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Galerkin Formulations with Greville
Quadrature Rules for Isogeometric Shell
Analysis: Higher Order Elements and Locking

Thomas J.R. Hughes, Zhihui Zou, Michael A. Scott, Roger A. Sauer, Eshwar J.
Savitha

I am not sure when I first met Peter Wriggers, but it was no later than 1983/84
when he was a postdoc at UC Berkeley. During that time, he and Juan Simo jointly
developed the first consistent tangent operator for contact, a great step forward in
Computational Contact Mechanics. Peter returned to Berkeley in 1988 and came to
Stanford quite often to work with Juan. Over the years, I interacted with Peter in a
multitude of professional capacities and enjoyed and valued his friendship. I visited
him in Hannover in 2009 and, with his assistant, İlker Temizer, we initiated the first
applications of IGA to contact problems. (Tom Hughes)

Abstract We propose new Greville quadrature schemes that asymptotically require
only four in-plane points for Reissner-Mindlin (RM) shell elements and nine in-plane
points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based iso-
geometric shell analysis, independent of the polynomial degree of the elements. For
polynomial degrees 5 and 6, the approach delivers high accuracy, low computational
cost, and alleviates membrane and transverse shear locking.
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1 Introduction

In this paper we address the problem of creating shell finite elements within the
Isogeometric Analysis (IGA) paradigm, which, in structural mechanics, amounts to
employing the same kinematic description (i.e., specification of the displacement
field) as that being utilized in the definition of geometry emanating from a Computer
AidedDesign (CAD) representation [1].We focus onB-splines andNURBS, as these
CAD technologies dominate industrial usage. IGA offers a fundamental advantage in
shell modeling, namely, precise, or even exact, geometric representation, and this is
no doubt important as it is well known that even small geometric imperfections can
significantly affect results in thin shell buckling, indicating numerical approximations
of geometry may also be a primary source of error. Nevertheless, there are still major
barriers to creating effective IGA shell elements, and these are shared by traditional
finite element methods.

A primary concern is “locking phenomena,” specifically, transverse shear locking
and membrane-bending locking. Transverse shear locking is not a consequence of
curved shell geometry; it is present as well for flat plate and straight beam models.
In the development of shell finite elements, the main challenge to overcome, and a
remaining open problem, is membrane-bending locking. It is apparent that curved,
higher-order, traditional shell elements have not distinguished themselves heretofore
because curvature is the root cause of membrane-bending coupling, hence locking. It
is no wonder that in industrial software there is a heavy reliance on the lowest-order,
four-node, quadrilateral shell elements, despite their inherently lowaccuracy, because
they are typically flat, or almost flat, and minimize membrane-bending coupling
within elements thereby.Whatwewould like to have are simple, straightforward, IGA
shell elements that would be candidates for inclusion in industrial scale, commercial
general-purpose computer programs.

We have pursued a study that starts with the most direct “primal” formulations of
shell finite elements, and adheres to the finite element analysis orthodoxy of using
high-enough accurate Gauss quadrature rules to ensure stability of the stiffness and
mass matrices. Just as in the case of traditional finite elements, there are no exact
quadrature rules for non-affine element geometries. So, sufficiently accurate Gauss
rules are generally accepted as about the best one can do. We have investigated
Reissner-Mindlin (RM) shell theory [2, 3] and Kirchhoff-Love (KL) shell theory [4],
which precludes transverse shear deformation and is “rotation free,” only requiring
displacement degrees of freedom, unlike RM elements, which additionally require
rotation or director fields. Our study focused on maximally smooth B-splines and
NURBS elements of polynomial order p = 2, 3, 4, 5, and 6 for RM theory, and p =
3, 4, 5, and 6 for KL theory. The in-plane Gauss point patterns used involve (p+ 1)2
points per Bézier element. Based on previous studies, we anticipated severe locking
to occur for lower orders of p and mitigation of locking for higher orders of p, and
indeed this was the case [5]. For orders p = 5 and 6, we found promising results
for all tests considered. It seems higher-order elements cure a multitude of ills, but,
of course, the obvious drawback is the computational cost associated with the very
large number of Gauss quadrature points per element. These orders of p may seem
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high, but that is probably due to lingering perceptions emanating from experience
with classical finite element analysis. With one control point per element, the order
of smooth spline elements is asymptotically the same as p = 1 in traditional finite
element analysis. Given these observations, it seems that the cases p = 5 and 6 might
provide robust capabilities of the type desired if, and only if, the cost of quadrature
could be reduced to an acceptable level, independent of p.

