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Abstract

We propose new quadrature schemes that asymptotically require only four in-plane points
for Reissner-Mindlin shell elements and nine in-plane points for Kirchhoff-Love shell elements in
B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree
p of the elements. The quadrature points are Greville abscissae associated with pth-order B-
spline basis functions whose continuities depends on the specific Galerkin formulations, and the
quadrature weights are calculated by solving a linear moment fitting problem in each parametric
direction. The proposed shell element formulations are shown through numerical studies to be
rank sufficient and to be free of spurious modes. The studies reveal comparable accuracy,
in terms of both displacement and stress, compared with fully integrated spline-based shell
elements, while at the same time reducing storage and computational cost associated with
forming element stiffness and mass matrices and force vectors. The high accuracy with low
computational cost makes the proposed quadratures along with higher-order spline bases, in
particular polynomial orders, p = 5 and 6, good choices for alleviating membrane and shear
locking in shells.

Keywords: Reissner-Mindlin shell theory; Kirchhoff-Love shell theory; isogeometric analysis;
Greville abscissae; membrane and shear locking

1 Introduction

Shells have been dubbed the prima donnas of structural analysis by Ekkehard Ramm [1, 2], aptly de-
scribing their physically complex behavior and the challenges facing the development of numerical
methods. In this paper we address problem of creating shell finite elements within the Isogeo-
metric Analysis (IGA) paradigm, which, in structural mechanics, amounts to employing the same
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kinematic description (i.e., specification of the displacement field) as that being utilized in the defi-
nition of geometry emanating from a Computer Aided Design (CAD) representation [3]. There are
now a number of alternative geometric descriptions that fall into this category, such as B-splines,
NURBS [4], S-splines [5], T-splines [6], U-splines [7], subdivision surfaces [8], etc. However, in
industrial applications, B-splines and NURBS still dominate. At first glance, it would seem that
IGA offers a fundamental advantage in shell modeling, namely, precise, or even exact, geometric
representation, and this is no doubt important as it is well known that even small geometric imper-
fections can significantly affect results in thin shell buckling, indicating numerical approximations
of geometry may also be a primary source of error. The advantages of IGA shell analysis have
been demonstrated across a range of formulations and applications [9–13]. Nevertheless, there are
still major barriers to creating effective IGA shell elements, and these are shared by traditional
finite element methods of all kinds as well. Here our primary concern is on “locking phenomena,”
specifically, transverse shear locking and membrane-bending locking [14–17].

Transverse shear locking is not a consequence of curved shell geometry; it is present as well
in flat plate and straight beam models that emanate from theories permitting transverse shear
deformations, namely, Reissner-Mindlin plate theory and Timoshenko beam theory. There are a
number of procedures in the literature that have been developed to address this phenomenon and
we will not review them here [14, 15, 17–22]. We include this as an issue we must deal with because
it also is present in transverse shear deformable shell theory, the most basic example of which is
referred to as Reissner-Mindlin shell theory.

In our view, in the development of shell finite elements, the main challenge to overcome, and
a remaining open problem, is membrane-bending locking. To the best of our knowledge, there
is no general solution. It is apparent that curved, higher-order, traditional shell elements have
not distinguished themselves heretofore because curvature is the root cause of membrane-bending
coupling, hence locking. It is no wonder that in industrial software there is a heavy reliance on the
lowest-order, four-node, quadrilateral shell elements, despite their inherently low accuracy, because
they are typically flat, or almost flat, and minimize membrane-bending coupling within elements.

Various techniques have been proposed to overcome locking in both finite element analysis
and IGA. These techniques include mixed formulations with displacement, strain and/or stress
unknowns [16, 17, 23–27], reduced and selective integration techniques [14, 19, 28–30], assumed
strain methods [12, 31–37], and enhanced assumed strain methods [38, 39]. Among these approaches,
the reduced and selective integration methods dominate in commercial FEA codes due to their
simplicity and efficiency. In the IGA community, a few research works [14, 30, 40] are dedicated to
alleviating membrane and shear locking in shells, but none have achieved widespread acceptance.
What we would like to have are simple, straightforward, IGA shell elements that would be candidates
for inclusion in industrial scale and commercial general-purpose computer programs.

What we have pursued herein, is a study that starts with the most direct “primal” formulations
of shell finite elements, and adheres to the finite element analysis orthodoxy of using high-enough
accurate Gauss quadrature rules to ensure stability of the stiffness and mass matrices. We note,
just as in the case of traditional finite elements, there are no exact quadrature rules for non-affine
element geometries. So, sufficiently accurate Gauss rules are generally accepted as about the best
one can do.

In addition to Reissner-Mindlin (RM) shell theory [17, 30], we also investigate Kirchhoff-Love
(KL) shell theory [9], which precludes transverse shear deformation, in the same way as for Poisson-
Kirchhoff plate theory and Bernoulli-Euler beam theory. This solves the problem of transverse
shear locking ab initio for KL theory. Another ostensible advantage for KL shell elements based on
the IGA paradigm is that they are “rotation free,” only requiring displacement degrees of freedom,
unlike RM elements, which additionally require rotation or director fields to be independently
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interpolated. However, the implementation of boundary conditions involving rotations or bending
moments requires more thought in KL theory than for RM theory.

Our study focuses on maximally smooth B-splines and NURBS elements of polynomial order
p = 2, 3, 4, 5, and 6 for RM theory, and p = 3, 4, 5, and 6 for KL theory. The in-plane Gauss point
patterns used are (p+ 1)× (p+ 1), or (p+ 1)2 points per Bézier element. We think of these rules as
“full Gauss quadrature.” Very often, in the evaluation of shell finite element performance, displace-
ments are compared to benchmark solutions, but stresses are not. In our experience, displacements
often achieve acceptable accuracy while, at the same time, stresses do not, in fact, they are often
completely unacceptable. For this reason, we advocate evaluating stresses and we do so herein. It
is quite an eye opener.

Based on previous studies, we anticipated severe locking to occur for lower orders of p and miti-
gation of locking for higher orders of p, and indeed this was the case [41]. Furthermore, oscillations
in stress fields for lower-order p are typically completely eliminated for higher orders of p. For orders
p = 5 and 6, we found promising results for all tests considered. It seems higher-order elements
cure a multitude of ills, but, of course, the obvious drawback is the computational cost associated
with the very large number of Gauss quadrature points per element. It might also be thought that
the number of degrees of freedom per element would be an additional concern for increasing p, but
this is not the case in IGA because, for maximally smooth Bézier elements, the number of degrees
of freedom is asymptotically the same for all p, p = 1, 2, 3, ... , etc., unlike for traditional finite
elements, in other words, asymptotically, one control point per element. These orders of p may
seem quite high, but that is probably due to lingering perceptions emanating from experience with
classical finite element analysis. With one control point per element, the order of smooth spline
elements is consonant with p = 1 in traditional finite element analysis. Given these observations, it
seems that the cases p = 5 and 6 might provide robust capabilities of the type desired if, and only
if, the cost of quadrature could be reduced to an acceptable level, independent of p. Developing
this line of thought is the essential contribution of this paper.

From previous studies of integration rules for smooth, spline-based elements, it is known that full
Gauss quadrature amounts to overkill [40, 42–49]. However, here we would like to reduce the number
of points to be substantially less than full Gauss quadrature. A formulation that achieves what seems
to be a minimum number of points is IGA collocation [50–56], which employs the strong residual form
of the variational equations. Greville abscissae, or points, have distinguished themselves as efficient
and effective locations for evaluation points of the residual. From the variational point of view, these
evaluation points may also be viewed as quadrature points. Greville abscissae, which are in one-to-
one correspondence with the control points (i.e., nodes), represent a “one-point” quadrature rule in
the sense that there is only one quadrature point per control point. This was our first attempt [57],
but in the context of Galerkin formulations of shell theories – to make a long story short, it was
not effective for the stress. However, we found that Greville abscissae were effective, in comparison
with full Gauss rules, if we redefined the space that determined the Greville abscissae to include, in
addition to the basis functions, all the derivatives appearing in the weak form of the problem. To
be specific, in the case of maximally smooth RM elements, to determine the Greville abscissae, we
use the larger space of pth-order splines that are Cp−2 continuous. Note that this is one order less
continuity than for maximally smooth pth-order splines, which are Cp−1 continuous. For maximally
smooth KL elements, we use the still larger space of pth-order splines that are Cp−3 continuous.
In both cases, we then solve linear moment fitting equations in each parametric direction to obtain
the weights, and then the two-dimensional quadrature points and weights are generated by a simple
tensor product of the corresponding one-dimensional quantities. This results in, asymptotically, four
in-plane quadrature points per RM shell element and nine in-plane quadrature points per KL shell
element, which are fewer than those required by full Gauss quadrature for all the cases considered,
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and substantially fewer in the higher-order cases, with concomitant reductions in computational
cost. The accuracy of the Greville rules is generally commensurate with full Gauss quadrature, but
asymptotic convergence rates for higher-order elements employing Greville rules are lower than for
those utilizing Gauss rules because the Greville rules miss some higher-order monomials necessary
for the full rate of convergence. Nevertheless, in situations such as these, the absolute accuracy
attained by the higher-order Greville elements is still considerably greater than for the lower-order
elements and more than adequate for practical applications. The concept of Greville points is general
in that it extends to arbitrary unstructured spline meshes, such as for T-splines [6], S-splines [5],
and U-splines [7]. Thus, we anticipate applications to these cases in forthcoming works.

The rest of the paper is organized as follows: Section 2 describes required spline concepts.
Section 3 reviews the basic kinematic assumptions and variational forms for KL and RM shells.
We then describe the Greville quadrature schemes in Section 4. Linear and geometrically nonlinear
numerical calculations are presented in Section 5 followed by conclusions in Section 6.

2 Spline fundamentals

The Ith Bernstein polynomial of degree p on [ξ1, ξ2] can be defined as

Bp
I (ξ) =

(
p

I − 1

)(
ξ2 − ξ
ξ2 − ξ1

)p−I+1( ξ − ξ1

ξ2 − ξ1

)I−1

, (1)

where
(
p
I−1

)
= p!

(I−1)!(p−I+1)! is a binomial coefficient. A univariate quadratic Bernstein basis on
[0, 1] is shown in Figure 1a. A degree p Bézier curve in Rd can be written as

x(ξ) =

p+1∑
I=1

PI B
p
I (ξ), ξ ∈ [ξ1, ξ2], (2)

where PI ∈ Rd is called a control point.

0 1
0

0.2

0.4

0.6

0.8

1

(a) Bernstein basis on [0, 1].

0,0,0 1 2 3 4,4,4
0

0.2

0.4

0.6

0.8

1

(b) B-spline basis, Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}.

Figure 1: A univariate quadratic Bernstein basis (a), a univariate quadratic C1 B-spline basis (b).

A univariate B-spline basis can be defined by a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, which
consists of a non-decreasing sequence of real numbers, ξI ≤ ξI+1, I = 1, . . . , n+p+ 1, where p is the
degree of the B-spline basis and n is the number of basis functions. The Ith B-spline basis function
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of degree p, denoted by Np
I (ξ), can be recursively defined as

N0
I (ξ) =

{
1, if ξI ≤ ξ < ξI+1

0, otherwise

Np
I (ξ) =

ξ − ξI
ξI+p − ξI

Np−1
I (ξ) +

ξI+p+1 − ξ
ξI+p+1 − ξI+1

Np−1
I+1 (ξ).

B-spline basis functions are Cp−mI -continuous across knot ξI , where mI is the multiplicity of ξI in
Ξ. A univariate quadratic B-spline basis is illustrated in Figure 1b.

A B-spline curve of degree p can be written as

x(ξ) =
n∑
I=1

PIN
p
I (ξ), ξ ∈ [ξ1, ξn+p+1]. (3)

For a degree p B-spline with knot vector Ξ, the Ith Greville abscissa [58] is given by

xI =
1

p
(ξI+1 + ξI+2 + · · ·+ ξI+p), I = 1 · · ·n. (4)

Figure 2 illustrates the Greville abscissae for a univariate quadratic B-spline with knot vector
Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}. Note that the number of Greville points is equal to the number of
B-spline basis functions and therefore equal to the number of control points.

0,0,0 1 2 3 4,4,4Knot values

Greville abscissae 0 1/2 3/2 5/2 7/2 4

Knot Greville abscissae

Figure 2: Greville abscissae corresponding to the knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}.

