
Oden Institute REPORT 20-14

July 2020

Matrix-free isogeometric Galerkin method for
Karhunen-Loève approximation of random fields using

tensor product splines, tensor contraction and
interpolation based quadrature

by

Michal L. Mika, Thomas J.R. Hughes, Dominik Schillinger, Peter Wriggers, and René R. Hiemstra

Oden Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Michal L. Mika, Thomas J.R. Hughes, Dominik Schillinger, Peter Wriggers, and René R. Hiemstra,
"Matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random fields using tensor
product splines, tensor contraction and interpolation based quadrature," Oden Institute REPORT 20-14, Oden
Institute for Computational Engineering and Sciences, The University of Texas at Austin, July 2020.

Oden Institute REPORT 20-14

July 2020

Matrix-free isogeometric Galerkin method for
Karhunen-Loève approximation of random fields using

tensor product splines, tensor contraction and
interpolation based quadrature

by

Michai L. Mika, Thomas J.R. Hughes, Dominik Schillinger, Peter Wriggers, and René R. Hiemstra

Oden Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Michai L. Mika, Thomas J.R. Hughes, Dominik Schillinger, Peter Wriggers, and René R. Hiemstra,
"Matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random fields using tensor
product splines, tensor contraction and interpolation based quadrature," Oden Institute REPORT 20-14, Oden
Institute for Computational Engineering and Sciences, The University of Texas at Austin, July 2020.

Matrix-free isogeometric Galerkin method for Karhunen-Loève
approximation of random fields using tensor product splines, tensor

contraction and interpolation based quadrature

Micha l L. Mikaa,∗, Thomas J.R. Hughesb, Dominik Schillingera, Peter Wriggersc, René R. Hiemstraa

aInstitut für Baumechanik und Numerische Mechanik, Leibniz Universität Hannover
bOden Institute for Computational Engineering and Sciences, The University of Texas at Austin

cInstitut für Kontinuumsmechanik, Leibniz Universität Hannover

Abstract

The Karhunen-Loève series expansion decomposes a stochastic process into an infinite series of pairwise
uncorrelated random variables and pairwise L2-orthogonal functions. For any given truncation order of the
infinite series the basis is optimal in the sense that the total mean squared error is minimized. The orthogonal
basis functions are determined as the solution of an eigenvalue problem corresponding to the homogeneous
Fredholm integral equation of the second kind, which is computationally challenging for several reasons.
Firstly, a Galerkin discretization requires numerical integration over a 2d dimensional domain, where d, in
this work, denotes the spatial dimension. Secondly, the main system matrix of the discretized weak-form
is dense. Consequently, the computational complexity of classical finite element formation and assembly
procedures as well as memory requirements of direct solution techniques become quickly computationally
intractable with increasing polynomial degree, number of elements and degrees of freedom. In this work
we present a matrix-free solution strategy that scales favorably with problem size and polynomial degree
and is embarrassingly parallel. Our approach is based on (1) an interpolation based quadrature that mini-
mizes the required number of quadrature points; (2) inexpensive reformulation of the generalized eigenvalue
problem into a standard eigenvalue problem; and (3) a matrix-free and multithreaded matrix-vector prod-
uct for iterative eigenvalue solvers. Two higher-order three-dimensional benchmarks illustrate exceptional
computational performance combined with high accuracy and robustness.

Keywords:
Matrix-free solver, Kronecker products, random fields, Fredholm integral eigenvalue problem, isogeometric
analysis

Contents

1 Introduction 2
1.1 Discrete representation of random fields by the truncated Karhunen-Loève series expansion . 3
1.2 Challenges in numerical solution of the KLE by means of the Galerkin method 3
1.3 Splines as a basis for random fields . 4
1.4 Contributions . 5
1.5 Outline . 6

∗Corresponding author
Email addresses: mika@ibnm.uni-hannover.de (Micha l L. Mika), hughes@ices.utexas.edu (Thomas J.R. Hughes),

schillinger@ibnm.uni-hannover.de (Dominik Schillinger), wriggers@ikm.uni-hannover.de (Peter Wriggers),
rene.hiemstra@ibnm.uni-hannover.de (René R. Hiemstra)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering (CMAME) July 3, 2020

2 Background and notation 6
2.1 Evaluation of the computational cost of an algoritm . 6
2.2 Kronecker products and tensor contraction . 6
2.3 B-splines . 7
2.4 Geometrical mapping . 7

3 Isogeometric Galerkin discretization of the Karhunen-Loève series expansion 8
3.1 KL expansion of random fields . 8
3.2 Truncated KL expansion . 10
3.3 Variational formulation . 10
3.4 Choice of the trial space . 10
3.5 Matrix formulation . 11

4 Efficient matrix-free solution strategy 12
4.1 Reformulation into a standard algebraic eigenvalue problem 12
4.2 Interpolation based quadrature for integral equations . 13
4.3 Matrix formation . 14
4.4 Matrix-free solution strategy . 15

4.4.1 Basic setup . 15
4.4.2 Matrix-free algorithm . 15

5 Computational complexity analysis 16
5.1 Standard finite element procedures . 16
5.2 Finite element procedures employing sum factorization . 17
5.3 Proposed strategy using interpolation based quadrature . 17
5.4 Storage comparison . 18

6 Numerical results 18
6.1 One-dimensional case study . 18
6.2 Random field with exponential kernel in a three-dimensional half-open cylindrical domain . . 19
6.3 Random field with Gaussian kernel in a three-dimensional hemispherical shell 24

