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Abstract

Spaces of discrete differential forms can be applied to numerically solve the partial differential equations that govern
phenomena such as electromagnetics and fluid mechanics. Robustness of the resulting numerical methods is comple-
mented by pointwise satisfaction of conservation laws (e.g., mass conservation) in the discrete setting. Here we present
the construction of isogeometric discrete differential forms, i.e., differential form spaces built using smooth splines. We
first present an algorithm for computing Bézier extraction operators for univariate spline differential forms that allow
local degree elevation. Then, using tensor-products of the univariate splines, a complex of discrete differential forms is
built on meshes that contain polar singularities, i.e., edges that are singularly mapped onto points. We prove that the
spline complexes share the same cohomological structure as the de Rham complex. Several examples are presented to
demonstrate the applicability of the proposed methodology. In particular, the splines spaces derived are used to simulate
generalized Stokes flow on arbitrarily curved smooth surfaces and to numerically demonstrate (a) optimal approximation
and inf-sup stability of the spline spaces; (b) pointwise incompressible flows; and (c) flows on deforming surfaces.

Keywords: Smooth splines, cochain interpolants, singularly parametrized surfaces, the de Rham complex, surface
flows, optimal approximation, pointwise incompressibility

1. Introduction

Partial differential equations (PDEs) describing physical phenomena are built on a rich differential and geometric
foundation of conservation laws, topological constraints, symmetries and invariants. The reliability of numerical al-
gorithms that are used to discretize and approximately solve these equations is of the utmost importance for countless
scientific and engineering applications, and this is intimately connected to the differential and geometric structure under-
lying the PDEs. Specifically, for physical problems such as electromagnetism and incompressible fluid flows, consistent,
stable and accurate numerical methods that ensure physical fidelity of the discrete solutions can be built by mimick-
ing the structure underlying the continuous problem (e.g., the identities div-curl= 0 and curl-grad= 0) at the discrete
level. The formulation of such numerical methods is our focus in this article, with a special attention toward high-order
accurate discretizations of PDEs defined on surfaces in R3.

The development of discretization methods that aim to mimic symmetries and invariants at the continuous level is
an active area of research. Some of the significant contributions in this area have come in the form of mimetic finite
difference methods [8, 33], mimetic spectral element methods [23, 32], discrete exterior calculus [15, 27], finite ele-
ment exterior calculus [2, 3], and physics-compatible or structure-preserving isogeometric analysis [10–12, 18]. These
methods have one thing in common: they are driven by geometric interpretations of the solution fields. In particular,
the solution fields are interpreted as differential forms [21], which are objects that are naturally associated to geometric
objects of different dimensions. For example, for fluid flow on an d-dimensional domain, velocities may be interpreted
as fluxes that flow through codimension-1 geometries (i.e., as differential forms of order d− 1) and their divergence as
the mass being lost or produced in d-dimensional geometries (i.e., as differential forms of order d).

Differential forms provides a compact, clear and intuitive language for discussing both PDEs as well as their dis-
cretization. They are particularly helpful in helping identify which parts of the PDE are conservation laws that do not
depend on any notion of a metric, and which parts are constitutive laws — the discretizations are then constructed to
exactly satisfy the former and accurately approximate the latter. The framework of finite element exterior calculus [2, 3]
is based on precisely this formalism. It has led to a unified approach for developing accurate finite element differential
form spaces and analysing stability and well-posedness of the discrete problems. This article focuses on the methods
that belong to the extension of finite element exterior calculus to isogeometric analysis.

Isogeometric analysis [29] relies on the use of smooth splines, i.e., smooth piecewise-polynomial functions, for
building both the geometry on which the problem is defined, as well as the discrete finite element spaces used to solve
the problem. The last decades have seen the extensive use of splines for numerical solutions of challenging problems
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such as the design and optimization of wind turbines [28], development of cardiac devices [31], and multiphase flows
[24, 34, 48] and fracture dynamics [1, 6] governed by high-order phase field theories. Several recent developments
[7, 41, 44] have provided the theory supporting the large body of numerical evidence that states that smooth splines
demonstrate better approximation behaviour per degree of freedom than less smooth or non-smooth spline spaces (e.g.,
traditional C0 finite element spaces). The extensions of finite element exterior calculus to isogeometric analysis have
come via the development of isogeometric discrete differential form spaces, i.e., discrete differential form spaces built
using smooth splines. These isogeometric discrete differential forms are used to solve PDEs on domains that are also
built using smooth splines. Examples include discrete differential forms on rectangular or cuboidal domains built using
tensor-product splines [11, 17, 18, 25] and adaptively-refined splines [12, 20, 30], with applications to electromagnetism
and simulation of pointwise incompressible flows being common.

The above represents the state of the art on spline differential forms and the existing literature does not address the
problem of simulating PDEs on arbitrary surfaces with smooth spline-based differential forms. While significant advances
have been made in the understanding of spline differential forms on (locally refined) quadrilateral meshes, unstructured
meshes are needed for building arbitrary surfaces. In particular, there are two types of unstructured meshes that need
to be studied – ones where the number of quadrilaterals meeting at an interior vertex is not equal to 4 (excluding T-
junctions), and ones where the quadrilaterals degenerate into triangles. One of the focuses of this article is on taking
the first steps that address the latter class of unstructured meshes; such meshes are called polar meshes and the splines
built on them are called polar splines.

More broadly, the motivation for this article is construction of isogeometric discrete differential forms for numerical
approximation of (scalar and vector) solutions to PDEs. We focus on discrete differential form
spaces built using two particular classes of non-standard spline spaces — univariate multi-degree
splines and bivariate polar splines. Multi-degree splines [26, 46, 47] are splines that allow local
polynomial degree adaptivity, and polar splines [43, 47] are non-tensor-product splines that
allow the construction of singularly parametrized, genus 0 surfaces that are nevertheless C k

smooth. For instance, the geometry on the right is a C1 polar spline surface that is singularly
parametrized — it is built from a rectangular domain by collapsing a pair of edges to points.

Solving PDEs on such surfaces has many applications; e.g., numerical weather prediction [14]. Of particular interest
to us is the study of biological fluidic membranes such as lipid bilayers [4, 40, 45]. These membranes can be thought
of as the envelope for eukaryotic cell contents. These are versatile structures that behave as in-plane viscous fluids
and out-of-plane solids. Computationally studying the behaviour of such structures requires the ability to simulate two-
dimensional viscous fluid flow on a curved, evolving surface. Several recent methods have been proposed to solve such
problems; e.g., using discrete exterior calculus [35], trace finite elements [36, 37] and surface finite elements [16, 22,
38, 39]. These methods are built using functions of low-regularity that are either C0 or discontinuous. The methods in
[35–37] are low-order methods that use piecewise polynomials of degree at most 1, and the methods in [36, 37] are
for surfaces defined implicitly on a background mesh. The method in [22] is high-order accurate but needs Lagrange
multipliers to impose tangentiality of the fluid velocity on a curved surface; penalties are used to approximately achieve
the same or to enforce approximate conservation in [36–38].

In this paper, we develop novel isogeometric discrete differential forms that, in particular, offer a high-order alter-
native to the above methods for simulation of flows on smooth surfaces without any recourse to Lagrange multipliers
or penalties for enforcing tangentiality of the flow. Section 2 presents the mathematical pre-
liminaries needed for our approach. We subsequently discuss the theoretical and algorithmic
aspects behind the construction of multi-degree spline differential forms (Sections 3.2 and 4),
and their application to building polar spline differential forms (Section 5). In particular, we
show how this enables us to mimic the cohomological structure of the de Rham complex at the
discrete level. We demonstrate the high-order accuracy, stability and applicability of the discrete
differential form spaces by simulating, in particular, generalized Stokes flow on fixed and de-
forming smooth surfaces (Section 6). The spaces also allow us to simulate pointwise incompressible tangential flows on
surfaces. See an example of such pointwise incompressible tangential flow on the right where streamfunction contours
and tangential velocities are displayed; see Section 6.3 for details.

2. Mathematical preliminaries

Let us start by presenting some exterior calculus preliminaries and, in particular, introduce the L2 de Rham complex.
We follow the presentation of [2] in an abbreviated form. Moreover, since we are interested in building spline differential
forms on smooth 2-manifolds, Ω, we restrict the following discussion to the two-dimensional setting. Note that we only
present the most basic relations in this section; other necessary notation and material will be presented when needed.

2.1. Outlook

As mentioned in Section 1, the motivation for this article is the construction of stable and high-order accurate
spline-based finite element methods for numerical approximation of (scalar and vector) solutions to PDEs on smooth
2-manifolds Ω. We do so within the conceptual framework of finite element exterior calculus [2, 3] and its spline-based
counterparts [11, 18, 25]. As shown in [2], for instance, well-posed problems can be formulated at the discrete level if
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the finite element spaces for a subcomplex (Section 2.2) of the de Rham complex of differential forms (Section 2.3). The
scalar and vector fields that solve the desired PDEs can be thought of as proxies for differential forms, and well-posedness
of the continuous problems is implied by properties of the de Rham complex. Then, a first step in the construction of
stable methods is the construction of a finite element subcomplex that mimics the properties of the continuous de Rham
complex. The next two subsections introduces Hilbert cochain complexes and the de Rham complex of differential
forms.

2.2. Hilbert cochain complexes

Let V denote a sequence of Hilbert spaces
�

V (i)
	2

i=0, and let d denote a sequence
�

d(i)
	1

i=0 of connecting closed,
linear maps of degree +1, d(i) : V (i)→ V (i+1). If d(1) ◦ d(0) = 0, V and d together form a Hilbert complex V := (V, d),

V : V (0) V (1) V 2 .d(0) d(1) (1)

The connecting maps d(i) are called the differentials of the complex V. Moreover, V is called bounded if its differentials
are bounded linear operators, and it is called closed if the image of d(i) is closed in V (i+1) for all i.

The composition property of the differentials implies that the following containment holds,

im d(0) ⊆ ker d(1) . (2)

Members of V (i) in ker d(i) are called i-cocycles or closed, and the members of V (i) in im d(i−1) are called i-coboundaries
or exact. The i th cohomology space associated to the complex V, H i(V), is defined as the following quotient,

H i(V) = ker d(i)/ im d(i−1) . (3)

Note that, for defining H0(V) and H1(V), the beinning and the end of the complex are automatically augmented with
zero maps d(−1) := 0 =: d(2). The cohomology space H i(V) measures the extent to which the equality in Equation (2)
fails to hold.

Given two complexes V = (V, dV ) and W = (W, dW ), linear maps f (i) : V (i) → W (i) of degree 0 are called cochain
maps if they commute with the differentials for all i,

d(i)W ◦ f (i) = f (i+1) ◦ d(i)V . (4)

Cochain maps preserve closed and exact forms and, consequently, induce maps between cohomology spaces of the two
complexes, f ∗,(i) : H i(V) → H i(W). Additionally, for i = 0,1, 2, if W (i) ⊆ V (i) and all differentials d(i)W are obtained
from d(i)V by restriction, then the complex W is called a subcomplex of V. In this case, the inclusion ι(i) : W (i) → V (i)

is a cochain map from W to V and induces a natural map between their cohomologies. If, additionally, there exists a
cochain projection map from V to W, it induces a surjection of cohomologies. In particular, the dimensions of H i(W)
are then bounded from above by those of H i(V) for all i.

Remark 2.1. In the following, to unburden the notation, we will drop the superscripts of all differentials as it will always
be clear from the context which differential is being used.

2.3. The de Rham complex of differential forms

Given a (sufficiently) smooth 2-manifold Ω ⊂ Rd, d= 2, 3, let TyΩ denote the 2-dimensional tangent space at y ∈ Ω.
A smooth differential i-form f , i = 0, 1,2, on Ω is a smooth field such that fy is a real-valued skew-symmetric i-linear
form on TyΩ× · · · × TyΩ. Let Λ(i)(Ω) denote the space of all smooth i-forms, i = 0,1, 2.

For i = 0,1, 2, and f ∈ Λ(i)(Ω), the exterior derivative is a linear map of degree +1, d : Λ(i)(Ω) → Λ(i+1)(Ω), such
that d ◦ d = 0. In local (curvilinear) coordinates x = (x1, x2) on Ω such that y = y(x ), the differential forms and the
action of d are simply

Λ(0)(Ω) ∈ f : f (x )
d
7−→

∂ f
∂ x i

d x i , (5)

Λ(1)(Ω) ∈ f : fi(x ) d x i d
7−→

�

∂ f2

∂ x1
−
∂ f1

∂ x2

�

d x1 ∧ d x2 , (6)

Λ(2)(Ω) ∈ f : f12(x ) d x1 ∧ d x2 d
7−→ 0 . (7)

where d x1 and d x2 are a covector basis that span the cotangent spaces of Ω. In the above and the following, we
assume Einstein’s summation convention unless indicated otherwise. Finally, ∧ : Λ(i)(Ω)×Λ( j)(Ω)→ Λ(i+ j)(Ω) is the
product operator for differential forms. It is antisymmetric, associative and anti-commutative and, in particular, in our
2-dimensional setting we have

d x1 ∧ d x2 = −d x2 ∧ d x1 . (8)
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An i-form, f ∈ Λ(i)(Ω), can be naturally integrated on any i-dimensional sub-manifold Ω̃ of Ω, i.e., without any need
for a metric. Moreover, if f is exact, i.e., f = d g, g ∈ Λ(i−1)(Ω), then the Stokes’ theorem holds,

∫

Ω

f =

∫

∂Ω

g , (9)

where ∂ denotes the boundary operator. In other words, the exterior derivative can be thought of as the dual of the
boundary operator with respect to the natural duality pairing of i-forms with i-dimensional submanifolds.

With L2Λ(i)(Ω) denoting the completion of Λ(i)(Ω) with respect to the L2 inner product of i-forms (·, ·)L2Λ(i)(Ω), we

define HΛ(i)(Ω) as
HΛ(i)(Ω) :=

�

f ∈ L2Λ(i)(Ω) : d f ∈ Λ(i+1)(Ω)
	

. (10)

With (·, ·)Ω := (·, ·)L2Λ(i)(Ω), we equip HΛ(i)(Ω) with the following graph norm-induced inner-product,

( f , g)HΛ(i)(Ω) := ( f , g)Ω + (d f , d g)Ω . (11)

Note that HΛ(2)(Ω) = L2Λ(2)(Ω) from Equation (7). Then, the L2 de Rham complex on Ω is the closed and bounded
Hilbert complex defined as

R : HΛ(0)(Ω) HΛ(1)(Ω) HΛ(2)(Ω) .d d (12)

When Ω is contractible and has a single-connected component, we have H0(R) = R and H1(R) = 0. Moreover, if Ω is a
closed manifold, then H2(R) = R; else, H2(R) = 0.

3. The univariate spline complex

In this section we present preliminary concepts about smooth polynomial splines defined on a partition of an interval,
Ω := [a, b] ⊂ R. In particular, we will allow the spline pieces to have different polynomial degrees, thereby introducing
the concept of multi-degree spline spaces. We also present a set of basis functions for such spaces called multi-degree
B-splines (or MDB-splines) and list some of their properties. Classical B-splines are a special case of MDB-splines.