A pth-degree NURBS curve can be represented as

x(ξ) =

n∑
I=1

PIwIR
p
I(ξ), ξ ∈ [ξ1, ξn+p+1], (5)

where the NURBS basis function RpI is defined by

RpI(ξ) =
Np
I (ξ)

W (ξ)
, (6)

where Np
I (ξ) is the Ith p-degree B-spline basis function,

W (ξ) =

n∑
I=1

wIN
p
I (ξ) (7)

is a weighting function, and wI is the weight corresponding to control point PI .
Note that unless it is necessary, the superscript p on the basis functions will be dropped hereafter

for notation simplicity. Higher dimensional analogs to these spline concepts can be created using
tensor products or more advanced construction schemes like hierarchical B-splines [59], T-splines [6],
and U-splines [7].
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3 Shell Formulation

3.1 Shell kinematics

x

y

z Midsurface

ξ1

ξ2

ξ3

G2

G1

G3 = D

A1

A2

A3 = D

X

X̄

x̄

x

g3 = d
g2

g1

a1

a2
a3 = d

Current configuration
Reference configuration

ξ1

ξ2

ξ3

Figure 3: A schematic of shell kinematics.

The reference and current configurations of a shell-like body, as illustrated in Figure 3, can be
parameterized as

X(ξ1, ξ2, ξ3) = X̄(ξ1, ξ2) + ξ3D(ξ1, ξ2), (8)

x(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3d(ξ1, ξ2), (9)

where −h
2 ≤ ξ3 ≤ h

2 , X̄ and x̄ denote the midsurfaces, and D and d denote the directors in
the reference and current configurations, respectively. For conciseness, we will omit the parametric
coordinate ξi in the following description, and adopt the established convention for Latin and Greek
indices (i.e., i = 1, 2, 3 and α = 1, 2).

The base vectors of the midsurface can be written as

Aα = X̄,α, A3 = D =
A1 ×A2

‖A1 ×A2‖
, (10)

aα = x̄,α, a3 = d, (11)

where (·),α denotes ∂(·)/∂ξα. The covariant base vectors at any point in the shell continuum are
defined as

Gα = X,α = X̄,α + ξ3D,α = Aα + ξ3D,α , G3 = X,3 = D, (12)

gα = x,α = x̄,α + ξ3d,α = aα + ξ3d,α , g3 = x,3 = d. (13)

The Green-Lagrange strain tensor E is defined as

E =
1

2
(FTF− I), (14)
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where F = dx/dX is called the material deformation gradient and I is the identity tensor. In
components, it can be written as

Eij =
1

2
(gij −Gij), (15)

where

gij = gi · gj , Gij = Gi ·Gj . (16)

Substituting (12) and (13) into (15) we get

Eαβ =
1

2

[
(aα · aβ + ξ3aα · d,β + ξ3d,α · aβ)− (Aα ·Aβ + ξ3Aα ·D,β + ξ3D,α ·Aβ)

]
, (17)

Eα3 =
1

2

(
aα · d + ξ3d,α · d−Aα ·D− ξ3D,α ·D

)
, (18)

E33 =
1

2
(d · d−D ·D) , (19)

where the higher-order terms with respect to ξ3 are neglected [60].
The inextensibility assumption of the director, i.e. ‖d‖ = 1, leads to

d · d = D ·D = 1, (20)
d,α · d = D,α ·D = 0 (21)

and according to the definition of D we also have Aα ·D = 0 and Aα ·D,β = −D ·Aα,β = D,α ·Aβ .
As a consequence, (17) to (19) become

Eαβ =
1

2

[
(aα · aβ −Aα ·Aβ) + ξ3(aα · d,β + d,α · aβ − 2D,β ·Aα

]
, (22)

Eα3 =
1

2
aα · d, (23)

E33 = 0. (24)

Rewriting the non-zero strains in Voigt notation results in the reduced Green-Lagrange strain vector

Ẽ =

[
ε+ ξ3κ
γ

]
, (25)

where ε, κ and γ are the membrane, bending, and transverse shear strains, respectively, which are
defined as

ε =

 ε11

ε22

2ε12

 , κ =

 κ11

κ22

2κ12

 , and γ =

[
γ1

γ2

]
, (26)

where

εαβ =
1

2
(aα · aβ −Aα ·Aβ), (27)

καβ =
1

2
(aα · d,β + d,α · aβ)−D,β ·Aα, (28)

γα = aα · d. (29)
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For an RM shell, the current director is not necessarily perpendicular to the midsurface. Therefore,
the shear strain γα may be non-zero. In contrast, the Kirchhoff-Love shell theory assumes the
current director to be perpendicular to the midsurface, viz.,

d =
a1 × a2

‖a1 × a2‖
. (30)

In this case, the shear strain γα vanishes and equations (22) to (24) can be further simplified to

Eαβ =
1

2

[
(aα · aβ −Aα ·Aβ) + 2ξ3(−aα,β · d + Aα,β ·D)

]
(31)

= εαβ + ξ3καβ, (32)
Eα3 = E33 = 0, (33)

where now

καβ = −aα,β · d + Aα,β ·D. (34)

Note that compared to the bending strain for an RM shell shown in (28), the derivatives of the
directors d and D are instead transferred to the tangent vectors aα and Aα for a KL shell, as shown
in (34).

3.2 Variational formulation

In this work, we restrict all attention to linear and geometrically nonlinear elastic problems. For
those ends it is sufficient to assume a simple elastic constitutive equation, namely, the Saint-Venant
Kirchhoff material, which can be written as

S̃ = CẼ on Ω, (35)

where Ω is the continuum body with respect to the reference configuration, S̃ is the second Piola-
Kirchhoff stress in Voigt notation and C is the elasticity matrix defined in the curvilinear coordinate
system, which can be calculated as

C = TT
[
Cp 0
0 Cs

]
T, (36)

where T, defined by (69) in Appendix A, is the strain transformation matrix from covariant com-
ponents to local Cartesian components. Further

Cp =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 , Cs = κs
E

2(1 + ν)

[
1 0
0 1

]
(37)

with Young’s modulus E, Poisson’s ratio ν, and shear correction factor κs which is set to be 5
6 in

this work, see [30, 61].
The total potential energy can be written as

Π(u) =
1

2

∫
Ω

ẼTS̃ dΩ−
∫

Ω
uTFb dΩ−

∫
Γt

uTFt dΓt, (38)

where Fb and Ft are the body force and traction which act on Ω and the traction boundary Γt,
respectively. For simplicity, we assume the loads Fb and Ft are independent of the body deformation.
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The weak form of the equilibrium equation follows from the stationary point of the total potential
function Π(u) and can be written as

δΠ(u, δu) =

∫
Ω
δẼTCẼ dΩ−

∫
Ω
δuTFb dΩ−

∫
Γt

δuTFt dΓt = 0. (39)

The linearization of the above variational form of equilibrium yields

L[δΠ(u, δu)] := δΠ(u, δu) + ∆δΠ(∆u, δu) = 0, (40)

where

∆δΠ(∆u, δu) =

∫
Ω

δẼTC∆Ẽ︸ ︷︷ ︸
material stiffness

+ ∆δẼTCẼ︸ ︷︷ ︸
geometric stiffness

dΩ. (41)

Here, the first and second variations of the reduced Green-Lagrange strain δẼ and ∆δẼ are given
as

δẼ =

[
δε+ ξ3δκ

δγ

]
and ∆δẼ =

[
∆δε+ ξ3∆δκ

∆δγ

]
, (42)

where the components of δε, δκ, δγ, ∆δε, ∆δκ and ∆δγ can be obtained by taking the first and
second variations of the strains in (27) to (29) as

δεαβ =
1

2
(δx̄,α · x̄,β + δx̄,β · x̄,α), (43)

δκαβ =
1

2
(δx̄,α · d,β + δx̄,β · d,α + δd,α · x̄,β + δd,β · x̄,α), (44)

δγα = δx̄,α · d + δd · x̄,α, (45)

∆δεαβ =
1

2
(δx̄,α ·∆x̄,β + δx̄,β ·∆x̄,α), (46)

∆δκαβ =
1

2
(δx̄,α ·∆d,β + δx̄,β ·∆d,α + δd,α ·∆x̄,β + δd,β ·∆x̄,α +x̄,α ·∆δd,β + x̄,β ·∆δd,α),

(47)

∆δγα = δx̄,α ·∆d + δd ·∆x̄,α + x̄,α ·∆δd. (48)

The discretizations of the variations of the strains and the resulting stiffness matrices and internal
force vectors are given in Appendix B for convenience. Interested readers are also referred to [30, 62]
for more details.

For a KL shell, the transverse shear strains are zero. Therefore, (42) is reduced to

δẼKL = δε+ ξ3δκ and ∆δẼKL = ∆δε+ ξ3∆δκ. (49)

The components of δε and ∆δε for KL shells are the same as (43) and (46) for RM shells. The
components of δκ and ∆δκ are obtained by taking the first and second variations of the bending
strain καβ in (34) as

δκαβ = −δx̄,αβ · d− x̄,αβ · δd, (50)
∆δκαβ = −δx̄,αβ ·∆d−∆x̄,αβ · δd− x̄,αβ ·∆δd. (51)

for a KL shell. The discretized variations of the strains and their matrix formulations are given in
Appendix C.

The elasticity matrix for a KL shell is reduced to

CKL = TKLCpTKL (52)

where TKL is the in-plane strain transformation matrix from covariant components to local Cartesian
components as defined in (70) in Appendix A.
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4 Greville quadrature

4.1 Definition of Greville quadrature

Numerical integration of a univariate function, f(x), can be written as∫
Î
fdÎ ≈

n∑
I=1

f(xI)wI , (53)

where f is the integrand, Î is the integral domain, {xI}nI=1 are the n quadrature points, and {wI}nI=1

are the corresponding weights. Given a univariate p-degree (p ≥ 2) B-spline basis {NI}nI=1 with an
open knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, we propose a way to determine the quadrature points
and weights as follows: the Greville abscissae {xI}nI=1, calculated from (4), are chosen to be the
quadrature points, and the weights {wI}nI=1 are determined so that the quadrature rule can exactly
integrate all linear combinations of the univariate B-spline basis {NI}nI=1. This can be accomplished
by solving the following moment fitting system of equations

∫
Î N1(ξ)dξ∫
Î N2(ξ)dξ

...∫
Î Nn(ξ)dξ

 =


N1 (x1) N1 (x2) · · · N1 (xn)

N2 (x1)
. . . · · · N2(xn)

...
...

...

Nn (x1) · · · · · · Nn (xn)




w1

w2

...

wn

 , (54)

where the left-hand side contains the moments [63, 64], which are computed exactly using full Gauss
quadrature. As the Greville abscissae are taken as quadrature points, we refer to this quadrature
rule as the Greville quadrature. Figure 4 shows the Greville quadrature points and weights for a
univariate quadratic B-spline basis associated with the knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}.

0,0,0 1 2 3 4,4,4

(0, 0.11765)

(0.5, 0.86275)

(1.5, 1.01961)(2.5, 1.01961)

(3.5, 0.86275)

(4, 0.11765)

Figure 4: Greville quadrature points and weights for a quadratic B-spline basis with knot vector
Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}. Red dots denote the locations of the quadrature points and (·, ·) indicates
(xi, wi), i = 1, 2, · · · , 6.

Note that the Greville quadrature points and weights are calculated with respect to the global
parametric domain of the patch. To utilize the method in existing FEA routines we can easily map
these quadrature points into a parent element coordinate system through an affine mapping. The
mapped quadrature weights can be obtained by dividing computed weights wi by the determinant of
the Jacobian matrix that maps the parametric coordinate system into the parent coordinate system.
Figure 5 illustrates this process with the Greville points and weights given in Figure 4.

For a bivariate B-spline or NURBS basis, the quadrature points and weights are efficiently
obtained through a simple tensor product of the corresponding univariate quantities. Figure 6
illustrates the distribution of Greville quadrature points for a bivariate B-spline basis that are
generated through a tensor product of the univariate quantities shown in Figure 4. Detailed Greville

10



0 1 2 3 4

(1.5, 1.01961)
ξ

ξ̂

-1 0 1
(0, 2.03922)
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Figure 5: Schematic illustration of mapping the global Greville quadrature points and weights, given
in Figure 4, from the parametric coordinate system (ξ) into the parent element coordinate system
(ξ̂).
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Figure 6: Greville quadrature point layout for a bivariate quadratic B-spline basis generated by a
tensor product of the univariate quantities as shown in Figure 4. Quadrature points and elements
are labeled with numbers and circled numbers, respectively. (ξ, η) and (ξ̂, η̂) indicate the global
parametric and parent coordinate systems, respectively.

11



quadrature point and weight information in terms of the parent coordinate system is shown in
Table 1.

Table 1: Parent element quadrature points and weights corresponding to Figure 6.