7 Conclusion 28

1. Introduction

Most physical systems exhibit randomness, which, because of its lack of pattern or regularity, can not
be explicitly captured by deterministic mathematical models. The randomness may be due to the nature
of the phenomenon itself, called aleatoric uncertainty, or due to a lack of knowledge about the system,
referred to as epistemic uncertainty. In the latter the uncertainty may be reduced by obtaining additional
data about the system at hand. An example of an epistemic uncertainty encountered in engineering are
the fluctuations of material properties throughout a body, which occur due to the inhomogeneity of the
medium. Deterministic mechanical models typically feature empirically derived material parameters, such
as material stiffness and yield stress, that are assumed constant throughout the body. Their value is typically
determined as a statistical volumetric average over a large set of laboratory specimens. This idealized model
of reality may be insufficient in e.g. structural risk or reliability analysis and prediction, which is concerned
with probabilities of violation of safety limits or performance measures, respectively [40]. In this case the
effects of uncertainty on the result of a computation need to be quantified.

Uncertainty in physical quantities that vary in space and or time may be adequately modeled by stochastic
processes or random fields [54]. This approach generalizes a deterministic system modeled by a partial
differential equation to a stochastic system modeled by a stochastic partial differential equation or SPDE.
Reliable predictions may be obtained by propagating uncertainties in input variables to those in the response.

2

The main objective is to compute the response statistics, such as the mean and variance in the random
solution field, or the probability that a set tolerance is exceeded. To compute these statistics it is necessary
to discretize the SPDE, not only in space and time, but also in the stochastic dimensions. This can be a
complicated task, not because of modeling randomness, but due to a curse of dimensionality. Every random
variable contributes one dimension to the problem. Hence, it is important to keep their total to a minimum.

1.1. Discrete representation of random fields by the truncated Karhunen-Loève series expansion

One of the relevant questions in stochastic analysis is how to represent random fields discretely, suitable
for use in numeric computation. The essential step is to break down the representation into a tractable
number of mutually independent random variables, whose combination preserves the stochastic variability
of the process [13, 27]. One representation that is of particular interest is the truncated Karhunen-Loève
series expansion or KLE [26, 38]. The KLE decomposes a stochastic process into an infinite series of pairwise
uncorrelated random variables and pairwise L2-orthogonal basis functions1. Truncating the series expansion
after M terms yields the best M -term linear approximation of the random field, in the sense that the total
mean squared error is minimized.

Computation of the truncated KL expansion requires the solution of a homogeneous Fredholm integral
eigenvalue problem (IEVP) of the second kind. In general this is only possible numerically. The most
popular numerical methods to solve IEVP’s are the Nyström method, degenerate kernel methods and the
collocation and Galerkin method [4, 31]. The Galerkin method is widely regarded as superior due to its
approximation properties and solid theoretical foundation [13]. Within the trial space under consideration,
the Galerkin method produces the best L2 fit of the analytical modes. Furthermore, the discrete modes
preserve exactly the L2 orthogonality property of the analytical mode-shapes.

1.2. Challenges in numerical solution of the KLE by means of the Galerkin method

Efficient solution of the KLE using the Galerkin method is a computationally challenging task [13]. The
main challenges are the following:

(i) A Galerkin discretization requires numerical integration over a 2d dimensional domain, where d, in
this work, denotes the spatial dimension. The computational complexity of classical finite element
formation and assembly procedures scales as O

(
N2

e · p3d
)
, where Ne is the global number of elements,

p the polynomial degree and d the spatial dimension.

(ii) The main system matrix of the discretized weak-form is dense and requires 8N2 bytes of memory in
double precision arithmetic, where N is the dimension of the trial space.

(iii) Numerical solution requires one sparse backsolve O
(
N2
)

and one dense matrix-vector product O
(
N2
)

in each iteration of the eigenvalue solver, thus the solution time of the numerical eigenvalue solver
scales O

(
N2 ·Niter

)
, where Niter is the number of iterations required by the Lanczos solver.

Table 1 illustrates that explicit storage of the dense system matrix requires impracticable amounts of mem-
ory for problems involving more than 100K degrees of freedom. Hence, the computational complexity of
classical finite element formation and assembly procedures as well as memory requirements of direct solu-
tion techniques become quickly computationally intractable with increasing polynomial degree, number of
elements and degrees of freedom.

There has been a particular research effort devoted to alleviating the disadvantages of the Galerkin
method. In [1, 16, 29] an approximation by (Kronecker product) hierarchical matrices is used to efficiently
compute the dense matrices, as well as to reduce the memory requirements. These matrices are sparse
and allow for matrix multiplication, addition and inversion in O(N logN) time (or for Kronecker product
hierarchical matrices in O(N) time) where N is the number of degrees of freedom. The generalized Fast
Multipole Method, which also scales with O(N logN), has been proposed in [52]. This method was shown

1In analogy with a Fourier series expansion we also refer to the basis functions as KL modes or mode-shapes.

3

to not yield significant speed-ups for p finite element methods and thus it is recommended for kernels
of low regularity. Wavelet Galerkin-schemes [44] are also being used and can be coupled with compression
techniques for boundary value problems [9], but have the disadvantage, that the number of eigenmodes to be
computed must be known in advance. The pivoted Cholesky decomposition [17] focuses on approximating
the discretized random fields with sufficiently fast decaying eigenvalues. In this case a truncation of the
pivoted Cholesky decomposition of the covariance operator allows for an estimation of the eigenvalues in
the post-processing step in O

(
M2N

)
time, where M is the truncation order of the Cholesky decomposition.