3.1. The polynomial complex
3.1.1. Definition of the complex

In this preliminary section, we recall the simplest univariate spline complex on Ω that we can consider. For p ∈ N,
let Pp be the vector space of polynomials of degree ≤ p. Then, the simplest spline space on Ω consists only of global
polynomials,

S −1
p :=

n

Ω
f
−→ R : f ∈ Pp

o

.

Choosing S −1
p as the space of 0-forms and S −1

p−1 as the space of 1-forms,

Λ
(0)
P := S −1

p , Λ
(1)
P :=

¦

f d x : f ∈ S −1
p−1

©

,

the univariate polynomial complex is defined as

G : Λ(0)P Λ
(1)
P . (13)

It can be easily verified that the exterior derivative is a surjection from Λ(0)P onto Λ(1)P , thereby yielding H1 (G) = 0. On
the other hand, H0 (G) or the nullspace of d is one dimensional and contains constants, i.e., H0 (G) = R.

3.1.2. Basis for discrete differential forms
We choose the Bernstein–Bézier polynomials Bi,p, i = 0, . . . , p, as the preferred basis for 0-forms; these are defined

as

Bi,p(x) =
�

p
i − 1

�

� x − a
b− a

�i � b− x
b− a

�p−i

, (14)

and they span S −1
p . Therefore, f ∈ Λ(0)P can be represented as a linear combination of the Bi,p with some coefficients

fi ∈ R,

f =
p
∑

i=0

fiBi,p .

Furthermore, if f ∈ Λ(0)P is a 0-form, then the 1-form g := d f ∈ Λ(1)P has the representation

g =
p
∑

i=0

fidBi,p =
p−1
∑

i=0

( fi+1 − fi)Bi,p d x =:
p−1
∑

i=0

giBi,p d x , (15)
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f0 f1 f2 fp−2 fp−1

f1 − f0 f2 − f1 fp − fp−1

D(0)p

Figure 1: We interpret the degrees of freedom of 0- and 1-forms in the polynomial complex G as being associated to vertices and
edges of a one-dimensional cell complex. Consequently, the discrete exterior derivative D(0)p corresponding to the choice of
the preferred bases has a simple action as shown above.

where the Bi , i = 0, . . . , p− 1, are scaled Bernstein–Bézier polynomials of degree p− 1,

Bi,p :=
p

b− a
Bi,p−1 . (16)

These are chosen as the preferred basis for discrete 1-forms. Doing so helps us define a discrete representation of the
exterior derivative d in the form of the sparse matrix D(0)k of size k× (k+ 1), k ≥ 2,

D(0)k :=















−1 1

−1 1
...

. . .

−1 1















. (17)

Indeed, following Equation (15) and arranging the coefficients gi and fi in column vectors g and f , respectively, we see
that D(0)p acts on the coefficients of the 0-form (with respect to the 0-form basis Bi,p) and yields the coefficients of its

exterior derivative (with respect to the 1-form basis Bi,p),

g = D(0)p f . (18)

3.1.3. Degree of freedom interpretation
We can give a geometric interpretation to Equation (18) using a particular one-dimensional mesh. Let 0= γ0 < γ1 <

· · ·< γp = 1 partition the unit interval [0, 1], and consider the corresponding one-dimensional cell complex with vertices
γi , i = 0, . . . , p, and edges τi = γiγi+1, j = 0, . . . , p − 1. We orient this complex by choosing the oriented boundary of
each edge τi to be ∂ (τi) = γi+1 − γi .

Then, we can interpret f ∈ Λ(0)P and g ∈ Λ(1)P as cochains, i.e., linear functionals on the edges and vertices,

f : γi 7→ fi , g : τi 7→ gi . (19)

Doing so, we see that the preferred 1- and 0-form basis functions Bi,p and Bi,p, respectively, are cochain interpolants.
Moreover, we see that our discrete representations mimic the continuous version of the Stokes theorem. Indeed, extend-
ing the above maps to formal sums of edges and vertices via linearity, we see that

d f

�p−1
∑

i=0

ciτi

�

= c · D(0)p f =
�

D(0)p

�T
c · f ,

= f

�

∂

p−1
∑

i=0

ciτi

�

,

(20)

since our choice of orientation makes
�

D(0)p

�T
the discrete representation of the boundary operator that maps edges to

oriented sums of vertices. The correspondence with the Stokes theorem is now clear.
Thus, our choice of the preferred 1- and 0-form basis functions leads to a discrete version of the Stokes theorem.

This not only makes it easy to compute the degrees of freedom of an exact 1-form using Equation (18), but in higher
dimensions it will also help us exactly enforce d ◦ d = 0 at the discrete level by a judicious choice of the discrete exterior
derivatives. Finally, we will graphically depict the action of the discrete exterior derivative on the degrees of freedom as
in the figure below. That is, the 0-form degrees of freedom are associated to the oriented zero-dimensional cells of the
mesh (i.e., vertices), and the action of D(0)p yields new degrees of freedom associated to the oriented one-dimensional
cells of the mesh (i.e., edges).
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3.2. The multi-degree spline complex

3.2.1. Multi-degree splines
We start by partitioning the interval Ω into a finite number of points (called breakpoints) and subintervals (called

elements); the space of polynomial splines on Ω will be defined with respect to this partition.

Definition 3.1 (Breakpoints and elements). The m + 1 strictly increasing real numbers x i , such that a =: x0 < x1 <
· · ·< xm := b, will be called breakpoints that partition Ω. The breakpoints define the intervals Ωi called elements,

Ωk =

�

[xk−1, xk) , k = 1, . . . , m− 1 ,

[xm−1, xm] , k = m .
(21)

Next, we pick polynomial degrees pk ∈ N, k = 1, . . . , m, associated to each element Ωk. We also choose a non-
negative order of smoothness rk ∈ Z≥0, k = 1, . . . , m− 1, for each breakpoint of the partition, and r0 = rm ∈ Z≥−1. We
will distinguish between the following two cases,

Non-periodic setting: r0 = rm = −1 ,

Periodic setting: r0 = rm ≥ 0 .
(22)

All the pk and rk are arranged in vectors p and r , respectively. Before proceeding, we place the following mild compat-
ibility assumption on the chosen degrees and orders of smoothness.

Assumption 1

Each “Assumption” introduced will hold for the entirety of the document following it.

Assumption 2: Degree-smoothness compatibility

For all 1≤ k ≤ m− 1, we assume that

rk ≤
�

min{pm, p1} , k = 0 ,

min{pk, pk+1} , k = 1, . . . , m− 1 .

Definition 3.2 (Multi-degree spline space). Given degree and smoothness distributions, we define a spline space on Ω
as

S := S r
p :=

§

Ω
f
−→ R : f

�

�

Ωk
∈ Ppk

, 0< k ≤ m ,

Dr
− f (xk) = Dr

+ f (xk) , 0< k < m , 0≤ r ≤ rk

ª

.
(23)

Moreover, when r0 = rm ≥ 0, a periodic spline space on Ω is defined as

S per := S r ,per
p :=

§

f ∈ S : Dr
− f (xm) = Dr

+ f (x0) , 0≤ r ≤ r0

ª

. (24)

Remark 3.3. In Sections 3.2.2 and 3.2.3, the non-periodic setting will be discussed, and the periodic setting will be
discussed in Sections 3.2.5 and 3.2.5.

The dimension formulas for S and S per can be derived in a multitude of ways [5, 26, 46]. With n and nper denoting
their respective dimensions, we have

n= θ (m)−φ(m) , nper = n− r0 − 1 , (25)

θ (k) :=
k
∑

j=1

(p j + 1) , φ(k) :=
k−1
∑

j=1

(r j + 1) . (26)

where an empty-sum is assumed to be zero.

Assumption 3: Periodic degree-smoothness compatibility

With n and nper as defined in Equation (25), when r0 ≥ 0 we assume that

n≥max
k

pk + r0 + 2⇐⇒ nper ≥max
k

pk + 1 .
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3.2.2. The non-periodic setting: Definition of the complex
To build the multi-degree spline complex, we will use the multi-degree spline spaces S and S − := S r−

p− , where we
define vectors p− and r− such that

p−k = pk − 1 , r−k =max{−1, rk − 1} . (27)

Then, the spaces of 0- and 1-forms are respectively chosen as follows,

Λ
(0)
M := S , Λ

(1)
M :=

�

f d x : f ∈ S −
	

,

yielding the multi-degree spline complex

M : Λ(0)M Λ
(1)
M . (28)

It can once again be easily verified (e.g., using Definition 23) that the exterior derivative is a surjection from Λ(0)M onto
Λ
(1)
M , making H1 (M) = 0. Similarly to the polynomial complex, H0 (M) or the nullspace of d here is one dimensional

and only contains constants, i.e., H0 (M) = R.

3.2.3. The non-periodic setting: Basis for discrete differential forms
Here, we will choose the so-called multi-degree B-splines (MDB-splines) as the preferred basis for the 0-forms. MDB-

splines are a multi-degree generalization of the classical B-splines and the properties of the former mirror those of the
latter; e.g., see [5, 46]. Let us denote the set of MDB-splines that span S with {Ni : i = 0, . . . , n− 1}. See Appendix
A for a recursive definition of MDB-splines using integral relations. The following set of properties are relevant for us;
proofs of the same and other properties can be found in [5, 26, 46], for instance.

Proposition 3.4 (Select MDB-spline properties). With Assumption 2 in place, the following hold.

(a) Non-negativity: Ni(x)≥ 0 for all x ∈ Ω.

(b) Partition of unity:
∑n−1

i=0 Ni(x) = 1 for all x ∈ Ω.

(c) Basis: {Ni : i = 0, . . . , n− 1} are linearly independent and span the space S .

(d) Local linear independence: Only Nµ(k), . . . , Nµ(k)+pk
are supported on Ωk, and they span Ppk

, where

µ(k) :=
k−1
∑

j=0

(p j+1 − r j)− pk + r0 =
k−1
∑

j=0

(p j+1 − r j)− pk − 1 . (29)

(e) End-point interpolation: For any 0 ≤ r ≤ p1, only N0, . . . , Nr have non-zero r-th derivatives at x = a. Similarly, for
any 0≤ r ≤ pm, only Nn−r−1, . . . , Nn−1 have non-zero r-th derivatives at x = b. In particular, N0(a) = Nn−1(b) = 1.

Appendix B presents an algorithmic computation of MDB-splines that is much more efficient for computations than
the recursive definitions from Appendix A. The algorithm computes a multi-degree extraction H [46, 47] that helps
express Ni on Ωk as a linear combination of Bernstein–Bézier polynomials on Ωk. We briefly explain this construction
here.

For k = 1, . . . , m, we denote by BΩk
j,pk

, j = 0, . . . , pk, the Bernstein–Bézier polynomials of degree pk defined on Ωk; see
Equation (14). Then, we extend them outside of Ωk by 0 and relabel them as

Bθ (k−1)+ j := BΩk
j,pk

, j = 0, . . . , pk .

Next, arrange these relabeled basis functions in a single vector B of length θ (m). Then, the multi-degree extraction H
output by the algorithm in Appendix B [42] helps build the MDB-splines using the following expression [46],

N = HB , (30)

where N is the vector containing all MDB-splines Ni . In particular, for k = 1, . . . , m, we call HΩk the element extraction;
it is the square submatrix of H of size (pk + 1)× (pk + 1) such that















Nµ(k)(x)

Nµ(k)+1(x)
...

Nµ(k)+pk
(x)















= HΩk















BΩk
0,pk
(x)

BΩk
1,pk
(x)

...

BΩk
pk ,pk
(x)















, x ∈ Ωk . (31)

The matrices H and HΩk have properties that mirror those of MDB-splines as presented in Proposition 3.4; e.g., see [46].
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f0 f1 f2 fn−2 fn−1

f1 − f0 f2 − f1 fn−1 − fn−2

D(0)n

Figure 2: A similar degree of freedom interpretation as in Section 3.1.3 can be performed for the multi-degree complex M. With
the degrees of freedom of 0- and 1-forms associated to vertices and edges of a one-dimensional cell complex, the discrete
exterior derivative D(0)n corresponding to the choice of the preferred bases has a simple action as shown above.

Proposition 3.5 (Extraction properties). With Assumption 2 in place, the following hold.

(a) Non-negativity: All entries of H and HΩk , k = 1, . . . , m, lie in [0,1].

(b) Column stochasticity: All columns of H and HΩk , k = 1, . . . , m, sum to 1.

(c) Non-degeneracy: The matrix H has full rank.

(d) Local invertibility: The matrices HΩk , k = 1, . . . , m, are non-singular.

With the above choice of the 0-form basis, we now outline how a preferred basis for the space of 1-forms can be
constructed. Note that, in general, this preferred basis will not be the same as the MDB-splines for the space S −. The
following mimics the exposition from Section 3.1.2.

Let {N i : i = 0, . . . , n− 1} denote the set of preferred basis functions that span S −; note that Equation 25 implies
that

n= n− 1 .

Since this is the set of preferred basis functions, it means that for 0-form f ∈ Λ(0)M ,

f =
n−1
∑

i=0

fiNi ,

the 1-form g = d f ∈ Λ(1)M can be expressed as

g =
n−1
∑

i=0

fidNi =
n−1
∑

i=0

( fi+1 − fi)N i d x =:
n−1
∑

i=0

giN i d x , (32)

The following shows how the basis functions N i can be defined element-wise; its proof is presented in Appendix C.

Proposition 3.6. For k = 1, . . . , m,














Nµ(k)(x)

Nµ(k)+1(x)
...

Nµ(k)+pk−1(x)















= H
Ωk















B
Ωk

0,pk
(x)

B
Ωk

1,pk
(x)

...

B
Ωk

pk ,pk
(x)















:= CHΩk

�

D(0)pk

�T















B
Ωk

0,pk
(x)

B
Ωk

1,pk
(x)

...

B
Ωk

pk ,pk
(x)















, x ∈ Ωk , (33)

where C is a lower-triangular matrix of size pk×(pk+1) with all entries equal to −1. All N i , i = 0, . . . , n−1, are, moreover,
locally linearly independent and form a basis for S −.

3.2.4. The non-periodic setting: Degree of freedom interpretation
Similarly to the discussion in Section 3.1.3 focused on the polynomial complex, we can give a geometric interpretation

to the non-periodic multi-degree spline complex using Equation (32). Let 0 = γ0 < γ1 < · · · < γn−1 = 1 partition the
unit interval [0, 1], and consider the corresponding one-dimensional cell complex with vertices γi , i = 0, . . . , n− 1, and
edges τi = γiγi+1, j = 0, . . . , n− 1. We again orient this complex by choosing the oriented boundary of each edge τi to
be ∂ (τi) = γi+1 − γi .