Element
IDs

Point
IDs Points Weights Element

IDs
Point
IDs Points Weights

1

1
2
7
8

(-1, -1)
(0, -1)
(-1, 0)
(0, 0)

0.05536332179931
0.40599769319493
0.40599769319493
2.97731641676278

9 19
20

(-1, 0)
(0, 0)

0.47981545559400
3.51864667435602

2 3
9

(0, -1)
(0, 0)

0.47981545559400
3.51864667435602 10 21 (0, 0) 4.15840061514802

3 4
10

(0, -1)
(0, 0)

0.47981545559400
3.51864667435602 11 22 (0, 0) 4.15840061514802

4

5
6
11
12

(0, -1)
(1, -1)
(0, 0)
(1, 0)

0.40599769319492
0.05536332179931
2.97731641676278
0.40599769319493

12 23
24

(0, 0)
(1, 0)

3.51864667435602
0.47981545559400

5 13
14

(-1, 0)
(0, 0)

0.47981545559400
3.51864667435602 13

25
26
31
32

(-1, 0)
(0, 0)
(-1, 1)
(0, 1)

0.40599769319493
2.97731641676278
0.05536332179931
0.40599769319493

6 15 (0, 0) 4.15840061514802 14 27
33

(0, 0)
(0, 1)

3.51864667435602
0.47981545559400

7 16 (0, 0) 4.15840061514802 15 28
34

(0, 0)
(0, 1)

3.51864667435602
0.47981545559400

8 17
18

(0, 0)
(1, 0)

3.51864667435602
0.47981545559400 16

29
30
35
36

(0, 0)
(1, 0)
(0, 1)
(1, 1)

2.97731641676278
0.40599769319493
0.40599769319493
0.05536332179931

4.2 Greville quadrature for shells

The Greville quadrature proposed in Section 4.1 lays down a general framework for determining
quadrature points and weights, i.e., preselecting the Greville points as the quadrature points and
then generating the quadrature weights by solving a moment fitting equation system. However, for a
specific isogeometric Galerkin formulation, a proper integration accuracy is necessary to ensure that
the resulting linear equation system is stable and accurate. By construction, the Greville quadrature
rule can exactly integrate all B-spline basis functions {NI}nI=1 adopted in (54). Therefore, one can
easily control the quadrature accuracy by using specific B-spline bases to build the quadrature rule.
In this section, we propose different B-spline bases to build quadrature rules for KL and RMC shells.

Assuming the highest order of derivatives in the Galerkin formulation is k and the univariate
B-spline basis along one of the parametric directions in the Galerkin formulation is

{
Np
I

}n
I=1

with
knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, the Greville quadrature rules for analysis should be con-
structed in a way such that all basis functions

{
Np
I

}n
I=1

and their derivatives of order less than
or equal to k are integrated exactly. In other words, (54) should be satisfied for all functions in{
Np
I,m | 1 ≤ I ≤ n, 0 ≤ m ≤ k

}
. Notice that these functions are equivalent to a set of new B-spline
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basis functions
{
Ñp
I

}ñ
I=1

, with knot vector Ξ̃ obtained by increasing the multiplicity of each interior

knot of Ξ by k. It is preferable to use
{
Ñp
I

}ñ
I=1

to build the Greville quadrature rules, because, in

this way, we can avoid calculating the derivatives of the B-spline basis functions
{
Np
I

}n
I=1

and the
quadrature points are naturally the Greville quadrature points calculated from the knot vector Ξ̃.
In what follows, we will use the notations

Sp0 =
{
Np
I

}n
I=1

and Spk =
{
Ñp
I

}ñ
I=1

, k ∈ {1, 2}, (55)

to indicate different B-spline bases.
According to the rules given above, for KL shells, the quadrature rule along one direction will

be constructed with Sp2 , and for RM shells, it will be constructed with Sp1 . A two-dimensional
quadrature rule is simply the tensor product of two one-dimensional quadrature rules as mentioned
in Section 4.1. To distinguish these two quadrature rules for KL and RM shells, we will refer to them
as GREVI-K and GREVI-R, respectively, hereafter. For a cubic B-spline basis with knot vector
Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, the one-dimensional quadrature points and weights for GREVI-K
and GREVI-R are illustrated in Figure 7. It is clear that the GREVI-R and GREVI-K rules, asymp-
totically, only involve two and three quadrature points in each parametric direction per element,
respectively, regardless of the basis degrees. Consequently, only four and nine in-plane quadrature
points are required for RM and KL shell elements.

0,0,0,0 1,1,1 2,2,2 3,3,3 4,4,4,4

(0, 0.125)

(0.33333, 0.375)

(0.66667, 0.375) (3.33333, 0.375)

(3.66667, 0.375)

(4, 0.125)

(3, 0.25)(1, 0.25)
(2.66667, 0.375)(1.33333, 0.375)

(2, 0.25)
(2.33333, 0.375)(1.66667, 0.375)

(a) GREVI-K.

0,0,0,0 1,1 2,2 3,3 4,4,4,4

(0, 0.15021)

(0.33333, 0.26155)

(0.66667, 0.60189) (3.33333, 0.60189)

(3.66667, 0.26155)

(4, 0.15021)

(2.66667, 0.47899)(1.33333, 0.47899)
(2.33333, 0.50735)(1.66667, 0.50735)

(b) GREVI-R.

Figure 7: Quadrature points and weights of GREVI-K and GREVI-R for a cubic B-spline basis
with knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. Red dots denote the locations of the quadrature
points, and (·, ·) indicates the global quadrature point and weight pair (xi, wi).

Remarks.

1. The Greville quadrature weights are not always positive for an arbitrary knot vector. For
example, if a knot interval of Ξ is extremely small compared to adjacent intervals, it is possible
for the GREVI-K and GREVI-R quadrature rules to exhibit negative weights locally. Quadrature
rules with negative weights are prone to instability and not preferred in engineering analysis. In
this work we confine ourselves to uniform knot vectors. With uniform knot vectors we only see
negative weights for the GREVI-K rule with p = 4. How to effectively remove the negative weights
for arbitrary knot vectors is non-trivial and will be addressed in future work.

2. For p = 2, the multiplicities of the interior knots of the resulting knot vector Ξ̃ will be three
for GREVI-K. Therefore, each element is an independent Bézier patch and the quadrature rule
needs to be determined on the element level through (54). The resulting quadrature points will
be distributed by the Simpson’s rule, and unfortunately the two coincident quadrature points at
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the element interface can not be combined into one point due to the discontinuous second order
derivatives [49]. As a result, the number of quadrature points will be the same as for full Gauss
quadrature and thus we will not explore the case of p = 2 for GREVI-K further.

4.3 Stability and accuracy of Greville quadrature

Numerical stability requires that the discrete Galerkin forms be rank sufficient under quadrature.
Reduced quadrature rules used in traditional C0-continuous FEA may lead to unstable systems, i.e.,
the numerically integrated stiffness matrix being rank-deficient and the system producing spurious
zero-energy modes. The proposed Greville quadrature schemes can be regarded as reduced quadra-
ture rules for shell analysis utilizing higher-order smooth spline discretizations. In this section,
we investigate their stability and accuracy by studying the generalized eigenvalue problem in the
context of a flat plate discretized with KL shell elements. This problem is critical because the flat
geometry uncouples membrane and bending behavior and the treatment of each does not inherit
stabilization from the other. As the transverse shear strains are always coupled with the bending
strains for RM shells, sorting out the shear modes alone is challenging. So we studied the bending
and shear modes together with RM shells, which shows that the proposed quadratures are free of
spurious modes. Detailed results are omitted for conciseness.

4.3.1 The generalized eigenvalue problem

The discrete generalized eigenvalue problem takes the form

(K− λM)Ψ = 0, (56)

where λ is the eigenvalue corresponding to the eigenvector Ψ, K is the material stiffness matrix of
the KL shell described in Section 3, and M is the mass matrix with

MIJ = t

∫
A
ρNINJ dA, (57)

where t is the shell thickness and ρ the mass density. For the displacement-based KL shell formula-
tion considered above, both K and M are neq×neq square matrices, where neq denotes the number
of degrees of freedom. In this case, there exist neq eigenvalues and corresponding eigenvectors that
satisfy (56). For a given mode, finite element error estimates give the following error bound in terms
of the relative error of the eigenvalues [65, 66],

λhl − λl
λl

≤ c
(
hλ

1/(2k)
l

)2(p+1−k)
, (58)

where λl and λhl are the lth analytical and FEA eigenvalues, respectively, h is the mesh size, k is
the highest order of derivatives and c is a constant independent of h and λl.

We examine the generalized eigenvalue problem (56) for a square elastic plate with Young’s
modulus E = 1000, Poisson’s ratio ν = 0, mass density ρ = 1000, thickness t = 0.1, and edge
length L = 10. As the geometry is a flat plate, the bending and membrane stiffness are decoupled.
Therefore, the bending and membrane modes can be explored separately by applying different
constraints

ux = uy = 0 and uz = 0, (59)

which result in three out-of-plane and three in-plane rigid body modes, respectively, as shown in
Figures 8a and b. In these cases, the stiffness matrix K is positive semi-definite and the mass matrix
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y z

(a) Out-of-plane rigid body modes for ux = uy = 0.

(b) In-plane rigid body modes for uz = 0.

Figure 8: Rigid body modes. Dashed lines indicate initial configurations.

M is positive definite. As a consequence, all eigenvalues should be non-negative real numbers, and
the number of zero eigenvalues for each case should be equal to the number of rigid body modes.

Table 2: Reference eigenvalues from full Gauss quadrature with 64×64 maximally smooth elements,
p = 7.

Mode type λ1 λ2 λ3

Membrane 6.9670413427e-02 6.9670413427e-02 7.5020070779e-02
Bending 2.0862971829e-05 4.1713658653e-05 4.1713659232e-05

Numerical results with the proposed GREVI-K and GREVI-R quadratures verify that the re-
sulting bending and membrane stiffness matrices have rank deficiency 3 for all mesh sizes and
degrees considered, p = 3 to 6 for bending and p = 2 to 6 for membrane. Additionally, Figure 9
illustrates the convergence of the relative error of the three smallest non-zero eigenvalues. The ref-
erence eigenvalues λl, l ∈ {1, 2, 3}, given in Table 2, are obtained from full Gauss quadrature with
64×64 maximally smooth elements with p = 7. Note that here we use GREVI-R for the membrane
modes because only first derivatives are required but use GREVI-K for the bending modes as sec-
ond derivatives are present. Figures 9a, c and e illustrate that all three eigenvalues with GREVI-R
converge to the reference solutions. The convergence rates are 4 for p = 2, 3 and approximately 5 for
p = 4 to 6. According to (58), the convergence rate is optimal for p = 2. Figures 9b, d and h show
that GREVI-K achieves optimal rates for p = 3. For p ≥ 4, the convergence rates are not optimal
but they are all greater than 4 before the differences between λhl and λl stall at about 10−13, which
is close to machine precision. We note that [65] gives an error estimate for numerical integration in
the context of C0-continuous finite elements. However, this error estimate seems conservative for
higher-order continuous IGA and cannot explain the convergence rates we see here for eigenvalue
analyses and that we will see later for shell benchmarks. The same observation has been made
in [49]. Interested readers are referred to [49, 65] for more details.

Tables 3 to 4 list the smallest 50 non-zero eigenvalues corresponding to the membrane modes
for p = 2 and 3 with 50× 50 elements. As can be seen, the eigenvalues produced by the GREVI-R
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quadrature scheme are almost identical to those obtained from full Gauss quadrature, which shows
that the proposed GREVI-R rule is free of spurious modes [40, 49, 57]. For higher p the accuracy
gets even better and the results are omitted here. Similar observation can be obtained for GREVI-K
with the bending modes as shown in Tables 5 to 6 for p = 3 and 4. Note that the eigenvalues in
these tables are sorted in an ascending order.
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(c) Second membrane mode.
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(d) Second bending mode.
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(e) Third membrane mode.
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(f) Third bending mode.