One of the advantages of this method is the fact, that the number of eigenmodes required for a certain
accuracy of the random field discretization can be estimated in advance.

Table 1: Minimum memory required for storage of the main system matrix in the solution of the homogeneous Fredholm
integral problem of the second kind assuming double-precision floating point arithmetic.

Number of degrees of freedom 103 104 105 106

Matrix storage 8 MB 800 MB 80 GB 8 TB

1.3. Splines as a basis for random fields

Splines are piecewise polynomials with increased smoothness across element boundaries compared to
classical finite elements. Traditionally, splines have been primarily used as shape functions in computer
aided design. More recently, with the introduction of isogeometric analysis [21], splines have become more
established as trial functions in finite element analysis. Although isogeometric analysis was originally intro-
duced to improve the interoperability across several stages of the design to analysis process, it has proven
its fidelity as an analysis technology. We refer to the monograph [7] and references contained therein for an
exposition of isogeometric analysis applied to deterministic problems in structural and fluid mechanics.

More recently, spline based isogeometric analysis has found its way into the stochastic community.
Stochastic methods have been proposed to quantify uncertainty due to material randomness in linear elas-
ticity [34, 25], static analysis of plates [58], vibrational analysis of shells [37], static and dynamic structural
analysis of random composite structures [11] and functionally graded plates [20, 35, 36]. In [60] a method is
proposed to quantify the effect due to uncertainty in shape. Of these, the methods proposed in [34, 35, 36, 37]
use isogeometric analysis within a spectral stochastic finite element framework [14], which is based on a KL
expansion of random fields. The methods in [11, 20, 58] use perturbation series of which [58] expands
random fields in terms of the KLE. Standard polynomial chaos is used in [60], while the methods in [12]
and [25] propose new chaos expansions in terms of tensor product B-spline basis functions; thus extending
generalized polynomial chaos [59] to spline chaos.

To the best of our knowledge, [2] is the first work in which splines have been used to approximate the
truncated KLE. In his work the author applies a degenerate kernel approximation based on tensor product
spline interpolation at the Greville abscissa. More recently, in the spirit of isogeometric analysis, non-uniform
rational B-splines (NURBS) have been used to approximate the KLE using the Galerkin method [47] and
the collocation method [24]. These methods avoid the geometrical errors in the representation of CAD
geometry typically made within the classical finite element method. The authors note that the use of splines
in the geometry description as well as in discretization of the spatial and stochastic dimensions could enable
a “seamless uncertainty quantification pipeline”.

In the context of the present work we would like to highlight the superior spectral approximation proper-
ties of smooth splines as compared to classical C0 finite element shape functions. Several studies [6, 22, 23, 46]
have investigated the spectral approximation properties of splines in eigenvalue problems corresponding to
second and fourth order differential operators and have demonstrated that splines have improved robustness
and accuracy per degree of freedom across virtually the entire range of modes. The numerical results for
the Fredholm integral eigenvalue problem are no different, as corroborated by the results shown in Figure 1.
It’s precisely these properties that make splines appealing in the representation of random fields by means
of the Karhunen-Loève expansion.

4

0.0 0.2 0.4 0.6 0.8 1.0

k/N

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

λ
h
,k
/λ

k

p = 2

C1 isogeometric Galerkin method

C0 finite element method

1

0.716

0.718

0.720

Figure 1: Normalized discrete eigenvalues corresponding to a univariate Fredholm integral eigenvalue problem with an exponen-
tial kernel (correlation length is one). Comparison of eigenvalues obtained by C1 quadratic splines to C0 quadratic piecewise
polynomials. Both methods employ a standard Galerkin projection based on full Gauss quadrature. The reference solution
used to normalize the results is computed by the approach described in Remark 6.2

1.4. Contributions

We present a matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random
fields by splines. Our solution methodology resolves several of the aforementioned computational bottlenecks
associated with numerical solution of integral eigenvalue problems and enables solution of large-scale three-
dimensional IEVPs on complex domains. Below we summarize our main contributions.

Conversion to a standard eigenvalue problem

We have chosen a specific trial space of rational spline functions whose Gramian matrix has a Kronecker
product structure independent of the geometric mapping. This enables us to perform the backsolve, used
to convert the IEVP to standard form, in O

(
N ·N1/d

)
time by utilizing standard linear algebra techniques

from [15, 49].

Interpolation based quadrature

We present an interpolation based quadrature technique designed and optimized specifically for the varia-
tional formulation of the Fredholm integral equation. The approach integrates a rich target space of functions
with minimal number of quadrature points and outperforms existing competitive techniques in isogeometric
analysis, such as quadrature by interpolation and table look-up [39, 43] and weighted quadrature [5, 19, 51].
The proposed interpolation based quadrature technique is inspired by a similar technique used within linear
finite elements in [28, Chapter 3.1.3] and [29]. Instead, our approximation of the covariance function is
based on higher order tensor product spline interpolation and resembles the kernel approximation made
in [2]. Besides requiring as few quadrature points as possible, the interpolation based quadrature technique
exposes Kronecker structure in the integral equations, reducing computational complexity significantly.

Matrix-free solution methodology

We present a matrix-free solution methodology to avoid explicit storage of the dense system matrix
associated with numerical computation of the KLE. The matrix-free solution methodology not only reduces

5

the memory complexity from O(N2) to O(N), but also significantly reduces the solution time. This is
achieved by integrating the matrix-free solver with the proposed interpolation based quadrature technique.
The latter exposes Kronecker structure in the resulting discrete integral equation, thereby reducing formation
costs to O

(
N ·N1/d

)
per iteration, leaving only the dense matrix-vector product that is associated with the

Lanczos algorithm that remains O(N2) per iteration. The integrative approach to quadrature and matrix-
free solution techniques, exploiting Kronecker structure, is inspired by the matrix-free weighted quadrature
method proposed recently in [51].