Once again, we interpret 0- and 1-forms as linear functionals on the cell complex, and this leads to a discrete repre-
sentation of the Stokes theorem. The discussion is exactly as in Section 3.1.3, therefore we do not repeat here. Instead,
we only present graphical representation showing the action of the discrete exterior derivative on the 0-form degrees of
freedom.
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3.2.5. The periodic setting: Definition of the complex
In the periodic setting, i.e., with r0 ≥ 0, we identify the right endpoint of Ω with its left endpoint, a ≡ b. We will

denote this domain with Ωper and note that the end-point identification makes it a topological circle. Let us now build
the multi-degree spline complex on this periodic domain; the developments are very similar to the exposition thus far
in Section 3.2.2 and 3.2.3.

The multi-degree spline complex in the periodic setting is built by choosing the spaces of 0- and 1-forms as

Λ
(0)
M := S per , Λ

(1)
M := { f d x : f ∈ S −,per} ,

where S −,per is the periodic analogue of S − with C r0−1 smoothness enforced between the identified ends of Ωper. Then,
the periodic multi-degree spline complex is given by

Mper : Λ(0)M Λ
(1)
M . (34)

Once again, H0 (Mper) or the nullspace of the exterior derivative contains only constants in Λ(0)M . However, H1 (Mper) is
non-trivial and one-dimensional here, mirroring the non-trivial topology of the periodic domain Ωper. Indeed, constants
are in Λ(1)M but are not in the image of d. Thus, both H0 (Mper) and H0 (Mper) are isomorphic as vector spaces to R.

3.2.6. The periodic setting: Basis for discrete differential forms
We choose periodic MDB-splines {Nper

i : i = 0, . . . , nper − 1} as the basis for the 0-form space Λ(0)M . These can be
computed starting from the MDB-splines for the non-periodic space S [42]. In particular, we can compute a matrix H̃
using Algorithm 3 from Appendix D such that

Nper = H̃N = H̃HB =: HperB . (35)

Note that, when working in the periodic setting, all indices (of basis functions, elements, etc.) are treated in a circular
fashion here. That is, if we write “Nper

i ,” the subscript is to be understood as below,

i ≡ i mod n . (36)

Periodic MDB-splines have the same set of properties (except end-point interpolation unless r0 = 0) as their non-
periodic counterparts, and these are summarized in the following result; these properties can be derived from the
properties of H and the properties of H̃ as shown in Proposition D.1.

Proposition 3.7 (Select periodic MDB-spline properties). With Assumptions 2 and 3 in place, the following hold.

(a) Non-negativity: Nper
i (x)≥ 0 for all x ∈ Ωper.

(b) Partition of unity:
∑n

i=1 Nper
i (x) = 1 for all x ∈ Ωper.

(c) Basis: {Nper
i : i = 0, . . . , nper − 1} are linearly independent and span the space S per.

(d) Local linear independence: Only Nper
µ(k), . . . , Nper

µ(k)+pk
are supported on Ωk, and they span Ppk

, where

µ(k) :=
k−1
∑

j=0

(p j+1 − r j)− pk + r0 . (37)

In particular, combining Equations (30), (31) and (35), we can write element-local representations of the periodic
MDB-splines using element extraction operators,















Nper
µ(k)(x)

Nper
µ(k)+1(x)

...

Nper
µ(k)+pk

(x)















= HΩk ,per















BΩk
0,pk
(x)

BΩk
1,pk
(x)

...

BΩk
pk ,pk
(x)















, x ∈ Ωk . (38)

The extraction matrices Hper and HΩk ,per have properties that again mirror those of the periodic MDB-splines; see Propo-
sition D.1.

Proposition 3.8 (Periodic extraction properties). With Assumptions 2 and 3 in place, the following hold.

(a) Non-negativity: All entries of Hper and HΩk ,per, k = 1, . . . , m, lie in [0,1].

(b) Column stochasticity: All columns of Hper and HΩk ,per, k = 1, . . . , m, sum to 1.
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(c) Non-degeneracy: The matrix Hper has full rank.

(d) Local invertibility: The matrices HΩk ,per, k = 1, . . . , m, are non-singular.

The periodic MDB-splines are chosen as the preferred basis for 0-forms, and all computations are performed on each
element via Equation (38). For 1-forms, let {N

per
i : i = 0, . . . , nper − 1} denote the set of preferred basis functions that

span S −,per; note that in the non-periodic setting, the dimension of S −,per is the same as that of S per, i.e.,

nper = nper .

Since this is the set of preferred basis functions, it means that for 0-form f ∈ Λ(0)M ,

f =
nper−1
∑

i=0

fiN
per
i ,

the 1-form g := d f ∈ Λ(1)M can be expressed as

g =
nper−1
∑

i=0

fidNper
i =

nper−1
∑

i=0

( fi+1 − fi)N
per
i d x =:

nper−1
∑

i=0

giN
per
i d x , (39)

where the coefficients gi are now obtained from fi by the action of the periodic discrete exterior derivative D(0),per
nper , where

D(0),per
k is defined as the following matrix of size k× k,

D(0),per
k :=















−1 1

−1 1
...

. . .

1 −1















. (40)

The following shows how the basis functions N
per
i can be defined element-wise; its proof can be found in Appendix E.

Proposition 3.9. For k = 1, . . . , m,














N
per
µ(k)(x)

N
per
µ(k)+1(x)

...

N
per
µ(k)+pk−1(x)















= H
Ωk ,per















B
Ωk

0,pk
(x)

B
Ωk

1,pk
(x)

...

B
Ωk

pk−1,pk
(x)















:= CHΩk ,per
�

D(0)pk

�T















B
Ωk

0,pk
(x)

B
Ωk

1,pk
(x)

...

B
Ωk

pk−1,pk
(x)















, x ∈ Ωk , (41)

where C is a lower-triangular matrix of size pk × (pk + 1) with all entries equal to −1. All N
per
i , i = 0, . . . , nper − 1, are,

moreover, locally linearly independent and form a basis for S −,per.

3.2.7. The periodic setting: Degree of freedom interpretation
Let us now give a geometric interpretation of the periodic multi-degree spline complex using Equation (39). Let

0 = γ0 < γ1 < · · · < γn−1 = 1 partition the unit interval [0, 1], and consider the corresponding one-dimensional cell
complex with vertices γi , i = 0, . . . , n−1, and edges τi = γiγi+1, j = 0, . . . , n−1. We again orient this complex by choosing
the oriented boundary of each edge τi to be ∂ (τi) = γi+1 − γi . Note that, due to periodicity, τn−1 = γn−1γn = γn−1γ0.

Once again, we interpret 0- and 1-forms as linear functionals on the cell complex, and this leads to a discrete repre-
sentation of the Stokes theorem. The corresponding graphical representation showing the action of the discrete exterior
derivative on the 0-form degrees of freedom is presented below.

4. The tensor-product spline complex and mapped geometries

Using the univariate multi-degree spline complexes, we can build multivariate spline complexes via tensor-products
of the multi-degree spline spaces. Here, since we are mainly interested in surfaces in R2 or R3, we only focus on bivariate
spline complexes. First, we detail how these are built on a rectangular parametric domain Ω,

Ω := Ω1 ×Ω2 := [a1, b1]× [a2, b2] ⊂ R2 , (42)

and then we show how they can be used to build spline complexes on mapped surfaces in R2 or R3.
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f0 f1 f2 fn−2 fn−1 fn = f0

f1 − f0 f2 − f1 fn−1 − fn−2 f0 − fn−1

D(0),per
nper

Figure 3: The degree of freedom interpretation for the multi-degree complex can be extended to the periodic complex Mper. The
discrete exterior derivative D(0),per

nper corresponding to the choice of the periodic preferred bases has a simple action as shown
above.

4.1. Tensor-product splines

Let S i be some univariate multi-degree spline spaces built on Ωi and denote the corresponding sets of MDB-splines
with {N i

j : j = 0, . . . , ni − 1}, i = 1,2. Unless otherwise specified, spline spaces S i are allowed to be non-periodic or
periodic; we simply drop the superscript of “per” to simplify the notation whenever the context is unambiguous. More-

over, let {N
i
j : j = 0, . . . , ni − 1}, i = 1, 2, denote the respective sets of preferred 1-form basis functions corresponding

to S 1 and S 2; these span the spline spaces S 1,− and S 2,−, respectively. Using the above univariate spline spaces, we
define the following tensor-product bivariate spline spaces,

S (0,0) := span



Ni(x
1)N j(x

2) : i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1
�

, n(0,0) := dim
�

S (0,0)
�

= n1 × n2 , (43)

S (1,0) := span



N i(x
1)N j(x

2) : i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1
�

, n(1,0) := dim
�

S (1,0)
�

= n1 × n2 , (44)

S (0,1) := span



Ni(x
1)N j(x

2) : i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1
�

, n(0,1) := dim
�

S (0,1)
�

= n1 × n2 , (45)

S (1,1) := span



N i(x
1)N j(x

2) : i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1
�

, n(1,1) := dim
�

S (1,1)
�

= n1 × n2 . (46)

4.2. Definition of the complex

Using the above tensor-product spline spaces, we choose the spaces of 0-, 1- and 2-forms on Ω as follows,

Λ
(0)
T := S (0,0) , Λ

(1)
T := { fi d x i : f1 ∈ S (1,0) , f2 ∈ S (0,1)} , Λ

(2)
T := { f d x1 ∧ d x2 : f ∈ S (1,1)} .

Unless stated otherwise, Einstein’s summation convention is assumed to hold from here onwards, i.e., repeated sub- and
super-scripts are summed over. Then, the bivariate tensor-product spline complex on Ω is defined as

T : Λ(0)T Λ
(1)
T Λ

(2)
T . (47)

Theorem 4.1. The cohomology spaces of the complex T satisfy:

H0 (T) = R ;

H1 (T) =











0 , S 1 and S 2 are non-periodic ,

R , either S 1 or S 2 is periodic ,

R2 , both S 1 and S 2 are periodic ;

H2 (T) =

�

0 , both S 1 and S 2 are non-periodic ,

R , both S 1 and S 2 are periodic .

Proof. It is clear that only constants in Λ(0)T are annihilated by the exterior derivative, thus showing that H0 (T) = R.
The proof for H1 (T) and H2 (T) for non-periodic spline spaces can be obtained by, for instance, following the proof of
[12, Theorem 4.1]. The cases with periodic spline spaces make Ω a topological cylinder or torus, and the cohomology
spaces can be verified to be,

H1 (T) =

¨

span



α d x i : α ∈ R
�

, if only S i is periodic ,

span



αi d x i : αi ∈ R , i = 1,2
�

, both S 1 and S 2 are periodic ;

H2 (T) = span



α12 d x1 ∧ d x2 : α12 ∈ R
�

.

�

11



4.3. Basis for discrete differential forms

We have already chosen the preferred basis for 0-, 1- and 2-forms in Equations (43)–(46). Since all basis functions
are tensor-product, their element-wise computations are done by tensoring the respective element extraction matrices

from Equations (31) and (38) for the splines N i
j , i = 1,2, and using Propositions 3.6 and 3.9 for the splines N

i
j , i = 1, 2.

Therefore, it only remains to derive the discrete representations of the exterior derivatives akin to the univariate setting.
We do so in the following.

Let f ∈ Λ(0)T , then

f =
n1−1
∑

i=0

n2−1
∑

j=0

fi jN
1
i N2

j = N(0) · f ,

where f and N(0,0) are column vectors obtained by placing fi j and N1
i N2

j in the (i+ jn1)-th locations, respectively. Then,
using the univariate relations, we can write

Λ
(1)
T 3 g := d f =

n1−1
∑

i=0

n2−1
∑

j=0

fi j

�

dN1
i

d x1
N2

j d x1 + N1
i

dN2
j

d x2
d x2

�

,

= N(1,0) · D(1,0) f d x1 + N(0,1) · D(0,1) f d x2 ,

(48)

where N(1,0) and N(0,1) are column vectors obtained by placing N
1
i N2

j and N1
i N

2
j in the (i + jn1)-th and (i + jn1)-th

locations, respectively, and the discrete exterior derivatives are given by

D(1,0) = In2 ⊗ D(0)
n1 , D(0,1) = D(0)

n2 ⊗ In1 . (49)

Similarly, let f ∈ Λ(1)T , then

f =
n1−1
∑

i=0

n2−1
∑

j=0

f 1
i j N

1
i N2

j d x1 +
n1−1
∑

i=0

n2−1
∑

j=0

f 2
i j N

1
i N

2
j d x2 ,

= N(1,0) · f 1 d x1 + N(0,1) · f 2 d x2 ,

where f 1 and f 2 are column vectors obtained by placing f 1
i j and f 2

i j in the (i + jn1)-th and (i + jn1)-th locations,
respectively. Then, using the univariate relations, we can write

Λ
(2)
T 3 g := d f =

n1−1
∑

i=0

n2−1
∑

j=0

f 1
i j N

1
i

dN2
j

d x2
d x2 ∧ d x1 +

n1−1
∑

i=0

n2−1
∑

j=0

f 2
i j

dN1
i

d x1
N

2
j d x1 ∧ d x2 ,

= N(1,1) ·
�

−D(2,0) f 1 + D(0,2) f 2
�

d x1 ∧ d x2 ,

(50)

where N(1,1) is a column vector obtained by placing N
1
i N

2
j in the (i+ jn1)-th locations, and the discrete exterior derivatives

can once again be derived to be the following sparse outer products,

D(2,0) = D(0)
n2 ⊗ In1 , D(0,2) = In2 ⊗ D(0)

n1 . (51)

4.3.1. Degree of freedom interpretation
The geometric interpretation of the tensor-product complex follows directly from those for the univariate multi-

degree complexes; see Sections 3.2.4 and 3.2.7. This time we consider a tensor-product partition of [0,1]2 into n1 ×
n2 quadrilaterals. The zero-dimensional, horizontal and vertical one-dimensional, and two-dimensional cells of this
partition will be denoted, respectively, as

γi j , i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1 ,

τ1
i j , i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1 ,

τ2
i j , i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1 ,

σi j , i = 0, . . . , n1 − 1 , j = 0, . . . , n2 − 1 .

Then, the degrees of freedom of the 0-, 1- and 2-forms are associated to these geometric objects. We define the oriented
boundaries of the edges and the faces as

∂ τ1
i j = γ(i+1) j − γi j , ∂ τ2

i j = γi( j+1) − γi j ,

∂ σi j = τ
1
i j +τ

2
(i+1) j −τ

1
i( j+1) −τ

2
i j .

12



fi j f(i+1) j

f(i+1)( j+1)fi( j+1)

f(i+1) j − fi j

f(i+1)( j+1) − f(i+1) j

f i(
j+

1)
−

f i
j

f (
i+

1)
(j
+

1)
−

f (
i+

1)
j

D(1,0) D(0,1)

f 1
i j

f 1
i( j+1)

f2 ij

f2 (i
+

1)
j

f 1
i( j+1) − f 1

i j f 2
(i+1) j − f 2

i j

D(2,0) D(0,2)

Figure 4: The univariate degree of freedom interpretations for the multi-degree complexes directly lead to the same for the tensor-
product complex T. The 0-, 1- and 2-forms are now associated to the vertices, edges and faces of a tensor-product cell
complex, respectively; see the figures in the first row. These figures correspond to n1 = n2 = 5. Moreover, with respect to
the preferred basis, the discrete exterior derivatives have D(1,0), D(0,1), D(2,0) and D(0,2) have a simple action as shown in the
middle and bottom rows.