Figure 9: Convergence of the relative error of the three smallest eigenvalues: membrane modes with
GREVI-R (left column) and bending modes with GREVI-K (right column). Reference eigenvalues
λl, l ∈ {1, 2, 3}, obtained from full Gauss quadrature with 64 × 64 maximally smooth elements,
p = 7, are tabulated in Table 2.
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Table 3: List of the smallest 50 non-zero eigenvalues corresponding to membrane modes from full
Gauss quadrature and GREVI-R, p = 2 and 50× 50 maximally smooth elements.

l GAUSS GREVI-R ratio l GAUSS GREVI-R ratio
1 6.96704e-02 6.96704e-02 1.00000 26 7.94834e-01 7.94832e-01 1.00000
2 6.96704e-02 6.96704e-02 1.00000 27 7.94834e-01 7.94832e-01 1.00000
3 7.50201e-02 7.50201e-02 1.00000 28 8.17504e-01 8.17503e-01 1.00000
4 9.86960e-02 9.86960e-02 1.00000 29 8.88266e-01 8.88264e-01 1.00000
5 9.86960e-02 9.86960e-02 1.00000 30 8.88266e-01 8.88264e-01 1.00000
6 9.86961e-02 9.86961e-02 1.00000 31 8.88267e-01 8.88266e-01 1.00000
7 1.83254e-01 1.83254e-01 1.00000 32 9.67027e-01 9.67024e-01 1.00000
8 1.83254e-01 1.83254e-01 1.00000 33 9.67027e-01 9.67024e-01 1.00000
9 2.25664e-01 2.25664e-01 1.00000 34 1.05281e+00 1.05281e+00 1.00000
10 3.11077e-01 3.11077e-01 1.00000 35 1.05281e+00 1.05281e+00 1.00000
11 3.11077e-01 3.11077e-01 1.00000 36 1.10888e+00 1.10888e+00 1.00000
12 3.26054e-01 3.26054e-01 1.00000 37 1.11267e+00 1.11266e+00 1.00000
13 3.37540e-01 3.37539e-01 1.00000 38 1.12017e+00 1.12016e+00 0.99999
14 3.94784e-01 3.94784e-01 1.00000 39 1.20535e+00 1.20535e+00 1.00000
15 3.94784e-01 3.94784e-01 1.00000 40 1.20535e+00 1.20535e+00 1.00000
16 3.94784e-01 3.94784e-01 1.00000 41 1.27578e+00 1.27576e+00 0.99999
17 4.53845e-01 4.53844e-01 1.00000 42 1.31309e+00 1.31308e+00 0.99999
18 5.15234e-01 5.15233e-01 1.00000 43 1.31309e+00 1.31308e+00 0.99999
19 5.19052e-01 5.19052e-01 1.00000 44 1.39427e+00 1.39426e+00 0.99999
20 5.19052e-01 5.19052e-01 1.00000 45 1.41493e+00 1.41492e+00 1.00000
21 6.24449e-01 6.24447e-01 1.00000 46 1.53668e+00 1.53667e+00 0.99999
22 6.31537e-01 6.31536e-01 1.00000 47 1.57533e+00 1.57531e+00 0.99999
23 6.31537e-01 6.31536e-01 1.00000 48 1.57915e+00 1.57913e+00 0.99999
24 7.23353e-01 7.23351e-01 1.00000 49 1.57915e+00 1.57913e+00 0.99999
25 7.72993e-01 7.72992e-01 1.00000 50 1.57915e+00 1.57914e+00 1.00000
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Table 4: List of the smallest 50 non-zero eigenvalues corresponding to membrane modes from full
Gauss quadrature and GREVI-R, p = 3 and 50× 50 maximally smooth elements.

l GAUSS GREVI-R ratio l GAUSS GREVI-R ratio
1 6.96704e-02 6.96705e-02 1.00000 26 7.94828e-01 7.94850e-01 1.00003
2 6.96704e-02 6.96705e-02 1.00000 27 7.94828e-01 7.94850e-01 1.00003
3 7.50201e-02 7.50201e-02 1.00000 28 8.17498e-01 8.17519e-01 1.00003
4 9.86960e-02 9.86961e-02 1.00000 29 8.88264e-01 8.88271e-01 1.00001
5 9.86960e-02 9.86961e-02 1.00000 30 8.88264e-01 8.88271e-01 1.00001
6 9.86960e-02 9.86961e-02 1.00000 31 8.88264e-01 8.88271e-01 1.00001
7 1.83254e-01 1.83254e-01 1.00000 32 9.67011e-01 9.67069e-01 1.00006
8 1.83254e-01 1.83254e-01 1.00000 33 9.67011e-01 9.67069e-01 1.00006
9 2.25664e-01 2.25665e-01 1.00001 34 1.05281e+00 1.05283e+00 1.00002
10 3.11076e-01 3.11079e-01 1.00001 35 1.05281e+00 1.05283e+00 1.00002
11 3.11076e-01 3.11079e-01 1.00001 36 1.10887e+00 1.10892e+00 1.00005
12 3.26053e-01 3.26056e-01 1.00001 37 1.11263e+00 1.11277e+00 1.00012
13 3.37539e-01 3.37542e-01 1.00001 38 1.12014e+00 1.12024e+00 1.00009
14 3.94784e-01 3.94785e-01 1.00000 39 1.20533e+00 1.20539e+00 1.00005
15 3.94784e-01 3.94785e-01 1.00000 40 1.20533e+00 1.20539e+00 1.00005
16 3.94784e-01 3.94785e-01 1.00000 41 1.27576e+00 1.27582e+00 1.00005
17 4.53842e-01 4.53852e-01 1.00002 42 1.31305e+00 1.31319e+00 1.00011
18 5.15232e-01 5.15239e-01 1.00001 43 1.31305e+00 1.31319e+00 1.00011
19 5.19050e-01 5.19058e-01 1.00001 44 1.39424e+00 1.39434e+00 1.00007
20 5.19050e-01 5.19058e-01 1.00001 45 1.41492e+00 1.41496e+00 1.00003
21 6.24447e-01 6.24453e-01 1.00001 46 1.53663e+00 1.53682e+00 1.00012
22 6.31532e-01 6.31550e-01 1.00003 47 1.57522e+00 1.57560e+00 1.00024
23 6.31532e-01 6.31550e-01 1.00003 48 1.57914e+00 1.57917e+00 1.00002
24 7.23345e-01 7.23373e-01 1.00004 49 1.57914e+00 1.57917e+00 1.00002
25 7.72982e-01 7.73024e-01 1.00005 50 1.57914e+00 1.57917e+00 1.00002
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Table 5: List of the smallest 50 non-zero eigenvalues corresponding to bending modes from full
Gauss quadrature and GREVI-K, p = 3 and 50× 50 maximally smooth elements.

l GAUSS GREVI-K ratio l GAUSS GREVI-K ratio
1 2.08630e-05 2.08630e-05 1.00000 26 5.28783e-03 5.28785e-03 1.00000
2 4.17137e-05 4.17137e-05 1.00000 27 5.28783e-03 5.28785e-03 1.00000
3 4.17137e-05 4.17137e-05 1.00000 28 7.39174e-03 7.39178e-03 1.00001
4 1.24771e-04 1.24771e-04 1.00000 29 7.42810e-03 7.42814e-03 1.00000
5 1.24771e-04 1.24771e-04 1.00000 30 7.42810e-03 7.42814e-03 1.00000
6 3.16962e-04 3.16962e-04 1.00000 31 7.93716e-03 7.93720e-03 1.00001
7 3.16962e-04 3.16962e-04 1.00000 32 7.99509e-03 7.99514e-03 1.00001
8 4.13337e-04 4.13337e-04 1.00000 33 8.09602e-03 8.09606e-03 1.00001
9 4.96973e-04 4.96973e-04 1.00000 34 8.09602e-03 8.09606e-03 1.00001
10 5.01329e-04 5.01329e-04 1.00000 35 1.01617e-02 1.01618e-02 1.00001
11 1.08714e-03 1.08714e-03 1.00000 36 1.01791e-02 1.01792e-02 1.00001
12 1.08714e-03 1.08714e-03 1.00000 37 1.21776e-02 1.21777e-02 1.00001
13 1.21814e-03 1.21814e-03 1.00000 38 1.21776e-02 1.21777e-02 1.00001
14 1.21814e-03 1.21814e-03 1.00000 39 1.38504e-02 1.38506e-02 1.00001
15 1.53034e-03 1.53034e-03 1.00000 40 1.38504e-02 1.38506e-02 1.00001
16 1.53034e-03 1.53034e-03 1.00000 41 1.44907e-02 1.44908e-02 1.00001
17 2.25235e-03 2.25235e-03 1.00000 42 1.44907e-02 1.44908e-02 1.00001
18 2.50753e-03 2.50754e-03 1.00000 43 1.53842e-02 1.53844e-02 1.00001
19 2.53129e-03 2.53130e-03 1.00000 44 1.53853e-02 1.53855e-02 1.00001
20 3.32868e-03 3.32869e-03 1.00000 45 1.81432e-02 1.81434e-02 1.00001
21 3.32868e-03 3.32869e-03 1.00000 46 1.81432e-02 1.81434e-02 1.00001
22 3.80163e-03 3.80164e-03 1.00000 47 1.84647e-02 1.84649e-02 1.00001
23 3.80374e-03 3.80374e-03 1.00000 48 1.94223e-02 1.94226e-02 1.00001
24 4.35665e-03 4.35666e-03 1.00000 49 1.95280e-02 1.95283e-02 1.00001
25 4.35665e-03 4.35666e-03 1.00000 50 2.29547e-02 2.29550e-02 1.00002
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Table 6: List of the smallest 50 non-zero eigenvalues corresponding to bending modes from full
Gauss quadrature and GREVI-K, p = 4 and 50× 50 maximally smooth elements.

l GAUSS GREVI-K ratio l GAUSS GREVI-K ratio
1 2.08630e-05 2.08630e-05 1.00000 26 5.28779e-03 5.28779e-03 1.00000
2 4.17137e-05 4.17137e-05 1.00000 27 5.28779e-03 5.28779e-03 1.00000
3 4.17137e-05 4.17137e-05 1.00000 28 7.39169e-03 7.39169e-03 1.00000
4 1.24771e-04 1.24771e-04 1.00000 29 7.42795e-03 7.42795e-03 1.00000
5 1.24771e-04 1.24771e-04 1.00000 30 7.42795e-03 7.42795e-03 1.00000
6 3.16961e-04 3.16961e-04 1.00000 31 7.93708e-03 7.93709e-03 1.00000
7 3.16961e-04 3.16961e-04 1.00000 32 7.99501e-03 7.99501e-03 1.00000
8 4.13337e-04 4.13337e-04 1.00000 33 8.09585e-03 8.09586e-03 1.00000
9 4.96973e-04 4.96973e-04 1.00000 34 8.09585e-03 8.09586e-03 1.00000
10 5.01329e-04 5.01329e-04 1.00000 35 1.01615e-02 1.01616e-02 1.00000
11 1.08714e-03 1.08714e-03 1.00000 36 1.01789e-02 1.01789e-02 1.00000
12 1.08714e-03 1.08714e-03 1.00000 37 1.21775e-02 1.21775e-02 1.00000
13 1.21814e-03 1.21814e-03 1.00000 38 1.21775e-02 1.21775e-02 1.00000
14 1.21814e-03 1.21814e-03 1.00000 39 1.38502e-02 1.38502e-02 1.00000
15 1.53033e-03 1.53033e-03 1.00000 40 1.38502e-02 1.38502e-02 1.00000
16 1.53033e-03 1.53033e-03 1.00000 41 1.44901e-02 1.44901e-02 1.00000
17 2.25235e-03 2.25235e-03 1.00000 42 1.44901e-02 1.44901e-02 1.00000
18 2.50753e-03 2.50753e-03 1.00000 43 1.53836e-02 1.53836e-02 1.00000
19 2.53128e-03 2.53128e-03 1.00000 44 1.53847e-02 1.53847e-02 1.00000
20 3.32865e-03 3.32865e-03 1.00000 45 1.81425e-02 1.81425e-02 1.00000
21 3.32865e-03 3.32865e-03 1.00000 46 1.81425e-02 1.81425e-02 1.00000
22 3.80160e-03 3.80160e-03 1.00000 47 1.84644e-02 1.84644e-02 1.00000
23 3.80370e-03 3.80370e-03 1.00000 48 1.94219e-02 1.94219e-02 1.00000
24 4.35663e-03 4.35663e-03 1.00000 49 1.95276e-02 1.95276e-02 1.00000
25 4.35663e-03 4.35663e-03 1.00000 50 2.29539e-02 2.29539e-02 1.00000

5 Numerical examples

We now evaluate the performance of the proposed Greville quadrature rules on several geometrically
linear and nonlinear problems. Two shell formulations are used:

• KL: Kirchhoff-Love shell [9];

• RMC: Reissner-Mindlin shell with a continuous approach to calculate the director [17, 30, 62].

Three different quadrature rules are compared:

• GAUSS: full Gauss quadrature for both KL and RMC shells, defined as (p+1)×(p+1) Gauss
points;

• GREVI-K: Greville quadrature rule for KL shells, constructed from Bspline basis Sp2 in (55).

• GREVI-R: Greville quadrature rule for RMC shells, constructed from Bspline basis Sp1 in (55).

We note that two-point GAUSS quadrature is used along the thickness direction in this work.
For geometrically linear problems, the quality of the stress or resultant force is explored. Two

types of resultant forces are calculated as follows:
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• Bending moments:

mαβ =

∫ h
2

−h
2

ξ3σαβ dξ3, (60)

where σαβ are the components of the in-plane stress, σ, defined in the local Cartesian coordi-
nate system as

σ = CpT̄B̄U, (61)

where Cp is the elasticity matrix given in (37) and U is the solution vector. For RMC shells,
T̄ is the in-plane strain transformation matrix which consists of the first three rows of T
in (69), and B̄ is composed of the first three rows of the strain-displacement matrix whose
nodal submatrix BI is given in (107). For KL shells, T̄ = TKL, which is given in (70), and B̄
consists of the nodal submatrix BI given in (137).

• Membrane forces:

nαβ =

∫ h
2

−h
2

σαβ dξ3. (62)

Stress or resultant force oscillation is commonly seen in standard FEA and IGA. Post-processing
procedures are usually required to achieve smooth stress results. We will demonstrate that the dra-
matic stress or resultant force oscillation, shown in lower-order elements with the proposed quadra-
ture schemes, can be also removed through a commonly used technique, i.e., the L2 projection.

