout will typically have far fewer nodes, arcs, and patches
than a quad mesh because the objects of interest are, in general, curvilinearly mapped.

In [14], a (curvilinear) quad layout on a smooth surface was shown to be equivalent to a quad
layout metric (called the quad mesh metric in [14], but renamed here to emphasize that a layout is
generally curvilinear). To describe this representation, the following definitions are necessary (see
e.g. [13, 15, 42]).

Definition 2.2 (Boundary Cone Singularity). Let 0 < θ ∈ R be fixed. Take F : (0, ε)× [0, θ]→ R2

be a smooth, bounded immersion with positive Jacobian determinant bounded from above and below,

with limt→ε F (t, φ) = (0, 0) := v for all φ ∈ [0, θ]. Furthermore, take Fφ := F
∣∣∣
(0,ε)×{φ}

with

limt→ε F
′
φ(t) = a(φ)eiφ for a : [0, θ]→ R positive and smooth.

Define a metric on (0, ε)× [0, θ] by the pull-back of the Euclidean metric via the map F , given by
F ∗(〈·, ·〉R2). Then the completion of (0, ε)× [0, θ] under this metric minus the subspace {0} × [0, θ]
is a boundary cone of angle θ, written HC(v, θ), with v as the cone singularity. The point v
is singular in the following sense: if Bδ(v) is a ball of radius δ about v, then

lim
δ→0

∫
Bδ(v)∩∂

(
HC(v,θ)

) κg = π − θ,

where κg is geodesic curvature. A linear boundary cone is defined when F (t, 0) =
(
r(t − ε), 0

)
for some r > 0 with F (t, φ) = F (t, 0)eiφ.

Definition 2.3 (Interior Cone Singularity). A standard (surface) cone C(v, θ) is a set with vertex
v and angle θ > 0 described in coordinates as

C(v, θ) = {(r, φ) : 0 ≤ r ∈ R, φ ∈ R/(θZ)}
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Figure 3: A cone C(v, θ) can be thought of as the boundary cone HC(v, θ) with the boundary marked in
green with arrows glued. After this gluing, the cone is realized. To obey Gauss-Bonnet, the Gaussian
curvature of any neighborhood of v in the cone is taken to be 2π − θ (recalling that the rest of the cone
has zero Gaussian curvature).

with a metric locally of the form ds2 = dr2 + r2dφ2. The vertex v is called an interior cone
singularity. The singularity is represented in the following sense: for any neighborhood N(v) ⊂
C(v, θ) containing v ∫

N(v)

κ = 2π − θ,

where κ is Gaussian curvature.

The integrals of Definitions 2.2 and 2.3 represent the contributions of cone singularities to a
surface’s geodesic and Gaussian curvatures, respectively. Sometimes these are simply referred to
as the discrete geodesic and Gaussian curvature of the cones.

For 0 < θ < 2π, both the boundary cone and the cone can be visualized as depicted in Figure 3.
The left is a linear boundary cone. Under a gluing operation of the edges marked with arrows, the
boundary cone becomes a cone, which has no Gaussian curvature except at its singularity. For a
cone singularity of angle greater than 2π, the same general idea holds, but now the boundary cone
should be thought of as an object in the complex plane with a branch cut. Alternatively, these
high-angle cones can be embedded in three dimensions by exploiting the vertical dimension. Both
representations are given in Figure 4.

Notice that the singularity definitions are both consistent for regular points on and off the
boundary. These are given by C(v, 2π) and HC(v, π), respectively. As such, for a surface S with
cone singularities, define θ : S → R by the θ of the (boundary) cone to which the point has an
isometric neighborhood.
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(a) (b)

Figure 4: Two alternative representations of cones with angle 5π
2 are presented. On the left, a heuristic

representation of a cone is presented as a vertical spiral with red and blue edges glued which, when projected
onto the (x, y)-plane, is locally injective everywhere except in the region of the cone. Alternatively, a
sufficiently small neighborhood of this cone can be exactly embedded into three-space by leveraging the
third dimension. When a cut is made and the vertical panels are folded onto the plane, the immersed
structure is similar to that in the hueristic representation.
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Definition 2.4 (Flat Metric with Cone Singularities). A flat metric with cone singularities
P on a surface S (denoted 〈·, ·〉E) is a Riemannian metric on S − P such that

• Each point p ∈ (S̊ − P ) has a neighborhood isometric to an open disk in R2.

• Each point q ∈ (∂S−P ) has a neighborhood isometric to the regular boundary cone HC
(
v, π
)
.

Furthermore, the Cauchy completion of the distance metric induced by the Riemannian metric is
all of S. Around the cone singularities, the following isometries hold:

• Each point pi ∈ (S̊ ∩ P ) =: P◦ has a neighborhood isometric to a neighborhood of the vertex
v of the standard cone C

(
v, θpi

)
, θpi 6= 2π.

• Each point q ∈ (∂S ∩ P ) =: P∂ has a neighborhood isometric to a neighborhood of vertex v of
a boundary cone HC

(
v, θqi

)
, θqi 6= π.

In addition to these topology- and geometry-related concepts, the notion of a cross field will
also be necessary. Following the description of [29], let a Riemannian metric 〈·, ·〉 on a surface S
be given. For p ∈ S, a unit tangent vector in TpS is a vector with norm 1. A 4-symmetry direction
is a set of 4 unit tangent vectors at p in which each vector differs by a rotation of π

2
. A cross field

is a mapping associating with all but a finite number of p ∈ S a 4-symmetry direction in a smooth
manner. A cross field on a closed surface will have singularities which obey a Poincaré-Hopf-type
theorem whose index is given heuristically by the number of rotations a unit directional field makes
when traveling about a Darboux frame. A frame field is a cross field represented under a different
Riemannian metric. A picture of a simple boundary-aligned frame field with singularities is given
in Figure 5. More precise discussions are given in [29, 42], with definitions extending to boundary
singularities given in [42].

With these definitions, we are prepared to describe a quad layout metric. Henceforth, we will
assume the only connections used are the Levi-Cevita connections of the specified metric, written
τ. As such, the connection used for parallel translation and in defining the holonomy group is fixed.

Definition 2.5 (Quad Layout Metric [14]). A quad layout metric on a surface S is a Rieman-
nian metric 〈·, ·〉Q with cone singularities P with the following properties:

P1 〈·, ·〉Q is a flat metric with a finite number of cone singularities, P . The total curvature of the
singularities obeys Gauss-Bonnet:∑

q∈P∂

(
π − θ(q)

)
+
∑
p∈P◦

(
2π − θ(p)

)
= 2πχ(S)

P2 The holonomy group of the surface is a subgroup of R = {exp(ikπ
2

), k ∈ Z}, denoted

Hol(τ) ≤ R

P3 A boundary-aligned cross field defined on 〈·, ·〉Q , CQ, is obtained by parallel transport of a unit
cross on a point p ∈ S − P to all of S − P .
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Figure 5: A boundary-aligned frame field with four internal singularities (in red) on a surface with four
sharp corners (in blue) is depicted.

P4 The integral curves of the cross field are geodesics of 〈·, ·〉Q .

P5 Integral curves of the cross field are periodic or of finite length.

Note that Properties P1 and P3 imply that boundary singularities have a neighborhood iso-
metric to a linear boundary cone, and that regular boundary points have a neighborhood isometric
to an open half-disk, HBε, with

HBε := {y = (y1, y2) ∈ R2 : ||y||R2 < ε, y2 ≥ 0},

for some 0 < ε ∈ R and y = (y1, y2) under the standard Euclidean coordinates. A metric on S
obeying properties P1–P4 of Definition 2.5 will be called a partial quad layout metric.

In general, a cross field can only be locally decomposed into four rotationally symmetric unit
vector fields {Xj}3

j=0 in which RXj = X(j+k) mod 4 for R = ei
kπ
2 ∈ R. Parallel translation of a

locally-defined component of the field about a loop may yield a possibly different component of the
cross field, particularly if the loop bounds a topological disk with a cone singularity. Here, integral
curves of a cross field are defined locally on a simply connected neighborhood and continued in a
manner similar to analytic continuation in complex analysis. Integrability of these fields, which is
assumed by Properties P4 and P5, is proved in the supplementary material. This paper describes
another equivalent representation which is a special type of immersion of the surface into R2.

Throughout this paper (as with other papers on the matter such as [4, 6, 12]), the following
assumption holds on the curvature of the singularities:

Assumption 1. For p ∈ P , θp > 0.

When θp = 0, the definition of the cone singularity breaks down and it cannot be represented
in Euclidean geometry; instead, it is a hyperbolic cusp if in the interior of the surface and a half-
cusp if on the boundary [15, pp. 54–55]. Such a point corresponds to a “polar” singularity, which
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of necessity would have an entire degenerate parametric edge. These do not satisfy the above
requirements of Definition 2.1 and will not be further explored here. However, it should be noted
that a quad layout with polar singularities could be achieved by excising neighborhoods of the
polar singularities, extracting a quad layout on the rest of the surface, and finally operating on the
excised neighborhoods separately.

2.2. Topological Preliminaries

Under 〈·, ·〉Q , the surface S − P has flat metric everywhere: such surfaces are often called de-
velopable, and can be “flattened” onto the plane (see [37, pp. 66–72,91]). The following discussion
mimics theory related to the developing map of a manifold (see e.g. [15, pp. 9]).

We are interested in immersing the surface into the plane, and the ideal objects by which to do so
are coordinate charts defined by the quad layout metric’s cross field, CQ. However, the holonomy
about a singular point precludes this cross field from being separated into four globally-defined
vector fields. As such, the surface is first cut into a topologically simpler representation.

Definition 2.6 (Cutting Graph). Let S be a surface of genus g with k boundary components.
Furthermore, let P ⊂ S be a finite set of discrete points in S. A cutting graph G(S, P ) is a
piecewise smooth finite graph embedded in S such that (P ∩ S̊) ⊂ G(S, P ) and S −G(S, P ) is a set
of simply-connected surfaces.

A cutting graph is called simple, if, in addition, S − G(S, P ) is a single simply-connected
component in which P◦ ⊂ ∂G(S, P ), P∂ 3 qi 6∈ G(S, P ), and ∂G(S, P ) ∩ ∂S is discrete.

A simple cutting graph is particularly convenient because it only intersects the boundary of S
transversely and discretely; it guarantees that each member of P◦ is only cut to, but not through;
and it ensures that each member of P∂ is uncut.

When the surface and set P are clear from context, we will use the notation G := G(S, P ). The
following assures the existence of cutting graphs on surfaces with cone singularities.

Lemma 2.1. For a surface S of genus g with k boundary components and a set of discrete points
P ⊂ S, there exists a simple cutting graph G(S, P ).

The proof of Lemma 2.1 is a slight extension of a fundamental result from algebraic topology.
The unfamiliar reader is referred to the Appendix (in the supplementary material) for additional
details.