Open source implementation

We provide an open-source Python implementation of the described techniques that is available for
download at https://github.com/m1ka05/tensiga.

1.5. Outline

In Section 2 we briefly review the necessary mathematical and algorithmic background with regard to
Kronecker products, B-splines and NURBS. In Section 3 we present the Karhunen-Loève series expansion
of random fields and the weak formulation of the corresponding Fredholm integral eigenvalue problem of
the second kind. In Section 4 we introduce our methodology for numerical solution of the truncated KLE.
This includes reformulation of the eigenvalue problem to standard form, interpolation based quadrature
of the weak form of the Fredholm integral problem, and a matrix-free algorithm with low computational
complexity and minimal memory requirements that is embarrassingly parallelizable. The computational
complexity is described in more detail in Section 5, where we compare our method with usual formation
and assembly techniques used for standard Galerkin methods from the literature. Finally, in Section 6, we
present a one-dimensional numerical study and several three-dimensional high-order numerical examples. A
conclusion and an outlook with recommendations for future work are given in Section 7.

2. Background and notation

This section introduces some of the machinery that is used throughout the paper. The presented solution
methodology for the Fredholm integral equation relies heavily on the properties of Kronecker products in
combination with multidimensional tensor contraction [15]. We briefly review the main properties used in
this work and illustrate their use in the Kronecker matrix-vector product. The Kronecker structure of the
involved matrices is a direct consequence of the chosen tensor product spline function spaces. We briefly
introduce B-splines as a basis for polynomial splines and Non-Uniform Rational B-splines (NURBS) for
smooth geometrical mappings. For additional details we refer the reader to standard reference books [7, 45].

2.1. Evaluation of the computational cost of an algoritm

The computational cost of the algorithms discussed in this work are evaluated in terms of floating point
operations per second (flops). A single flop represents the amount of work required to preform one floating
point addition, subtraction, multiplication or division [15]. Although the number of flops does not provide
a complete assessment of the efficiency of an algorithm, it is widely used in the literature. Indeed, many
other considerations such as cache-line efficiency and number of memory allocations can have a large impact
on the performance of an algorithm. Typically, we are interested in the leading terms that dominate the
computational cost of an algorithm and record the performance in terms of an order-of-magnitude estimate
of the number of flops, written in Big-Oh notation as O(·).

2.2. Kronecker products and tensor contraction

Let A ∈ Rm×n, B ∈ Rp×q and C ∈ Rs×t denote real valued matrices. The Kronecker product A ⊗ B ∈
Rm·p×n·q is a matrix defined as

A⊗ B :=



A11B · · · A1nB

...
...

Am1B · · · AmnB


 (1)

6

https://github.com/m1ka05/tensiga

Kronecker products satisfy the following properties

(A⊗ B)⊗ C = A⊗ (B⊗ C) (associativity) (2a)

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) (mixed product property) (2b)

(A⊗ B)
−1

= A−1 ⊗ B−1 (inverse of a Kronecker product) (2c)

(A⊗ B)
>

= A> ⊗ B> (transpose of a Kronecker product) (2d)

Let X ∈ Rn1×···×nd , Y ∈ Rm1×···×md denote two d-dimensional arrays. Vectorization of X is a linear
operation that maps X to a vector vec(X) ∈ Rn1·...·nd with entries

vec(X)i := Xi1...id , where i = i1 + (i2 − 1)n1 + (i3 − 1)n1 · n2 + . . .+ (id − 1)n1 · . . . · nd−1. (3)

One recurring theme in this paper involving Kronecker matrices is efficient matrix vector multiplication.
Let Dk ∈ Rmk×nk denote a set of d matrices {Dikjk , k = 1, . . . , d}, ik = 1, . . . ,mk and jk = 1, . . . , nk. The
matrix-vector product

vec(Y) =
(

Dd ⊗ · · · ⊗ D1

)
vec(X) O(M ·N) flops (4a)

can be written as a tensor contraction instead

Yi1···id =
∑

j1···jd
Di1j1 · · ·DidjdXj1···jd O(max(N ·m1, nd ·M)) flops (4b)

Here N = n1 · . . . ·nd and M = m1 · . . . ·md. The second approach scales nearly linearly with matrix size and
significantly outperforms standard matrix vector multiplication which scales quadratically with the matrix
size. In practice, highly optimized linear tensor algebra libraries can be used to perform the tensor contrac-
tion such as the tensor algebra compiler (TACO) [30]. Our Python implementation uses Numpy’s reshaping
and matrix-matrix product routines, which call low-level BLAS routines. The implemented reshapes do not
require any expensive and unnecessary data copies.

2.3. B-splines

Consider a d-dimensional parametric domain D̂ = [0, 1]d ⊂ Rd with local coordinates x̂ = (x̂1, . . . , x̂d).
Let (Bik,pk

(x̂k), ik = 1, . . . , nk) denote the univariate B-spline basis of polynomial degree pk and dimen-
sion nk, corresponding to the kth parametric coordinate x̂k. We consider multivariate B-splines as tensor
products of univariate B-splines

Bi(x̂) =

d∏

k=1

Bik,pk
(x̂k), i := (i1, . . . , id). (5)

Here i ∈ I is a multi-index in the set I := {(i1, . . . , id) : 1 ≤ ik ≤ nk}. The collection of all multivariate
B-spline basis functions spans the space

Bh := span{Bi(x̂)}i∈I . (6)

It is important to note that splines allow for increased continuity between polynomial elements as compared
to classical C0-continuous finite elements basis functions. This turns out to have significant impact on the
spectral accuracy of the Galerkin method. This is evidenced by several studies [6, 22, 23, 46] and will be
discussed in some detail in this work.