Take the membrane forces nαβ as examples. Assuming
{
Np
I

}n
I=1

is a B-spline basis used for

IGA and
{
Np−1
I

}ñ
I=1

is the corresponding one-order-lower B-spline basis whose continuity is one-
order-lower as well , then the smoothed membrane forces n̄αβ are represented as

n̄αβ =
ñ∑
i=1

Np−1
I n̄αβI , (63)

where the unknown coefficients n̄αβI are solved through the standard L2 projection of the membrane
forces nαβ onto {Np−1

I }ñI=1, i.e.,∫
Â
n̄αβN

p−1
I dÂ =

∫
Â
nαβN

p−1
I dÂ , (64)

where Â is the parametric domain of the midsurface. Note that if a quadrature rule is used for analy-
sis, the same rule is also adopted for projection (64). Therefore, compared to the full GAUSS quadra-
ture, the proposed quadrature rules also help to save computational cost in the post-processing as
they use many fewer quadrature points. We also note that instead of the global projection (64), the
local projection technique [67] and its more compact varients [68, 69] based on dual bases are also
possible options for smoothing stress.
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5.1 Cylindrical shell subject to transverse loading in the radial direction

Figure 10 shows a schematic for a cylindrical shell subject to transverse loading in the radial di-
rection. Although ostensibly a very simple problem, it is very challenging numerically and reveals
several potential shortcomings of elements. This model has radius R = 10, width b = 1, and
thickness t. Young’s modulus and Poisson’s ratio are E = 1000 and ν = 0, respectively. The
cylindrical shell is clamped at one end and subject to a traction, qx = −0.1t3, at the other end. The
analytical membrane force and bending moment, based on static equilibrium, are nexact

11 = qx cos θ
and mexact

22 = −qxR cos θ, respectively, where, as illustrated in Figure 10, θ is the central angle
and the subscripts “11” and “22” indicate the local coordinate components, i.e., those along the
circumferential direction and parallel to the y-axis.

To assess the accuracy of the proposed GREVI-K quadrature, we first explore the convergence
rates for the membrane force in terms of the relative error in the L2-norm. Figure 11 shows that
GREVI-K achieves optimal rates for all investigated degrees p = 3 to 6 and slenderness ratios
R
t = 100, 1000, and 10000, except that the convergence rate deteriorates for p = 6 and R

t = 100.
Note that for coarse meshes, the GREVI-K quadrature seems to obtain slightly worse results than
GAUSS. This is because here all error norms are calculated with GAUSS quadrature, which is biased
toward GAUSS as stress or resultant force is usually more accurate at quadrature points that are
used for analysis. As the meshes are refined, this difference disappears and these two quadrature
rules achieve comparable results. Figure 12 shows the membrane force convergence rates for the
same cases used in Figure 11, but the error norms are calculated with the corresponding quadrature
rules used for analysis. As it shows, GREVI-K and GAUSS now achieve comparable results even
with coarse meshes. However, we note that for p = 4, GREVI-K obtains very small error norms
at some points. This is because, for p = 4, the GREVI-K quadrature has negative weights. When
calculating the L2-norm via numerical integration, the product of the weight and the square of the
absolute error at some quadrature point can be either positive or negative depending on the value of
the weight, and positive and negative products at different quadrature points happen to be canceled
with each other when calculating the summation in the numerical integration.

Figure 13 shows the convergence rates of the bending moment for GREVI-K and GAUSS. As can
be seen, for p = 2, slenderness R

t = 100 and 1000, optimal rates are achieved, and for slenderness
R
t = 10000, even superconvergence rate is obtained. For many other cases, the convergence rates
are lost. One reason for these unexpected convergence rates is the pathology of membrane locking.
In addition, the kinematic assumption given in Section 3.1, i.e., ignoring the second-order terms of
ξ3, also interferes with the convergence rates and eventually levels off the error. We note that this
assumption is widely used as it simplifies the shell formulations and improves the computational
efficiency, and, from the engineering point of view, the error is small enough, especially for thin
shells. Interested readers are referred to [60] for more details about this assumption. Even though
we see reduced convergence rates for bending moment, it is consistent that GREVI-K and GAUSS
obtain similar results for all cases, and higher-order bases achieve better results than lower-order
bases.
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Figure 10: Cylindrical shell subject to transverse loading in the radial direction.

To examine the quality of the resultant force, the membrane force n11, normalized by the
maximum value of the exact solution nexact

11 , for R/t = 100, p = 3, and various numbers of KL
shell elements, is illustrated in Figure 14. As can be seen in Figures 14a and b, GAUSS and
GREVI-K quadratures obtain almost identical results, which oscillates significantly even with 64
elements. Figure 15 verifies that the L2 projection given in (64) can be applied to removing the
membrane force oscillation effectively for both GAUSS and GREVI-K quadrature rules.

In the IGA framework, in addition to the usual post-processing techniques, a simple way to
alleviate the oscillation is elevating the basis order. Figure 16 shows that quintic basis functions
with 16 elements result in smooth membrane force for both GAUSS and GREVI-K rules. In fact,
the results are smooth as well for all p = 6. Again, GREVI-K achieves similar results as GAUSS
for all bases up to p = 6 but with many fewer quadrature points.

For this problem, the bending moment does not show significant oscillations for any p, even the
lowest order considered, p = 3. Figure 17 shows that even with only 16 cubic KL shell elements
both GAUSS and GREVI-K achieve a high quality of the bending moment.

We next explore the behavior of the GREVI-R rule with the RMC shell. Figure 18 shows the
convergence rates for the RMC shell with GAUSS and GREVI-R rules. For p = 2, both GAUSS
and GREVI-R achieve optimal rates with slenderness R

t = 100, but as the slenderness increases,
the RMC shell exhibits increased locking and the convergence is lost completely for R

t = 10000. For
p = 3 to 5, the GREVI-R rule behaves similarly to the GAUSS rule for all slendernesses and obtains
optimal rates. These results clearly show that higher-order bases play a crucial rule in alleviating
locking. Compared to the GAUSS rules, the convergence rates for GREVI-R are slightly reduced
for p = 6 as the error norms get very small. However, from the practical point of view, these
slightly reduced convergence rates are negligible as the accuracy is already adequate for engineering
applications. Note that here the error norms are calculated with the corresponding quadrature rules
used for analysis because GREVI-R has positive weights for all cases with uniform knot vectors.
Additionally, the convergence plots for the bending moment are omitted since similar behavior, as
shown in Figure 13 for KL shells, is observed for RMC shells here.

Figure 19 illustrates that, for quadratic RMC elements and slenderness R/t = 100, the GAUSS
and GREVI-R quadrature rules obtain similar membrane force results which oscillate significantly
even with 128 elements. The L2 projection (64) improves the membrane force quality and obtains
accurate results with 64 elements as shown in Figures 20a and b. Note that the membrane force
quality for RMC shells in Figures 19 and 20 is worse than that for KL shells shown in Figures 14
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Figure 11: Cylindrical KL shell: Membrane force convergence rates for GAUSS and GREVI-K,
increasing slenderness R

t = 100, 1000, 10000, degrees p = 3 to 6, and maximally smooth elements.
The error norms are calculated with GAUSS quadrature. The initial mesh consists of 1×1 elements
and uniform refinement is then used in the circumferential direction.
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Figure 12: Cylindrical KL shell: Membrane force convergence rates for GAUSS and GREVI-K,
increasing slenderness R

t = 100, 1000, 10000, degrees p = 3 to 6, and maximally smooth elements.
The error norms are calculated with the corresponding quadrature rules used for analysis. The
initial mesh consists of 1 × 1 elements and uniform refinement is then used in the circumferential
direction.
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Figure 13: Cylindrical KL shell: Bending moment convergence rates for GAUSS and GREVI-K,
increasing slenderness R

t = 100, 1000, 10000, degrees p = 3 to 6, and maximally smooth elements.
The error norms are calculated with GAUSS quadrature. The initial mesh consists of 1×1 elements
and uniform refinement is then used in the circumferential direction.
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Figure 14: Cylindrical KL shell: Normalized membrane force n11 for GAUSS and GREVI-K, R/t =
100, p = 3, and various numbers of elements.
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Figure 15: Cylindrical KL shell: Normalized membrane force n̄11, smoothed by the L2 projection
(64), for GAUSS and GREVI-K, R/t = 100, p = 3, and various numbers of elements.
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Figure 16: Cylindrical KL shell: Normalized membrane force n11 for GAUSS and GREVI-K, R/t =
100, p = 3 to 6, and 16 elements. Note that for p ≥ 5, the results are free of oscillations.
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Figure 17: Cylindrical KL shell: Normalized bending moment m22 for GAUSS and GREVI-K,
R/t = 100, p = 3, and various numbers of elements.
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Figure 18: Cylindrical RMC shell: Membrane force convergence rates for GAUSS and GREVI-R,
increasing slenderness R

t = 100, 1000, 10000, degrees p = 2 to 6, and maximally smooth elements.
The error norms are calculated with the same quadrature rules used for analysis. The initial mesh
consists of 1× 1 elements and uniform refinement is then used in the circumferential direction.
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Figure 19: Cylindrical RMC shell: Normalized membrane force n11 for GAUSS and GREVI-R,
R/t = 100, p = 2, and various numbers of elements.

and 15, because here only quadratic elements are used rather than cubic elements for KL shells.
Again, once we elevate the basis order to p = 5 and 6, both GAUSS and GREVI-R obtain smooth
membrane force even with only 16 elements as shown in Figure 21.
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Figure 20: Cylindrical RMC shell: Normalized membrane force n̄11, smoothed through the L2

projection (64) of n11 in Figure 19, for GAUSS and GREVI-R, R/t = 100, p = 2, and various
numbers of elements.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Arc length S

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
em

b
ra

n
e

fo
rc

e
n

1
1

×10−4

p = 2

p = 3

p = 4

p = 5

p = 6

Exact

(a) GAUSS.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Arc length S

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
em

b
ra

n
e

fo
rc

e
n

1
1

×10−4

p = 2

p = 3

p = 4

p = 5

p = 6

Exact

(b) GREVI-R.

Figure 21: A cylindrical RMC shell: Normalized membrane force n11 for GAUSS and GREVI-R,
R/t = 100, p = 2 to 6, and 16 elements. Note that for p = 5 and 6, the results are free of oscillations.
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5.2 Clamped square plate subject to a uniformly distributed load

We now analyze a clamped square plate subject to a uniform distributed load as shown in Figure 22a.
The square plate has side length L = 10, Young’s modulus E = 1000, and Poisson’s ratio ν = 0.3.
The thickness t is varied to give a slenderness ratio L

t . The distributed load is set to q = t3.
The maximum displacement at the center of the plate is monitored. The exact solution, based on
Poisson-Kirchhoff thin plate theory, is umax = −0.138173 for all thicknesses [70]. The geometry is
initially modeled with one quadratic element as shown in Figure 22b and h- and k-refinements are
used afterwards. For a flat plate, the membrane and bending strains are decoupled. Therefore, no
membrane locking is present in this problem. Additionally, as KL shells do not suffer from transverse
shear locking, for this problem, we only employ the RMC shell to explore the effectiveness of the
proposed GREVI-R rule along with higher-order bases in alleviating shear locking.

Figures 23a, c and e give an entire view of the convergence of the maximum displacement uz at
the center of the plate. It shows that, for p = 2 and 3, both GAUSS and GREVI-R lock severely
and converge at a similar, slow pace, but higher-order bases ( p ≥ 4 ) alleviate transverse shear
locking effectively and achieve good results even with coarse meshes. Figures 23b, d and f give a
locally enlarged view of the convergence for higher-order bases and coarse meshes. As can be seen,
for p = 4 to 6, the GAUSS and GREVI-R rules also behave similarly.

We then explore the accuracy of the GREVI-R rule for skewed meshes. The initial mesh consists
of one quadratic element shown in Figure 22c, and h- and k-refinements are used to obtain more
refined meshes afterwards. As shown in Figure 24, for both GAUSS and GREVI-R rules, coarse
meshes obtain worse results for all cases than those shown in Figure 23, but again GREVI-R achieves
comparable accuracy with GAUSS for all degrees, see Figures 24b, d and f for locally enlarged views.

Figure 25 gives the computational time comparison between the GAUSS and GREVI-R rules in
computing the stiffness matrix for the clamped square plate problem. Computational efficiency is
significantly improved by the GREVI-R rule. Observed speedups are approximately 50% for p = 2
and more than 90% for p = 5 and 6, as the mesh is refined. Note that the computational time spent
on calculating the quadrature points and weights is also included in the time comparison.