Remark 2.1. Note that for a quad layout metric, the only surfaces in which G = ∅ are genus 0
surfaces with 1 boundary component and cone singularities on boundaries. For genus g > 0 surfaces
and surfaces with k > 1, G 6= ∅ is because π1(S) 6= 0. For g = 0 surfaces with k = 0,#P > 2 by
Assumption 1 and the Gauss-Bonnet Theorem.

Generally a cutting graph will not be a one-dimensional manifold with boundary because of
the presence of splitting junctions. Nonetheless, we define the boundary of the cutting graph to be
the set of all points p ∈ G possessing an open neighborhood in G homeomorphic to [0, ε) in which
p 7→ 0. The boundary of the graph will be denoted as ∂G.

Let each cutting graph G(S, P ) be given the following cellular structure. First, take nodes of the
graph to be the set N corresponding to points in the cutting graph’s boundary, splitting junctions,

9



Figure 6: A simple cutting graph on a double torus is displayed. Curves in blue represent cuts to take
the geometry to a topological disk, while curves in red cut to cone singularities of angle 4π (depicted as
teal points). Here, nodes ni of the cutting graph are locations in which the graph either terminates or
is non-manifold (splits). Arcs aj are maximal portions of the graph bounded by two nodes and with no
nodes in their interior. Because this cutting graph is simple, it cuts the surface into a single topological
disk (called a patch), P1.

singularities of S contained in G, and locations at which the graph is not smoothly embedded in S.
Next, let the arcs of G be the set of (open) 1-cells bijectively connecting zero-cells, written as A.
A simple cutting graph on a double torus with two cones of angle 4π, together with the resulting
cellular structure on G, is shown in Figure 6.

Recall that any Riemannian metric, 〈·, ·〉, on a manifold M induces distance metric in the
following manner. If γ : I→M is a curve in M , the length of the curve under the metric is defined
as

L(γ) =

∫ 1

0

(
〈γ′(t), γ′(t)〉

) 1
2
dt. (1)

Define the induced distance metric, d : M ×M → R as

d(p, q) = inf
γ∈{γι}ι

L(γ). (2)

where for some p, q ∈M , {γι}ι is the set of all curves in which γι(0) = p, γι(1) = q.
We are interested in the Cauchy completion of metric spaces on the surface. First, it is shown

that for any Riemannian metric on all of S, the topology induced by its distance metric is equivalent
to that induced by the quad layout metric.
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Lemma 2.2. Let 〈·, ·〉 be any Riemannian metric tensor on a compact surface S. Denote by d
its induced distance metric on the surface S. Let 〈·, ·〉Q be a quad layout metric on S, with dQ its
induced distance metric on S − P . Then the topologies induced by d and dQ on the domain S − P
are equivalent, and their Cauchy completions induce the same topology on S.

Proof. First, recall that all Riemannian metrics are Lipschitz equivalent on a compact surface in
the following sense: for metrics 〈·, ·〉1 , 〈·, ·〉2, there exist 0 < α, β <∞ constants such that for any
curve γ,

α 〈γ′, γ′〉1 ≤ 〈γ
′, γ′〉2 ≤ β 〈γ′, γ′〉1 .

Then by definition (Equations 1 and 2),

α
1
2d1(p, q) ≤ d2(p, q) ≤ β

1
2d1(p, q).

Thus the metrics are strongly equivalent and the topologies induced by d1 and d2 are equivalent.
Furthermore, if a set of discrete points P are removed from S, the completion of S − P in both
metrics is the same, and can simply be written as the topology on S.

Now, for S − P , 〈·, ·〉Q is a Riemannian metric, which induces a well-defined metric on the
surface, dQ : (S −P )× (S −P )→ R. By construction, the completion of the metric space induced
by the distance metric dQ is the entire domain S. Furthermore, the topology on S induced by
dQ coincides with the topology on S induced by any Riemannian metric: a ball in one topology
contains a ball in the other. But all metrics on a compact domain inducing the same topology are
equivalent in the sense that the identity mapping from S in one metric space to S under a different
topology is uniformly continuous. Specifically, Cauchy sequences converging to any point in one
will converge to the same point in the other, and thus the completions are identical.

By a similar argument on S − (P ∪G) the following holds.

Corollary 2.3. Let 〈·, ·〉 be a Riemannian metric on S, with induced Riemannian metric on S −
(P ∪G) yielding a distance metric d :

(
S − (P ∪G)

)
×
(
S − (P ∪G)

)
→ R. Similarly, take the

induced Riemannian metric 〈·, ·〉Q on S−(P ∪G) with induced distance metric dQ :
(
S−(P ∪G)

)
×(

S−(P ∪G)
)
→ R. Then the topologies induced by d and dQ are both the same, and have identical

completion.

Proof. The notions used in 2.2 are entirely local, and thus also apply to subspaces.

Thus we can canonically define the topology of the surface S−(P ∪G) for a Riemannian metric
or a quad layout metric, which will simply be denoted as S−(P ∪G). Furthermore, the completion

is canonically defined and denoted as S − (P ∪G), where the double line is used to emphasize that
this is not a closure operation.

To better understand the completion, let p ∈ S with U(p) a simply connected closed neighbor-
hood in S with the following properties.

1. If p 6∈ P ∪G,U(p) ∩ (P ∪G) = ∅.

2. If p ∈ P ∪G, then U(p) contains no nodes of G and no members of P other than (possibly)
p itself.
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Figure 7: Level sets of distances on a surface from the point in red are displayed. Cuts, displayed in dark
green, break continuity and alter distances (and thus neighborhoods) across a cut. Under the topology
defined by this metric, a Cauchy sequence on one side of the cutting graph converging to a point in
Euclidean space will converge to a different point than a Cauchy sequence converging to the same point
in Euclidean space on the other side of the cutting graph.

3. G ∩ U(p) has at most one connected component.

Then U(p) − G divides U(p) into ` connected components, written {Bi(p)}`i=1. If p ∈ G, in the

completion
(
S − (P ∪G)

)
d
, p will be represented by ` distinct points, {pi}`i=1. Because the inclusion

map ι : S − (P ∪G)→ S is Cauchy-continuous, it has a unique extension Q : S − (P ∪G)→ S in
which Q(pi) = p for each i = 1, . . . , `.

Alternatively, this can be visualized as in Figure 7. Here, level sets of geodesic distances from a
point in red are given, with the cuts in dark green removed from the surface. Notice that cutting
curves locally divide otherwise connected domains, as seen by the geodesic distance colors. Under
this metric, a Cauchy sequence entirely on one side of the cutting curve will converge to a point

in S − (P ∪G) which differs from a Cauchy sequence converging to the same point in Euclidean
space but defined on the other side of the cutting graph.

Here, note that Q is not only an inclusion operator, but also a quotient map from S − (P ∪G)
to S. The identification is p ∼ q ⇐⇒ Q(p) = Q(q). Throughout the remainder of this work,
for p ∈ S (respectively A ⊂ S) we take Q−1(p) (respectively Q−1(A)) to mean the preimage of p
(respectively A) under the quotient map.
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2.3. Definition of the Immersion

After removal of the cutting graph from the surface, the local vector field representation of a
cross field is both well-defined globally and integrable.

Lemma 2.4. Given a quad layout metric 〈·, ·〉Q on S, the induced cross field on S − (P ∪G) of

CQ decomposes into four distinct, rotationally symmetric integrable vector fields {Xi}3
i=0 which are

well-defined over each connected component of S − (P ∪G).

Proof. After cutting S into a set of simply connected components, the holonomy group on each
connected component is trivial. Then parallel translation of any component of the cross field on
a connected component of S − (P ∪G) yields a well-defined vector field. Integrability holds by
construction.

Figure 8 shows pictorially how, after removal of the cutting graph, a frame field on a surface in
Euclidean space can be decomposed into four well-defined vector fields. Without introduction of
these cuts, the smooth vector fields would not be well-defined, as seen by the change of direction of
the fields across the cutting graph. (Recall that a frame field is a cross field under a non-Euclidean
metric).

With the results of Lemma 2.4, we are prepared to discuss an isometric immersion (via the quad
layout metric) of S − (P ∪G) into the plane.

Proposition 2.5. The quad layout metric 〈·, ·〉Q on S − (P ∪G) induces a map

Ψ̄ : S − (P ∪G)→ R2

which is an isometric immersion on S − (P ∪G) and locally injective for each p in which Q(p) 6∈
P ∪∂G. This can be taken to have coordinate functions as integral curves of cross field CQ vectors.

Proof. We proceed under the assumption that S − (P ∪G) is a single connected component; if not,
operate on each individually.

By construction, each point p ∈ S − (P ∪G) is of one of four types:

1. p ∈
(
S − (P ∪G)

)
− ∂S, in which case it has a neighborhood which is isometric to a disk in

R2.

2. p ∈
(
S − (P ∪G)

)
∩ ∂S, in which case it has a neighborhood which is isometric to an open

half-disk HBεp .

3. Q(p) ∈ P∪N , in which case it has a neighborhood isometric to a boundary coneHC(p, θp), θp ≤
θ
(
Q(p)

)
.

4. Q(p) ∈ G− (P ∪ N ), in which case it has a neighborhood which is isometric to a boundary
cone HC(p, π).
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(a) Frame field and singularities defined on the surface without cuts

(b) 1st vector field component after cutting (c) 2nd vector field component after cutting

Figure 8: After removing the cutting graph (in red) from the surface, a frame field can be decomposed into
a set of four well-defined vector fields, two of which are linearly independent and shown above. Without
introduction of these cuts, these smooth vector fields would generally not be well-defined, as is seen by
the change in direction of the vector field along the boundary on either side of the cut.

14



Let U be an open cover of S − (P ∪G) using the above neighbhorhoods. Specifically, for pi in
which Q(pi) ∈ G ∩ (P ∪N ), take the neighborhood to be a subset of a small open ball of radius ε
about pi. Define this set to be {Bε(pi)}Ni=1 for some finite N . For each member of U , subtract the

closed balls {B̄ ε
2
(pi)}Ni=1; call this Ũ . Then Ũ ∪ {Bε(pi)}Ni=1 is an open cover of S − (P ∪G) with

only one (small) neighborhood on each pi. Because S − (P ∪G) is compact, this set has a finite
subcover, V .

Let U ∈ V − {Bε(pi)}Ni=1. Then by construction, it is an isometric immersion (actually an

embedding) on U ∩
(
S − (P ∪G)

)
, and locally injective on U ∩

(
S − (P ∪G)

)
. By Lemma 2.4,

we can make integral curves of X0 parallel to the u-axis and integral curves of X1 parallel to the
v-axis, potentially after a rotation and/or a reflection (both of which preserve isometries). Define
this map to be Ψ1.

Next, let V ∈ V − {Bε(pi)}Ni=1, V ∩ U 6= ∅, V 6= U . Because of the isometry ϕV : V → R2, ϕV
is also an immersion and locally injective as described. Furthermore, because lengths and angles
are preserved, after a rotation, reflection, and/or translation, the map of ϕV exactly equals Ψ1 on
U ∩ V . Then define Ψ2 as ϕV if p ∈ V,Ψ1 if p ∈ U , which is well-defined and has the advertised
properties of the final immersion map.