2.4. Geometrical mapping

Let F : D̂ → D map a point x̂ from the parametric domain D̂ to a point x in the physical domain D.
We assume that the map F and its inverse are smooth such that the Jacobian matrix [DF (x̂)]ij := ∂Fi

∂x̂j

7

and its inverse are well-defined. In this work F is represented as a linear combination of Non-Uniform
Rational B-splines (NURBS). NURBS are rational functions of B-splines that enable representation of
common engineering shapes with conic sections, which cannot be represented by polynomial B-splines [45].
The discretization method presented in this work makes heavy use of tensor product properties of the
involved function spaces. Since NURBS do not have a tensor product structure, we use them only to
represent the geometry and do not consider them as a basis for the function spaces.

3. Isogeometric Galerkin discretization of the Karhunen-Loève series expansion

The Karhunen-Loève (KL) series expansion decomposes a stochastic process or field into an infinite linear
combination of L2-orthogonal functions and uncorrelated stochastic random variables. In this section we
present the probability theory underlying the KL expansion and discuss its discretization by means of the
Galerkin method.

3.1. KL expansion of random fields

Consider a complete probability space (Θ,Σ,P). Here Θ denotes a sample set of random events, Σ is
the σ-algebra of Borel subsets of Θ and P is a probability measure P : Σ → [0, 1]. A random field
α(·, θ) : Θ 7→ L2(D) on a bounded domain D ∈ Rd is a collection of deterministic functions of x ∈ D, called
realizations, that are indexed by events θ ∈ Θ. A subset of realizations α(·,Θs), Θs ∈ Σ, has a probability
of occurrence of P(Θs).

Let E[·] denote the expectation operator corresponding to the probability measure P. Assuming α ∈
L2(D ×Θ) its first and second order moments exist and are given by

µ(x) := E[α(x, θ)] and (7a)

Γ(x, x′) := E[(α(x, θ)− µ(x))(α(x′, θ)− µ(x′))] (7b)

Here µ is called the mean or expected value of α over all possible realizations, and Γ : D × D → R is
called its covariance function or kernel. By definition, the kernel is bounded, symmetric and positive semi-
definite [14]. Because the kernel is square integrable, that is, Γ ∈ L2(D×D), it is in fact a Hilbert-Schmidt
kernel.

A random field is stationary or homogeneous if its statistical properties do not vary as a function of
position x ∈ D. This implies that the covariance function can be written as a function of the difference
x − x′. Furthermore, for isotropic random fields the statistical properties are invariant under rotations,
which means the covariance is a function of Euclidean distance ‖x− x′‖2.

Remark 3.1. Although, the Euclidean distance is widely used in the literature its use is not always justified.
In general, the geodesic distance, i.e. the shortest distance between points x and x′ along all paths contained
in D, is the true measure of distance. The Euclidean distance can vary significantly from the geodesic
distance especially if the correlation length is relatively large and the domain is non-convex. The geodesic
distance is, however, difficult and expensive to compute, which explains its non-use. In this work we also
use the Euclidean distance measure and assume its choice is a reasonable one in the context of the applied
numerical benchmark problems.

Figure 2 shows two common examples of covariance functions that correspond to stationary isotropic
random fields: the exponential and the Gaussian or squared exponential kernel. Important parameters that
influence the locality of these correlation functions are the variance σ2 and correlation length bL. Here L
denotes a characteristic length and b is a dimensionless factor.

The KL expansion of a random field α(·, θ) requires the solution of an integral eigenvalue problem.
Consider the linear operator

T : L2(D) 7→ L2(D), (Tφ)(x) :=

∫

D
Γ(x, x′)φ(x′) dx′. (8)

8

0.0 0.2 0.4 0.6 0.8 1.0
‖x− x′‖2/L

0.0

0.2

0.4

0.6

0.8

1.0

Γ
(x
,x
′)
/
σ

2

Γ(x, x′) = σ2exp

(
−‖x− x

′‖2
bL

)

b = 1

b = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
‖x− x′‖2/L

0.0

0.2

0.4

0.6

0.8

1.0

Γ
(x
,x
′)
/
σ

2
Γ(x, x′) = σ2exp

(
−‖x− x

′‖22
bL

)

b = 1

b = 0.1

(a) exponential kernel

0.0 0.2 0.4 0.6 0.8 1.0
‖x− x′‖2/L

0.0

0.2

0.4

0.6

0.8

1.0

Γ
(x
,x
′)
/
σ

2

Γ(x, x′) = σ2exp

(
−‖x− x

′‖2
bL

)

b = 1

b = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
‖x− x′‖2/L

0.0

0.2

0.4

0.6

0.8

1.0

Γ
(x
,x
′)
/
σ

2

Γ(x, x′) = σ2exp

(
−‖x− x

′‖22
bL

)

b = 1

b = 0.1

(b) squared exponential kernel

Figure 2: The exponential and squared exponential (Gaussian) covariance functions for different correlation lengths with
b = {0.1, 1.0}. Note the difference in the the continuity of both kernels at x = x′. The exponential kernel is C0, while the
square exponential kernel is C∞ at x = x′.