Then, the discrete exterior derivatives from Equations (49) and (51) help us establish discrete versions of the Stokes
theorem. The action of these on the spline degrees of freedom is presented in Figure 4. Furthermore, it can be readily
checked that, for f ∈ Λ(0)T , Equations (49) and (51) imply that d ◦d f = 0. Alternatively, this fact is implied by the duality
of the discrete exterior derivatives with the boundary operator since

d ◦ d f

 

n1−1
∑

i=0

n2−1
∑

j=0

ci jσi j

!

= d f

 

∂

n1−1
∑

i=0

n2−1
∑

j=0

ci jσi j

!

= f

 

∂ ◦ ∂
n1−1
∑

i=0

n2−1
∑

j=0

ci jσi j

!

= 0 , (52)

as the boundary of a boundary is always empty.

4.4. Mapped geometries

Let us now transfer the spaces of spline differential forms onto a domain Ω̂ ⊂ Rd, d= 2 or 3, obtained via a geometric
mapping of Ω. In particular, sticking to the isogeometric concept, we will look at geometric mappings built using tensor-
product splines in S (0,0) and, moreover, assume that Ω̂ is a manifold.

For i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1, choose G i j ∈ Rd. Then, consider a 2-manifold Ω̂ obtained as the image of Ω
under the spline map G defined as

R2 ⊃ Ω 3 x = (x1, x2) 7−→ G(x ) := (G1(x ), · · · , Gd(x )) ∈ Ω̂ ⊂ Rd ,

:=
n1−1
∑

i=0

n2−1
∑

j=0

G i jN
1
i (x

1)N2
j (x

2) .
(53)

Then Ω̂ has local, curvilinear coordinates x1, x2, and global Cartesian coordinates y1, . . . , yd. Assuming that Ω̂ is a C≥1

smooth manifold, the vectors ∂ x
i =

∂G
∂ x i (x ), i = 1,2, form a basis for vectors tangent to Ω̂ at G(x ). The vectors dual to
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∂ x
i are d x i , i = 1,2, and they form a basis for the covectors tangent to Ω̂ at G(x ). The 0-, 1- and 2-forms on Ω̂ can thus

be denoted as f , fi d x i and f d x1 ∧ d x2, respectively.
Denote the associated metric tensor, its i j-th component and its matrix determinant with g , gi j and g, respectively,

and let ∂ y
i , i = 1, . . . ,d, be the canonical basis vectors in Rd. Then,

∂ x
i =

∂ G j

∂ x i
∂

y
j , g = gi jd x i ⊗ d x j , gi j = ∂

x
i · ∂

x
j , g := det[gi j] . (54)

The quantity
p

g thus denotes the Jacobian determinant of the map G.
If the map Ω̂ is locally invertible, then

p
g > 0 and the components of the inverse of the 2×2 matrix [gi j] are denoted

as g i j . Using the metric and its inverse, we can explicitly define the Hodge star ? in the present setting,

? f =
p

g f d x1 ∧ d x2 ,

? fi d x i =
p

g fi g
i jε jk d x k ,

? f12 d x1 ∧ d x2 =
1
p

g
f ,

(55)

where εi j is equal to 1 for (i, j) = (1,2), equal to −1 for (i, j) = (2,1), and zero otherwise. In particular, the L2 inner
product of i-forms can be expressed as (also see Appendix F)

( f , g)Ω̂ =

∫

Ω̂

f ∧ ?g . (56)

Finally, differential forms on Ω̂ in the canonical basis d y i , i = 1, . . . ,d, can be pulled back to Ω using the map G∗ as
follows,

G∗ ( f ) = f ◦G ,

G∗
�

fi d y i
�

= ( fi ◦G)
∂ G i

∂ x j
d x j ,

G∗
�

fi j d y i ∧ d y j
�

=
�

fi j ◦G
� ∂ G i

∂ x k

∂ G j

∂ x`
d x k ∧ d x` .

(57)

The map G∗ is called the pullback and it commutes with both the wedge product and the exterior derivative. Moreover,
using it, we can perform integration of an i-form on an i-dimensional geometry G

�

Ω
�

as

∫

G(Ω)
f =

∫

Ω

G∗ ( f ) . (58)

Using the pullback, we also define the spaces of spline differential forms on Ω̂ as

Λ̂
(i)
T :=

¦

f : G∗ ( f ) ∈ Λ(i)T

©

, i = 0, 1,2 , (59)

and the corresponding spline complex on Ω̂ is defined as

T̂ : Λ̂(0)T Λ̂
(1)
T Λ̂

(2)
T .

The pullback commutes with the exterior derivative and, thus, forms a cochain map from the complex T̂ to T.

5. The polar spline complex

In this section, we build a spline complex on geometries Ω̂ that are obtained via a map G that collapses one or two
edges of Ω to one or two points, respectively, in Rd; see Figure 5. These collapsed edges are called polar singularities or
poles. Figure 6 presents a topological representations of the tensor-product degree-of-freedom complexes following the
introduction of polar singularities.

In general, the presence of poles means that Ω̂ will not be a C≥1 smooth 2-manifold. However, by restricting each
component of G to be a member of a suitable subspace of S (0,0), we will be able to ensure smoothness of Ω̂. In Section
5.1, we build such a suitable subspace and use it to define smooth Ω̂; the splines in the former will be called polar splines.
Thereafter, in Section 5.2, we build spaces of polar spline differential forms on Ω̂ and use them to define the polar spline
complex in Section 5.3.
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(a) Type 1: Single polar singularity (b) Type 2: Double polar singularity

Figure 5: A single edge or a pair of opposite edges of a tensor-product spline patch can be collapsed for creating geometries with
polar singularities. We will refer to the two modes of collapse as Type 1 and Type 2, respectively. The collapsed edges here
are shown in red, and the black edges are identified with each other to enforce periodicity.

Assumption 4: Tensor-product configuration for building polar splines

With Ω= Ω1×Ω2, the endpoints of Ω1 have been identified. The univariate spline spaces S 1 and S 2 on Ω1 and
Ω2 are periodic and non-periodic, respectively, and they are used to define all tensor-product spline spaces on Ω
using Equations (43)–(46). Moreover,

• with r i the smoothness vector used to define S i , i = 1, 2,

r1
k ≥ 1 , k = 0, . . . , m1 ,

r2
k ≥ 1 , k = 1, . . . , m2 − 1 ;

• the dimension S 2 is at least 5, i.e., n2 ≥ 5.

5.1. C1 smooth polar B-splines

Thanks to the end-point interpolation and partition of unity properties of MDB-splines (see Proposition 3.4(d)), the
required edge collapse shown in Figure 5 can be achieved by choosing in Equation (53)

G00 = G10 = · · ·= G(n1,per−1)0⇐⇒∀x1 ∈ Ω1, G(x1, a2) = G00 ; (60)

G0(n2−1) = G1(n2−1) = · · ·= G(n1,per−1)(n2−1)⇐⇒∀x1 ∈ Ω1, G(x1, b2) = G0(n2−1) . (61)

However, in general, this coefficient coalescing will introduce kinks at the poles and the surface representation will not
be smooth. Nevertheless, it is possible to identify constraints on the remaining G i j that ensure that Ω̂ is a C1 smooth
2-manifold or, equivalently, such that it has a well-defined tangent plane at all points. Such constraints were identified
in [47] for C k smoothness, but for simplicity we restrict to the case of C1 smoothness. In this section, we present the
relevant constraints and their resolution. The discussion will be abbreviated and focused on practical considerations
since the theory has already been elaborately addressed in [47] and, more recently, [43].

A polar surface will be smooth at a polar point if it can be locally (re)parametrized in a smooth way. Such parametriza-
tions can be specified in a constructive manner and, for C1 smoothness, they impose simple geometric constraints on
the choice of the G i j [47, Section 3.3]; these are presented in the following result.

Proposition 5.1 (C1 smoothness at the poles).

(a) For the edge-collapse in Equation (60), Ω̂ has a well-defined tangent plane at G00 if

(i) the points G i j , i = 0, . . . , n1 − 1 , j = 0, 1, are all coplanar;

(ii) the vectors G i1 −G i0, i = 0, . . . , n1 − 1, are all distinct, non-zero, and form a clockwise or counter-clockwise fan
around G00.

The tangent plane at G00 is then spanned by G01 −G00 and G11 −G10.

(b) For the edge-collapse in Equation (61), Ω̂ has a well-defined tangent plane at G0(n2−1) if

(i) the points G i j , i = 0, . . . , n1 − 1 , j = n2 − 2, n2 − 1, are all coplanar;

(ii) the vectors G i(n2−1)−G i(n2−2), i = 0, . . . , n1−1, all distinct, non-zero, and form a clockwise or counter-clockwise
fan around G0(n2−1).

The tangent plane at G0(n2−1) is then spanned by G0(n2−1) −G0(n2−2) and G1(n2−1) −G1(n2−2).

In particular, assigning Ω a counter-clockwise orientation, G preserves the orientation in a neighborhood of the poles if the
fans in (a) and (b) above are clockwise and counter-clockwise, respectively.
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Figure 6: This figure demonstrates how the tensor-product degree-of-freedom complex from Figure 4 changes following Type 1 and
Type 2 collapses from Figure 5; also see Equations (60) and (61). The middle row shows the tensor-product complex for
(n1, n2) = (4, 5). The rightmost vertex and vertical edge degrees of freedom have been plotted in gray to indicate that
periodicity in the first parametric direction has been imposed; see Assumption 4. The bottom row shows the tensor-product
complex following Type 1 collapse, while the top row shows the tensor-product complex following Type 2 collapse.

Proof. See [Section 3.3][47]. �

Depending on Type 1 or Type 2 edge collapse (see Figure 5), we would want the satisfaction of either the conditions
in Proposition 5.1(a), or those in both Proposition 5.1(a) and (b), respectively. Then, [47] suggest the following simple
way of satisfying the above smoothness constraints at the poles. Choose triangles41 and42 with vertices {v1

i ∈ R
d}3i=1

and {v2
i ∈ R

d}3i=1, respectively. Next, require the following relations to hold,

Proposition 5.1(a) : G i j =
3
∑

k=1

χk,1
i j v1

k ,
3
∑

k=1

χk,1
i j = 1 , i = 0, . . . , n1 − 1 , j = 0,1 , (62)

Proposition 5.1(b) : G i j =
3
∑

k=1

χk,2
i j v2

k ,
3
∑

k=1

χk,2
i j = 1 , i = 0, . . . , n1 − 1 , j = n2 − 2, n2 − 1 . (63)

In other words, with regard to Proposition 5.1(a) (respectively, Proposition 5.1(b)), we force G i j to lie in the plane of41

(respectively, 41), and the numbers χk,1
i j (respectively, χk,2

i j ), k = 1,2, 3, are its corresponding barycentric coordinates.
We will call 41 and 42 the domain triangles for the above sets of G i j .

Next, conditions (ii) of both Proposition 5.1(a) and (b) can be satisfied equally easily by choosing the barycentric
coordinates as follows. Define θi ∈ (0,2π) as

θi := 2π−
(1+ 2i)π

n1
. (64)
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Next, compute the required barycentric coordinates using the following two equations for i = 0, . . . , n1 − 1,

χ
j,1
i0 = χ

j,2
i(n2−1) =

1
3

, j = 1, 2,3 , (65)






χ1,1
i1

χ2,1
i1

χ3,1
i1






=







χ1,2
(n1−1−i)(n2−2)

χ2,2
(n1−1−i)(n2−2)

χ3,2
(n1−1−i)(n2−2)






=







1
3 0 1

3

− 1
6

p
3

6
1
3

− 1
6 −

p
3

6
1
3













cos(θi)

sin(θi)

1






. (66)

Lemma 5.2. All χk,1
i j and χk,2

i j , as specified by Equations (65) and (66), are non-negative. Moreover, the corresponding G i j
defined as in Equations (62) and (63) satisfy the conditions of Proposition 5.1(a) and (b), respectively.

Proof. As explained in [47], Equations (65) and (66) implicitly impose that the G i j are uniformly distributed on cir-
cles centred at the poles and, moreover, that these circles are contained within the domain triangles. Therefore, the
barycentric coordinates are all non-negative. �

Therefore, depending on Type K collapse, K = 1, 2, the number of coefficients needed to define the tensor-product
coefficients is equal to npol,

npol := n(0,0) − K(2n1 − 3) . (67)

Doing so, and recalling Equation (43), let us define the polar extraction Epol of size npol × n(0,0) as

Epol :=







E1

Inpol−6

E2






, (68)

where E1 and E2 are defined as

Ek :=































χ1,k
0 j · · · χ1,k

(n1−1) j χ1,k
0( j+1) · · · χ1,k

(n1−1)( j+1)

χ2,k
0 j · · · χ2,k

(n1−1) j χ2,k
0( j+1) · · · χ2,k

(n1−1)( j+1)

χ3,k
0 j · · · χ3,k

(n1−1) j χ3,k
0( j+1) · · · χ3,k

(n1−1)( j+1)









,

( j, k) = (0,1) and Type 1 or Type 2

or

( j, k) ∈ {(1, 1), (n2 − 2,2)} and Type 2

,

I3 , otherwise .

(69)

Proposition 5.3 (Polar extraction properties).

(a) Non-negativity: All entries of Epol lie in [0,1].

(b) Column stochasticity: All columns of Epol sum to 1.

(c) Non-degeneracy: The matrix Epol has full rank.

Proof. The properties follow from Lemma 5.2 and the definition of the extraction operator via Equations (68) and
(69). �

The properties of the polar extraction helps us define polar B-splines, Npol
i , i = 0, . . . , npol−1, as linear combinations

of tensor product B-splines that span S (0,0). More precisely, we define

Npol := EpolN(0,0) , (70)

where Npol is a vector containing the polar B-splines Npol
i . Consequently, we define S pol as the space spanned by the

polar B-splines,
S pol := span

¬

Npol
i : i = 0, . . . , npol − 1

¶

. (71)

The following result summarizes their relevant properties; see [47, Proposition 3.1 and 3.2].

Corollary 5.4 (Select polar B-spline properties).

(a) Non-negativity: Npol
i (x )≥ 0 for all x ∈ Ω.

(b) Partition of unity:
∑npol−1

i=0 Npol
i (x ) = 1 for all x ∈ Ω.

(c) Basis: {Npol
i : i = 0, . . . , npol − 1} are linearly independent and thus form a basis for S pol.