Proceeding inductively, we get an immersion Ψ̃ defined by V ∈ V − {Bε(pi)}Ni=1. Finally, each
Bε(pi) is isometric to a boundary cone singularity. Under this isometry’s image (after a potential
translation, rotation, or reflection), ϕBε(pi)

(
Bε(pi)

)
must exactly align with Ψ̃ where intersections

with Bε(pi) and another V ∈ V are non-empty. These are isometries away from the actual cone
point, and locally injective on all boundary points. Then the desired immersion is the union of the

map Ψ̃ with maps ϕBε(pi) over all of S − (P ∪G).
Finally, note that for boundary cones with angle θ < 2π, local injectivity holds. Thus, the result

can be relaxed to guarantee local injectivity on all members of N ∪P for which this is the case.

Beyond being an immersion, the map Ψ̄ has additional important qualities that will be used to
show an equivalence between it and a partial quad layout metric. The following definitions will be
used to make some of these qualities clear.

Definition 2.7 (Conical Function). A conical function φ : S → R is a (discontinuous) function,
together with a discrete set P ⊂ S, such that

φ(p) =


2π if p ∈ S̊ − P
π if p ∈ ∂S − P
φp ∈ kπ

2
, k ∈ Z>0 otherwise.

Furthermore, it obeys the following Gauss-Bonnet relationship:∑
q∈∂S

(π − φ(q)) +
∑
p∈S̊

(2π − φ(p)) = 2πχ(S) (3)

Definition 2.8 (Partial Quad Layout Immersion). Let 〈·, ·〉 be a Riemannian metric defined on all
of surface S. Let φ be a conical function (see Definition 2.7), together with its discrete set P, and
a cutting graph G(S, P ) (see Definition 2.6). Write d : S − (P ∪G) × S − (P ∪G) → R as the
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distance metric on S−(P ∪G) induced by 〈·, ·〉, and the induced topology denoted as
(
S−(P ∪G)

)
d
.

A function Ψ̄ :
(
S − (P ∪G)

)
d
→ R2 is defined to be a partial quad layout immersion if it

satisfies the following:

Q1 Ψ̄ is locally injective in a neighborhood of each p ∈
(
S − (P ∪G)

)
d
−Q−1(P ∪ N ), and is an

orientation-preserving smooth immersion on
(
S − (P ∪ G)

)
d

whose Jacobians are bounded
from above and below by constants independent of location.

Q2 For any p ∈ S with {p̄i}ni=1 = Q−1(p), there is some simply-connected open neighborhood of

Up ⊂ S with Up̄i being connected components of the completion of Up −G, written (Up −G)d

such that Ψ̄((Up −G)d) is either

• Isometric to a set of boundary cones, HC
(
Ψ̄(Up̄i), φp̄i

)
with

∑n
i=1 φp̄i = φ(p). (These

correspond to points that are either in G or ∂S).

• A single connected component which is isometric to a two-dimensional Euclidean ball.
(These correspond to points of S that are not in G or ∂S.)

Q3 Let E ∈ A be an oriented arc of the cutting graph G. Define ω−, ω+ : (0, 1)→
(
S − (P ∪G)

)
d

as the curves associated with E in the completion. Then for any t ∈ (0, 1), Ψ̄
(
ω−(t)

)
=

T
(

Ψ̄
(
ω+(t)

))
for T : R2 → R2 a translation and rotation by jπ

2
, j ∈ Z.

Q4 Under Ψ̄, each connected component of Q−1
(
∂S − (P ∪ G)

)
is an open arc with constant

Euclidean coordinates in u or v.

Proposition 2.6. A partial quad layout metric, together with a set of (boundary) cone singularities
P and a cutting graph G, induce a partial quad layout immersion.

Proof. Any orientable surface can be embedded in R3, and as such inherits the Euclidean metric
of R3. Take φ : S → R by φ(p) = θ(p) as the conical function and G(S, P ) as a cutting graph.

Take Ψ̄ : S − (P ∪G) → R2 by Proposition 2.5. Because the topologies on S and S − (P ∪G)
are strongly equivalent via Lemma 2.2 and Corollary 2.3, all maps are equivalently represented on

the topology of the quad layout metric or on the Euclidean metric. But S − (P ∪G) is compact,
so Ψ̄ has Lipschitz constants globally bounded from above and below by positive constants. Then
Property Q1 holds.

Next, because Ψ̄ is isometric, cones will be split into sets of boundary cones and boundary cones
into boundary cones of smaller angle whose sum add to the original cone. Then Property Q2 holds.

Now, let E ⊂ A be an arc in the cutting graph G, and ω−, ω+ its associated curves in the

completion of S − (P ∪G). Because Ψ̄ is isometric, the length and (geodesic) curvature of Ψ̄(ω−)
pointwise equals that of Ψ̄(ω+). Then they are just a rotation and translation of each other.
But some component of CQ was chosen to align to the u axis for each connected component of

S − (P ∪G) by construction of Ψ̄. Then the component vector of CQ represented in Ψ̄(ω−) can
only be represented by a vector which has rotated by kπ

2
radians in Ψ̄(ω+). Hence, Property Q3

holds.
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Again, by definition of Ψ̄ there are unique the vector fields X0, X1 on S − (P ∪G) induced by
the cross field CQ of the quad layout metric. Because the original cross field is boundary-aligned,
so each component of ∂S − (P ∪G) is an arc with constant Euclidean coordinates in either u or v
under the immersion mapping Ψ̄(Property Q4).

Next, a partial converse is shown.

Proposition 2.7. A partial quad layout immersion induces a flat metric on S with cone singular-
ities P obeying Properties P1, P2, and P3 of Definition 2.5

Proof. First, note that Ψ̄ is an immersion on
(
S − (P ∪ G)

)
d
, and as such, Ψ̄∗(〈·, ·〉R2) pulls back

to a flat Riemannian metric 〈·, ·〉R2 . This in turn yields another metric on the domain, denoted
dR2 with its associated topology

(
S − (P ∪ G)

)
dR2

. The completion of this space is then denoted

as
(
S − (P ∪G)

)
dR2

. However, by boundedness of the Jacobians of Ψ, it is bi-Lipshitz locally with

global bounds on the Lipschitz constants. Thus the metrics dR2 and d are strongly equivalent, so
the topology of

(
S−(P ∪G)

)
dR2

is equivalent to the topology of
(
S−(P ∪G)

)
d
, and the completions

are identical. With this, we may transfer assumptions defined on the topology of
(
S − (P ∪ G)

)
d

to the topology
(
S − (P ∪G)

)
dR2

.

For an edge E ⊂ A, let ω−, ω+ boundary segments of
(
S − (P ∪G)

)
dR2

, with q− ∈ ω−, q+ ∈
ω+,QR2(q−) = QR2(q+). Let Y0, Y1 be unit vectors locally parallel and orthogonal, respectively, to
Ψ̄(ω−) at Ψ̄(q−). Then by Property Q3, the corresponding vectors in the tangent space of Ψ̄(q+) are
R(Y0), R(Y1), where R is a rotation by kπ

2
, k ∈ Z. Then as in Lemma 2.4, these locally correspond to

coordinate systems w1, w2 and Rw1, Rw2. In these coordinates, the metric tensor near Ψ̄(q−) takes
the form 〈·, ·〉R2 =

∑
i,j=1,2 δijdw

idwj, and near Ψ̄(q+) it is 〈·, ·〉R2 =
∑

i,j=1,2 δijd(Rwi)d(Rwj).
Under the quotient map these basis vectors for the tangent spaces are equivalent. Because the
coordinates functions of the metric tensor are identical for both, the metric tensor has a well-
defined extension in the quotient topology. This identification is locally consistent by Property
Q3. Then under the quotient map there is a well-defined flat metric on S − (P ∪N ).

Now, let p ∈ S ∩ (P ∪ N ) and Q−1(p) = {pi}ni=1. Then by Property Q2, the quotient of all of
their neighborhoods will be a boundary cone of angle φ(p) =

∑n
i=1 φpi if on the boundary of S or a

cone of the same angle if in the interior of S. Then the Riemannian metric can be extended to all
p ∈ N −P because the tangent space on these nodes is well-defined and consistent with the rest of
the manifold. Then the surface is a flat manifold with cone singularities (see Definition 2.4), with
map θ(p) := φ(p). Then by Q1, condition P1 holds. Denote this flat metric as 〈·, ·〉E.

Now, let Xp be a vector in TpS for p ∈ S − (P ∪G). Choose any loop. For a flat manifold, the
homotopy class of the loop preserves the holonomy. Thus we can choose the loop to be transverse
to G by a smooth homotopic deformation of the loop. Call this deformed, transverse loop γ. Let
τt(X) be the Levi-Cevita connection map by parallel translation on this loop. Because intersections
of compact sets are compact, there are a finite number of intersection points between the image
of γ and G. Taking the restriction of τt(X) onto S − (P ∪G) and then its pushforward (and

extension) to Ψ̄
(
S − (P ∪G)

)
, we find that τ0(X) corresponds exactly to some vector (uX , vX) at
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Ψ̄(p). Because R2 is flat, parallel translation of the vector between points of intersection with G
will keep the immersed vector having the same representation. However, across cuts, the vector will
rotate by jπ

2
, j ∈ Z according to Property Q3. The ultimate rotation in TpS induced by parallel

translation along this loop must, then, be the sum of jπ
2
, j ∈ Z. But both the point and loop were

arbitrary up to homotopy, so the total holonomy group must be a subset of R, giving Property P2.
Now, let X1 = (1, 0), X2 = (0, 1) be orthogonal unit vectors at Ψ̄(p) ∈ R2 for some p ∈

S− (P ∪G). Pull back both to S− (P ∪G) using the immersion map; view these as a two vectors
in S − P . Define a unit cross in TpS by the vectors {X1, X2,−X1,−X2}, which are orthonormal
under 〈·, ·〉E. Because Property P2 holds, this cross can be parallel translated over all of S − P to
yield a global cross field. Property Q4 ensures that the cross field obeys P3.

To establish a notion of equivalence between a partial quad layout metric and a partial quad
layout immersion, we need to describe the notion of an integral curve on the immersion. To
accomplish this, we use the following notations and definitions.

First, when two curves, γ1, γ2 : (−ε, ε)→ S are transversal at p = γ1(0) = γ2(0), this is denoted

as γ1
−tp γ2. Let Ψ̄u, Ψ̄v : S − (P ∪G) → R be functions defined by Ψ̄(p) =

(
Ψ̄u(p), Ψ̄v(p)

)
in

Euclidean coordinates.