The operator T is compact. In fact, T is a Hilbert-Schmidt operator, since the covariance function is a
Hilbert-Schmidt kernel. Furthermore, since the covariance function is positive semi-definite and symmet-
ric [14], T is a self-adjoint positive semi-definite linear operator. The eigenfunctions {φi}i∈N of T are defined
by the homogeneous Fredholm integral eigenvalue problem of the second kind,

Tφi = λiφi, φi ∈ L2(D) for i ∈ N. (9)

Important properties of the eigenpairs are (1) the normalized eigenfunctions {φi}i∈N are orthonormal, that
is, (φi, φj)L2(D) = δij , and thus form a basis for L2(D); and (2) the corresponding eigenvalues form a
sequence λ1 ≥ λ2 ≥ . . . ≥ 0, which in general decays with increasing mode number.

Because Γ is symmetric and positive semi-definite, it possesses the spectral decomposition [8, 41]

Γ(x, x′) =

∞∑

i=1

λiφi(x)φi(x
′). (10)

With these definitions, the KL expansion of a random field α ∈ L2(D × Θ) is defined by the following
series [26]

α(x, θ) = µ(x) +

∞∑

i=1

√
λiφi(x)ξi(θ), where ξi(θ) :=

1√
λi

∫

D
(α(x, θ)− µ(x))φi(x) dx. (11)

While {φi}i∈N are pairwise L2-orthogonal on D, the {ξi}i∈N are pairwise uncorrelated zero-mean random
variables [14]. For this reason the KL expansion is sometimes said to be bi-orthogonal.

9

3.2. Truncated KL expansion

In order to represent a random field in a discrete numerical computation it is necessary to discretize the
continuous probability space. This can be achieved by truncating the KL expansion after M terms and thus
reducing the dimension of the stochastic space to M uncorrelated random variables

α̃M (x, θ) = µ(x) +

M∑

i=1

√
λiφi(x)ξi(θ). (12)

The mean of a random field is not affected by the discretization. The variance of the discretization on the
other hand can be derived from the spectral decomposition in equation (10)

E
[
(α̃M (x, θ)− µ(x))2

]
=

M∑

i=1

λiφ
2
i (x). (13)

The variance of the discretized random field converges uniformly in D and in L2(Θ,Σ,P) towards the true
variance [47]

lim
M→∞

M∑

i=1

λiφ
2
i (x) = Γ(x, x). (14)

Furthermore, it can be shown that the KL expansion is optimal with respect to the global mean-squared
error among all series expansions of truncation order M [14].

3.3. Variational formulation

The variational formulation or weak form of the integral eigenvalue problem introduced in equation (9)
states

Find {λ, φ} ∈ R+
0 × L2(D) such that

∫

D

(∫

D′
Γ(x, x′)φ(x′) dx′ − λφ(x)

)
ψ(x) dx = 0 ∀ψ ∈ L2(D). (15)

Confining the solution to the finite-dimensional subspace Sh ⊂ L2(D) we obtain the discrete variational
formulation

Find {λ, φ} ∈ R+
0 × Sh such that

∫

D

(∫

D′
Γ(x, x′)φh(x′) dx′ − λhφh(x)

)
ψh(x) dx = 0 ∀ψh ∈ Sh. (16)

This is the Galerkin method for the homogeneous Fredholm integral eigenvalue problem of the second kind [3,
47]. Within the trial space under consideration, the Galerkin method produces the best L2 fit of the analytical
modes. The resulting discrete modes preserve exactly the L2 orthogonality property of the analytical mode-
shapes. Furthermore, it can be shown that a variational treatment using the Galerkin method leads to
eigenvalues that converge monotonically, under mesh refinement, towards the true eigenvalues [14].

3.4. Choice of the trial space

The choice of the trial space Sh provides some freedom in the design of the Galerkin method. The
recently proposed isogeometric Galerkin method for the KL expansion of random fields uses NURBS for
the test and trial spaces [47]. This choice is motivated by the fact that the geometrical mapping is defined
using NURBS and it is natural to remain within the isoparametric paradigm. This method shares the same
technical challenges as all classical Galerkin methods applied to this class of problems [1, 47]: the formation
and assembly costs, which have a time complexity of O

(
N2

e · p3d
)
, as well as the storage requirements,

10

which have space complexity of O
(
N2
)
, become quickly intractable with increasing number of elements Ne,

polynomial degree p, dimension d and number of degrees of freedom N . A practical Galerkin method must
address these difficulties in the design of the method.

We abandon the isoparametric concept and choose a different space to represent the finite-dimensional
solution. Our choice offers multiple computational advantages without sacrificing higher-order accuracy and
robustness. We define the trial space for the Galerkin method as

Sh := span

{
Bi(x̂)√

det DF (x̂)

}

i∈I
. (17)

Because the geometrical mapping F is smooth and invertible the Jacobian determinant is never singular,
that is, det DF (x̂) > 0 for all x̂ ∈ D̂. Importantly, the functions are linearly independent due to linear
independence of B-splines. In general, however, these basis functions will not form a partition of unity.
Instead, the characterizing property is that products of these functions are integral preserving, that is, they
transform as volume forms

∫

D

Bi(x̂)√
det DF (x̂)

Bj(x̂)√
det DF (x̂)

dx =

∫

D

Bi(x̂)Bj(x̂)

det DF (x̂)
dx =

∫

D̂
Bi(x̂)Bj(x̂) dx̂.