We endeavored to reduce the number of quadrature points to be substantially
less than full Gauss quadrature. Greville abscissae, which are in one-to-one corre-
spondence with the control points (i.e., nodes), represent a “one-point” quadrature
rule in the sense that there is only one quadrature point per control point. This was
our first attempt, but in Galerkin formulations of shell theories it was not effective.
However, we found that Greville abscissae were effective, if we redefined the space
that determined the Greville abscissae to include, in addition to the basis functions,
all the derivatives appearing in the weak form of the problem. To be specific, in the
case of maximally smooth RM elements, to determine the Greville abscissae, we
used the larger space of pth-order splines that are Cp−2 continuous. Note that this
is one order less continuity than for maximally smooth pth-order splines, which are
Cp−1 continuous. For maximally smooth KL elements, we used the still larger space
of pth-order splines that are Cp−3 continuous. In both cases, we then solve linear,
moment fitting equations in each parametric direction to obtain the weights, and
then the two-dimensional quadrature points and weights are generated by a simple
tensor product of the one-dimensional quantities. This results in, asymptotically, four
in-plane quadrature points per RM shell element and nine in-plane quadrature points
per KL shell element, which are fewer than those required by full Gauss quadrature
for all the cases considered, and substantially fewer in the higher-order cases, with
concomitant reductions in computational cost. The accuracy of the Greville rules is
found to be commensurate with full Gauss quadrature.

2 Greville quadrature

2.1 Definition of Greville quadrature

Numerical integration of a univariate function, f (x), can be written as∫
Î

f dÎ ≈
n∑

I=1
f (xI )wI, (1)

where f is the integrand, Î is the integral domain, {xI }nI=1 are the n quadrature
points, and {wI }

n
I=1 are the corresponding weights. Given a univariate p-degree

(p ≥ 2) B-spline basis {NI }
n
I=1 with an open knot vector Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
,

we propose a way to determine the quadrature points and weights as follows: the
Greville abscissae {xI }nI=1, where xI = 1

p (ξI+1 + ξI+2 + · · ·+ ξI+p), are chosen to be
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the quadrature points, and the weights {wI }
n
I=1 are determined so that the quadrature

rule can exactly integrate all linear combinations of the univariate B-spline basis
{NI }

n
I=1. This can be accomplished by solving the following moment fitting system

of equations 

∫
Î

N1(ξ)dξ∫
Î

N2(ξ)dξ
...∫

Î
Nn(ξ)dξ


=



N1 (x1) N1 (x2) · · · N1 (xn)

N2 (x1)
. . . · · · N2(xn)

...
...

...

Nn (x1) · · · · · · Nn (xn)





w1

w2
...

wn


, (2)

where the left-hand side contains the moments, which are computed exactly using
full Gauss quadrature. As the Greville abscissae are taken as quadrature points, we
refer to this quadrature rule as the Greville quadrature. Figure 1 shows the Greville
quadrature points and weights for a univariate quadratic B-spline basis associated
with the knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}. Note that the Greville quadrature

0,0,0 1 2 3 4,4,4

(0, 0.11765)

(0.5, 0.86275)

(1.5, 1.01961)(2.5, 1.01961)

(3.5, 0.86275)

(4, 0.11765)

Fig. 1: Greville quadrature points andweights for a quadratic B-spline basis with knot
vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}. Red dots denote the locations of the quadrature
points and (·, ·) indicates (xi,wi), i = 1, 2, · · · , 6.

points and weights are calculated with respect to the global parametric domain of
the patch. To utilize the method in existing FEA routines we can easily map these
quadrature points into a parent element coordinate system through an affinemapping.

For a bivariate B-spline or NURBS basis, the quadrature points and weights are
efficiently obtained through a simple tensor product of the corresponding univariate
quantities.