Definition 2.9 (Coordinate Lines). Let p ∈ S − (P ∪G)− P. Define

`up =
{
q ∈ S − (P ∪G)−Q−1(P ) : Ψ̄u(q) = Ψ̄u(p), q connected to p in Ψ̄−1

u (p)
}
. (4)

Similarly, let

`vp =
{
q ∈ S − (P ∪G)−Q−1(P ) : Ψ̄v(q) = Ψ̄v(p), q connected to p in Ψ̄−1

v (p)
}
. (5)

Then `up , `vp are called the coordinate lines of p under Ψ̄.

Lemma 2.8. For a partial quad layout immersion, fix p ∈ S − (P ∪G)−Q−1(P ) with coordinate

line `up (respectively `vp) non-discrete and intersecting ∂
(
S − (P ∪G)

)
at q. If Q(q) 6∈ P and

Q(`up) (respectively Q(`vp)) 6−tQ(q) ∂S, the quotient map of the coordinate line has a extension
across the cutting graph that is geodesic for 〈·, ·〉E .

Proof. First, under the quotient topology, the coordinate line is a curve in S. Using the flat metric
of Proposition 2.7, the coordinate line is a geodesic (being a line in the immersion). Because the
metric is flat, there is a neighborhood of Q(q), UQ(q) ⊂ S with an isometry ϕ : UQ(q) → R2. Then
ϕ
(
Q(`p)

)
is a line segment, which can be extended uniquely to a line segment dividing UQ(q). Call

this γ. The set Q(`p) ∪ ϕ−1(γ) is such an extension.

Such an extension will be called a geodesic extension of the coordinate line at q.

Now, for A ∈ S − (P ∪G), define the sets

u+(A) =

{
q ∈ Ā : Ψ̄−1

u

(
max
p∈Ā

Ψ̄u(p)
)}

,

18



and

u−(A) =

{
q ∈ Ā : Ψ̄−1

u

(
min
p∈Ā

Ψ̄u(p)
)}

.

Let v+(A), v−(A) be defined analogously.

Definition 2.10 (Quotient Curve). Fix p ∈ S − (P ∪G) −Q−1(P ) with `up =: `p0 6= {p0}. Take
q0+ ∈ v+(`p0 ). Inductively define `pi for i > 0 as follows:

• If Q(qi−1) ∈ P , terminate the induction.

• If Q(qi−1) ∈ ∂S,Q(`pi−1
)−tQ(qi−1) ∂S, terminate the induction.

• Define γ1 := Q(`pi−1
) and γ2 as its geodesic extension at qi−1 (see Lemma 2.8) in a neighbor-

hood UQ(qi−1) isometric to a ball in R2 via ϕ. Then ω := ϕ−1(γ2 − γ1) is a closed arc in S.
Take a non-discrete connected component A of Q−1(ω) with A 3 q̃ ∈ Q−1(qi−1). Define `pi as
the unique coordinate curve containing A. Define qi by the following

qi ∈


v+(`pi ) if Ψ̄u(`pi ) is discrete, q̃ ∈ v−(A)

v−(`pi ) if Ψ̄u(`pi ) is discrete, q̃ ∈ v+(A)

u+(`pi ) if Ψ̄v(`pi ) is discrete, q̃ ∈ u−(A)

u−(`pi ) otherwise.

Define `pi for i < 0 analogously, with q0− ∈ v−(`p0 ). Then the quotient curve of p in the u
direction is defined to be the set

Qp,u = ¯̀
up0
∪
(N+⋃
i=1

¯̀
pi

)
∪
N−⋃
i=1

(
¯̀
p−i

)
(6)

where 0 ≤ N± ≤ ∞.
Similarly, the quotient curve of p in the v direction is defined to be the set

Qp,u = ¯̀
vp0
∪
(N+⋃
i=1

¯̀
pi

)
∪
N−⋃
i=1

(
¯̀
p−i

)
(7)

where, as before, ¯̀
vp0

is not discrete.

A finite quotient curve is one in which N± < ∞. A periodic quotient curve is one in which
`pi = `pj for some i, j ∈ Z both contained in the quotient curve. A finite, self-intersecting quotient
curve comprised of two coordinate lines on a partial quad layout immersion is displayed on the
right side of Figure 9. The integral curves of the pullback of the coordinate one-forms onto the
original spatial geometry with cuts are depicted on the left of the same figure.

Lemma 2.9. Given a partial quad layout immersion Ψ̄ on S, quotient curves of Ψ̄ are geodesic
integral curves of the induced cross field on S from Ψ̄.

Conversely, let ω be a cross field integral curve of a partial quad layout metric on S. Then the
preimage Q−1(ω) contains a quotient curve on its induced partial quad layout immersion.

19



Figure 9: A cut annulus with two cone singularities (on the left) is mapped via a (partial) quad layout
immersion to the domain on the right. Two coordinate lines, shown in green and gold, comprise a single
finite quotient curve in this immersion. The curves in green and gold on the left geometry are the pullback
of the coordinate one-forms tracing the green and gold (respectively) coordinate lines in the immersed
geometry. Notice that the quotient curve may intersect itself, but can only do so with orthogonal coordinate
lines in the immersed geometry.
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Proof. These follow by definition of the quotient curve and by construction of Ψ̄ in Proposition
2.5.

Combining the results of Lemma 2.9 with Propositions 2.6 and 2.7, the following equivalence
holds.

Theorem 2.10. A partial quad layout metric on S, together with a cutting graph induces a partial
quad layout immersion. Similarly, an partial quad layout immersion induces a unique partial quad
layout metric.

Finally, we are ready to define a quad layout immersion, the object which induces a quad layout
metric on S.

Definition 2.11 (Quad Layout Immersion). A quad layout immersion Ψ̄ is a partial quad
layout immersion with the following additional property:

Q5 All quotient curves emanating from singularities are finite. For a torus or annulus without
singularities, two transverse quotient curves are finite or periodic.

Theorem 2.11. A quad layout immersion induces a quad layout metric. Conversely, a quad
layout metric on S with cone singularities P , accompanied by a cutting graph G(S, P ), induces a
quad layout immersion.

Proof. (⇐) This result holds from Theorem 2.10.
(⇒) Properties P1, P2, P3, and P4 hold by Theorem 2.10. Then it is only necessary to show

that the assumptions on singular quotient curves guarantee that all integral curves of the induced
partial quad layout metric are finite.

By property Q3, boundaries are coordinate curves, which combine to form quotient curves. Note
that quotient curves of boundaries must have finite length. If a singularity lies on the boundary,
this holds by property Q5. Otherwise, the quotient curve traces the entire boundary component
and must be periodic.

A finite length quotient curve containing a singularity must terminate at either two (possibly
identical) singularities or a singularity and a boundary. Combined with finiteness or periodicity
of boundary curves, these curves will segment the surface into a cellular structure. (For a torus
with no singularities or an annulus without singularities, property Q5 guarantees finite-length
quotient curves, which also split into cellular structure). Each of these cells must necessarily be a
quadrilateral to ensure that the cellular structure aligns with integral curves of the induced cross
field without addition of cone singularities.

Pick some quadrilateral cell on the surface and some p in its interior. Construct an isometric
immersion Ψ̃ of the quadrilateral cell containing p under the newly-defined metric on S, 〈·, ·〉Q,
as was done in Proposition 2.5. This is a parameterization of the cell. But the cell was chosen
arbitrarily, so the skeletal structure of the separatrices, combined with the new metric, induces
a quadrilateral layout on S. Then by the equivalence of a quadrilateral layout to a quad layout
metric, 〈·, ·〉Q must be a quad layout metric, which has periodic or finite-length integral curves.
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Remark 2.2. A quad layout immersion is a generalization of both a translation surface and a half-
translation surface, which are used in Riemannian surface theory and are equivalent to holomorphic
one forms and holomorphic quadratic forms, respectively. A generalized translation surface was
introduced in [14] to motivate quad layout metrics, but criteria were not given which would make
them a quad layout immersion. Furthermore, the immersed space of a surface under the image of
a quad layout immersion need not be a polygon.

Thus far, the quad layout immersion has relied on principals of smooth topology to define a
bijective, well-defined immersion into the plane. It is worth noting, however, that the immersion
mapping on the completion just needs to be locally bi-Lipschitz with globally bounded Lipschitz
constants for all theory to hold. As a result, the theory for extracting a quad layout from a quad
layout immersion explicitly generalizes to compact Lipschitz (and thus two-dimensional piecewise-
linear [31]) surfaces. As such, the following comparison with surface triangulations and integer grid
maps can be made.

Proposition 2.12. Assume S is a piecewise-linear triangulation. A boundary-aligned integer grid
map [6] that is also an immersion is a quad layout immersion. However, there exist quad layout
immersions which are not integer grid maps.

Proof. An integer grid map cuts a surface into disk topology and cuts to all singularities, after
which it seeks a planar immersion (written embedding in [6, 18]) of the surface. By computation of
a viable cross field, a discrete Poincare-Hopf formula is met [24] which is analogous to the discrete
Gauss-Bonnet formula of Q1. By boundary alignment, Q3 is met. Furthermore, by rotational
constraints on cut edges, Q4 is met. These two, in conjunction with the singularity index of nodes,
implies Q2.

Then the only other object of interest is Q5. But singular vertices are constrained to lie in
Z2. Furthermore, opposite sides of an arc E ∈ A of the surface are constrained to be rotations
and integer translations of each other. As such, a quotient curve with coordinate line lying on
an integer value continues to another coordinate line lying on an integer value. Then quotient

curves of singularities must lie entirely on integers. But S − (P ∪G) is compact, so there are only
a finite number of members of Z2 in Ψ̄(S − (P ∪G)). Thus quotient curves must be finite length
or periodic.

Next, as a simple converse, take the Euclidean axis-aligned rectangle with diagonal bisecting
line from vertices (0, 0) and (a, b), with a, b irrational. This is a quad layout. Identifying pairs of
sides will also lead to a quad layout on an annulus or a torus.

Note that the above example of a non-integer coordinate layout is in some sense trivial, and
can easily be rescaled. In general, after a set of rescalings, any parametric description of a quad
layout can be given parametric integer coordinates. However, this rescaling must generally be
globally anisotropic. Without prior knowledge of the entire cell structure, producing such a globally
anisotropic rescaling is highly nontrivial. Furthermore, without care it will distort the original
metric.

3. Computational Results

In this section, some basic results are shown to computationally verify the above theory. As
suggested by Proposition 2.12, no computation makes use of integer grid maps. Instead, linear
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constraints enforcing that the quad layout align to surface features and boundaries are prescribed
as [21]; topological constraints enforcing quotient curves to be of finite length are enforced as
proposed in [11, 21].

3.1. Annulus with Singularities

Perhaps the simplest non-trivial example which demonstrates the above theory is presented by
an annulus with a cone singularity on a cone of angle 3π

2
and a cone singularity on a cone of angle

5π
2

. Such a configuration is displayed in Figure 1, with the cone of larger angle shown as a point
in blue, the lesser angle cone in red. After computation using discrete surface Ricci flow [23, 44]
with Neumann boundary conditions, the surface is cut to a topological disk (curves in blue) with
additional cuts to the singularities (cuts in red). After cutting, vertices and edges of the mesh along
the cuts are multiply defined, as expected from the completion topology. Using this information,
the completion of the cut surface can then be immersed as seen on the right of Figure 1.