Proof. The properties are a direct consequence of Proposition 5.3. �
17



With Gpol
i ∈ R

d, i = 0, . . . , npol − 1, let Ω̂ be obtained via the geometric map Gpol defined as

R2 ⊃ Ω 3 x = (x1, x2) 7−→ Gpol(x ) :=
npol−1
∑

i=0

Gpol
i Npol

i (x ) ∈ Ω̂ . (72)

Then, the following result holds.

Proposition 5.5 (Smoothness of polar B-splines). The image of Gpol, Ω̂, is a smooth 2-manifold. Moreover, the functions
{N̂pol

i : N̂
pol
i ◦Gpol = Npol

i } are C1 smooth on Ω̂.

Proof. The smoothness of Ω̂ is only suspect at the poles. However, the claim follows from Proposition 5.1, Equations
(62), (63), (68) and (70). Indeed, for G i j , i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1, and `= i + jn1, define G i j as

G i j :=
npol−1
∑

k=0

Epol
k` Gpol

k , (73)

where Epol
k` is the k`-th entry of Epol. Then, it is clear that G i j satisfy the constraints of Proposition 5.1. The smoothness

of the pushforwards of polar B-spline functions was shown in [47] and we omit the proof here for brevity. �

5.2. Basis for discrete differential forms

Let us now describe the construction of polar spline discrete differential forms that are built with S pol chosen as the
space of 0-forms. First, let us describe the motivation behind, and an overview of, our construction.

5.2.1. Motivation for the construction
The motivation for the construction presented herein is derived from the relations for mapped geometries presented

in Section 4.4. In particular, the introduction of edge-collapses implies that
p

g = 0 at the poles. This implies that, in
general, spline differential forms will not be bounded in a neighborhood of the poles; e.g., see Equation (55). Equipped
with the C1 smooth polar B-splines as 0-forms, we counteract this singular behaviour by imposing “local exactness” for
all one and 2-forms in a neighborhood of the poles. That is, in the vicinity of the poles, spline differential k-forms,
k = 1,2, will be restricted to be exact. Then, at the poles, C1 smoothness of the 0-forms automatically translates to
C0 and C−1 smoothness of the one and 2-forms and, moreover, avoids the blowup. Note that, away from the poles, all
differential forms are going to have the same smoothness as their tensor-product counterparts.

Following the above motivation, and by the construction of the 0-form polar splines as in Equation (70), we now
present polar analogues of the tensor-product cell complexes from Figure 4. These are shown in Figure 7; c.f. Figure 6.
Note the following about the polar degree-of-freedom complex in the top and bottom rows.

• There are three degrees of freedom for polar 0-forms near the poles.

• Imposing local exactness of polar 1-forms at the poles, there are two degrees of freedom for them near the poles.

• Imposing local exactness of polar 2-forms at the poles, and from the above bullet, there are no degrees of freedom
for them near the poles.

Next, let us explain the different vertical and horizontal maps in Figure 7. The left-most column of the figure
corresponds to Equation (73), i.e., the vertical maps in that column send degrees of freedom for polar 0-forms to those
for tensor-product 0-forms. The horizontal maps in the middle row have been defined in Equations (49) and (51). It
remains to define the remaining vertical (i.e., from polar degrees of freedom to tensor-product degrees of freedom) and
horizontal maps (i.e., discrete exterior derivatives that act on polar degrees of freedom). The transposes of the vertical
maps will help specify the basis functions for polar one and 2-forms as linear combinations of those for tensor-product
one and 2-forms, respectively, similarly to Equation (70) for polar 0-forms.

A concrete discussion in the following subsections requires a numbering of the degrees of freedom for 0-, 1- and 2-
forms in the Type 1 and Type 2 polar complexes from Figure 7; these numberings are then shared by the basis functions
for polar 0-, 1- and 2-forms, respectively. The total number of degrees of freedom associated to 0-, 1- and 2-forms can
be found using Equations (43)–(46). Observing that Assumption 4 implies n1 = n1, the number of degrees of freedom
are computed as below for Type K collapse, K = 1,2,

n(0),pol := npol = n(0,0) − K(2n1 − 3) , (74)

n(1),pol := n(1,0) + n(0,1) − K(3n1 − 2) , (75)

n(2),pol := n(1,1) − Kn1 . (76)

The degrees of freedom are numbered using the scheme shown in Figure 8.
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Figure 7: This figure demonstrates the Type 1 (bottom row) and Type 2 (top row) polar degree-of-freedom complexes corresponding
to the basis function construction in Section 5.2, and their relation to the tensor-product degree-of-freedom complex (middle
row); all diagrams correspond to (n1, n2) = (4,5). With E(0,0),pol := Epol from Equation (68), the degrees of freedom for
polar 0-forms can be related to the tensor-product degrees of freedom via Equation (73), thus defining the left-most vertical
maps in the above figure. Section 5.2 presents the construction of polar discrete exterior derivatives D(0),pol and D(1),pol,
and the corresponding polar extraction operators E(1),pol and E(2),pol such that both the top-two and bottom-two rows form
commutative diagrams. The latter polar extraction operators specify the basis for polar one and 2-forms as suitable linear
combinations of the tensor-product one and 2-form basis functions. (Note that, to simplify the notation, we use the same
symbols to denote the extractions and discrete exterior derivatives for Type 1 and Type 2 polar complexes.)

5.2.2. Polar 0-forms
Define S (0),pol := S pol and E(0),pol := Epol. Then, using Equation (70) and for any f ∈ S (0),pol,

f =
npol−1
∑

i=0

fiN
pol
i = f · Npol = f · EpolN(0,0) .

where f is a vector containing all coefficients fi .

5.2.3. Polar 1-forms
Let f ∈ S (0),pol and apply the exterior derivative to it. Then, using Equation (48),

g := d f = d
�

f · EpolN(0,0)
�

,

= N(1,0) · D(1,0)
�

Epol
�T

f d x1 + N(0,1) · D(0,1)
�

Epol
�T

f d x2 .
(77)

Then, with reference to Figure 9, let us define two maps D(0),pol and E(1),pol. We do so by defining their actions on the
degrees of freedom, considering both regions away from the poles and near the poles.

• Figure 9(a): Far away from the poles, the degree-of-freedom complexes locally look like their tensor-product
counterparts, i.e., the topology is that of a structured quadrilateral grid; c.f. Figures 4, 6, 7 and 8. This is the case
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(b) Numbering near the top pole

Figure 8: The above figures show the degree-of-freedom indexing scheme adopted near the bottom and top poles – figures (a) and
(b), respectively. Except the degrees of freedom associated to the poles, the numbering increases first in the direction of the
blue arrow, and then along the red arrow. Furthermore, note that the indices in figure (b) are obtained by subtracting the
labels from n(0),pol − 1 for 0-forms, from n(1),pol − 1 for 1-forms, and from n(2),pol − 1 for 2-forms. Also, keeping Figure 7 in
mind, the numbering near the top pole (which is applicable only for Type 2 collapse) assumes that we are looking down at
the pole from above the degree-of-freedom complex.

shown in this figure where the degrees of freedom fi1 , . . . , fi4 for a polar 0-form lie on the vertices of a quadrilateral.
Equation (73) maps these degrees of freedom to their tensor-product counterparts via the identity map. Then, we
define the action of the maps D(0),pol and the transpose of E(1),pol via the following equations,

fk` = fi1 ,

f(k+1)` = fi2 ,

fk(`+1) = fi3 ,

f(k+1)(`+1) = fi4 .
︸ ︷︷ ︸

(E(0),pol)T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi4 − fi3 ,

g j3 := fi3 − fi1 ,

g j4 := fi4 − fi2 ;
︸ ︷︷ ︸

D(0),pol

g1
k` := g j1 ,

g2
k` := g j3 ,

g1
k(`+1) := g j2 ,

g2
(k+1)` := g j4 .

︸ ︷︷ ︸

(E(1),pol)T

(78)

The relations between the different subscripts is easily deciphered from Equation (73) and the degree-of-freedom
numbering shown in Figure 8. More precisely, fixing k,`, Figure 8 implies the following relations between them,

i1 = k+ `n1 + 3 , i2 = 3+ (`− 1)n1 + [k+ 1 mod n1] , i3 = i1 + n1 , i4 = i2 + n1 , (79)

j1 = k+ (2`− 3)n1 + 2 , j2 = j1 + 2n1 , j3 = j1 + n1 , j4 = j3 + [k+ 1 mod n1]− [k mod n1] . (80)

In the above, k,` can be any values from the following ranges for Type K , K = 1, 2, collapse,

k ∈ {0, 1, . . . , n1 − 1} , ` ∈ {2, . . . , n2 − 2K} . (81)

• Figure 9(b): Consider the degrees of freedom fi1 , . . . , fi5 for a polar 0-form. Then, the relations between the indices
depend on whether the pole is the bottom one or the top one.

Bottom pole: Assuming that the pole is the bottom one, let us define the actions of D(0),pol and the transpose of
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(b) In the vicinity of a pole

Figure 9: Equations (78), (84) and (100), in conjunction with the above figures, help define the polar discrete exterior derivative
D(0),pol and the polar extraction operator E(1),pol. Figure (a) considers the case when the degrees of freedom are far away
from a pole; in this case the polar degree of freedom complexes have the same topology as their tensor-product counterparts.
Figure (b) instead considers the case when the degrees of freedom are in the vicinity of a pole. As Proposition 5.6 shows,
the diagrams in (a) and (b) commute.
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E(1),pol. Given k,`, the following relations between the different indices hold from Figure 8(a),

i1 = 0 , i2 = 1 , i3 = 2 , i4 = k+ 3 , i5 =
�

k+ 1 mod n1
�

+ 3 , (82)

j1 = 0 , j2 = 1 , j3 = k+ 2 , j4 = j3 + n1 . (83)

Here, ` = 0 and k ∈ {0, . . . , n1}. Recall Equation (73) that helps map degrees of freedom for a polar 0-form onto
those for a tensor-product 0-form. Using that map, we define the actions of D(0),pol and the transpose of E(1),pol as
below,

fk` = f(k+1)` =
∑3

s=1
fis
3 ,

fk(`+1) =
∑3

s=1χ
s,1
k(`+1) fis ,

f(k+1)(`+1) =
∑3

s=1χ
s,1
(k+1)(`+1) fis ,

fk(`+2) = fi4 ,

f(k+1)(`+2) = fi5 .
︸ ︷︷ ︸

(E(0),pol)T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi3 − fi1 ,

g j4 := fi5 − fi4 ,

g j3 := fi4 −
∑3

s=1χ
s,1
k(`+1) fis ;

︸ ︷︷ ︸

D(0),pol

g1
k` := 0 ,

g2
k` :=

∑2
s=1(χ

s+1,1
k(`+1) −χ

s+1,1
k` )g js ,

g1
k(`+1) :=

∑2
s=1(χ

s+1,1
(k+1)(`+1) −χ

s+1
k(`+1))g js ,

g2
k(`+1) := g j3 ,

g1
k(`+2) := g j4 .

︸ ︷︷ ︸

(E(1),pol)T

(84)

Top pole: For the case of the top pole, the above relations can be analogously defined by suitable index-relabelling;
we present them here for completeness. Firstly, the following relations between the indices hold from Figure 8(b),

i1 = n(0),pol − 3 , i2 = i1 + 1 , i3 = i2 + 1 , i4 = i1 + [k+ 1 mod n1]− n1 , i5 = i1 + k− n1 , (85)

j1 = n(1),pol − 1 , j2 = j1 − 1 , j3 = j2 + [k+ 1 mod n1]− n1 , j4 = j3 − n1 − 1 . (86)

Here, `= n2−3 and k ∈ {0, . . . , n1}. It is important to note here that, compared to Figure 8(b), the edges associated
to the degrees of freedom g j3 and g j4 are oppositely oriented. Since Figure 8 provides a simple and global way of
assigning orientations, with regards to the global operator definitions we are actually interested in the degrees of
freedom g j3 and g j4 ,

g j3 := −g j3 , g j4 := −g j4 . (87)

Then, using Equation (73), we define the actions of D(0),pol and the transpose of E(1),pol as below,

fk(`+2) = f(k+1)(`+2) =
∑3

s=1
fis
3 ,

fk(`+1) =
∑3

s=1χ
s,2
k(`+1) fis ,

f(k+1)(`+1) =
∑3

s=1χ
s,2
(k+1)(`+1) fis ,

fk` = fi5 ,

f(k+1)` = fi4 .
︸ ︷︷ ︸

(E(0),pol)T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi3 − fi1 ,

g j4 := fi4 − fi5 ,

g j3 :=
∑3

s=1χ
s,2
(k+1)(`+1) fis − fi4 ;

︸ ︷︷ ︸

D(0),pol

g1
k(`+2) := 0 ,

g2
(k+1)(`+1) :=

∑2
s=1(χ

s+1,2
k(`+2) −χ

s+1,2
k(`+1))g js ,

g1
k(`+1) :=

∑2
s=1(χ

s+1,2
(k+1)(`+1) −χ

s+2
k(`+1))g js ,

g2
(k+1)` := g j3 ,

g1
k` := g j4 .

︸ ︷︷ ︸

(E(1),pol)T

(88)

Proposition 5.6. Equations (78), (84) and (88) imply that the diagrams in Figure 9(a) and (b) commute.

Proof. The claim can be immediately verified using the explicit relations. For Equation (78), the verification is trivial,
so let us look at Equation (84). Consider the definitions of fk`, fk(`+1) and g2

k`. Then, we have

fk(`+1) − fk` =
3
∑

s=1

χ s,1
k(`+1) fis −

3
∑

s=1

fis

3
,

=
3
∑

s=1

�

χ s,1
k(`+1) −χ

s,1
k`

�

fis ,

=
3
∑

s=1

�

χ s,1
k(`+1) −χ

s,1
k`

�

fis +
3
∑

s=1

�

χ s,1
k(`+1) −χ

s,1
k`

�

fi1 ,

=
2
∑

s=1

�

χ s+1,1
k(`+1) −χ

s+1,1
k`

�

�

fis+1
− fi1

�

,

=
2
∑

s=1

�

χ s+1,1
k(`+1) −χ

s+1,1
k`

�

g js = g2
k` .

The other relations can be similarly verified. �
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Equations (79)–(83), (85) and (86) contain all the information for assembling the relations from Equations (78),
(84) and (88) into matrices E(1),pol and D(0),pol. These are matrices of size n(1),pol × (n(1,0) + n(0,1)) and n(1),pol × n(0),pol,
respectively.

For instance, with regards to Equation (84), the j3-th row of D(0),pol contains a 1 in its i4-th column, and−χ s,1
k(`+1) in its

is-th column, s = 1, 2,3. For ease of construction, these operators can be assembled using a MATLAB script downloadable
from the first author’s webpage.