We now investigate the shear stress quality for GREVI-R and GAUSS rules. Figure 26 gives
a numerical reference solution of the transverse shear stress σxz, for slenderness L/t = 100, at
the midsurface, which is obtained with the standard GAUSS quadrature and 32 × 32 maximally
smooth sextic RMC elements. Figure 27 shows that with maximally smooth quadratic elements and
various numbers of elements ranging from 8× 8 to 32× 32, the transverse shear stress σxz oscillates
dramatically for both GAUSS and GREVI-R quadrature rules and the maximum and minimum
values are off from the reference values given in Figure 26. Elevating the basis order alleviates the
oscillation for both quadrature rules as shown in Figure 28 for 8 × 8 elements with degrees p = 3
to 6. As can be seen in Figures 28c and d, for p = 4, the stress oscillation is still obvious for both
quadrature rules but the maximum and minimum values obtained by GREVI-R tend to be very
close to the reference values which are better than those obtained by GAUSS. As we continue to
elevate the basis orders to p = 5 and 6, the stress oscillation starts to disappear for both quadrature
rules, and in these two cases, GAUSS achieves slightly better stress results than GREVI-R. Again,
even though GREVI-R and GAUSS achieve comparable results, GREVI-R is much less expensive
than GAUSS as it uses much fewer quadrature points.
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(a) Schematic.

(b) Initial regular mesh. (c) Initial skewed mesh.

Figure 22: Clamped square plate subject to a uniform distributed load. (a) schematic; (b) initial
regular mesh and control net; (c) initial skewed mesh and control net. The control nets are depicted
by red dots and dashed lines.
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t = 10000, locally enlarged view.

Figure 23: Clamped square plate under a distributed load modeled as an RMC shell: Maximum
deflection uz with GAUSS and GREVI-R, increasing slendernesses Lt = 100, 1000, 10000 and degrees
p = 2 to 6. The initial mesh consists of a regular quadratic element as shown in Figure 22b and h
and k-refinements are used afterwards. Left column: entire view of all data points; Right column:
locally enlarged view of selected data points.
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t = 1000, locally enlarged view.
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Figure 24: Clamped square plate under a distributed load modeled with the RMC shell: Maximum
deflection uz with GAUSS and GREVI-R, increasing slendernesses Lt = 100, 1000, 10000 and degrees
p = 2 to 6. The initial mesh consists of a skewed quadratic element as shown in Figure 22c and h-
and k-refinements are used afterwards. Left column: entire view of all data points; Right column:
locally enlarged view of selected data points.
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Figure 25: Clamped square plate under a distributed load modeled as an RMC shell: Stiffness matrix
compute times for GAUSS and GREVI-R. Note that the time spent on computing the quadrature
points and weights are included for GREVI-R.
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Figure 26: Clamped square plate under a distributed load modeled as an RMC shell: Numerical
reference solution of the shear stress σxz at the middle surface, for slenderness L

t = 100, calculated
with full GAUSS quadrature and 32× 32 maximally smooth sextic elements.
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(a) GAUSS, 8× 8 elements.
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(b) GREVI-R, 8× 8 elements.
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(c) GAUSS, 16× 16 elements.
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(d) GREVI-R, 16× 16 elements.
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(e) GAUSS, 32× 32 elements.
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(f) GREVI-R, 32× 32 elements.

Figure 27: Clamped square plate under a distributed load modeled as an RMC shell: Transverse
shear stress σxz at the middle surface, for slenderness L

t = 100, GAUSS and GREVI-R, and various
numbers of maximally smooth quadratic elements.
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(a) GAUSS, p = 3.
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(c) GAUSS, p = 4.
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(d) GREVI-R, p = 4.
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(e) GAUSS, p = 5.
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(f) GREVI-R, p = 5.
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(g) GAUSS, p = 6.
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(h) GREVI-R, p = 6.

Figure 28: Clamped square plate under a distributed load modeled as an RMC shell: Transverse
shear stress σxz at the midsurface, for slenderness L

t = 100, GAUSS and GREVI-R, 8×8 maximally
smooth elements with degrees p = 3 to 6.

5.3 Scordelis-Lo roof

The Scordelis-Lo roof problem is part of the so-called shell obstacle course [71] and tests a shell
element’s ability to handle both membrane and bending modes. An 80° arc of a cylinder with
radius R = 25, length L = 50, and thickness t = 0.25 or 0.025 is supported on each end by a
rigid diaphragm. It is loaded with its own weight qz = 90. The material has Young’s Modulus,
E = 4.32× 108, and Poisson’s ratio ν = 0. Figure 29 shows the problem setup. The initial mesh of
the whole model consists of 4× 4 maximally smooth elements.

x

yz

rigid diagram

θ = 40◦
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e`1
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Figure 29: Schematic for the Scordelis-Lo roof problem.

The maximum displacement occurs on the free edge at L
2 . For t = 0.25, the usual FEA solution

converges to 0.3006 for KL shells [9] and 0.3024 for RM shells [30, 71]. For t = 0.025, the reference
solution given in [72] is 32.0 for KL shells and we also take it as the reference solution for RM
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shells in this work. The maximum displacement on the free edge at L
2 is monitored and results

for the KL shell are shown in Figure 30. For p = 3 and 4, t = 0.25, as shown in Figure 30a, the
GREVI-K rule obtains slightly worse results than the GAUSS rule with the initial mesh, but with
one refinement they almost achieve identical results that are close to the reference solution. As the
degrees increase to p = 5 and 6, GREVI-K and GAUSS obtain nearly coincident results and, since
locking is alleviated largely by higher-order bases, good results are achieved with even the initial
mesh. As the shell thins, i.e., t = 0.025, membrane locking becomes more severe and the results
converge more slowly for both quadrature rules as shown in Figure 30b. In this case, the GREVI-K
rule achieves superior results for p = 4 while, for p = 5 and 6, the results obtained by GREVI-K
and GAUSS hardly differ from each other.
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Figure 30: Scordelis-Lo roof modeled as a KL shell: Convergence of the maximum displacement uz
with GAUSS and GREVI-K, degrees p = 3 to 6, and maximally smooth elements. The whole roof
is modeled with an initial 4× 4 mesh.

Since this problem is membrane dominated, transverse shear locking is not significant. Figure 31
demonstrates that for p = 3 to 6 the RMC shell with GAUSS and GREVI-R converges in a similar
way as the KL shell with GAUSS and GREVI-K shown in Figure 30. For p = 2, the GREVI-R rule
underperforms the GAUSS rule but otherwise both rules perform about the same.
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Figure 31: Scordelis-Lo roof modeled as an RMC shell: Convergence of the maximum displacement
uz with GAUSS and GREVI-R, degrees p = 2 to 6, and maximally smooth elements. The whole
roof is modeled with an initial 4× 4 mesh.

We then investigate the stress quality for different quadrature rules. Figure 32 gives a numerical
reference of the membrane force n11 for thickness t = 0.25, which is calculated with 64×64 maximally
smooth sextic KL elements and full GAUSS quadrature. The subscript of n11 indicates that the
membrane force component is along the e`1 direction of the local Cartesian coordinate system, which
is chosen to be the circumferential direction at each point as shown in Figure 29. Figure 33 shows
that GREVI-K and GAUSS quadratures obtain comparable membrane force with various numbers
of cubic KL elements and significant oscillations occur for coarse meshes. Figure 34 demonstrates
that elevating basis orders alleviates the force oscillations shown in Figure 33 with a mesh of 8 ×
8 elements, and GREVI-K performs similarly to GAUSS with various basis degrees. Note that
Figures 34e and f still exhibit slightly oscillations, compared with Figure 32, which can be eliminated
immediately with a few more elements.

Figure 35 compares the membrane force between GAUSS and GREVI-R with quadratic RMC
shell elements. As can be seen, the results oscillate significantly and the values are far from the
reference solution shown in Figure 32. Again, the membrane force quality is largely improved by
elevating the basis order as shown in Figure 36 with an 8× 8 element mesh.

From this problem, we once again conclude that elements of order p ≥ 5 perform satisfactorily,
whereas lower-order elements, with the GAUSS, GREVI-K and GREVI-R quadratures do not.
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-3.406e+03

9.075e+00

Figure 32: Scordelis-Lo roof modeled as a KL shell: Numerical reference of the membrane force
n11 for thickness t = 0.25, calculated with full GAUSS quadrature and 64× 64 maximally smooth
elements, p = 6.
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(c) GAUSS, 16× 16 elements.
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(e) GAUSS, 32× 32 elements.

-3.414e+03

2.768e+01

(f) GREVI-K, 32× 32 elements.

Figure 33: Scordelis-Lo roof modeled as a KL shell: Membrane force n11 for GAUSS and GREVI-K
with various numbers of maximally smooth elements, p = 3, t = 0.25.
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(d) GREVI-K, p = 5.
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(e) GAUSS, p = 6.
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2.494e+01

(f) GREVI-K, p = 6.

Figure 34: Scordelis-Lo roof modeled as a KL shell: Membrane force n11 for GAUSS and GREVI-K
with a mesh of 8× 8 maximally smooth elements, p = 4 to 6, t = 0.25.
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(e) GAUSS, 32× 32 elements.

-5.007e+03

3.065e+01

(f) GREVI-R, 32× 32 elements.

Figure 35: Scordelis-Lo roof modeled as an RMC shell: Membrane force n11 for GAUSS and
GREVI-R with various numbers of maximally smooth elements, p = 2, t = 0.25.
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(b) GREVI-R, p = 3.
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(d) GREVI-R, p = 4.
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(e) GAUSS, p = 5.

-3.400e+03

1.177e+02

(f) GREVI-R, p = 5.
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-3.403e+03

2.746e+01

(g) GAUSS, p = 6.

-3.389e+03

6.288e+01

(h) GREVI-R, p = 6.

Figure 36: Scordelis-Lo roof modeled as an RMC shell: Smoothed membrane force n11 for GAUSS
and SGREVI-R with 8× 8 maximally smooth elements, p = 3 to 6, t = 0.25.

5.4 Straight cantilever shell subjected to an end moment

In this section, we study the roll-up of a straight cantilever beam (modeled as a shell) as shown
in Figure 37. This problem is widely used to test the ability of a shell element to handle large
rotations. The beam has a length L = 12, width b = 1, and thickness t = 0.1. It is fixed on one
end and subjected to a uniform line moment m = M/b on the free end, which is applied in 10 equal
load steps. The material has Young’s modulus E = 1.2 × 106, and Poisson’s ratio ν = 0. The
analytical solution for the displacement at the free end is given by ux(M) = [sin( MM0

)M0
M − 1]L and

uz(M) = [1 − cos( MM0
)]M0
M with M0 = EI

L = 25
3 in [73]. The cantilever beam should roll up into

an exact circle for M = 2πM0 with a free end rotation of θ = 2π. The initial mesh consists of
2× 1 maximally smooth B-spline elements with degrees ranging from 2 to 6. Only the RMC shell
is used for this problem as it facilitates the application of the end moment exactly. For KL shells,
the end moment has to be applied by distributing it over two rows of control points [9] or by weak
imposition [74] because of the absence of rotational degrees of freedom.

Figure 38 compares the convergence behavior of the end rotation for the RMC shell with GAUSS
and GREVI-R quadratures. As can be seen in Figure 38a, GAUSS performs slightly better than
GREVI-R for p = 2, but the difference disappears as the polynomial degree increases to p = 3, and
for p = 5 and 6, GREVI-R even achieves better results than GAUSS as shown in 38b.

Figure 39 illustrates the deformed configurations at each load step obtained with GAUSS and
GREVI-R for eight maximally smooth elements and various degrees from p = 2 to 7. Again, GAUSS
(Figures 39a to e) and GREVI-R (Figures 39f to j) give comparable results for all degrees and they
both achieve a full circle starting from p = 5. Figure 40 shows the load-deflection curves of the free
end. As can be seen, with 8 maximally smooth quintic B-spline elements, both GAUSS and GREVI-
R rules trace the exact solutions accurately at each load step. Table 7 lists the total iteration count
and Newton-Raphson iteration information for the last load step. It is clearly shown that the norms
of the global residual force vector for these two quadratures are very close to each other at each
iteration. In addition, it takes the same number of iterations, i.e., 110, in total to achieve a full
circle for both quadratures.
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Figure 37: Cantilever beam subjected to end moment.
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Figure 38: Cantilever beam subjected to an end moment modeled with the RMC shell: Convergence
of the endpoint rotation with GAUSS and GREVI-R, degrees p = 2 to 6, maximally smooth elements
and 10 load steps. The initial mesh consists of 2× 1 elements.
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(a) GAUSS, p = 2. (b) GAUSS, p = 3.

(c) GAUSS, p = 4. (d) GAUSS, p = 5. (e) GAUSS, p = 6.

(f) GREVI-R, p = 2. (g) GREVI-R, p = 3.

(h) GREVI-R, p = 4. (i) GREVI-R, p = 5. (j) GREVI-R, p = 6.