2.2 Greville quadrature for shells

The Greville quadrature proposed in Section 2.1 lays down a general framework for
determining quadrature points andweights, i.e., preselecting theGreville points as the
quadrature points and then generating the quadrature weights by solving a moment
fitting equation system. However, for a specific isogeometric Galerkin formulation, a
proper integration accuracy is necessary to ensure that the resulting linear equation
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system is stable and accurate. By construction, the Greville quadrature rule can
exactly integrate all B-spline basis functions {NI }

n
I=1 adopted in (2). Therefore, one

can easily control the quadrature accuracy by using specific B-spline bases to build
the quadrature rule. In this section, we propose different B-spline bases to build
quadrature rules for KL and RM shells.

Assuming the highest order of derivatives in the Galerkin formulation is k
and the univariate B-spline basis along one of the parametric directions in the
Galerkin formulation is

{
Np
I

}n
I=1 with knot vector Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
, the

Greville quadrature rules for analysis should be constructed in a way such that
all basis functions

{
Np
I

}n
I=1 and their derivatives of order less than or equal to k

are integrated exactly. In other words, (2) should be satisfied for all functions in{
Np
I,m | 1 ≤ I ≤ n, 0 ≤ m ≤ k

}
. Notice that these functions are equivalent to a set of

new B-spline basis functions
{
Ñp
I

} ñ
I=1, with knot vector Ξ̃ obtained by increasing

the multiplicity of each interior knot of Ξ by k. It is preferable to use
{
Ñp
I

} ñ
I=1 to

build the Greville quadrature rules, because, in this way, we can avoid calculating
the derivatives of the B-spline basis functions

{
Np
I

}n
I=1 and the quadrature points are

naturally the Greville quadrature points calculated from the knot vector Ξ̃. In what
follows, we will use the notations

S
p
0 =

{
Np
I

}n
I=1 and S

p
k
=

{
Ñp
I

} ñ
I=1 , k ∈ {1, 2}, (3)

to indicate different B-spline bases.
According to the rules given above, for KL shells, the quadrature rule along one

direction will be constructed with Sp
2 , and for RM shells, it will be constructed

with Sp
1 . A two-dimensional quadrature rule is simply the tensor product of two

one-dimensional quadrature rules as mentioned in Section 2.1. To distinguish these
two quadrature rules for KL and RM shells, we will refer to them as GREVI-K
and GREVI-R, respectively, hereafter. For a cubic B-spline basis with knot vector
Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, the one-dimensional quadrature points and weights
for GREVI-K and GREVI-R are illustrated in Figure 2. It is clear that the GREVI-R
and GREVI-K rules, asymptotically, only involve two and three quadrature points in
each parametric direction per element, respectively, regardless of the basis degrees.
Consequently, only four and nine in-plane quadrature points are required for RM and
KL shell elements.

Remarks.
1. TheGreville quadratureweights are not always positive for an arbitrary knot vector.
For example, if a knot interval ofΞ is extremely small compared to adjacent intervals,
it is possible for the GREVI-K and GREVI-R quadrature rules to exhibit negative
weights locally. Quadrature rules with negative weights are prone to instability and
not preferred in engineering analysis. In this work we confine ourselves to uniform
knot vectors.With uniform knot vectors we only see negative weights for the GREVI-
K rule with p = 4. How to effectively remove the negative weights for arbitrary knot
vectors is non-trivial and will be addressed in future work.



6 Thomas J.R. Hughes, Zhihui Zou, Michael A. Scott, Roger A. Sauer, Eshwar J. Savitha

0,0,0,0 1,1,1 2,2,2 3,3,3 4,4,4,4

(0, 0.125)

(0.33333, 0.375)

(0.66667, 0.375) (3.33333, 0.375)

(3.66667, 0.375)

(4, 0.125)

(3, 0.25)(1, 0.25)
(2.66667, 0.375)(1.33333, 0.375)

(2, 0.25)
(2.33333, 0.375)(1.66667, 0.375)

(a) GREVI-K.

0,0,0,0 1,1 2,2 3,3 4,4,4,4

(0, 0.15021)

(0.33333, 0.26155)

(0.66667, 0.60189) (3.33333, 0.60189)

(3.66667, 0.26155)

(4, 0.15021)

(2.66667, 0.47899)(1.33333, 0.47899)
(2.33333, 0.50735)(1.66667, 0.50735)

(b) GREVI-R.