Notice that the image on the right is not an embedding, but rather simply an immersion. This
can be seen by the domain overlap near the point in blue on the left. Furthermore, note that the
boundary curves (shown in green) are represented by curves with constant u and v coordinates.
Additionally, positive and negative sides of cut curves under the immersion are given by rotations of
kπ
2
, k ∈ Z and translations. Finally, the quad layout is given as unions of curves which are constant

in u or v, and is depicted by the curves given in black and green (the minimal set of quotient
curves). Though discontinuous in the cut topology, these curves are continuous and smooth in the
original surface topology which is rebuilt as the quotient space of the cut mesh topology. Notice
that all quotient curves are either periodic (e.g. green boundary curves) or finite (e.g. all curves
emanating from singularities).

3.2. Curved L-Shaped Domain

Another basic geometry illustrating the proposed theory is the curved L-shaped domain of Fig-
ure 10. This surface was generated by imposing constraints as in [21] on boundaries, holonomy,
and connectivity between singularities while minimizing a symmetric Dirichlet energy [34] using
composite majorization [32] via Progressive Parameterizations [26]. Again, note that curvilinear
objects in the quadrilateral layout are straight lines in the immersion which have been glued to-
gether. Here, the boundary quotient curve is periodic, while all other curves displayed in the layout
are finite and terminate between a singularity and a boundary or between two singularities.

3.3. Double Torus

The subtle difference between two partial quad layout immersions—one with finite length quo-
tient curves and one without—is depicted in Figure 11. Here, though both geometries have very
similar cutting graphs and cone singularity structures, one has finite-length quotient curves while
the other heuristically represents an immersion that does not (for which extraction of quotient
curves is instead terminated prematurely). Both immersions are initially computed by integrating
holomorphic one-forms [19].
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Figure 10: A quad layout (below-right) and its quad layout immersion (above-left) of a curved L-shaped
domain is shown. Here, an internal cone singularity with cone of angle 5π

2 is shown in blue, while internal
cone singularities with cones of angles 3π

2 red. Note that curvilinear arcs on the original surface geometry
emanating from singularities (black) and tracing boundaries (green) are combinations of curves on the
immersed geometry which have constant u or v coordinate. Because this is a topological disk, no cuts are
necessary to simplify the surface homology, though jagged curves in red are cuts made to cone singularities.
Note that in the immersed topology, opposite sides of the same curves have parametric coordinates that
are simple rotations of each other by kπ

2 , k ∈ Z.
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(a) Two partial quad layout immersions on a double torus

(b) The set of quotient curves emanating from singularities of each immersion (in green)

Figure 11: Two partial quad layout immersions are computed as the integrals of different holomorphic one-
forms [19] with slightly different singularity locations. Above, cutting graphs (in blue) and immersions for
both structures are shown. Below, all quotient curves emanating from singularities on both immersions are
extracted and represented on the spatial domain. While the quotient curves of Ψ2 are finite, the quotient
curves of Ψ1 are terminated prematurely. Heuristically, this represents a partial quad layout immersion
that does not have finite length quotient curves.
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3.4. DEVCOM Generic Hull Bracket

In addition to simple geometries, the theory of the quad layout immersion also applies to
more complicated geometries of engineering interest. In Figure 12, a quad layout and its respective
feature-aligned quad layout immersion on the symmetric part of a bracket of the DEVCOM Generic
Hull vehicle are displayed. The immersion here was computed using the approach outlined in [21],
with the additional caveat that face-based singularities of the frame field were transferred to vertex-
based singularities by subdividing the face and attaching the singularity to the vertex at the original
face’s barycenter.

Remark 3.1. In general, the cone singularity structure on a surface (e.g. embedded in R3) will not
simply be a subset of that on the quad layout metric. Particularly for this bracket, the surface
embedded in three-dimensional Euclidean space has boundary cone singularities at all points with
sharp angles, including all of those shown in magenta and red, as well as two displayed in green.
These points are typically called “features.” In this metric, there are no internal singularities. Un-
der the flat metric induced by the quad layout immersion, each red and magenta point gets mapped
to a boundary singularity. However, the two feature points in green are mapped to boundaries in
the immersion with constant u coordinate. As a result, these points are not boundary cones when
viewed under the flat metric. Similarly, the quad layout metric introduces four interior singular-
ities (shown in blue) that are not present in the original geometry. Here, boundary alignment
constraints require cut segments of the bracket hole to be mapped to (geodesic) lines of constant u
or v coordinates under the quad layout immersion. The geodesic curvature lost by the surface in
straightening these boundary segments in the quad layout metric is instead concentrated in these
four additional interior singularities to ensure that the Gauss-Bonnet condition is still obeyed. By
sampling all cone singularities—in both the flat metric as well as the three-dimensional Euclidean
setting—a geometry-aware, feature preserving quad layout is attained. Finally, note that feature
curves in the original geometry (shown in gold) must also be represented by a set of lines in u or v
only on the immersed geometry to remain features in the final parameterization.

4. Conclusion

This paper mathematically establishes an equivalence between a special type of immersion—a
quad layout immersion—and a quadrilateral layout on a surface. The theory for the quad layout
immersion holds for both smooth and piecewise linear topology, making this immersion a strong
computational tool. Furthermore, the quad layout immersion generalizes the notion of an integer
grid map. Simple tests were run to show the computational viability of the theory.

While the quad layout immersion provides a general paradigm in which to extract quadrilateral
layouts of surfaces, generation of quad layout immersions is still a non-trivial operation. Many
techniques for generation of quad layouts seek a set of u and v coordinates on surface triangulations
that satisfy the above constraints (e.g. [4, 6, 21].) However, these techniques cannot generally
guarantee local invertibility of the parametetization (immersion) or finite length quotient curves
(integral curves of frame fields). Future research will explore computational methods with better
guarantees.

Much of the current quadrilateral-only mesh generation literature exploits integer grid maps
(see e.g. [4, 6, 9, 18]). While other frameworks (e.g. [8, 10, 21, 43, 42]) for quadrilateral mesh
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Figure 12: A quad layout (left) and its quad layout immersion (right) of the symmetric part of a bracket of
the DEVCOM Generic Hull is shown. Here, internal cones of angle 5π

2 are shown in blue, boundary cones
of angles 3π

2 and π
2 are shown in magenta and red, respectively, and feature nodes which are not parametric

cones are displayed in green. Note that curvilinear arcs on the original surface geometry emanating from
singularities (black), tracing boundaries (green), and following geometric features (gold) are combinations
of curves on the immersed geometry which have constant u or v coordinate. Curves in blue represent
cuts made on the mesh to make the bracket a topological disk, while curves in red are cuts made to cone
singularities. Note that in the immersed topology, opposite sides of the same curves have parametric
coordinates that are simple translations and rotations of each other by kπ

2 , k ∈ Z.
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generation exist, it is not clear that these have been explored fully. Future work should look into
methods which can yield quadrilateral layouts without the stipulations imposed by integer grid
maps.

Finally, this work lays out mathematical theory, but it does not provide a comprehensive com-
putational framework for how to extract a quad layout from a quad layout immersion. Subsequent
work will describe data structures and algorithms necessary to extract a quad layout from a valid
quad layout immersion.
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29(4):1489–1496, 2010.

[31] J. Rosenberg. Applications of analysis on Lipschitz manifolds. Miniconference on harmonic
analysis and operator algebras. In M. Cowling, C. Meaney, and W. Moran, editors, Proceedings
of the Center for Mathematical Analysis, volume 16, pages 269–283, Canberra, AUS, 1987.
Centre for Mathematical Analysis, The Australian National University.

[32] A. Shtengel, R. Poranne, O. Sorkine-Hornung, S. Z. Kovalsky, and Y. Lipman. Geometric
optimization via composite majorization. ACM Trans. Graph., 36(4):38:1–38:11, July 2017.

[33] L. Simons and N. Amenta. All-quad meshing for geographic data via templated boundary
optimization. Procedia Eng., 203:388–400, 2017.

[34] J. Smith and S. Schaefer. Bijective parameterization with free boundaries. ACM Trans. Graph.,
34(4):70:1–70:9, July 2015.

[35] M. Spivak. A Comprehensive Introduction to Differential Geometry, volume 1. Publish or
Perish, Inc., Houston, TX, 3 edition, 1999.

[36] M. Spivak. A Comprehensive Introduction to Differential Geometry, volume 2. Publish or
Perish, Inc., Houston, TX, 3 edition, 1999.

[37] D. J. Struik. Lectures on Classical Differential Geometry. Dover Publications, Inc, New York,
second edition, 1988.

[38] C. Thomassen. The Jordan-Schonflies Theorem and the classification of surface. Am. Math.
Mon., 99(2):116–131, February 1992.

[39] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadrangulations with
discrete harmonic forms. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing, SGP ’06, pages 201–210. Eurographics Association, 2006.

30



[40] B. Urick, T. M. Sanders, S. S. Hossain, Y. J. Zhang, and T. J. R. Hughes. Review of patient-
specific vascular modeling: Template-based isogeometric framework and the case for CAD.
Arch. Comput. Methods Eng., 26(2):381–404, 2019.
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5. Supplementary Material

5.1. Mathematical Concept Review

The following section reviews a number of concepts from topology and geometry. Woven through
this will be a discussion on concepts essential to the topological and geometric story of quad layouts.
The reader more familiar with point set, algebraic, and differential topology, as well as differential
geometry, may wish to simply skim this for relevant highlights and notation.

5.1.1. Topological Concepts

Topology describes the notion of proximity between objects. Of particular interest in topology
is whether functions preserve proximity (called continuous functions) and whether these functions
have nice properties such as reversibility. A function which is continuous will be called a map. An
invertible continuous function whose inverse is also continuous is called a homeomorphism. For
our purposes, we say a neighborhood is “connected” if for every point in the neighborhood there is
a path entirely in the neighborhood to every other point in the neighborhood.

For general domains X (not necessarily embedded in Euclidean space), a metric is a function
d : X ×X → R in which

1. d(x, y) ≥ 0, with equality only if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all y

A space with a metric is called a metric space, and it has an induced topology defined by open
sets at each x ∈ X whose distance from a base point is less than some value, and written

Br(x) = {y ∈ X : d(x, y) < r}.

A Cauchy sequence is an infinite set of points {xi}∞i=1 ⊂ X such that for any ε > 0,∃N ∈ N such
that d(xM , xM+1) < ε for each M ≥ N . A metric space X is complete if every Cauchy sequence
converges to a point in X. The Cauchy completion of a metric space X is the union of X with
the set of all limit points of Cauchy sequences in X, and is unique for the metric space. If {xi}∞i=1

is a sequence in X such that for any ε > 0,∃N ∈ N such that d(xM , x) < ε for each M ≥ N , the
sequence limits to x, and x is the limit point. A set is closed if it contains all of its limit points.