Then, following Proposition 5.6, Equation (77) implies

g := d f = N(1,0) · D(1,0)
�

Epol
�T

f d x1 + N(0,1) · D(0,1)
�

Epol
�T

f d x2 ,

= E(1),pol





N(1,0) d x1

N(0,1) d x2



 · D(0),pol f .
(89)

Let E(1,0),pol and E(0,1),pol be matrices of size n(1),pol × n(1,0) and n(1),pol × n(0,1), respectively, so that

E(1),pol =
�

E(1,0),pol , E(0,1),pol
�

, (90)

and define the polar B-splines Ni
(1,0),pol and Ni

(0,1),pol, i = 0, . . . , n(1),pol − 1, as

Ni
(1,0),pol :=

n1−1
∑

j=0

n2−1
∑

k=0

E(1,0),pol
i( j+kn1) N

1
j N

2
k , Ni

(0,1),pol :=
n1−1
∑

j=0

n2−1
∑

k=0

E(0,1),pol
i( j+kn1) N1

j N
2
k . (91)

The space of polar 1-forms is defined as the span of these functions,

S (1),pol := span



Ni
(1,0),pol d x1 + Ni

(0,1),pol d x2 : i = 0, . . . , n(1),pol − 1
�

. (92)

Proposition 5.7. The one-form polar B-splines Ni
(1,0),pol d x1+Ni

(0,1),pol d x2, i = 0, . . . , n(1),pol−1, form a basis for S (1),pol.
Moreover, with reference to Equation (72), any 1-form f such that G∗,pol( f ) ∈ S (1),pol is at least C0 smooth on Ω̂.

Proof. The linear-independence claim follows from the full rank of the extraction operator E(1),pol.

• Equation (78) implies that, away from the poles, E(1),pol is an identity map.

• Similarly, Equations (84) and (88) imply that, near the bottom and top poles, respectively, the non-zero parts of
the first two rows of E(1),pol are obtained by taking differences of the columns of the matrices from Equation (69).
The latter matrices have rank 3, and implies that the first and last two rows of E(1),pol are also linearly independent.

The smoothness of the one-form polar B-splines is implied by their local exactness at the poles (see Section 5.2.1) and
Proposition 5.5. �

5.2.4. Polar 2-forms
Let f ∈ S (1),pol and apply the exterior derivative to it. Then, using Equation (50),

Λ
(2)
T 3 g := d f = N(1,1) ·

�

−D(2,0)
�

E(1,0),pol
�T
+ D(0,2)

�

E(0,1),pol
�T�

f ,

=:
n1−1
∑

i=0

n1−1
∑

j=0

gi jN
1
i N

2
j .

(93)

However, by the local exactness of f at the poles (see Section 5.2.1), the above implies that gi j = 0 if

Type 1 collapse : j = 0 ,

Type 2 collapse : j = 0, n2 − 1 .

Then, with reference to Figure 10, let us define two maps D(1),pol and E(2),pol. As in the previous section, we do so by
defining their actions on the degrees of freedom, considering both regions away from the poles and near the poles.

• Figure 10(a): Far away from the poles, the degree-of-freedom complexes locally look like their tensor-product
counterparts, i.e., the topology is that of a structured quadrilateral grid; c.f. Figures 4, 6, 7 and 8. This is the case
shown in this figure where the degrees of freedom fi1 , . . . , fi4 for a polar 1-form lie on the vertices of a quadrilateral.
Equation (78) maps these degrees of freedom to their tensor-product counterparts via the identity map. Then, we
define the action of the maps D(1),pol and the transpose of E(2),pol via the following equations,

f 1
k` = fi1 ,

f 2
k` = fi3 ,

f 1
k(`+1) = fi2 ,

f 2
(k+1)` = fi4 .

︸ ︷︷ ︸

(E(1),pol)T

⇒ g j := fi1 + fi4 − fi2 − fi3 ;
︸ ︷︷ ︸

D(1),pol

gk` := g j .
︸ ︷︷ ︸

(E(2),pol)T

(94)
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fi1

fi2

fi3 fi4
g j

f 1
k`

f 1
k(`+1)

f 2
k`

f 2
(k+1)` gk`

D(1),pol

�

−D(2,0) D(0,2)
�

�

E
(1
),

po
l�

T

�

E
(2
),

po
l�

T

(a) Away from a pole

fi1

fi2

fi4
fi3

fi5
g j

D(1),pol

f 1
k(`+1)

f 1
k(`+2)

f 2
k`

f 2
k(`+1)

f 1
k`

f 2
(k+1)`

f 2
(k+1)(`+1)

gk`

gk(`+1)

�

−D(2,0) D(0,2)
�

�

E
(1
),

po
l�

T

�

E
(2
),

po
l�

T

(b) In the vicinity of a pole

Figure 10: Equations (94), (97) and (100), in conjunction with the above figures, help define the polar discrete exterior derivative
D(1),pol and the polar extraction operator E(2),pol. Figure (a) considers the case when the degrees of freedom are far
away from a pole; in this case the polar degree of freedom complexes have the same topology as their tensor-product
counterparts. Figure (b) instead considers the case when the degrees of freedom are in the vicinity of a pole. As Proposition
5.8 shows, the diagrams in (a) and (b) commute.
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The relations between i1, . . . , i4 and k,` follows from Equations (79) and (81), and j is seen from Figure 8 to be

j = k+ (`− 1)n1 . (95)

• Figure 10(b): Consider the degrees of freedom fi1 , . . . , fi5 for a polar 1-form. Then, the relations between the
indices depend on whether the pole is the bottom one or the top one.

Bottom pole: The relation between i1, . . . , i5 and k,` follows from Equation (83); the relation of k,` to j is simply

j = k . (96)

Equation (84) maps the degrees of freedom for the polar 1-form onto those for a tensor-product 1-form; using
that map, we define the actions of D(1),pol and the transpose of E(2),pol as below,

f 1
k` := 0 ,

f 2
k(`+1) := fi3 ,

f 1
k(`+2) := fi4 ,

f 2
(k+1)(`+1) := fi5 ,

f 2
k` :=

∑2
s=1(χ

s+1,1
k(`+1) −χ

s+1,1
k` ) fis ,

f 1
k(`+1) :=

∑2
s=1(χ

s+1,1
(k+1)(`+1) −χ

s+1,1
k(`+1)) fis ,

f 2
(k+1)` :=

∑2
s=1(χ

s+1,1
(k+1)(`+1) −χ

s+1,1
(k+1)`) fis ,

︸ ︷︷ ︸

(E(1),pol)T

⇒
g j := fi5 − fi3 − fi4

+
∑2

s=1(χ
s+1,1
(k+1)(`+1) −χ

s+1
k(`+1)) fis ;

︸ ︷︷ ︸

D(1),pol

gk` := 0 ,

gk(`+1) := g j .
︸ ︷︷ ︸

(E(2),pol)T

(97)

Top pole: The relation between i1, . . . , i5 and k,` follows from Equation (86); the relation of k,` to j is simply

j = n(2),pol + k− n1 . (98)

Note that, as in Equation (87), the edge associated to the degrees of freedom fi3 , fi4 and fi5 are oppositely oriented
to their specified global orientations in Figure 8(b). Thus, we are actually interested in the degrees of freedom
f i3 , f i4 and f i5 ,

f i3 = − fi3 , f i4 = − fi4 , f i5 = − fi5 . (99)

Equation (88) maps the degrees of freedom for the polar 1-form onto those for a tensor-product 1-form; using
that map, we define the actions of D(1),pol and the transpose of E(2),pol as below,

f 1
k(`+2) := 0 ,

f 2
k(`+1) := f i5 ,

f 1
k` := f i4 ,

f 2
(k+1)(`+1) := f i3 ,

f 2
k(`+1) :=

∑2
s=1(χ

s+1,2
k(`+2) −χ

s+1,2
k(`+1)) fis ,

f 1
k(`+1) :=

∑2
s=1(χ

s+1,2
(k+1)(`+1) −χ

s+1,2
k(`+1)) fis ,

f 2
(k+1)(`+1) :=

∑2
s=1(χ

s+1,2
(k+1)(`+2) −χ

s+1,2
(k+1)(`+1)) fis ,

︸ ︷︷ ︸

(E(1),pol)T

⇒
g j := f i4 + f i3 − f i5

−
∑2

s=1(χ
s+1,2
(k+1)(`+1) −χ

s+1,2
k(`+1)) fis ;

︸ ︷︷ ︸

D(1),pol

gk(`+1) := 0 ,

gk` := g j .
︸ ︷︷ ︸

(E(2),pol)T

(100)

Proposition 5.8. Equations (94), (97) and (100)imply that the diagrams in Figure 10(a) and (b) commute.

Proof. The proof is analogous to that for Proposition 5.6. Alternatively, it can be verified that E(2),pol
�

E(2),pol
�T
= In(2)pol ,

and that the definition of D(1),pol simply amounts to

D(1),pol =
�

E(2),pol
�T �−D(2,0) D(0,2)

� �

E(1),pol
�T

.

�

We can again assemble all the above relations from Equations (94), (97) and (100) into matrices E(2),pol and D(1),pol;
the MATLAB script downloadable from the first author’s webpage can be used to do this. These are matrices of size
n(2),pol × n(1,1) and n(2),pol × n(1),pol, respectively. Then, following Proposition 5.8, Equation (93) implies

g := d f = N(1,1) ·
�

−D(2,0)
�

E(1,0),pol
�T
+ D(0,2)

�

E(0,1),pol
�T�

f ,

= E(2),polN(1,1) · D(1),pol f d x1 ∧ d x2 .
(101)
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Then, define the polar B-splines Ni
(2),pol, i = 0, . . . , n(2),pol − 1, as

Ni
(1),pol :=

n1−1
∑

j=0

n2−1
∑

k=0

E(2),pol
i( j+kn1) N

1
j N

2
k . (102)

The space of polar 2-forms is defined as the span of these functions,

S (2),pol := span



Ni
(2),pol d x1 ∧ d x2 : i = 0, . . . , n(2),pol − 1

�

. (103)

Proposition 5.9. The polar B-splines Ni
(2),pol, i = 0, . . . , n(2),pol − 1, form a basis for S (2),pol.

Proof. The linear-independence claim follows from the full rank of the extraction operator E(2),pol. Indeed, Equations
(94), (97) and (100) imply that n(2),pol columns of E(2),pol are the distinct columns of the identity matrix In(2),pol ; c.f. the
proof of Proposition 5.8. �

5.3. Definition of the complex
Using the above polar spline spaces, we choose the spaces of 0-, 1- and 2-forms on Ω as follows,

Λ
(0)
S := S (0),pol , Λ

(1)
S := S (1),pol , Λ

(2)
S := S (2),pol .

Then, the polar spline complex on Ω is defined as

S : Λ(0)S Λ
(1)
S Λ

(2)
S . (104)

Theorem 5.10. S is a cochain complex, and its cohomology spaces satisfy

H0 (S) = R , H1 (S) = 0 , H2 (S)∼=
�

0 , Type 1 collapse ,

R , Type 2 collapse .
.

Proof. The fact that S is a cochain complex is immediate from the construction of the polar spline spaces for 0-, 1- and
2-forms. We prove the claims for each cohomology space separately.
Zeroth cohomology. Let f ∈ H0 (S), i.e., d f = 0. Then, Equations (78), (84) and (88) imply the following.

• Equation (78): In Figure 9(a), fi1 = · · ·= fi4 .

• Equations (84) and (88): In Figure 9(b), fi1 = · · ·= fi5 .

As a consequence, d f = 0 implies that all degrees of freedom fi are equal to some α ∈ R. Then, by the partition of unity
property of the 0-form polar B-splines,

f =
n(0),pol−1
∑

i=0

fiN
(0),pol
i = α .

First cohomology. For the cochain complex S, we have the following equivalence between alternating sums of the
dimensions of the cohomologies and the dimensions of vector spaces that form the complex,

dim
�

H0 (S)
�

− dim
�

H1 (S)
�

+ dim
�

H2 (S)
�

= dim
�

Λ
(0)
S

�

− dim
�

Λ
(1)
S

�

+ dim
�

Λ
(2)
S

�

.

The right hand-side follows from Equation (74)–(76) and is equal to K for type K collapse. Then, since the first term on
the left is equal to 1, to prove that H1 (S) is trivial, we only need to show that the last term on the left is equal to K −1;
this is proved in the following.
Second cohomology. Note that d f = 0 for any f ∈ Λ(2)S . Then, let us build an h ∈ Λ(1)S such that dh = f . This will
always be possible for Type 1 collapse, while for Type 2 collapse we will need to place one constraint on f . The claim
will thus follow. We define such an h by defining its degrees of freedom, and we start at the bottom pole; see Figure
8(a). In the following, unless specified otherwise, the index i runs from 0 to n1 − 1.

First, we set h0 = h1 := 0. Next, we set h2+i := 0 and hn1+2+i := − fi . Continuing on in this manner, we set
h2 jn1+2+i := 0 and h(2 j+1)n1+2+i := h(2 j−1)n1+2+i − f jn1+i , j = 1, . . . , n2 − 2K − 1, for Type K collapse. If K = 1, then we are
done and it can be verified that dh= f .

On the other hand, if K = 2, then only hn(1),pol−n1−2, . . . , hn(1),pol−1 are undefined as yet. To be able to do so, we need
an additional constraint on the f . Specifically, we need

n(2),pol−1
∑

i=0

fi = 0 .

If this constraint is satisfied, then we can set hn(1),pol−n1−2 = hn(1),pol−2 = hn(1),pol−1 := 0 and, moreover, for i = 0, . . . , n1 − 2,

hn(1),pol−n1−1+i := −hn(1),pol−2n1−2+i + hn(1),pol−n1−2+i + fn(2),pol−n1+i .

This completes the definition of h and it can be verified that dh = f . For Type 2 collapse, such an h can be found only
when the above constraint is satisfied, implying that the cohomology space H2 (S) is one dimensional. �
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(a) p = 2 (b) p = 3 (c) p = 4

Figure 11: The polar manifolds used in the numerical tests are shown above. The black lines delineate the Bézier elements at the
coarsest refinement level. As can be seen, the coarsest meshes consist of 9, 8 and 5 elements for p = 2, 3 and 4, respectively.
See Section 6.1 for details about the underlying polar spline spaces.

From the last part of the proof of Theorem 5.10, the polar 2-form
∑n(2),pol−1

i=0 N (2),pol
i is not in the image of d for Type

2 collapse. This polar 2-form is thus a representative element of the one dimensional cohomology space H2 (S). In
particular, this cohomology is isomorphic to the following vector space;

h(2) :=

(

α

n(2),pol−1
∑

i=0

N (2),pol
i : α ∈ R

)

. (105)

This vector space is closely related to the idea of “discrete harmonic forms” and it will play an important part in the
numerical tests; see Section 6.3.

Finally, the polar spline complex on Ω̂ is defined as in Section 4.4. That is, we define Λ̂(i)S as below,

Λ̂
(i)
S :=

¦

f : G∗,pol ( f ) ∈ Λ(i)S

©

, i = 0,1, 2 , (106)

and the corresponding spline complex on Ω̂ is built using them,

Ŝ : Λ̂(0)S Λ̂
(1)
S Λ̂

(2)
S ,

with the pullback again acting as a cochain map from Ŝ to S.

