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Dynamic fracture of brittle shells in a space-time 
adaptive isogeometric phase field framework

Karsten Paul, Thomas J.R. Hughes, Chad M. Landis and Roger A. Sauer

Peter Wriggers has contributed immensely to the field of computational me-
chanics, and he has been a source of knowledge and inspiration to countless
researchers. It was he who first brought me in touch with advanced fracture
simulations, it was his textbook that first brought me in touch with shell finite
elements, and it was he who first brought me in close touch with Tom Hughes.
It is with gratitude that I dedicate this work to Peter Wriggers on the occasion
of his 70th birthday. (Roger A. Sauer)

Abstract Phase field models for fracture prediction gained popularity as the for-
mulation does not require the specification of ad-hoc criteria and no discontinuities
are inserted in the body. This work focuses on dynamic crack evolution of brittle
shell structures considering large deformations. The energy contributions from in-
plane and out-of-plane deformations are separately split into tensile and compressive
components and the resulting coupled system is discretized within the isogeometric
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analysis framework. The resulting system is solved fully monolithically and adaptive
local refinement is used in space and time.

1 Introduction

Thin-walled structures are characterized by low weight and high strength, making
them interesting formany engineering designs. Especially for high slenderness ratios,
these shells can be modeled based on the assumptions of Kirchhoff-Love theory.
In these, no rotational degrees-of-freedom (dofs) are used, but only displacement
dofs are considered. The resulting equation of motion thus, includes fourth-order
derivatives. Isogeometric analysis [10] is used to obtain the required C1-continuity
in the corresponding weak form. In this work, the shell formulation of [7] is used.

The prediction of fracture and failure is of crucial importance for the design
of engineering structures. Phase field models for the prediction of fracture gained
popularity as they do not require ad-hoc criteria and do not insert discontinuities in the
body, e.g. in the displacement field. Phase fieldmodels for brittle fracture are based on
the theory of Griffith [9] and its variational reformulation as an energy minimization
problem [8]. An additive energy split is required to model the anisotropic behavior
of crack evolution, i.e. such that there occurs no cracking in compression. The
membrane and bending energies are split separately and the split based on surface
stretches [1] is employed for the split of the membrane part. Based on the idea of
[12], the bending energy is decomposed based on thickness integration, but here, the
split is also based on surface stretches [14]. The resulting formulation allows for large
deformations and avoids the expensive computations of spectral decompositions. A
higher-order fracture energy [2] is employed. The small length scale parameter of
the phase field is resolved by using local spatial refinement based on LR NURBS
[6, 17] and the mesh is adaptively refined during the computation [14]. The resulting
discretized coupled system is implicitly integrated in time using an adaptive time-
stepping scheme and a monolithic solution approach. Patch constraints are used to
allow for multi-patch discretizations [13].

2 Fracture of deforming surfaces

The mapping x = x(ξα, t) is used to describe a curved surface S. Here, ξα, α = 1, 2
are the convected coordinates and t denotes time. Based on this mapping, a co- and
contra-variant basis can be associated to each surface point, i.e.

{
aα, n

}
and

{
aα, n

}
,

with covariant tangent vectors aα = ∂x/∂ξα, surface normal n = (a1 × a2)/| |a1 ×
a2 | |, and contra-variant tangent vectors aα = aαβaβ .

The co- and contra-variant surface metrics are given by aαβ = aα · aβ and
[aαβ] = [aαβ]−1. Using the second parametric derivative aα,β = x,αβ = ∂aα/∂ξ

β ,
the surface curvature is described via bαβ = aα,β · n.
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2.1 Thin shell theory

The equation of motion can be written as [7]

Tα;α + f = ρÛv on S × (0, T̄) , (1)

with traction vector Tα, surface force f and final time T̄ . The stresses and moments
follow from constitution. Here, hyperelastic material behavior is assumed and the
elastic energy density is given by

Ψel(aαβ, bαβ) = Ψmem(aαβ) + Ψbend(bαβ) , (2)

with the membrane energy density being composed of dilatational and deviatoric
contributions, i.e. Ψmem = Ψdil + Ψdev, where [16]

Ψdil =
K
4

(
J2 − 1 − 2 ln J

)
, and Ψdev =

G
2

(
I1/J − 2

)
. (3)

Here, I1 := Aαβaαβ is the first invariant of the surface Cauchy-Green strain tensor
and J :=