In the Euclidean plane R2, an open ball of radius r > 0 at a point p, denoted Br(p) is

Br(p) := {x ∈ R2 : dR2(p, x) < r},

where dR2 : R2 × R2 → R is the typical Euclidean metric. Taken as a Banach space, this metric is
written dR2(p, x) = ||p− x||R2 . An open half-ball at the origin of radius r > 0 is written as

HBr := {x = (x1, x2) ∈ R2 : ||x||R2 < r, x2 ≥ 0}.

Frequently, spaces are described as an amalgamation of local phenomena. An open cover of a
domain X is a family U of open sets Uι such that

⋃
ι Uι = X. By definition, a compact space is
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Figure 13: An initial rectangle is operated on by two different quotient maps, Q1 and Q2. Under both,
opposite sides of the rectangle are glued to make the resulting arrow directions align. The first results in
a Möbius band, while the second gives an annulus. Note that when each is embedded in R3, the normals
of the annulus are well-defined when transported about a loop, while the normals on the Möbius band are
not.
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Figure 14: A homotopy between curves γ0 and γ1 on a sphere, relative to their endpoints.

one in which every open cover has a subfamily which also covers X and is finite. This subfamily is
called a subcover.

A topology of particular interest in this work is the quotient topology, which is given as a
mathematical gluing operation. This is most easily expressed pictorially. In Figure 13, two edges of
a rectangle are glued in such a way that arrows on the glued sides, after gluing, point in the same
direction. The first of these results in a Möbius band, while the second yields a cylinder. Note
that after gluing, a much shorter path can be used to travel between points on either side of the
boundary than before.

Another topology of interest in this paper is that of a two-manifold, also known as a surface.
A closed surface is an object in which every point has a neighborhood which is homeomorphic to

a two-dimensional open ball. An open surface is an object in which every point has a neighborhood
which is either homeomorphic to either a two-dimensional open ball or a two-dimensional open half-
ball. The interior of a surface is the set of all points with neighborhood homeomorphic to an open
ball; the boundary is the remainder of the surface. When a surface’s boundary is not empty, the
union of all connected boundary points will be a set of simply closed curves called the boundary
components. Here, simple means a curve that does not intersect itself.

A path, γ : I→ X is a continuous map from the unit interval to a space X. If γ(0) = γ(1), the
path is closed; otherwise it is open. Paths γ0, γ1 to a domain X are homotopic relative to their
endpoints if there is a continuous function F : I × I → X in which F

∣∣
{0}×I = γ0, F

∣∣
{1}×I = γ1,

and F
∣∣
I×{0} = γ0(0), F

∣∣
I×{1} = γ0(1). Here, F is called a homotopy between the curves. One such

homotopy between two curves on a sphere is depicted in Figure 14. Two paths for which such a
homotopy does not exist are called inequivalent.

For two paths γ1, γ2 : I→ X, define path composition γ1 · γ2 : I→M by

(γ1 · γ2) (t) =

{
γ1(2t) 0 ≤ t ≤ 1

2

γ2(2t− 1) 1
2
≤ t ≤ 1

(8)

The fundamental group of space X based at p ∈ X is the group generated by equivalence classes
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Figure 15: Two loops based at point x0 are depicted in a plate with a hole. The loop γ cannot be
continuously deformed to a point without passing outside of the domain, and generates the fundamental
group. The loop η is homotopically equivalent to the constant path.

of closed paths with start and end at p in the domain X which are homotopically inequivalent, and
is written π1(X, p). The group operation is given by path composition. The zero element of this
group is the set of paths which are homotopically equivalent to the constant path (a single point),
and the inverse operation is traveling the same path in opposite direction. Figure 15 depicts two
curves: η is homotopy equivalent to the constant path, where γ is homotopically non-trivial. For a
path-connected space, π1(X, p) is equivalent to π1(X, q) for any p, q ∈ X, and so this group is often
abbreviated as π1(X).

Let f0, f1 : X → Y be two maps. f0 is homotopic to f1 if there is a map F : X × I→ Y with
F
∣∣
X×{0} = f0, F

∣∣
X×{1} = f1, and is written f0 ' f1. If f : X → Y and g : Y → X are maps with

g◦f ' IdX and f ◦g ' IdY , with IdX being the identity function on X (and similarly for IdY ), then
the spaces X and Y are said to be homotopy equivalent. A space which is homotopy equivalent
to a single point is called contractible. Figure 16 pictorially displays how the space R2 − {0} is
homotopy equivalent to the unit circle (which is not contractible) and how the L-shaped domain is
contractible.

For a connected open surface S, each boundary except one is homotopically inequivalent to
concatenations of the other boundary components. As a result, if k denotes the number of boundary
components in S, max{0, k−1} generators of π1(S) are produced from boundary components. The
genus of a surface is half the number of generators of π1(S) that are not produced from a boundary
component. (For a surface, the number of generators of π1(S) less the number of generators given
by boundary components is always even.) Heuristically, it can be thought of as the number of
“holes” in the object which are not boundary components.

An orientable surface is a surface into which a Möbius band cannot be injectively mapped.
Alternatively, one can think of a non-orientable surface as one that does not have a consistently
defined normal, such as the Möbius band in Figure 13. All closed surfaces embedded in R3 are
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(a) (b)

Figure 16: The domain R2−{0} is homotopy equivalent to the unit circle via the identity of the unit circle
and the map x

||x|| . Similarly, the L-shaped domain is contractible, via the identity on the reentrant point
and the radial projection onto this point.

orientable. The following is an important classical result of surface topology, originally the con-
sequence of the combined theory from [7, 17, 28, 41], but which has since been presented more
cohesively in works such as [38].

Theorem 5.1 (Classification of Surfaces:). Every connected, compact, orientable surface is unique
up to homeomorphism based on its genus (g) and number of boundary components (k).

Another useful object for surfaces is the Euler characteristic, which can be defined for con-
nected, compact, orientable surfaces as

χ(S) = 2− 2g − k

where g is the genus of the surface and k is its number of boundary components. Some basic
topologies of different genus and boundary component count are shown in Figure 17. Notice that
the Euler characteristic can yield the same value for surfaces which are topologically distinct as per
the Classification of Surfaces.

5.1.2. Extensions of Basic Topology

The only assumption made on maps in the previous section was that they are continuous. Often
this representation is too general. Smooth, conformal, and piecewise-linear topologies deal with
maps that are additionally assumed to be differentiable, analytic (in the sense of complex analysis),
and piecewise-linear, respectively. With these additional assumptions come additional structure.
Of particular interest are constructs given in smooth topology.
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(a) g = 1, k = 2,
χ(S) = −2

(b) g = 1, k = 0
χ(S) = 0

(c) g = 0, k = 2,
χ(S) = 0

(d) g = 0, k = 5,
χ(S) = −3

Figure 17: Surfaces with different genus (g) and number of boundary components (k) are depicted. Note
that the Euler characteristic may be the same for topologically distinct objects.

A smooth surface S is a surface in which every point p ∈ S has a neighborhood U(p) ⊂ S
and an accompanying map φp : U(p)→ R2 with the following structure.

1. U(p) is homeomorphic to φp
(
U(p)

)
, which is homeomorphic to an open ball in R2 if p is in

the interior of S, and it is homeomorphic to an open half-ball in R2 if it is on the boundary.

2. If p, q ∈ S with V = U(p) ∩ U(q), then φp ◦ φ−1
q and φq ◦ φ−1

p are differentiable (typically at
least twice differentiable).

A set
(
φpι , Uι

)
is called a chart, and a set of charts covering the surface is called an atlas.

A function, f : M → N , between k-dimensional manifold M and `-dimensional manifold N is
differentiable at p ∈ M if for an atlas on M, (φι : M ⊃ Uι → φι(Uι) ⊂ Rk, Uι), and and atlas on
N , (ϕι̃ : N ⊃ Vι̃ → ϕι̃(Vι̃) ⊂ R`, Vι̃), ϕι̃ ◦ f ◦ φ−1

ι is differentiable at φι(p). A smooth immersion is
a differentiable function with a Jacobian (Frechét derivative) that is globally of full rank. Under
this representation, it has a well-defined inverse locally (by the Inverse Function Theorem). An
embedding is a bijective immersion.

Let M denote an n-dimensional differentiable manifold, p a point in M and let (ϕ : M ⊃ U →
ϕ(U) ⊂ Rn, U) be a chart with p ∈ U . Let two curves γ1, γ2 : (−ε, ε)→M be such that γi(0) = p.
The curves γ1 and γ2 are defined to be equivalent if and only if d

dt
(ϕ ◦ γ1) = d

dt
(ϕ ◦ γ2), where

t ∈ (−ε, ε). The equivalence class of curve γ is denoted γ′(0). The tangent space of M at p,
denoted TpM , is the set of all equivalence classes of curves passing through p, as seen in Figure
18. In this sense, γ′(0) can be interpreted as a tangent vector at point 0 on the curve γ. Two
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Figure 18: The tangent space of a surface at a point is defined by the derivatives of smooth curves on
the surface passing through the point. Here, two smooth, transversal curves have derivative vectors which
form a basis for the tangent space.

curves γ1, γ2 : (−ε, ε)→ S on a surface S in which γ1(0) = γ2(0) = p are transversal at p, written
γ1
−tp γ2, if d

dt
(ϕ ◦ γ1) 6= α d

dt
(ϕ ◦ γ2) for any α ∈ R.

Let ϕ ◦ γ(0) =: x ∈ Rn, and let ηx := d
dt

(ϕ ◦ γ(t))|t=0 be the vector at x of the derivative of
the function composition. Then the push-forward of ηx onto TpM via ϕ−1, denoted (ϕ−1

∗ )x(ηx) :
TxRn → TpM, is given by (ϕ−1

∗ )x(ηx) = [Dϕ−1(x)](η)ϕ−1(x), where Dϕ−1(x) is the Frechét derivative
of ϕ−1 at x ∈ Rn and the subscript ϕ−1(x) = γ(0) = p denotes that the vector is in the tangent
space TpM . Using the vector space structure in Rn and noting that the Frechét derivative is linear,
TpM also inherits a vector space structure. More generally, if f : M → N is a differentiable function
between M and N , and γ : (−ε, ε)→M a curve with γ(0) = p ∈M , then (f∗)p

(
γ′(0)

)
:= (f ◦γ)′(0)

is the push-forward of γ′(0) ∈ TpM to (f∗)p
(
γ′(0)

)
∈ Tf(p)N . Figure 19 shows the push forward

of a vector onto a manifold.
A continuous (or smooth) structure uniting each separate tangent space comes in the form of a

tangent bundle. The tangent bundle of M, written TM, is given by a continuous projection from
the disjoint union of each tangent space onto the manifold π :

⊔
p∈M TpM →M such that π(ηp) = p

for any ηp ∈ TpM , such that addition and scalar multiplication between members in each individual
tangent space (in the typical vector space manner) is well-defined, and such that for every p ∈M,
there is a neighborhood U 3 p and a homeomorphism t̂ :

⊔
q∈U TqM → U × Rn which is also a

vector space isomorphism from every TqM to q×Rn for each q ∈ U (called a local trivialization).
If f : M → N is a differentiable map, then the push-forward map, f∗ : TM → TN is the map
defined by the union of each (f∗)p : TpM → Tf(p)N defined as in the previous paragraph.