Fig. 2: Quadrature points and weights of GREVI-K and GREVI-R for a cubic B-
spline basis with knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. Red dots denote the
locations of the quadrature points, and (·, ·) indicates the global quadrature point and
weight pair (xi,wi).

2. For p = 2, the multiplicities of the interior knots of the resulting knot vector Ξ̃
will be three for GREVI-K. Therefore, each element is an independent Bézier patch
and the quadrature rule needs to be determined on the element level through (2).
The resulting quadrature points will be distributed by the Simpson’s rule, and un-
fortunately the two coincident quadrature points at the element interface can not be
combined into one point due to the discontinuous second order derivatives [6]. As a
result, the number of quadrature points will be the same as for full Gauss quadrature
and thus we will not explore the case of p = 2 for GREVI-K further. �

2.3 Scordelis-Lo roof

x

yz

rigid diagram

θ = 40◦

L

R

qz

e`1

e`2
e`3

Fig. 3: Schematic for the Scordelis-Lo roof problem.
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The Scordelis-Lo roof problem is part of the so-called shell obstacle course [7]
and tests a shell element’s ability to handle both membrane and bending modes. An
80° arc of a cylinder with radius R = 25, length L = 50, and thickness t = 0.25
or 0.025 is supported on each end by a rigid diaphragm. It is loaded with its own
weight qz = 90. The material has Young’s Modulus, E = 4.32 × 108, and Poisson’s
ratio ν = 0. Figure 3 shows the problem setup. The initial mesh of the whole model
consists of 4 × 4 maximally smooth elements.

The maximum displacement occurs on the free edge at L
2 . For t = 0.25, the usual

FEA solution converges to 0.3006 for KL shells [4] and 0.3024 for RM shells [2, 7].
For t = 0.025, the reference solution given in [8] is 32.0 for KL shells and we
also take it as the reference solution for RM shells in this work. The maximum
displacement on the free edge at L

2 is monitored and results for the KL shell are
shown in Figure 4. For p = 3 and 4, t = 0.25, as shown in Figure 4a, the GREVI-K
rule obtains slightly worse results than theGAUSS rule with the initial mesh, but with
one refinement they almost achieve identical results that are close to the reference
solution. As the degrees increase to p = 5 and 6, GREVI-K andGAUSS obtain nearly
coincident results and, since locking is alleviated largely by higher-order bases, good
results are achieved with even the initial mesh. As the shell thins, i.e., t = 0.025,
membrane locking becomes more severe and the results converge more slowly for
both quadrature rules as shown in Figure 4b. In this case, the GREVI-K rule achieves
superior results for p = 4 while, for p = 5 and 6, the results obtained by GREVI-K
and GAUSS hardly differ from each other.
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(a) t = 0.25.

0 200 400 600 800 1000 1200
dofs

−32.5

−30.0

−27.5

−25.0

−22.5

−20.0

−17.5

−15.0

−12.5

M
ax

im
u

m
D

is
p

la
ce

m
en

t
u
z

GAUSS, p = 3

GAUSS, p = 4

GAUSS, p = 5

GAUSS, p = 6

reference

GREVI-K, p=3

GREVI-K, p=4

GREVI-K, p=5

GREVI-K, p = 6

(b) t = 0.025.

Fig. 4: Scordelis-Lo roof modeled as a KL shell: Convergence of the maximum
displacement uz with GAUSS and GREVI-K, degrees p = 3 to 6, and maximally
smooth elements. The whole roof is modeled with an initial 4 × 4 mesh.

Since this problem is membrane dominated, transverse shear locking is not sig-
nificant. Figure 5 demonstrates that for p = 3 to 6 the RM shell with GAUSS and
GREVI-R converges in a similar way as the KL shell with GAUSS and GREVI-K
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shown in Figure 4. For p = 2, the GREVI-R rule underperforms the GAUSS rule
but otherwise both rules perform about the same.
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0 500 1000 1500 2000 2500
dofs

−30

−25

−20

−15

−10

−5

0

M
ax

im
u

m
D

is
p

la
ce

m
en

t
u
z

GAUSS, p = 2

GAUSS, p = 3

GAUSS, p = 4

GAUSS, p = 5

GAUSS, p = 6

reference

GREVI-R, p=2

GREVI-R, p=3

GREVI-R, p=4

GREVI-R, p=5

GREVI-R, p = 6

(b) t = 0.025.