6. Numerical tests

This section numerically investigates the approximation power and stability of the polar spline complexes by solving
problems on smooth polar geometries in Rd, d = 2,3. In particular, we consider approximation of the Stokes flow on
both fixed and deforming closed surfaces.

Our approach toward spline differential forms is well-suited for computations within the classical framework of finite
element assembly loops. Indeed, starting from element-local representations of univariate splines (Section 3.2), tensor-
product splines can be readily built. Subsequently, the tensor-product splines can themselves be combined using the
polar extractions to build polar splines on each element of the two-dimensional parametric domain Ω. This approach is
adopted for all computations presented here.

6.1. Spline spaces and geometries
For brevity, we only present numerical tests with the polar spline spaces as they already utilize the univariate and

tensor-product splines defined in Sections 3.2 and 4. Moreover, we only consider Type 2 collapse, i.e., closed polar
manifolds. The numerical tests presented here show that the polar spline spaces demonstrate optimal approximation;
similar results were obtained for the configurations not shown here (e.g., univariate and tensor-product spline spaces,
Type 1 collapse).

Specifically, we consider three polar spline spaces built using Type 2 collapse. Each is built using tensor-product
spline spaces of uniformly chosen bi-degree (p, p), p = 2, 3,4. That is, the univariate spline spaces used to build the
tensor-product spline spaces are defined by choosing the polynomial degree on each element equal to p. The breakpoints
and associated orders of smoothness are defined as below.

p = 2 :

�

S 1 : (x0, . . . , x3) = (0,1, 2,3) , (r0, . . . , r3) = (1, 1,1,1) ,

S 2 : (x0, . . . , x3) = (0,1, 2,3) , (r0, . . . , r3) = (−1, 1,1,−1) ;
(107)

p = 3 :

�

S 1 : (x0, . . . , x4) = (0,1, 2,3, 4) , (r0, . . . , r4) = (2,2, 2,2, 2) ,

S 2 : (x0, x1, x2) = (0,1, 2) , (r0, r1, r2) = (−1,2,−1) ;
(108)

p = 4 :

�

S 1 : (x0, . . . , x5) = (0,1, 2,3, 4,5) , (r0, . . . , r5) = (3, 3,3, 3,3, 3) ,

S 2 : (x0, x1) = (0, 1) , (r0, r1) = (−1,−1) .
(109)
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The polar manifolds built using the above spline spaces are shown in Figure 11. The black lines delineate the Bézier ele-
ments of the mesh. The control points used to generate these polar manifolds can be downloaded from [PolarControlPoints].

6.2. L2 projection
As the most basic test of the approximation power of the individual spline spaces, we solve L2 projection problems.

Specifically, given fex ∈ L2Λ(i)(Ω̂), we find f ∈ Λ̂(i)S such that

∀g ∈ Λ̂(i)S (g, f )Ω̂ = (g, fex)Ω̂ . (110)

The exact solutions are chosen to be

L2Λ(0)(Ω̂) 3 fex = h ,

L2Λ(1)(Ω̂) 3 fex = h d y1 + h d y2 + h d y3 ,

L2Λ(2)(Ω̂) 3 fex = h d y2 ∧ d y3 + h d y3 ∧ d y1 + h d y1 ∧ d y2 ,

(111)

where

h(y1, y2, y3) = sin
�

2π
�

y1 +
1
3

��

sin
�

2π
�

y2 +
1
5

��

sin
�

2π
�

y3 +
1
7

��

(112)

The L2-projection problems project the pullbacks of the above exact solutions onto the appropriate polar spline
spaces; c.f. Equation (57). With the approximation error defined as e := fex − f , the L2 norm of e and de displayed in
Figure 12. The error norms are plotted against the square root of the number of degrees of freedom. Note that the norm
of de is omitted for 2-forms since the exterior derivative maps all 2-forms to zero. To the left of each error convergence
plot, we also show the exact solutions for each polar geometry (see the online version of this article for high resolution
pictures):

• for 0-forms, the surface is coloured by fex and the tangential vector field represents d fex;

• for 1-forms, the surface is coloured by values of d fex and the tangential vector field represents fex;

• for 2-forms, the surface is coloured by values of fex.

For optimal approximation, we expect the L2 norm of e to decrease with order p + 1 for 0-forms and p otherwise.
The L2 norm of de is expected to decrease with order p for both 0- and 1-forms. As can be observed in Figure 12, the
polar spline spaces demonstrate optimal approximation behaviour for all p.

6.3. Generalized Stokes flow
We now consider generalized Stokes flow on fixed and deforming polar manifolds Ω̂. This problem is important

when studying, for instance, fluid flow on biological membranes such as lipid bilayers, and the problem formulation
can be derived from first principles; e.g., see [4] for the derivation of Stokes flow. We express the strong form of the
generalized Stokes problem on Ω̂ as

d?q+µ (2κu− dd?u)−αu= f + ? (2µ(k −Hg ) · d ? ν) ,

du= h+Hν .
(113)

The first equation pertains to momentum conservation on Ω̂ while the second one is the equation of mass conservation.
Here, q is the pressure (2-form), u is the velocity (1-form) and ν represents the (instantaneous) normal velocity field
of the deforming domain Ω̂ (2-form). Moreover, f is an external force (1-form) on the system, h is a source of mass
production (2-form), µ is the viscosity and α is a scalar constant. The remaining terms are related to Ω̂ — the metric
tensor, g ; the second fundamental form, k = ki jd x i ⊗ d x j; twice the mean curvature, H; and the Gaussian curvature,
κ. In particular, with n denoting the unit normal vector to Ω̂,

ki j = ∂
x

i ·
∂ n
∂ x j

, H = ki j g
i j , κ=

det[ki j]

det[gi j]
. (114)

Remark 6.1. The form of the generalized Stokes problem in Equation (113) can be related to the usual vector calculus
notation; see [4], for instance. In particular, we would like to mention that the velocity 1-form is related to the tangential
fluid velocity on Ω̂, denoted u# = u#,i∂ x

i , as below,

u= −pgu#,2 d x1 +
p

gu#,1 d x2 . (115)

From Appendix F, u# is interpreted as a proxy field of − ? u. In particular, du is proportional to the surface divergence
of u#, i.e.,

du=
p

gdivΩ̂u# d x1 ∧ d x2 . (116)
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Remark 6.2. Interestingly, even in the absence of mass production (h= 0) and external forcing ( f = 0), tangential flow
on Ω̂ can be produced if the surface has non-zero normal velocity, ν. This is directly related to the interpretation of the
deforming surface Ω̂ as an inextensible material. An interesting example of such materials is lipid bilayers [4], which
are envelopes for eukaryotic cell contents. These behave as in-plane fluids and out-of-plane solids. In particular, as in
Equation (113), the out-of-plane velocities of these surfaces, governed by solid mechanics, lead to in-plane flow. See
Section 6.3.3 for examples of this phenomena.

6.3.1. Manufactured solution
In order to numerically verify optimal approximation of generalized Stokes flow, we create a smooth manufactured

solution to the problem. Since Ω̂ is parametrically defined using piecewise polynomials, it does not have a simple implicit
representation unlike other surfaces (e.g., spheres). This makes the derivation of a smooth manufactured solution a
complicated task. For instance, fixing u and h, mass conservation implies ν= (du− h)/H. The derivatives of ν, needed
for momentum conservation, therefore involve derivatives of the mean curvature H; note that these derivatives will
clearly have a lower regularity than that of the surface Ω̂. Keeping this difficulties in mind, a smooth manufactured
solution can nevertheless be derived by either

• assuming that Ω̂ is a Type 1, flat polar geometry so that, in particular, both k and H are trivial;

• or, by assuming that ν= 0.

We adopt the second approach above so that we can demonstrate optimal approximation on arbitrarily curved polar
geometries.

Therefore, choosing ν= 0, the exact solutions for the different variables are chosen to be

uex = − ? ( f0 d x1 + f0 d x2) ,

qex =
p

g f0 d x1 ∧ d x2 ,

where
f0(x

1, x2) =
�

cos(2πx1)− 1
� �

cos(2πx2)− 1
�2

. (117)

Using the above uex and pex, we define hex = duex and fex = d?qex +µ (2κuex − dd?uex)−αuex.
For the above choice of manufactured solution, we numerically solve the generalized Stokes problem in mixed form by

introducing w= d?u, the vorticity (0-form). The corresponding weak form of the discrete problem is defined as follows.
Given ( fex, hex) ∈ L2Λ(1)(Ω̂) × L2Λ(2)(Ω̂), we find (w, u, q, v) ∈ Λ̂(0)S × Λ̂

(1)
S × Λ̂

(2)
S × h(2) such that for all (z0, z1, z2, z3) ∈

Λ̂
(0)
S × Λ̂

(1)
S × Λ̂

(2)
S × h(2),

(z0, w)Ω̂ − (dz0,
p
µu)Ω̂ = 0

(dz1, q)Ω̂ − (z1,
p
µdw)Ω̂ + (z1, (2µκ−α)u)Ω̂ = (z1, fex)Ω̂ ,

(z2, du)Ω̂ + (z2, v)Ω̂ = (z2, hex)Ω̂ ,

(z3, q)Ω̂ = (z3, qex)Ω̂ .

(118)

For simplicity, we set µ = α = 1. For this mixed problem, we also numerically compute the inf-sup constant γS defined
as

γS = inf
q∈Λ̂(2)S

sup
u∈Λ̂(1)S

(q, du)Ω
‖u‖

Λ̂
(1)
S
‖q‖

Λ̂
(2)
S

. (119)

This constant can be numerical computed by solving a generalized eigenvalue problem [13]. In view of Theorem 5.10
and the fact that we are looking at Type 2 polar geometries, we expect to have n(2),pol − 1 non-zero eigenvalues as the
second cohomology space is one dimensional. The constant γS is the square-root of the smallest non-zero eigenvalue.

Figure 13 show the results of the numerical approximation. The following information has been presented.

• The exact solutions for wex, dwex, uex, duex, qex and d?qex have been plotted on the polar geometries. The values
of 0- and 2-forms are used to colour the surfaces, and the 1-forms are displayed as tangential vector fields.

• With e� :=�−�ex, � ∈ {w, u, q}, the L2 norms of ew, dew, eu, deu and eq have been plotted.

• Finally, the value of the inf-sup constant γS at each refinement level has been labelled in the plot where eq has
been shown.

For optimal approximation, and for polar splines built using tensor-product splines of bi-degree (p, p), we expect the
errors for all 0-forms to reduce with order p+1 and for all 1- and 2-forms with order p. As shown in Figure 13, all polar
spline spaces demonstrate optimal approximation behaviour. Moreover, it can be seen that the spline spaces are inf-sup
stable, i.e., the constant γS does not deteriorate with mesh refinements.
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(a) p = 2

(b) p = 3

(c) p = 4

Figure 14: Pointwise incompressible flows: The compatible spline spaces are built such that, if hex = 0 in Equation (118), the discrete
velocity satisfies du= 0 pointwise. Equivalently, with Remark 6.1 in mind, this implies that the associated tangential fluid
velocity has zero surface divergence at each point of Ω̂. The above numerical tests show an example of such flow; all plots
are for the discrete solutions of the generalized Stokes problem. The left plot in each row displays the vorticity, w; the
middle plot shows streamfunction contours,ψ, and the tangential vector field, u#; and the right plot displays the pressure,
q. The surface of the middle plot has been coloured by the value of du; this value is of the order of machine precision and
thus the surface is uniformly coloured grey.

6.3.2. Pointwise incompressibility
Since Ŝ is a cochain complex, we know that d maps Λ̂(1)S into Λ̂(2)S . (From Theorem 5.10, this map is a surjection

only for Type 1 collapse as illustrated by the vanishing cohomology.) Then, if hex ∈ Λ̂
(2)
S in Equation (118), then du is

going to be pointwise equal to hex. In particular, if hex = 0, then the discrete velocity 1-form is going to be closed, i.e.,
du = 0 pointwise. Equivalently, the discrete tangential velocity u# is going to have pointwise zero surface divergence;
see Remark 6.1. Moreover, from Theorem 5.10, du = 0 implies that there exists a streamfunction ψ (0-form)such that
dψ= u.

We illustrate the above simple fact by solving the problem in Equation (118) on the surfaces in Figure 11 for the third
refined level. It is important to note that pointwise incompressible solutions can be obtained for any refinement level, no
matter how coarse or fine — the choice of the third refinement level is only to ensure accuracy of the discrete solutions.
That is, we choose hex = 0 = νex and the forcing fex is chosen to be equal to the one in Equation (118). The results are
shown in Figure 14. The left figures in each row correspond to the computed w; the middle figures to the tangential
velocity vector field, u#, and contours of the streamfunction, ψ; and the right figures correspond to the pressures, q.

6.3.3. Deforming domains
As a final numerical example, we consider the case where νex 6= 0. We choose fex = 0= hex and νex =

p
g f1 d x1∧d x2,

where
f1(x

1, x2) = cos(2πx1)
�

cos(2πx2)− 1
�2

. (120)
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(a) p = 2

(b) p = 3

(c) p = 4

Figure 15: Deforming domains: The above numerical tests show the discrete solutions to the generalized Stokes problem when Ω̂ is
deforming with a prescribed normal velocity field; see Equation (121). The left plot in each row displays the vorticity, w;
the middle plot shows the tangential vector field, u#, in blue and the imposed normal velocity, (?νex)n, in red; and the
right plot displays the pressure, q. The relative scaling of the normal velocity arrows with respect to the tangential velocity
arrows is 1.4 for p = 2 and 2.4 for p = 3 and 4.

We also impose qex ⊥ h(2). The weak problem thus becomes to find (w, u, q, v) ∈ Λ̂(0)S × Λ̂
(1)
S × Λ̂

(2)
S × h(2) such that for all

(z0, z1, z2, z3) ∈ Λ̂
(0)
S × Λ̂

(1)
S × Λ̂

(2)
S × h(2),

(z0, w)Ω̂ − (dz0,
p
µu)Ω̂ = 0

(dz1, q)Ω̂ − (z1,
p
µdw)Ω̂ + (z1, (2µκ−α)u)Ω̂ = (z1,?2µ(k −Hg ) · d ? νex)Ω̂ ,

(z2, du)Ω̂ + (z2, v)Ω̂ = (z2, Hνex)Ω̂ ,

(z3, q)Ω̂ = 0 .

(121)

Again, for simplicity we set µ = α = 1. Figure 15 shows the results for the polar geometries in Figure 11. The left
figures in each row correspond to the computed w; the middle figures to the tangential fluid velocity, u#, and the normal
velocity, (?νex)n = f1n; and the right figures correspond to the pressures, q.