3.5. Matrix formulation

After substituting the desired subspace for the test and trial functions and performing minor algebraic
manipulations, the discretized Galerkin method results in a generalized algebraic eigenvalue problem

Avh = λhZvh, (18)

where the system matrices are formed by evaluating

Aij =

∫

D̂

∫

D̂′
Γ(x(x̂), x(x̂′)))

Bi(x̂)√
det DF (x̂)

Bj(x̂
′)√

det DF (x̂′)
det DF (x̂) det DF (x̂′) dx̂′dx̂

=

∫

D̂

∫

D̂′
Γ(x(x̂), x(x̂′)))Bi(x̂)Bj(x̂

′)
√

det DF (x̂)det DF (x̂′) dx̂′dx′ (19)

and

Zij =

∫

D̂

Bi(x̂)√
det DF (x̂)

Bj(x̂)√
det DF (x̂)

det DF (x̂) dx̂

=

∫

D̂
Bi(x̂)Bj(x̂) dx̂. (20)

As a result of the chosen solution space, the mass matrix Z has a Kronecker structure and can be decomposed
into k = 1, . . . , d univariate mass matrices

Zk := Zikjk =

∫ 1

0

Bik,pk
(x̂k)Bjk,pk

(x̂k) dx̂k, ik, jk = 1, . . . , nk. (21)

The system mass matrix Z can be then written as

Z = Zd ⊗ · · · ⊗ Z1. (22)

Instead of computing and storing the matrix Z, we precompute and store the matrices Zk, k = 1, . . . , d. Fur-
thermore, it is the Kronecker structure that allows us to inexpensively reformulate the generalized eigenvalue
problem to a standard algebraic eigenvalue problem.

11

Remark 3.2. In practice Zk in (21) is computed exactly up to machine precision using Gauss-Legendre
numerical quadrature with p+1 quadrature points per element, where p is the polynomial degree in component
direction k. Because the domain of integration is one-dimensional the formation and assembly costs of
O(nep

3) as well as the storage costs of O(pn) bytes are negligible compared to the total solver costs. Here
ne is the number of univariate elements and n is the univariate number of degrees of freedom in component
direction k.

4. Efficient matrix-free solution strategy

There are two major challenges when applying the Galerkin method to discretize the homogeneous
Fredholm integral eigenvalue problem in (9). Firstly, the variational formulation requires integration over
a 2d-dimensional domain to evaluate the matrix entries in A. This leads to formation and assembly costs
with complexity O(N2

e p
3d), where Ne is the global number of elements, p the polynomial degree and d the

spatial dimension. Secondly, because the matrix is dense, A requires insurmountable memory storage for
any practical problem of interest. Several techniques have been presented in the literature in order to deal
with these challenges, for example by approximation with low-rank matrices like the hierarchical matrices
[1, 16, 29] or by using Fast Multipole Methods [52]. In this work we present a combination of four techniques
to deal with the aforementioned challenges:

1. Reformulation of the generalized eigenvalue problem into an equivalent standard eigenvalue problem;

2. Interpolation based quadrature for variational formulations of integral equations;

3. Efficient formation of finite element arrays based on Kronecker matrix-vector product;

4. Formulation of a matrix-free and multi-threaded matrix-vector product for the Lanczos algorithm.

The reformulation into a standard algebraic eigenvalue problem significantly reduces the computational
cost and simultaneously improves conditioning. By exploiting the Kronecker structure of the right-hand-
side mass matrix we can perform this reformulation with negligible overhead. The proposed non-standard
quadrature technique that we call interpolation based integration is tailored for variational formulations of
integral equations. The technique is optimal in the sense that few quadrature points are required while
integrating a rich space of tensor product functions on the 2d-dimensional domain D×D. Importantly, the
technique lends itself to multidimensional tensor contraction due to the Kronecker structure of the involved
matrices. This significantly speeds up the evaluation of integrals over high-dimensional domains and scales
favorably with polynomial degree. Finally, all techniques are combined within a matrix-free evaluation
scheme that is embarrassingly parallel and requires minimal memory storage. The formation and assembly
costs of our approach are negligible compared to the remaining solver costs of the Lanczos eigenvalue solver,
which is O(Ñ2 ·Niter/Nthread). Here Ñ is the global number of degrees of freedom of the interpolation space,
Niter is the number of iterations of the eigensolver and Nthread is the number of simultaneous processes. In
the following we discuss each of the proposed techniques in more detail.

4.1. Reformulation into a standard algebraic eigenvalue problem

Let us consider a Cholesky factorization of the mass matrix Z = LL> and define a linear transformation
of the eigenvectors v′h := L>vh. The generalized eigenvalue problem can then be rewritten (see [49, Chapter
9.2.2]) as a standard eigenvalue problem with unchanged eigenvalues corresponding to new eigenvectors v′h

A′v′h = λhv′h, where A′ := L−1AL−> (23)

It is expected that the new system matrix A′ has improved conditioning compared to A. The kernel is
positive-definite and symmetric. In practice, it often quickly tends to zero for increasing distance ‖x− x′‖2.
In the limiting case, where Γ(x, x′)→ δ(x, x′), the system matrix A→ Z and hence the preconditioner would
be ideal.

Although improved conditioning is beneficial, the main reason for the chosen transformation is efficiency.
Solution of a standard algebraic eigenvalue problem is much less expensive than solution of a generalized

12

eigenvalue problem. The transformation itself is inexpensive. Using the Kronecker structure of Z and the
properties (2b) and (2d) we may write

Z = Zd ⊗ . . .⊗ Z1

= LdLd
> ⊗ · · · ⊗ L1L1

>

= (Ld ⊗ · · · ⊗ L1)(Ld ⊗ · · · ⊗ L1)
>

= LL>. (24)

Here LkLk
>, k = 1, . . . d, denote the Cholesky factorizations corresponding to the univariate mass matrices

Zk. Hence, instead of performing the Cholesky factorization for the complete system matrix Z ∈ RN×N ,
which is the standard procedure in most solvers for generalized algebraic eigenvalue problems, we merely
need the Cholesky factorizations for Zk ∈ Rnk×nk , k = 1, . . . , d.