Fig. 5: Scordelis-Lo roof modeled as an RM shell: Convergence of the maximum
displacement uz with GAUSS and GREVI-R, degrees p = 2 to 6, and maximally
smooth elements. The whole roof is modeled with an initial 4 × 4 mesh.

3 Conclusions

We proposed Greville quadrature schemes for isogeometric shell analysis. The
quadrature points are chosen to be Greville abscissae for B-splines and NURBS,
but the spaces from which the rules emanate are unusual. The proposed method
for Reissner-Mindlin (RM) shells, referred to as GREVI-R, is a Greville quadra-
ture scheme based on pth-order basis functions, but with one-order lower continuity
across element interfaces than the pth-order, maximally smooth, basis functions
used for analysis. The proposed scheme for Kirchhoff-Love (KL) shells, referred
to as GREVI-K, constructs the Greville quadrature points based on pth-order basis
functions, but with continuity two orders lower than the maximally smooth basis
used for analysis. The quadrature weights are determined by solving linear moment
fitting equations. These methods are free of rank deficiency and spurious modes. At
the same time, they achieve similar accuracy as full Gauss quadrature. The proposed
methods for RM and KL shell elements only involve four and nine in-plane quadra-
ture points, respectively, per Bézier element, compared to the usual (p+1)2 in-plane
quadrature points for elements with standard “full” Gauss integration. As increasing
the basis order does not asymptotically increase degrees-of-freedom or the number
of quadrature points for higher-order basis functions, the proposed methods are effi-
cient, robust, accurate and alleviate locking. For further details of the methodology
and a comprehensive evaluation, please see our forthcoming paper [9].



Title Suppressed Due to Excessive Length 9

4 Acknowledgments

Thomas J.R. Hughes and Zhihui Zou acknowledge support from the Office of Naval
Research grant N00014-17-1-2039 and through the Department of Defense, Navy,
Contract N6833518C0014, respectively, with Coreform, LLC.

References

[1] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric Analysis: CAD, Finite
Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods
in Applied Mechanics and Engineering 194 (39) (2005) 4135–4195.

[2] W. Dornisch, R. Müller, S. Klinkel, An Efficient and Robust Rotational Formu-
lation for Isogeometric Reissner–Mindlin Shell Elements, Computer Methods
in Applied Mechanics and Engineering 303 (2016) 1–34.

[3] Z. Zou, M. A. Scott, D. Miao, M. Bischoff, B. Oesterle, W. Dornisch, An Isogeo-
metric Reissner–Mindlin Shell Element Based on Bézier Dual Basis Functions:
Overcoming Locking and Improved Coarse Mesh Accuracy, Computer Methods
in Applied Mechanics and Engineering 370 (2020) 113283.

[4] J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis
with Kirchhoff-Love elements, Computer Methods in Applied Mechanics and
Engineering 198 (49-52) (2009) 3902–3914.

[5] R. Echter,M.Bischoff,Numerical Efficiency, Locking andUnlocking ofNURBS
Finite Elements, Computer Methods in Applied Mechanics and Engineering
199 (5-8) (2010) 374–382, ISSN 0045-7825.

[6] D. Schillinger, S. J. Hossain, T. J. R. Hughes, Reduced Bézier Element Quadra-
ture Rules for Quadratic and Cubic Splines in Isogeometric Analysis, Computer
Methods in Applied Mechanics and Engineering 277 (2014) 1–45.

[7] R. Macneal, R. Harder, A Proposed Standard Set of Problems to Test Finite
Element Accuracy, Finite Elements in Analysis and Design 1 (1) (1985) 3–20.

[8] L. Greco, M. Cuomo, L. Contrafatto, A Reconstructed Local B̄ Formulation for
Isogeometric Kirchhoff–Love Shells, Computer Methods in Applied Mechanics
and Engineering 332 (2018) 462–487.

[9] Z. Zou, T. J. R. Hughes, M. A. Scott, R. A. Sauer, E. J. Savitha, Galerkin
Formulations of Isogeometric Shell Analysis: Alleviating Locking with Gre-
ville Quadratures and Higher-Order Elements, Computer Methods in Applied
Mechanics and Engineering (2020) submitted.