A vector field is a continuous map η : M →
⊔
p∈M TpM such that π(η(p)) = p for each p ∈M ,

with π the usual projection map from the tangent bundle to the base space. More generally, a
section of a bundle is a continuous map from the manifold to the bundle—a vector field is simply
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Figure 19: The vector (a, b)x(p) in the tangent space at p in R2 is pushed forward via the map x−1 onto

the manifold M , yielding the vector a ∂
∂x1

∣∣∣
p

+ b ∂
∂x2

∣∣∣
p
.

a section of the tangent bundle. A singularity of a vector field is an isolated point at which the
vector field is zero. The Poincaré-Hopf Theorem implies that every vector field on a closed surface
must have singularities if it is not a topological torus.

Accompanying each vector space, V, is a dual space V ∗ for which members are linear functionals
on members of V (i.e. V ∗ 3 α : V → R). Using this construction, we write the dual to the tangent
space TpM as T ∗pM . Following a similar construct as for the tangent bundle, the dual bundle
is written as T ∗M , and is given by the objects (

⊔
p∈M T ∗pM,π′,M) in conjunction with vector

addition and scalar multiplication on each T ∗pM . Here, π′ :
⊔
p∈M T ∗pM → M acts as π, and

t̂′ :
⊔
q∈U Tq

∗M → U × (Rn)∗ is a homeomorphism, and some isomorphism w′ : (Rn)∗ → Rn is
canonically chosen so that (Id × w′) ◦ t′ : U × Rn is a local trivialization. A covariant tensor of
order m is a multilinear map TM1× · · · × TMm =: (TM)m → R defined on a tensor bundle. Here,
the tensor bundle is defined in a manner analogous to the definition of the covector bundle. The
space of covariant tensors is written as T m(M). Similarly, a contravariant tensor of order m is
a multilinear map map T ∗M1 × · · · × T ∗Mm =: (T ∗M)m → R with space of contravariant tensors
written Tm(M), and a mixed tensor a multilinear map (TM)k × (T ∗M)` → R, whose space is
written T k` (M).

Because the push-forward is a well-defined map, if f : M → N is differentiable with (f∗)p :
TpM → Tf(p)N each a linear transformation, the dual on each tangent space may be defined
and denoted as (f ∗)p : T ∗f(p)N → T ∗pM. If ω : N →

⊔
q∈N T

∗
qN is a section of the cotan-

gent bundle T ∗N , then the pull-back of ω to T ∗M, denoted f ∗(ω), is defined point-wise as

(f ∗)p

(
ω
(
f(p)

))
◦ (f∗)p, and is a section of T ∗M . Similarly, for A ∈ T k(N) is a covariant k-

tensor, the pull-back f ∗(A) ∈ T k(M) is defined point-wise by
[(
f ∗(A)

)
(p)
]
(X1(p), . . . , Xk(p)

)
=
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(a) Riemannian Metric Tensor (b) Induced Surface Metric

Figure 20: In (a), a set of unit-length orthogonal vectors under the Reimannian metric induced by R3 are
depicted on the surface. In (b), the distance metric on the surface induced by the Riemannian metric of
(a) is depicted by contours of increasing distance from point a.

A
(
f(p)

)(
(f∗)p

(
X1(p)

)
, · · · , (f∗)p

(
Xk(p)

))
, with {Xj}kj=1 sections of TM .

Finally, given two vector fields X and Y , the Lie bracket [X, Y ] is the derivative of Y along
the vector field X. If [X, Y ] is zero, then locally there is a well-defined coordinate system on the
surface S defined by the integral curves of X and Y [35, pp. 158]

5.1.3. Differential Geometry

Of primary interest in geometry (and really, the defining object of “geometry”) is the metric
tensor: a symmetric, positive definite member of T 2(M). It is frequently denoted as g or 〈·, ·〉. The
metric tensor generalizes the idea of an inner product onto the manifold, yielding an inner-product
on each tangent space TpM of the manifold.

For a given Riemannian metric 〈·, ·〉 on an arbitrary path-connected manifold M , define the
length of a piecewise-smooth curve γ : I→M by

L(γ) =

∫ 1

0

(
〈γ′(t), γ′(t)〉

) 1
2
dt. (9)

The Riemannian metric induces a distance metric on the manifold, d : M ×M → R. For points
p, q ∈M and the set of all curves {γι}ι in which γι(0) = p, γι(1) = q, the distance is defined by

d(p, q) = inf
γ∈{γι}ι

L(γ). (10)

Despite their similar names, a Riemannian metric tensor and its induced distance metric on the
surface are very different objects, as shown in Figure 20.

When i : S → Rn is an immersion of surface S in Euclidean space, the Euclidean metric tensor
of Rn, 〈·, ·〉E induces a metric tensor on S via the pull-back of the immersion, I := i∗〈·, ·〉E—this is
called the first fundamental form.

An orientable, differentiable surface S embedded in R3 will have a well-defined normal, np at
each point p ∈ S, which is continuous with normals in its neighborhood. The Gauss map for the
surface is given by n : S → S2 ⊂ R3 with p 7→ np, as depicted in Figure 21. Let vp ∈ TpS, so

40



Figure 21: The Gauss map is depicted on a torus. Above, a torus is mapped to the unit sphere via it’s
normal. A particular subsection is highlighted, which is enlarged in the bottom left. Vectors in various
colors depict normal vectors, which are mapped to their respective points in the sphere on the right. The
pushforward of vectors vp and wp in the tangent space of p (used to define the Weingarten map) is also
depicted.
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(a) Negative Gaussian Curvature (b) Positive Gaussian Curvature

Figure 22: Depictions of principal and Gaussian curvatures at points p are given. Here, principal curvatures
established by intersections of normal planes in red and green with the surface, and are shown as curves
in red and green. Gaussian curvature is the product of these principal curvatures. Note that for the
negative curvature case, osculating circles have opposite directions, while in the positive curvature case,
both curvature directions are the same.

n∗(vp) ∈ Tn(p)S2. However, because we are in R3 and np is the unit normal at both p ∈ S and
n(p) ∈ S2, their tangent planes may be identified via ∼: Tn(p)S2 → TpS, vn(p) 7→ vp, where both are
represented in a common basis for R3. Then the Weingarten map wn : TS → TS is defined by
wn(vp) =∼

(
n∗(vp)

)
. The second fundamental form II ∈ T 2(S) is defined by

II(p)(up, vp) := −I(p)
(
wn(up), vp

)
= −i∗〈wn(up), vp〉E (11)

If γ : (−ε, ε)→ i(S) is a curve parameterized by arclength and c(0) = p ∈ i(S), c′(0) = X ∈ Tp(S),
then II(p)(X,X) = 〈c′′(0), n(p)〉E—the second fundamental form is the signed curvature at p of the
curve given by Up ∩N , where Up ⊂ S is a neighborhood of p and N ⊂ R3 is the plane intersecting
X and n(p) (see [36, pp. 123]). Furthermore, the second fundamental form is symmetric, so
for an orthonormal basis Xp, Yp of TpS, the matrix representation of II(p)

(
Xp, Yp

)
is symmetric.

As a result, eigenvalues κ1(p), κ2(p) of of this matrix (called the principal curvatures) can be
extracted, describing the maximal and minimal signed curvatures of curves in normal planes at p,
with orthogonal eigenvectors describing the directions. The value of the function κ : S → R, p →
κ1(p) · κ2(p) is called the Gaussian curvature of S at p. Depictions of negative and positive
Gaussian curvature are represented in Figure 22.

Finally, while this entire discussion hinged on an embedding in R3, Gauss’s Theorema Egregium
states that Gaussian curvature is invariant under local isometries (metric-preserving diffeomor-
phisms). Thus all that is required is a local isometry of a surface with metric in Rn (Gaussian
curvature may be defined in larger codimensions [36, pp. 191–194]) to discuss it’s Gaussian curva-
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Figure 23: Geodesic (κg) and normal (κn) curvatures of a curve, γ, smoothly embedded on a surface and
parameterized by arclength are depicted. Here, γ′ is tangent to the curve, while γ′′ points to the center
of the osculating circle. The unit normal at point γ(s) = p ∈ S, s ∈ I is given by n(p). The unit binormal
at p is given as u(s) = n(p) × γ′(s). The normal curvature of the curve at s is given by κn(s), while the
geodesic curvature of γ at s is given by κg(s).

ture. Such global isometries are guaranteed by the Nash Embedding Theorem, and local isometries
are guaranteed by the Burstin-Janet-Cartan Theorem. Gaussian curvature will play a fundamental
role in the parameterization and quad-layout extraction of a surface.

A neighborhood in a surface is called flat if it isometrically embeds in R2. Each point p in a flat
neighborhood has zero Gaussian curvature [36, pp. 178–179,190–191]. If the Gaussian curvature on
a surface induced by a metric is flat everywhere, it is called a flat metric.

A curve γ immersed in a surface immersed in R3 has inherent curvature which can be expressed
as a combination of its normal and geodesic curvatures. Assume γ : I → S is parameterized by
arclength, with s ∈ I. Under the induced Euclidean metric 〈·, ·〉E, n is the unit normal map and
γ′(s) is the vector tangent to γ at s. Then γ′′(s) is a vector orthogonal to both γ′(s) and n(s) in
the direction of the center of the osculating circle at γ(s) and 1

|γ′′(s)| is the radius of the osculating

circle. Let γ(s) = p ∈ S. Take u(s) as the unit length binormal given by n(p) × γ′(s). Then the
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normal curvature of γ at s is given by

κn(s) = 〈γ′′(s), n(p)〉E .

The geodesic curvature of γ at s is given by

κg(s) = 〈γ′′(s), u(s)〉E .

These are both pictorially represented in Figure 23. (As with Gaussian curvature, geodesic and
normal curvature can be defined for an arbitrary Riemannian metric without embedding in R3.)

Despite appearing to be concepts completely related to a particular embedding in Euclidean
space, Gaussian and geodesic curvatures are intrinsically related to the topology of the surface via
the Gauss-Bonnet Theorem, which states that for surface S with (possibly empty) boundary
∂S, ∫

S

κdS +

∫
∂S

κgd(∂S) = 2πχ(S), (12)

where χ(S) is the Euler Characteristic of the surface. Thus a valid metric must necessarily satisfy
the Gauss-Bonnet Theorem.