√
det[Aαβ] det[aαβ] is the surface stretch.1 Using bαβ0 = AαγbγδAβδ , the

bending energy in (2) is given by [5]

Ψbend =
c
2

(
bαβ − Bαβ

) (
bαβ0 − Bαβ

)
. (4)

2.2 Brittle fracture

The phase field φ = φ(ξα, t) ∈ [0, 1] ranges from the undamaged state (φ = 1) to the
fully fractured state (φ = 0). Phase evolution is described by a partial differential
equation, which stems from the minimization of the Helmholtz free energy

Πint =

∫
S0

Ψ dA =
∫
S0

[
g(φ)H + Ψ−el + Ψfrac

]
dA . (5)

The higher-order fracture energy density in (5) is given by [2, 14]

Ψfrac =
Gc
4`0

[
(φ − 1)2 + 2`2

0 ∇Sφ · ∇Sφ + `
4
0 (∆Sφ)

2
]
, (6)

with fracture toughness Gc and length scale `0 of the phase field model. The surface
gradient and Laplacian are indicated by ∇S and ∆S, respectively. The degradation of
the bulk material is described by the cubic degradation function [3]

g(φ) = (3 − s)φ2 − (2 − s)φ3 , with s = 10−4 . (7)

1 Quantities on the reference surface are either indicated by the subscript ‘0’ or by a capital symbol.
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Irreversibility of the fracture process is ensured by keeping track of the fracture
driving energy by means of the history field

H(x, t) := max
τ∈[0,t]

Ψ
+
el(x, τ) . (8)

The ‘positive’ and ‘negative’ energies in (5) and (8) are based on the additive energy
split

Ψel = Ψ
+
el + Ψ

−
el , with Ψ

±
el = Ψ

±
mem + Ψ

±
bend , (9)

which splits the energy into a part that contributes to crack evolution (‘+’), and a
part that does not (‘-’). The contributions are given by [1, 14]

Ψ
+
mem =

{
Ψdev + Ψdil , J ≥ 1
Ψdev , J < 1

, Ψ
−
mem =

{
0 , J ≥ 1
Ψdil , J < 1

, (10)

and

Ψ
±
bend =

∫ T
2

− T
2

ξ2 12
T3

c
2

tr
(
K2) χ±(J̃ (

ξ)
)

dξ , with χ+
(
J̃(ξ)

)
=

{
1 , J̃(ξ) ≥ 1 ,
0 , J̃(ξ) < 1 ,

(11)
and χ−

(
J̃(ξ)

)
analogously. In (11), K = (bαβ − Bαβ) Aα ⊗ Aβ denotes the relative

curvature tensor, T is the shell thickness, and J̃ =
√

det[Ãαβ] det[ãαβ] is the surface
stretch of a shell layer [7]. Using the Euler-Lagrange equation and standard arguments
of variational calculus, the strong form of the fracture framework is given by

2`0/Gc g
′(φ)H + φ − 1 − 2 `2

0 ∆Sφ + `
4
0 ∆S

(
∆Sφ

)
= 0 on S × (0, T̄) ,

∆Sφ = 0 on ∂S × (0, T̄) ,

∇S
(
`4

0 ∆Sφ − 2 `2
0 φ

)
· ν = 0 on ∂S × (0, T̄) ,

φ = φ0 on S × 0 .

(12)

2.3 Computational aspects

Isogeometric analysis [10] is used to obtain the required C1-continuity in the weak
formulations of (1) and (12), also see [14]. LR NURBS [6, 17] are used to allow for
local refinement, such that the small length scale of the model (`0) can be resolved
properly. The FEmesh is adaptively refined based on the phase field: If a control value
fulfills φ < 0.975, all elements that lie in the support domain of the corresponding
basis function will be flagged for refinement. The refinement is performed using the
structured mesh strategy [11, 14].

The generalized-α method [4] is used for temporal discretization and the dis-
cretized coupled system is solved within a monolithic Newton-Raphson scheme. In
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experiments, it has been shown that the crack tip velocity stays below 60% of the
Rayleigh wave speed cR [15], such that a physical upper bound can be imposed
on the time step, i.e. ∆t ≤ ∆tmax < ∆xmin/(0.6 cR), where ∆xmin denotes the min-
imum element length. The time step is adjusted based on the number of required
Newton-Raphson iterations nNR during the previous time step, i.e.