Figure 39: Cantilever beam subjected to an end moment modeled as an RMC shell: Deformed
configurations at each load step for GAUSS and GREVI-R quadrature schemes, p = 2 to 6, and
eight maximally smooth elements.
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Figure 40: Cantilever beam subjected to an end moment modeled as an RMC shell: load-deflection
curve for different quadratures, 8 maximally smooth quintic elements, and 10 load steps.

Table 7: Cantilever beam subjected to an end moment: Newton-Raphson iteration information for
the last step for the RMC shell for GAUSS and GREVI-R rules with 8×1 maximally smooth quintic
elements and 10 load steps. A residual norm of 1 × 108 is used as the tolerance for convergence;
the initial guess of each load step of the Newton-Raphson method is the result of the previous load
step.

Last load
step iteration

Norm of the global residual vector
GAUSS GREVI-R

1 2.1375831e+00 2.1375831e+00
2 1.3784626e+04 1.3772385e+04
3 2.0482486e+03 2.0464766e+03
4 9.0282056e+01 9.0286895e+01
5 1.5191433e+00 1.5372966e+00
6 1.8695243e+01 1.8591616e+01
7 7.2252014e-02 7.2043728e-02
8 2.2772531e+00 2.2790000e+00
9 8.4618374e-04 8.4450531e-04
10 2.1013817e-03 2.1033704e-03
11 1.0278893e-09 1.0262204e-09

Total iteration # 110 110

5.5 Hemispherical shell with a hole

The hemispherical shell problem tests a shell element’s ability to represent combined membrane and
bending modes [75]. The geometry is a hemisphere with radius R = 10, thickness t = 0.04, and an
18° hole as shown in Figure 41. Young’s modulus is E = 6.825× 107 and Poisson’s ratio is ν = 0.3.
The hemisphere is first loaded with four point loads, P = 2, on the equator with alternating sign.
Only one quarter of the hemisphere is modeled due to symmetry. The radial displacement uy at
point B is monitored and compared against a reference solution of 0.0940 [75].

Figure 42 shows that for the RMC shell, GAUSS and GREVI-R again obtain almost identical
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results for various degrees p = 3 to 6, and locking is largely alleviated by the higher-order bases.
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Figure 41: Schematic for the hemispherical shell problem [75].
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Figure 42: Hemispherical shell modeled as an RMC shell: Convergence of the maximum displace-
ment uy at point B for load P = 2 with GAUSS and GREVI-R rules, degrees p = 2 to 6, and
maximally smooth elements. One quarter of the hemisphere is discretized with an initial 4 × 4
mesh.

We then apply the load P = 200 which results in large deformations and rotations. In this case,
the reference solution of the radial displacement uy at point B is -5.86799 [30]. Figure 43 shows the
convergence of the radial displacement at point B for different quadrature rules with 10 equal load
steps. Behaviors consistent with previous benchmarks are observed for this problem, i.e., for p = 2,
GREVI-R is slightly worse than GAUSS, and for p = 3 to 6, they obtain almost identical results.
To achieve a relative displacement error |uB − uref|/|uref| < 5% at point B, for p = 5, both GAUSS
and GREVI-R require 5×5 maximally smooth elements. The deformed configurations of the whole
hemisphere are created by mirroring the quarter deformed configurations through symmetric planes,
as shown in Figure 44. The Newton-Raphson iteration information for different quadratures is listed
in Table 8. As can be seen, GREVI-R rule uses the same number of total iterations as the GAUSS
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Figure 43: Hemispherical shell modeled as an RMC shell: Convergence of the displacement uy at
point B for load P = 200 with GAUSS and GREVI-R, degrees p = 2 to 6, maximally smooth
elements and 10 load steps.

rule, and the convergence speed of the residual force in the last load step is comparable.

Table 8: Hemispherical shell modeled as an RMC shell: Newton-Raphson iteration behavior for
GAUSS and GREVI-R rules with 5 × 5 maximally smooth quintic B-spline elements and 10 load
steps. A residual norm of 1× 107 is used as the tolerance for convergence; the initial guess of each
load step of the Newton-Raphson method is the result of the previous load step.

Last load
step iteration

Norm of the global residual vector
GAUSS GREVI-R

1 1.4142136e+01 1.4142136e+01
2 2.6921064e+04 2.6655923e+04
3 6.4213095e+01 6.3142890e+01
4 3.0618180e+01 3.0807023e+01
5 1.2151047e+00 1.1772578e+00
6 2.1209916e-02 2.0617638e-02
7 1.6804269e-06 1.4196230e-06
8 1.0093059e-08 8.6660068e-09

Total iteration # 91 91
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(a) GAUSS. (b) GREVI-R.

Figure 44: Hemispherical shell and the RMC shell: Deformed configurations with GAUSS and
GREVI-R, maximally smooth quintic B-spline elements, P = 200 and 10 load steps, |uy −
uref|/|uref| < 5% at point B.

6 Conclusions

We proposed Greville quadrature schemes for isogeometric shell analysis. The quadrature points are
chosen to be standard Greville abscissae for B-splines and NURBS, but the spaces from which the
rules emanate are unusual. The proposed scheme for Reissner-Mindlin (RM) shells, referred to as
GREVI-R, is a Greville quadrature scheme based on pth-order basis functions, but with one-order-
lower continuity across element interfaces than the pth-order, maximally smooth, basis functions
used for analysis. The proposed scheme for Kirchhoff-Love (KL) shells, referred to as GREVI-K,
constructs the Greville quadrature points based on pth-order basis functions, but with continuity
two orders lower than the maximally smooth basis used for analysis. The quadrature weights are
determined by solving linear moment fitting equations. Both schemes may be thought of as reduced
integration methods, but their properties are unlike those of standard reduced integration methods,
which typically engender rank deficiency and spurious modes. Our proposed methods are shown,
through eigenvalue analyses, to be free of rank deficiency and spurious modes. At the same time,
they achieve similar accuracy, in terms of both displacement and stress, compared with full Gauss
quadrature.

Asymptotically, regardless of the polynomial degrees, the proposed methods for RM and KL shell
elements only involve four and nine in-plane quadrature points, respectively, per Bézier element,
compared to the usual (p + 1) × (p + 1) = (p + 1)2 in-plane quadrature points for elements with
standard “full” Gauss integration. As increasing the basis order does not asymptotically increase
degrees-of-freedom or the number of quadrature points for higher-order basis functions, the proposed
quadrature schemes provide an efficient and robust way to alleviate locking and provide accurate
displacements and stresses for shells. We also note that the proposed quadrature rules also help
to improve efficiency of post-processing procedures to remove stress oscillations for lower-order
elements.

The present approach to isogeometric RM and KL shell analysis is believed to provide insights
to devise new quadrature rules for IGA. The concept of Greville abscissae is also applicable to
unstructured spline meshes and offers research opportunities in these areas. However, a number of
questions remain and further studies need to be performed. Our work is entirely based on engineering
intuition and numerical studies. A mathematical foundation in terms of rigorous convergence rates
is lacking. We opted to completely avoid rank deficiency and spurious modes, but this entailed more
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Greville points than we initially desired. We think that even better accuracy may be attainable for
the lowest-order cases, but our attempts so far have not attained success. We noticed one case in
which a negative weight occurred for p = 4, but there was no indication of numerical instability for
analysis. We also observed in test problems that non-uniform knot vectors may result in negative
quadrature weights. The problem of maintaining accuracy and guaranteeing all weights are positive
is a problem we hope to study in future work.

In IGA, higher-order curved shell elements mitigate membrane-bending locking. Is this the only
simple and general solution to the problem? We don’t know, but we think it will take special
procedures to do so for lower-order shell elements. In this regard, see the reduced integration work
of C. Adam and colleagues [14, 40]. This is a topic warrants further research.

We started this paper quoting Ekkehard Ramm that shells are the prima donnas of structural
analysis. The truth of that statement, in the context of numerical analysis, is more evident than
ever. There is still much room to improve existing methodology and the search for even better
methods goes on.
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A Strain transformation matrix

The Green-Lagrange strain E can be represented in terms of the contravariant basis vectors {Gi}3i=1

or local Cartesian basis vectors {e`i}3i=1 as

E = EijG
i ⊗Gj = E`ije

`
i ⊗ e`j . (65)

By a change of basis, the relation between the local Cartesian components E`ij and the covariant
components Eij can be written as

E`kl = φikφjlEij , (66)

where

φik = Gi · e`k. (67)

Note that we do not strictly follow the index notation with respect to the subscripts and superscripts
in (65) and (66) because we choose to denote the local Cartesian coordinate bases in a more common
way as e`i . Through (66), we can transform the reduced Green-Lagrange strain vector Ẽ, defined
in (25) for a RM shell, into the local Cartesian coordinate system as

Ẽ` = TẼ, (68)
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where the transformation matrix T is defined as

T =



φ2
11 φ2

21 φ2
31 φ21φ31 φ11φ31 φ11φ21

φ2
12 φ2

22 φ2
32 φ22φ32 φ12φ32 φ12φ22

φ2
13 φ2

23 φ2
33 φ23φ33 φ13φ33 φ13φ23

2φ12φ13 2φ22φ23 2φ32φ33 φ22φ33 + φ32φ23 φ12φ33 + φ32φ13 φ12φ23 + φ22φ13

2φ11φ13 2φ21φ23 2φ31φ33 φ21φ33 + φ31φ23 φ11φ33 + φ31φ13 φ11φ23 + φ21φ13

2φ11φ12 2φ21φ22 2φ31φ32 φ21φ32 + φ31φ22 φ11φ32 + φ31φ12 φ11φ22 + φ21φ12

 . (69)

For a KL shell, a similar transformation matrix for in-plane strains can be defined as

TKL =

 φ11φ11 φ21φ21 φ11φ21

φ12φ12 φ22φ22 φ12φ22

2φ11φ12 2φ21φ22 φ11φ22 + φ21φ12

 . (70)

Note that if the elasticity matrices C and CKL defined in Section 3.2 are directly formulated in the
curvilinear coordinate system [76, 77], the transformation of the reduced Green-Lagrange strain is
not required. However, if the constitutive model is obtained from a independent material library,
the elasticity matrices returned may not be defined in the curvilinear coordinate system. In this
case, the strain transformation process above offers a flexible way to handle the constitutive model.

B Discretization of the variation of the strain for RM shells

In this section, we introduce useful derivations from [30, 62], which are necessary for understanding
and implementing the RM shell formulation employed in this work. This formulation defines the
current director d at the quadrature points based on the continuous rotational concept, which
has been shown to be more accurate in [30, 78], especially for higher-order spline bases, than
interpolating d through the nodal director vectors in a discrete manner [11]. We refer interested
readers to [30, 62] for more details.

B.1 Definition of the current director

The current director is defined as

di(ξα) = ∆Rdi−1(ξα) (71)

where the superscripts i and i−1 indicate Newton-Raphson iterates, ∆R is the incremental rotation
tensor, and

∆R = I + c1∆Ω + c2∆Ω2, c1 =
sin ∆ω

∆ω
, c2 =

1− cos ∆ω

∆ω2
, ∆ω = |∆ω| (72)

where I is a 3× 3 identity matrix, ∆ω = ∆ω(ξα) ∈ Rd is the axial vector of the global incremental
rotation at each quadrature point and

∆Ω =

 0 −∆ω3 ∆ω2

∆ω3 0 −∆ω1

−∆ω2 ∆ω1 0

 . (73)

The derivatives of the director can be written as

di,α = ∆R,αdi−1 + ∆R di−1
,α , (74)
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where

∆R,α = c1,α∆Ω + c1∆Ω,α + c2,α∆Ω2 + c2(∆Ω,α∆Ω + ∆Ω ∆Ω,α) (75)

∆Ω,α = skew∆ω,α, c1,α = ∆ω,α
∆ω cos ∆ω − sin ∆ω

∆ω2
, c2,α = ∆ω,α

∆ω sin ∆ω − 2 + 2 cos ∆ω

∆ω3
,

(76)

∆ω,α =
∆ω,α ·∆ω

∆ω
. (77)

Note that when ∆ω is very small we take the limit values

c1 = 1 , c2 =
1

2
and c1,α = c2,α = ∆ω,α = 0 (78)

to ensure numerical stability.