7. Conclusions

We have investigated the development and applications of high-order accurate, spline differential forms in a variety
of settings. In the univariate setting, we provide the construction of multi-degree spline differential forms, i.e., smooth,
piecewise-polynomial differential forms that allow for local degree elevation; Section 3.2. The construction is presented
within the paradigm of Bézier extractions, thus making our algorithms and approach easily implementable, particularly
within element loop-based finite element software. In the bivariate setting, we first build spline differential forms using
tensor-products of the univariate spline differential forms; Section 4. The properties of the univariate splines carry over
to the tensor-product splines; this approach is easily extensible to higher dimensions. Next, in the bivariate setting, we
focus on the case of singularly parameterized smooth surfaces (with and without boundary) called polar surfaces, and
build spline differential forms on them; Section 5. Finally, the spline differential forms are used to solve L2 projection
problems and generalized Stokes flow on smooth polar surfaces in R3; Section 6. The results demonstrate optimal
approximation and inf-sup stability of the spline spaces for the Stokes problem, simulations of pointwise incompressible
flows, and simulations of flows on deforming inextensible surfaces.
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Our approach here has been constructive. There are several extensions of the results and applications presented
herein that are related to topics in computational mechanics as well as several areas of mathematics, such as algebraic
topology, differential geometry and numerical analysis. As such, there are several opportunities for future research into
theoretical and practical aspects of spline-based exterior calculus with the goal of solving PDEs on surfaces; a few of
these are itemized below.

• For efficient computations, development of smooth polar differential forms using adaptively-refined splines, such
as hierarchical B-splines [20] is important.

• Similarly, the 0-, 1- and 2-form spline spaces developed here are H2, H1 and L2 conforming on polar surfaces.
Extending this construction to higher orders of regularity [47] is interesting, for instance, for the variational
multiscale framework for divergence-free flow simulations [19] where the 1- and 2-form spaces need to be H2

and H1 conforming, respectively.

• Another important research question is the development of commuting projection operators that help theoreti-
cally verify the stability of the spline spaces. Bounded cochain projections from the de Rham complex to spline
complexes are needed for provable well-posedness at the discrete level. The theory on such cochain projections
for adaptively refined and non-tensor-product splines is missing, even in the absence of singular parametrizations,
and is beyond the scope of this paper. Instead, the examples in Section 6 provide numerical evidence of the
well-posedness of the discrete problems.

• On the side of applications, we simulate flows on smoothly deforming surfaces with prescribed normal velocities.
Incorporating mechanics into the equations to simulate the behaviour of fluid membranes, e.g., lipid bilayers, is a
particularly interesting extension.
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A. Recursive definition of MDB-splines

Following [5, 9], we define two MDB-spline knot vectors u and v as

u := [u1, u2, . . . , un] := [x0, . . . , x0
︸ ︷︷ ︸

p1−r0 times

, x1, . . . , x1
︸ ︷︷ ︸

p2−r1 times

, . . . , xm−1, . . . , xm−1
︸ ︷︷ ︸

pm−rm−1 times

] ,

v := [v1, v2, . . . , vn] := [x1, . . . , x1
︸ ︷︷ ︸

p1−r1 times

, . . . , xm−1, . . . , xm−1
︸ ︷︷ ︸

pm−1−rm−1 times

, xm, . . . , xm
︸ ︷︷ ︸

pm−rm times

] .

35



Algorithm 1 Computation of H (Appendix B)

1: H ← identity matrix (size : θ (m)× θ (m))
2: for k = 1 : m− 1 do
3: L← H K k
4: for j = 1 : rk + 1 do
5: H ← sparse nullspace of j th column of L (Algorithm 2)
6: H ← HH
7: L← HL
8: return H

Algorithm 2 nullspace of ĉ (Appendix B)

1: Ĥ ← 0 (size: (q− 1)× q)
2: Ĥ(1, 1)← 1
3: for i = 1 : q− 2 do

4: Ĥ(i, i + 1)←−
ĉiĤ1(i, i)

ĉi+1

5: Ĥ(i + 1, i + 1)← 1− Ĥ(i, i + 1)
6: Ĥ(q− 1, q) = 1
7: return Ĥ

With p :=maxi pi , the MDB-splines Ni := Ni,p are recursively defined. For q = 0, . . . , p and i = p−q, . . . , n−1, the spline
Ni,q is supported on the interval [ui , vi−p+q] and can be evaluated at x ∈ [x j−1, x j) ⊂ [ui , vi−p+q] as follows:

Ni,q(x) :=



















1 , q = p− p j ,
∫ x

−∞

�

Ni,q−1(y)

Mi,q−1
−

Ni+1,q−1(y)

Mi+1,q−1

�

d y , q > p− p j ,

0 , otherwise ,

where

Mk,q−1 :=

∫ ∞

−∞
Nk,q−1(y) d y .

In the above it is assumed that any undefined Nk,q−1 with k < p− q+ 2 or k > n is equal to the zero function, and that
if Mk,q−1 = 0 then

∫ x

−∞

Nk,q−1(y)

Mk,q−1
d y :=

�

1 , x ≥ uk and k ≤ n ,

0 , otherwise .

B. Algorithmic definition of MDB-splines

For 1≤ k ≤ m− 1 let K k,− be a matrix of size (pk + 1)× (rk + 1), whose j th column, j = 0, . . . , rk, is given by,

�

0 · · · 0 D j
−Bθ (k)− j−1 (xk) · · · D j

−Bθ (k)−1 (xk)
�T

,

and let K k,+ be a matrix of size (pk+1 + 1)× (rk + 1), whose j th column, j = 0, . . . , rk, is given by,

�

−D j
+Bθ (k) (xk) · · · −D j

+Bθ (k)+ j (xk) 0 · · · 0
�T

.

Using these matrices, we can build the matrix K k of size θ (m)×(rk+1)which contains all constraints required to enforce
C rk smoothness at xk. This matrix is defined row-wise in the following manner:

1. the (θ (k− 1) + j)th row of K k is equal to the j th row of K k,− for j = 0, . . . , pk,

2. the (θ (k) + j)th row of K k is equal to the j th row of K j,+ for k = 0, . . . , pk+1, and,

3. all other rows of K k are identically zero.

The multi-degree extraction H is a full-rank matrix built using Algorithm 1 and its rows span the collective left-nullspace
of the matrices K k. This algorithm is a more efficient implementation of the one proposed in [47] and has been repro-
duced from [42].
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C. Proof of Proposition 3.6

Proof. Observe that C is the left inverse of
�

D(0)pk

�T
. Furthermore, since HΩk is column stochastic (Proposition 3.8)

and the one dimensional nullspace of D(0)pk
is spanned by constant vectors of the form v = [α, · · · ,α]T , α ∈ R. Then,

(HΩk)T v = v is in the nullspace of D(0)pk
. Therefore, using Lemma C.1 below, and choosing

A1 = C , A2 = AT
4 =

�

D(0)pk

�T
, AT

3 = HΩk ,

we see that
�

D(0)pk

�T
CHΩk

�

D(0)pk

�T
= HΩk

�

D(0)pk

�T

since A2A1AT
3 AT

4 = AT
3 AT

4 .

Then, for f ∈ Λ(0)M and using Equation (31), we see that

f |Ωk
=
�

fµ(k) fµ(k)+1 · · · fµ(k)+pk

�

HΩk









B0,pk

Ωk

...

Bpk ,pk

Ωk









From Equation (15),

d f |Ωk
=
�

fµ(k) fµ(k)+1 · · · fµ(k)+pk

�

HΩk

�

D(0)pk

�T









B
Ωk

0,pk
...

B
Ωk

pk−1,pk









,

=
�

fµ(i) fµ(i)+1 · · · fµ(i)+pk

��

D(0)pk

�T
CHΩk

�

D(0)pk

�T









B
Ωk

0,pk
...

B
Ωk

pk−1,pk









,

=
�

gµ(i) gµ(i)+1 · · · gµ(i)+pk−1

�

CHΩk

�

D(0)pk

�T









B
Ωk

0,pk
...

B
Ωk

pk−1,pk









,

=
�

gµ(i) gµ(i)+1 · · · gµ(i)+pk−1

�









Nµ(k)
...

Nµ(k)+pk−1









.

The i-th row of C takes the sum of the first i entries of the vector it acts upon (up to a minus sign). Thus, the spline Nµ(k)+i
is defined, up to a minus sign, as the sum of the derivatives of Nµ(k), . . . , Nµ(k)+i . These sums are linearly independent;
e.g., see [46]. �

Lemma C.1. Let Ai be matrices of sizes ji × ki , i = 1, . . . , 4, such that

• k1 = j2, j1 = k2 ≤ j2 and A1 is a left-inverse of A2,

A1A2 = I j1 ;

• k3 = j1, j3 = k4 and A3 maps the nullspace of AT
2 to that of A4,

AT
2 v = 0⇒ A4A3v = 0 .

Then, A4A3AT
1 AT

2 = A4A3.

Proof. Let AT
1 AT

2 = I k1
+ A5. Then, each column of A5 must be in the nullspace of AT

2 since

AT
2 (I k1

+ A5) = AT
2 AT

1 AT
2 = I T

j1
AT

2 = AT
2 .

Then, using the nullspace-preserving property of A3, the claim follows,

A4A3AT
1 AT

2 = A4A3(I k1
+ A5) = A4A3 .

�
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D. Algorithmic definition of periodic MDB-splines

The periodic version of MDB-splines is built by starting from the non-periodic version. First, referring to Equations
(B) and (B), build the matrices Km,− and K0,+. These are matrices of sizes (pm + 1)× (r0 + 1) and (p0 + 1)× (r0 + 1),
respectively. Using these matrices, we build the matrix K m of size θ (m)×(r0+1) which contains all constraints required
to enforce C r0 smoothness at x0 ≡ xm,

K m :=







K0,+

0

K m,−






.

With H the multi-degree extraction corresponding to the non-periodic spline space, let P be any row permutation matrix
such that

PH K m =







01

K̂

02






,

such that

• 0i are zero matrices with the number of rows equal to ji ≥ 0, i = 1, 2;

• K̂ has 2(r0 + 1) rows.

We can always find such a P thanks to end-point derivative property of MDB-splines [46, Proposition 2.11(c)] and
Equation (25). Then, Algorithm 3 helps compute a matrix H̃ of size nper whose rows are in the left-nullspace of PH K m.
In addition to the above definitions, the algorithm uses the row permutation matrix Q defined as

Q =

























1
...

1

1
.. .

1

























.

The highlighted entry of Q lies in its j th
1 column (with the first column of having the index 0). This permutation matrix

ensures that the pk + 1 splines supported on Ωk have indices µ(k), . . . ,µ(k) + pk; recall the interpretation of indices in
this periodic setting from Equation (36).

Proposition D.1. With Assumptions 2 and 3 in place, the matrix H̃ has full rank.

Proof. The claim can be established by considering the spline space on a 2m-element partition of [a, 2b − a] that is
built by mirroring the original partition on Ω across its right endpoint; the degree and smoothness distributions are also
mirrored. For such a spline space, PH K m is effectively an inner constraint matrix for imposition of C r0 smoothness, and
[46, Theorem 4.3] says that Algorithm 3 will build a full-rank nullspace of PH K m as the product of bi-diagonal matrices
built using Algorithm 2. In particular, this means that H̃ will have the following block-diagonal structure up to a circular
permutation of its rows,







I

A

I






,

where I are identity matrices and A is a (r0 + 1)× (2r0 + 2) matrix with the following sparsity structure,

A=















a1
1 a1

2 · · · a1
r0+1 a1

r0+2

a2
1 a2

2 · · · a2
r0+1 a2

r0+2
. . .

. . . · · ·
. . .

. . .

ar0+1
1 ar0+1

2 · · · ar0+1
r0+1 ar0+1

r0+2















Here all a j
i are non-negative, each column of A (and thus of H̃) sums to 1 and a j

r0+2− j = a j
r0+3− j , j = 1, . . . , r0 + 1. �
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Algorithm 3 Computation of H̃ (Appendix D)

1: H̃ ← identity matrix (size : n× n)
2: L← PH K m
3: for j = 1 : ri + 1 do
4: H ← sparse nullspace of j th column of L (Algorithm 2)
5: H̃ ← HH̃
6: L← HL
7: H̃ ← QH̃
8: return H̃

E. Proof of Proposition 3.9

Proof. From Equation 38, for a zero form f ∈ Λ(0)M ,

f |Ωk
=
�

fµ(k) fµ(k)+1 · · · fµ(k)+pk

�

HΩk ,per









BΩk
0,pk
...

BΩk
pk ,pk









From the definition of µ(k) and Equations (17), (36) and (40), it is clear that

�

gµ(k) gµ(k)+1 · · · gµ(k)+pk−1

�

=
�

fµ(k) fµ(k)+1 · · · fµ(k)+pk

��

D(0)pk

�T
.

Then, the claims follow immediately following the proof of Proposition 3.6 as presented in Appendix C. �

F. Integration and proxy fields of differential forms

In this appendix we provide some relations that may help make sense of how differential forms can be manipulated
or interpreted. We focus on the integration of 2-forms and proxy fields for i-forms, i = 0, 1,2. In the following, Ω is an
i-dimensional subset of R2, and G maps Ω to R3.

Integration. When implementing the approach presented herein, L2 inner products of differential forms need to be
evaluated. As in Equation (56), the L2 inner product of two i-forms f and g, i = 0, 1,2, can be expressed as the integral
of the 2-form f ∧ ?g. Thus, it is sufficient to describe how integrals of 2-forms can be computed.

Let Ω be a 2-dimensional subset of R2, and let f = f12 d x1 ∧ d x2 be a 2-form in R2. We will assume that the
orientation function o is equal to +1 for domains with a counter-clockwise orientation and −1 for domains with a
clockwise orientation; this is just convention and the opposite can be chosen as well. Thereafter, we choose one of the
two orientations for Ω. The integral of f on Ω is then computed as

∫

Ω

f := o(Ω)

∫

Ω

f12 d x1d x2 , (122)

where the right hand side is the usual two-dimensional integral of a function f12 and o(Ω) is ±1 dependent on the chosen
orientation of Ω. Note that changing the orientation of Ω reverses the sign of the right hand side; this is different from
when the orientation-agnostic, two-dimensional integral

∫

Ω
f12 d x1d x2 is computed.

When G(Ω) is a two-dimensional subset of R3, any 2-form in R3 can be integrated on G(Ω) using the above and
Equation (58).

Scalar and vector proxies. On 2-manifolds, we can also relate 0-, 1- and 2-forms to proxy scalar, vector and scalar fields,
respectively, using the metric tensor. In particular, let G(Ω) be such a 2-manifold. Then, the following relations are used
to map differential forms to their proxy fields,

f (x ) 7→ f (x ) ,

fi(x ) d x i 7→ g i j f j(x ) ∂
x

i ,

f12(x ) d x1 ∧ d x2 7→
1
p

g
f12(x ) .

(123)

Here we use the same notation as in Equation (54). The above relations in combination with the pullback, see Equation
(57), can be used to associate i-forms in R3, i = 0, 1,2, to proxy fields on 2-manifolds in R3. This can be seen as a
link between our approach and the approach of, for instance, [22]; the latter approach solves for proxy fields of our
differential forms.
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