∆tn+1 =


1.5∆tn , nNR < 4 ,
1.1∆tn , nNR = 4 ,
0.5∆tn , nNR > 4 ,
0.2∆tn , local spatial refinement .

(13)

3 Numerical examples

The material parameters K , G and c in (3)–(4) are set like in [14]. Crack patterns are
visualized by means of a red (φ = 0) to blue (φ = 1) colorscale. Further, the non-
dimensionaliztion scheme by [14] is adopted such that all quantities are normalized
by the reference time T0, length L0 and stiffness E0.

3.1 Crack propagation around obstacles

This example investigates dynamic crack branching, kinking and deflection in a
square two-dimensional domain. The initial state is shown in Fig. 1 and a displace-

Fig. 1 Crack propagation
around obstacles: Initial phase
field and initial LR mesh.
The dark colored rectangles
mark the regions of increased
fracture toughness. The initial
mesh consists of 32 × 32
elements and three local
refinement levels are used.

Reinforced areas

ment is imposed on the top edge upwards, and on the bottom edge downwards.
Branching and kinking is achieved by locally increasing the fracture toughness
by a factor of 10 in the two shown regions. The parameters are `0 = 0.0025 L0,
Gc = 0.001 E0 L0, E = 100 E0, ν = 0.3, and the displacement increment is ∆ū = v̄∆t
with v̄ = 0.0025 L0 T−1

0 . Crack evolution is illustrated in Fig. 2. The crack branches
at the first reinforced area and is deflected in vertical direction. The two branches
then kink toward the horizontal direction and start branching. The top crack is again
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deflected at the reinforced area and stops propagating shortly after the bottom crack
reaches the right edge. The time step sizes according to (13) and the final adaptively
locally refined mesh are shown in Fig. 3. Large time steps are used when there is no
crack propagation and only the regions close to the cracks are refined.

(a) t ≈ 2.98T0 (b) t ≈ 3.09T0 (c) t ≈ 3.20T0

Fig. 2 Crack propagation around obstacles: Crack pattern at different snapshots. Regions with
φ < 0.01 are not visualized.
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Fig. 3 Crack propagation around obstacles: Adaptivity in time (left) and space (right, final LR
mesh).

3.2 Fracturing balloon

This section investigates crack evolution on a spherical geometry that is imposed
to the internal pressure p(φ) = 0.1 E0 L−1

0 φ. The geometry is composed of six
patches, as shown in Fig. 4 on the left (patch interfaces are indicated by the cyan-
colored lines). Quadratic NURBS are used within each patch, and C1-continuity
across patch interfaces is restored by imposing patch constraints with the Lagrange
multiplier (LMM) (constant interpolation) or the penalty method (PM), which is
further elaborated in [13]. The radius is L0 and the parameters are `0 = 0.015 L0,
Gc = 0.0005 E0 L0, E = 10 E0, ν = 0.3, T = 10−4L0, and bending stiffness c =
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10−5E0 L2
0 . The elastic and fracture energies (Πel and Πfrac, respectively) over time

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5 ×10−2

Time t [T0]

En
er
gy
[E

0
L

2 0]

Πel, LMM Πfrac, LMM
Πel, PM Πfrac, PM

Fig. 4 Fracturing balloon: Initial state with patch interfaces (left) and energy-time-curves (right).

for the two enforcement techniques are shown in Fig. 4 on the right. Crack evolution
is visualized in Fig. 5. The cracks start branching and merge at the end. The first
drop of the elastic energy occurs after the onset of crack propagation, and the last
occurs when the geometry is fully fractured. Excellent agreement between the two
enforcement techniques is achieved.

(a) t ≈ 1.6T0 (b) t ≈ 3.16T0 (c) t ≈ 3.81T0

Fig. 5 Fracturing balloon: Crack pattern at different snapshots (visualized transparently). Regions
with φ < 0.005 are not visualized.

4 Conclusion

A dynamic phase field fracture framework for thin shells within a convective co-
ordinate system is presented. Isogeometric analysis is used to obtain the required
C1-continuity in the weak form and LR NURBS are used for the local refinement.
Adaptivity in space and time and the monolithic coupling of both PDEs ensures the
efficient computation of complicated crack patterns, including branching, merging,
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kinking and deflection. This framework is further extended to consider geometries
that are composed of multiple patches.
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