B.2 Discretization of the variation of the current director

The first variation of d is derived in [62] and can be written as

δd = WTδω, W = skewd, (79)

and the derivatives can be written as

δd,α = WT
,αδω + WTδω,α, W,α = skewd,α. (80)

The second variation of d can be written as

h ·∆δd = δωTM(h)∆ω, (81)

where h is an arbitrary vector and

M(h) =
1

2
(dhT + hdT)− (d · h)I. (82)

The derivatives of ∆δd can be written as

h ·∆δd,α = δωT
,αM(h)∆ω + δωTM,α(h)∆ω + δωTM(h)∆ω,α, (83)

where

M(h),α =
1

2
(d,αhT + hdT

,α)− (d,α · h)I. (84)

The increment of the axial vector and its derivatives are discretized with the spline basis defined
in Section 2, e.g., B-spline basis {NI}nI=1, as

∆ωh =
n∑
I

NI∆ωI =
n∑
I

NIT3I∆βI and ∆ωh,α =
n∑
I

NI,α∆ωI =
n∑
I

NI,αT3I∆βI (85)

where

T3I =

{
[a1I a2I ] for nodes in the smooth regions
I3×3 for nodes along kinks

(86)

aαI = ∆R(∆ωI)a
i−1
αI , ai−1

αI are the current nodal basis vectors (87)
∆ωI = T3I∆βI , ∆βI is the local incremental nodal rotation vector. (88)
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Note that to avoid drilling degrees-of-freedom, in smooth area, ∆βI is chosen to be the local in-
cremental nodal rotation vector which has only two components. However, along kinks, ∆βI is the
global incremental nodal rotation vector, i.e., ∆βI = ∆ωI , which has three components. In this
case, the matrix T3I is reduced to the identity as shown in (86).

The first variation of the director and its derivatives are discretized as

δdh = WhTδωh =

n∑
I=1

TIδβI , (89)

δdh,α =
n∑
I=1

TI,αδβI , (90)

where

TI = WhTNIT3I , (91)

TI,α = [WhT
,α NI + WhTNI,α]T3I . (92)

The second variation of the director and its derivatives are discretized as

h ·∆δdh =

np∑
I=1

np∑
J=1

δβT
I TT

3INIM
h(h)NJT3JδβJ =

np∑
I=1

np∑
J=1

δβT
I q̂

ββ
IJ (h)δβJ (93)

h ·∆δdh,α =

np∑
I=1

np∑
J=1

δβT
I TT

3I [NI,αMh(h)NJ +NIM
h
,α(h)NJ +NIM

h(h)NJ,α]T3JδβJ (94)

=

np∑
I=1

np∑
J=1

δβT
I m̂

ββ
IJ,α(h)δβJ (95)

where

q̂ββIJ (h) = TT
3INIM

h(h)NJT3J (96)

m̂ββ
IJ,α(h) = TT

3I [NI,αMh(h)NJ +NIM
h
,α(h)NJ +NIM

h(h)NJ,α]T3J (97)

and Mh(h) and Mh
,α(h) are calculated by inserting interpolated values of hh and hh,α into (82) and

(84), respectively.

B.3 Matrix formulation

The discretized midsurface x̄h in the current configuration can be written as

x̄h = X̄h + uh, (98)

where the discretized initial midsurface X̄h and displacement uh are represented as

X̄h =
n∑
I=1

PINI , (99)

uh =

n∑
I=1

uINI . (100)
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Substituting x̄h, δdh and δdh,α, computed with (98), (89) and (90), into (43) to (45) gives the
discretized first variation of the strains as

δεh =
n∑
I=1

 NI,1x̄
T
,1

NI,2x̄
T
,2

NI,1x̄
T
,2 +NI,2x̄

T
,1

 δuI ,
δκh =

n∑
I=1

 NI,1d
T
,1 x̄T

,1TI,1

NI,2d
T
,2 x̄T

,2TI,2

NI,2d
T
,1 +NI,1d

T
,2 x̄T

,1TI,2 + x̄T
,2TI,1

[δuI
δβI

]
,

δγh =

n∑
I=1

[
NI,1d

T x̄T
,1TI

NI,2d
T x̄T

,2TI

] [
δuI
δβI

]
.

(101)

Substituting x̄h, δdh, ∆δdh, δdh,α and ∆δdh,α, computed with (98), (89), (93), (90) and (95),
into (46) to (48) gives the discretized second variation of the strains as

∆δεh =

∆δεh11

∆δεh22

2∆δεh12

 , ∆δκh =

∆δκh11

∆δκh22

2∆δκh12

 , and ∆δγh =

[
∆δγh1
∆δγh2

]
, (102)

where

∆δεhαβ =
1

2
(δx̄h,α ·∆x̄h,β + δx̄h,β ·∆x̄h,α) =

np∑
I=1

np∑
J=1

1

2
δuTI (NI,αNJ,β +NI,βNJ,α)I∆uJ , (103)

∆δκhαβ =
1

2

np∑
I=1

np∑
J=1

δuTI [NI,αTJ,β +NI,βTJ,α]∆βJ + δβTI [NJ,βT
T
I,α +NJ,αTT

I,β]∆uJ (104)

+ δβTI (m̂ββ
IJ,β(x̄,α) + m̂ββ

IJ,α(x̄,β))∆βJ , (105)

∆δγhα = δuTI NI,αTJ∆βJ + δβTI NJ,αTT
I ∆uJ + δβTI q̂

ββ
IJ (x̄,α)∆βJ . (106)

Substitution of (101) into the first equation of (42) leads to the nodal strain-displacement matrix

BI =


NI,1x̄

T
,1 + ξ3NI,1d

T
,1 ξ3x̄T

,1TI,1

NI,2x̄
T
,2 + ξ3NI,2d

T
,2 ξ3x̄T

,2TI,2

NI,2x̄
T
,1 +NI,1x̄

T
,2 + ξ3NI,2d

T
,1 + ξ3NI,1d

T
,2 ξ3x̄T

,1TI,2 + ξ3x̄T
,2TI,1

NI,1d
T x̄T

,1TI

NI,2d
T x̄T

,2TI

 . (107)

Therefore, the IJth nodal submatrix of the material stiffness matrix can be written as

Kmat
IJ =

∫
Ω

BT
I CBJdΩ. (108)

Substitution of (102) into (42) and (41) leads the IJth nodal submatrix of the geometric stiffness
matrix as

Kgeom
IJ =

∫
Ω

Kgeom
IJ11

Kgeom
IJ12

Kgeom
IJ21

Kgeom
IJ22

 dΩ, (109)
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where

Kgeom
IJ11

=(NI,1NJ,1S̃
1 +NI,2NJ,2S̃

2 +NI,1NJ,2S̃
3 +NI,2NJ,1S̃

3)I, (110)

Kgeom
IJ12

=ξ3S̃1NI,1TJ,1 + ξ3S̃2NI,2TJ,2 + ξ3S̃3(NI,1TJ,2 +NI,2TJ,1) + (S̃4NI,1 + S̃5NI,2)TJ ,

(111)

Kgeom
IJ21

=ξ3S̃1NJ,1T
T
I,1 + ξ3S̃2NJ,2T

T
I,2 + ξ3S̃3(NJ,1T

T
I,2 +NJ,2T

T
I,1) + (S̃4NJ,1 + S̃5NJ,2)TT

I ,

(112)

Kgeom
IJ22

=ξ3S̃1m̂ββ
IJ,1(x̄,1) + ξ3S̃2m̂ββ

IJ,2(x̄,2) + ξ3S̃3(m̂ββ
IJ,1(x̄,2) + m̂ββ

IJ,2(x̄,1)) + S̃4q̂ββIJ (x̄,1) + S̃5q̂ββIJ (x̄,2).

(113)

Here S̃1 to S̃5 are the stress components of S̃ calculated by (35).
The nodal internal force vector Fint

I is defined as

Fint
I =

∫
Ω

BT
I S̃ dΩ. (114)

The external force vector is calculated using standard approaches for RM shells [61] and omitted
here.

C Discretization of the variation of the strain for KL shells

In this section, we introduce the discretizations of the variations of strains and their matrix formu-
lations for KL shells [9, 79].

C.1 Discretization of the variation of the current director

The current director d for KL shells is defined as (30). The first and second variations of d are
given in [79] as

δd =
1

‖p‖(I− ddT)δp, (115)

∆δd =
1

‖p‖ (∆δp−∆δ‖p‖d) +
1

‖p‖2 (2δ‖p‖∆‖p‖d− δ‖p‖∆p−∆‖p‖δp) , (116)

where

p =x̄,1 × x̄,2, (117)
δp =δx̄,1 × x̄,2 + x̄,1 × δx̄,2, (118)

∆δp =δx̄,1 ×∆x̄,2 + ∆x̄,1 × δx̄,2, (119)
δ‖p‖ =d · δp, (120)

∆δ‖p‖ =∆d · δp + d ·∆δp. (121)

Discretizing δp leads to

δph =
n∑
I=1

HIδuI , (122)

60



where

HI = −NI,1Ω(x̄,2) +NI,2Ω(x̄,1) (123)

and

Ω(h) =

 0 −h3 h2

h3 0 −h1

−h2 h1 0

 (124)

for any vector h = [h1, h2, h3]T.
Discretizing ∆δp leads to

h ·∆δph =

n∑
I=1

n∑
J=1

δuT
I LIJ(h)∆uJ , (125)

where

LIJ(h) = (NI,1NJ,2 +NJ,1NI,2)Ω(h). (126)

Substituting (122) into (115) results in

δdh =
1

‖p‖
n∑
I=1

(I− ddT)HIδuI . (127)

Substituting (122), (125) and (127) into (120) and (121), respectively, results in

δ‖p‖h =

n∑
I=1

dTHIδuI , (128)

∆δ‖p‖h =
n∑
I=1

n∑
J=1

δuT
I

(
1

‖p‖H
T
I (I− ddT)HJ + LIJ(d)

)
δuJ . (129)

Substitution of (122), (125), (128) and (129) into (116) leads to

h ·∆δdh =
1

‖p‖
n∑
I=1

n∑
J=1

δuT
I QIJ(h)∆uJ , (130)

where

QIJ(h) =LIJ(h)− (d · h)

(
1

‖p‖I− LIJ(d)

)
+

1

‖p‖H
T
I ((d · h)ddT − dhT − hdT)HJ . (131)

C.2 Matrix formulation

The discretization of the first variation of the membrane strain, δεh, for KL shells is the same as
the first equation of (101) for RM shell. Therefore, the nodal strain-displacement matrix for the
membrane stiffness is given as

Bm
I =

 NI,1x̄
T
,1

NI,2x̄
T
,2

NI,2x̄
T
,1 +NI,1x̄

T
,2

 . (132)
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Substituting x̄h and δdh into (50), we obtain the discretized first variation of the bending strain as

δκh =

n∑
I=1


−NI,11d

T − 1
‖p‖ x̄

T
,11(I− ddT)HI

−NI,22d
T − 1

‖p‖ x̄
T
,22(I− ddT)HI

−2NI,12d
T − 2 1

‖p‖ x̄
T
,12(I− ddT)HI

 δuI , (133)

δκh =
n∑
I=1

Bb
I δuI , (134)

where

Bb
I =


−NI,11d

T − 1
‖p‖ x̄

T
,11(I− ddT)HI

−NI,22d
T − 1

‖p‖ x̄
T
,22(I− ddT)HI

−2NI,12d
T − 2 1

‖p‖ x̄
T
,12(I− ddT)HI

 (135)

is the nodal strain-displacement matrix for bending stiffness. Then, substituting δεh and δκh into
the first equation of (49) and (41) leads to the IJth nodal submatrix of the material stiffness matrix
as

Kmat
IJ =

∫
Ω

BT
I CKLBJdΩ, (136)

where

BI = Bm
I + ξ3Bb

I . (137)

The discretized second variation of the membrane strain, ∆δεh, for KL shells is the same as the
first equation of (102). Substituting x̄h, δdh and ∆δdh into (51), we obtain the discretized second
variation of the bending strain as

∆δκh =

∆δκh11

∆δκh22

2∆δκh12

 , (138)

where

∆δκhαβ =
1

‖p‖
n∑
I=1

n∑
J=1

δuT
I

(
NI,αβ

(
I− ddT)HJ +NJ,αβH

T
I

(
I− ddT)+ QIJ(x̄,αβ)

)
∆uI . (139)

Substitution of the first equation of (102) and (138) into the second equation of (49) and (41)
leads to the IJth nodal submatrix of the geometric stiffness matrix as

Kgeom
IJ =

∫
A

Kgeom
IJ11

+ Kgeom
IJ22

+ Kgeom
IJ12

dΩ, (140)

62



where

Kgeom
IJ11

=

(
NI,1NJ,1I +

ξ3

‖p‖
(
NI,11

(
I− ddT)HJ +NJ,11H

T
I

(
I− ddT)+ QIJ(x̄,11

))
S̃1, (141)

Kgeom
IJ22

=

(
NI,2NJ,2S̃

2
mI +

ξ3

‖p‖
(
NI,22

(
I− ddT)HJ +NJ,22H

T
I

(
I− ddT)+ QIJ(x̄,22

))
S̃2,

(142)

Kgeom
IJ12

=

(
NI,2NJ,1S̃

3
mI +

2ξ3

‖p‖
(
NI,12

(
I− ddT)HJ +NJ,12H

T
I

(
I− ddT)+ QIJ(x̄,12

))
S̃3.

(143)

Here S̃i is the ith component of S̃ calculated by

S̃ = CKL(ε+ ξ3κ). (144)

The nodal internal force vector Fint
I is defined as

Fint
I =

∫
Ω

BT
I S̃ dΩ. (145)
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