A geodesic between points p and q is a critical point of the energy

E(γ) = L(γ) (13)

where γ : I → M has γ(0) = p, γ(1) = q. One such geodesic is a shortest path between p and
q in the specified metric. The parallel translation of a vector V0 ∈ TpM to V1 ∈ TqM is the
representation of of V1 in TqM in which lengths and angles (inherent from the metric tensor) are
preserved as measured from a geodesic between points p and q (see Figure 24). The Levi-Cevita
connection is the set of bijective linear maps, τt : Tγ(0)M → Tγ(1)M induced by parallel translation
such that τt(V0) = Vt. For a curve γ with γ(0) = p ∈M,γ′(0) = Xp, the covariant derivative of
the vector field Y along γ is

∇XpY = lim
h→0

1

h

(
τ−1
h Yγ(h) − Yp

)
.

Computationally, it is represented using Christoffel symbols.
One final tool is necessary for the purposes of this paper. A piecewise smooth loop ω : I→ M

may be defined as the concatenation ω = γ1 · (. . . ) · γn, with the precise parameterization (i.e.
placement of parentheses above) being extraneous for the following purposes. Then one may define
Pω : TpM → TpM as the (invertible, linear) map defined by parallel translation in a loop through
concatenation of geodesics. The holonomy group at p ∈M defined by the Levi-Cevita connection
is

Holp = {Pω : ω is a loop based at p} (14)

The holonomy group at a point is related to the curvature encompassed by the closed loops γ via
the Ambrose-Singer Theorem [1]. In Figure 25, one can see that parallel translation along the
three depicted geodesics yields a rotation by π

2
in the tangent space; this rotation was induced by

the curvature of the domain encompassed by the path. The reduced holonomy group of the
Levi-Cevita connection is

Hol0p = {Pω : ω is a contractible loop based at p}. (15)
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Figure 24: Given a vector in the tangent plane of a surface and a geodesic, γ, parallel translation of
this vector into a different tangent plane under the Levi-Cevita connection maintains vector length and
angle (with respect to the tangent vector of the geodesic curve) in the new tangent plane under the same
Riemannian metric.

A metric is flat if and only if Hol0p is trivial, meaning that Pω is the identity map for any p ∈M [3,
pp. 283].

5.2. Appendix

5.2.1. Proof of Lemma 2.1

We make use of the following lemma.

Lemma 5.2. For a surface S of genus g with k boundary components, there is a set of curves cutting
S into a simply-connected surface in which the intersection of the curves with ∂S is discrete.

Proof. If S is a topological 2-sphere with no boundaries, we are done. Then assume that either g
or k > 0.

Let S be of genus g with k boundary components. If k ≥ 1 pick p ∈ ∂S; otherwise, pick p
arbitrarily. The presentation of the fundamental group π1(S, p) at basepoint p is given by

π1(S, p) =


〈a1, . . . , ag, b1, . . . , bg|[a1, b1] . . . [ag, bg] = 1〉 if k = 0

〈a1, . . . , ag, b1, . . . , bg〉 if k = 1

〈a1, . . . , ag, b1, . . . , bg, c1, . . . , ck−1〉 if k > 1

where 1 is the identity element of the group and [ai, bi] = (a1b1a
−1
1 b−1

1 ) is the commutator of a and
b. Let S/∂S be the quotient space topology with quotient map q : S → S/∂S. Write Sg as an
arbitrary a closed surface of the same genus as S. Then

S/∂S '

{
S if k = 0,

Sg ∨
(∨k

i=2 S1
)

if k ≥ 1.
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Figure 25: A sphere is embedded in R3 takes the induced Euclidean metric. Under the induced Levi-Cevita
connection, a vector is parallel translated in a closed loop on the sphere. Upon return to the base point,
this vector has rotated by π

2 radians. As such, π2 is a member of the holonomy group of the surface at this
base point.

where ∨ represents the wedge sum (see [20] p. 10) and S1 is the one-sphere. Thus, because the
fundamental group respects homotopy equivalences,

π1

(
S/∂S, q(p)

)
=

{
〈a1, . . . , ag, b1, . . . , bg|[a1, b1] . . . [ag, bg] = 1〉 if k ≤ 1

〈a1, . . . , ag, b1, . . . , bg, d1, . . . , dk−1|[a1, b1] . . . [ag, bg] = 1〉 if k > 1.

Because the quotient map is the identity away from ∂S, the generators ai, bi can be represented as
curves with the same image in both S and S/∂S for i = 1, . . . , g. For dj, the loops of S/∂S have
preimages which are curves in S connecting the boundary components. Denote curve corresponding
to the preimage of dj under the quotient map as q−1(dj). Then by construction the set

Γ̂ := {ai}gi=1 ∪ {bi}
g
i=1 ∪

{
q−1(dj)

}k−1

j=1
.1

cuts S into connected components S` such that for each `, π1(S`) = 0. Using the Classification of
Surfaces (Theorem 5.1) to equivalently represent S as the (typical) quotient space of a 4g-sided
polygon with k holes (see e.g. [20] p. 5), it is easy to see that Γ̂ can be chosen to enforce S − Γ̂ is
one connected component and discrete boundary intersection. Here, if g = 0, take this polygon as
a disk with k ≥ 1 boundary components and without any quotient space topology.

1Here, Γ represents basic nonzero elements of the groupoid π1(S, ∂S), but an introduction of relative homotopy
groups is outside the scope of this paper.
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As before, define P̊ := P − ∂S. Because S − p̊ is homotopy equivalent to a surface of genus g
and with (k + #p̊) boundary components, the proof of Lemma 2.1 follows a similar approach as
Lemma 5.2.

Proof of Lemma 2.1. First, note that if P = ∅, g = 0, the surface is a topological sphere, which is
simply connected and the results hold.

Let P̊ = P − ∂S, and define Ŝ = S − P̊ . Because S is Hausdorff, at each p, q ∈ P̊ , define an
open disk-like neighborhood Up, Uq such that Up ∩ Uq = ∅, p ∈ Up, q ∈ Uq. Let h : Ŝ → h(Ŝ) be

a retraction taking each Up − {p} to ∂Up via a radial projection. Here, h(Ŝ) is a surface of genus

g with (k + #P̊ ) boundary components. Then by Lemma 5.2, there is a set of curves with the
prescribed conditions on h(Ŝ).

Using the inclusion, this set of curves maps into S to yield a graph G which satisfies the desired
requirements except P̊ 6⊂ G. To extend G appropriately, let γp be the cutting curve meeting Up.

The intersection is discrete. Let γ̃p = h−1 (∂Up ∩ γp) be the set homeomorphic to [0, 1) in Ŝ and
take the closure of γ̃p in S to get a domain homeomorphic to the unit interval taking (∂Up ∩ γp) to
p. The composition of each γp with each γ̃p yields a set of curves that appropriately extend G.

5.2.2. Direct Proofs for a Quad Layout Immersion Inducing a Quad Layout

The proofs of Lemma 2.4 Theorem 2.11 were simplified using the equivalence of [14] that a quad
layout metric induces a quadrilateral layout. Here, we present the proofs without this assumption.
It is hoped that these will more clearly present the machinery of the tools used, though perhaps at
the expense of more details.

5.2.3. Proof that the Quad Layout Metric’s Cross Field are Locally Integrable

Proof. Because 〈·, ·〉Q is flat, by definition it has zero Gaussian curvature. Then S − (P ∪G) is

locally isometric to R2 (see [36] p. 241). Then for any p ∈ S − P there is some neighborhood Up
with a function φp : Up → φp(Up) ⊂ R2 such that 〈·, ·〉Q = φ∗p(〈·, ·〉R2).

Fix one such p. Because Up is contractible, it has trivial holonomy group, so the components of
the cross field decompose into four unique vector fields, {Xi}4

i=0. By definition of a cross field, these
vector fields are symmetric with a rotation of Xip by π

2
in Tp

(
S − (P ∪G)

)
yielding X[(i+1)mod 4]p .

Let {ei}1
i=0 be the Cartesian basis in R2 with coordinates ui. Then

∇R2

ei
〈(φ∗)(Xm), (φ∗)(Xm)〉R2 =

∂

∂ui

(
〈(φ∗)(Xm), (φ∗)(Xm)〉R2

)
+2
〈
∇R2

ei

(
(φ∗)(Xm)

)
, (φ∗)(Xm)

〉
R2

= 0.

by definition of the covariant derivative under the Levi-Cevita connection on R2. But the first is
zero because

〈(φ∗)(Xm), (φ∗)(Xm)〉R2 = 〈Xm, Xm〉Q = 1.

Furthermore,∇R2

ei

(
(φ∗)(Xm)

)
is just the partial derivative of each component because the Christoffel

symbols in Cartesian coordinates are all zero. Then taking (φ∗)(Xm) =
∑1

j=0 ajej, we have

0 = 2
( 1∑
j=0

aj
∂aj
∂uj

)
=

1∑
j=0

∂(a2
j)

∂ui
.
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Thus each a2
j must be constant, and so must each aj. Hence for each ei

∇R2

ei

(
(φ∗)(Xm)

)
= 0.

Since {ei}1
i=0 form a basis for each tangent space and the covariant derivative under the Levi-Cevita

connection is preserved by isometries,

φ∗
(
∇Q
Xi
Xj

)
= ∇R2

(φ∗)(Xi)

(
(φ∗)(Xj)

)
= 0,

implying that
∇Q
Xi
Xj = 0.

Then because of symmetry of quad layout metric’s Levi-Cevita connection

[Xi, Xj] = ∇Q
Xi
Xj −∇Q

Xj
Xi = 0.

Then for Xi, Xj linearly independent, there is a local coordinate system about p in Up defined by
integration on Xi, Xj (see [35] p. 158).

5.2.4. Alternative Proof of Theorem 2.11

Proof. Proceed as in the earlier proof of the claim to show that the skeletal structure of the integral
curves on S partitions S into a set of quadrilateral domains. However, rather than directly appealing
to the equivalence between a quadrilateral layout and a quad layout metric, here we directly show
that any integral curve of C is finite.

Let Qp be a quotient curve on the surface not traversing a boundary and not containing a
singularity. Then p is in the interior of some face. We are solely interested in the lengths and
angular deviations of Qp, which are preserved by isometric immersions. Thus, construct an isometric
immersion Ψ̃ of the quadrilateral cell containing p as was done in Proposition 2.5. Here, there are
no cuts and no singularities except at the corners of the face, so the isometric immersion will be a
rectangle in order to satisfy local coordinates being integral curves of X0 and X1 of the cross field
C. Then the length of Qp in this rectangle is finite, being a line of constant u or v coordinate.
Similarly, the length of Qp in any other rectangle in which it is contained is finite. Furthermore,
the path of faces traversing this quotient curve is necessarily finite. If it is not a loop, the quotient
curve is also necessarily finite. If the face path is a loop, note that Qp is some line of constant u
or v in this rectangle. But the lengths of each edge traversed in the closed face-path must be the
same, and Qp must intersect at the same height along each rectangle. Then after a loop in the face
paths, it must return to be periodic, and thus of finite length.
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