The factorization is precomputed once before using it in the eigenvalue solver. The associated com-
putational cost is reduced from O

(
N3
)

to O
(
n3
)

flops, where n = max(n1, ..., nd) and N = n1 · ... · nd.
Subsequently, the cost of applying the factorization in a single iteration of the eigenvalue solver is reduced
from O

(
N2
)

to O(n ·N). Besides a reduction in computational cost, this approach significantly reduces the
required memory storage.

4.2. Interpolation based quadrature for integral equations

One of the most straightforward ways of improving efficiency is to design quadrature rules that require
fewer evaluation points. This is especially true for the variational formulation of the Fredholm integral
equation which requires numerical integration over a 2d-dimensional domain. In practice, accurate and
efficient quadrature rules are designed as follows. First, one chooses a space of functions T, called the target
space for numerical quadrature, whose elements should be exactly integrated by the new quadrature rule. If
this space is in some sense rich enough then the error due to quadrature can be bounded by the discretization
error, which is needed to show optimal rates of convergence of the numerical method (see [18]). The next
objective is to find a quadrature rule that requires as few points as possible to integrate all functions in T.

We present a non-standard quadrature technique that generalizes the approach to quadrature presented
for linear finite elements in [28, 29] to higher order splines. Our approach is tailored toward evaluating
integrals found in variational formulations of integral equations and achieves a very low number of evaluation
points while integrating exactly a rich space of functions. The target space T is chosen such that the
quadrature scheme exactly evaluates the integral

∫

D̂

∫

D̂′
G̃(x̂, x̂′)Bi(x̂)Bj(x̂

′) dx̂′dx̂, G̃ ∈ B̃h(D̂)⊗ B̃h(D̂′). (25)

using Ñ2 points. Here B̃h is another d-dimensional spline space that can be chosen independently of Bh
and Ñ is its dimension. In practice this space can be chosen to fit well with the integrand in the variational
formulation of the integral equation. This provides additional flexibility to the quadrature scheme.

Because G̃ ∈ B̃h(D̂) ⊗ B̃h(D̂′) is a real-valued 2d-variate spline function it can be expanded in terms of
B-spline basis functions and real-valued coefficients {G̃kl}k,l∈Ĩ as

G̃(x̂, x̂′) :=
∑

k,l∈Ĩ
G̃klB̃k(x̂)B̃l(x̂

′) with k, l ∈ Ĩ := {(i1, . . . , id) : 1 ≤ ik ≤ ñk}.

Comparing the multidimensional integrand in (19) with the one in (25) we may conclude that the degrees of
freedom {G̃kl}k,l∈Ĩ should be chosen such that G̃ is a good approximation of the function G : D̂ × D̂ 7→ R+

defined as

G(x̂, x̂′) := Γ̂(x̂, x̂′)
√

det DF (x̂)det DF (x̂′). (26)

Here Γ̂(x̂, x̂′) is the pull-back of the kernel Γ(x, x′) from the physical to the parametric space using the
geometrical mapping F .

13

The approximation G̃ can be estimated in different ways. We follow a similar approach to the degenerate
kernel approximation in [2] and choose to collocate G at the Greville abscissa [10]. This approach is both
simple and combines high order accuracy with a minimal number of evaluation points. Let B̃ = B̃ij := B̃j(x̂i)

denote the d-variate spline collocation matrix evaluated at the Greville abscissa x̂i ∈ D̂, i ∈ Ĩ. The
interpolation problem states

Find {G̃kl}k,l∈Ĩ such that

∑

k,l∈Ĩ
G̃klB̃k(x̂i)B̃l(x̂

′
j) = G(x̂i, x̂

′
j) ∀ i, j ∈ Ĩ (27)

This is equivalent to the matrix problem G = B̃G̃B̃>. Hence, the matrix of coefficients can be computed as
G̃ = B̃−1GB̃−>. The computational cost of the interpolation can be significantly reduced from O(Ñ3) to
O(ñ · Ñ) flops, where ñ = max (ñ1, ..., ñd), by exploiting the Kronecker structure of B̃. We decompose B̃
into d univariate collocation matrices B̃k, k = 1, . . . , d, and use property (2c) to write its inverse as

B̃−1 = B̃−1d ⊗ · · · ⊗ B̃−11 with B̃k := B̃ikjk = B̃jk,p̃k
(x̂ik) (28)

In practice we compute d LU factorizations, each corresponding to a univariate matrix B̃k, to apply the
inverse of B̃ to a vector. Note, that this approach is similar to the approach we took in equation (24) for
the Cholesky factorization of Z.

4.3. Matrix formation

By substituting G in equation (19) with G̃ we can approximate matrix A by a matrix Ã with entries

Ãij :=

∫

D̂

∫

D̂′
G̃(x̂, x̂′)Bi(x̂)Bj(x̂

′) dx̂′dx̂

=
∑

k,l∈Ĩ
G̃kl

∫

D̂

∫

D̂′
B̃k(x̂)B̃l(x̂

′)Bi(x̂)Bj(x̂
′) dx̂′dx̂

=
∑

k,l∈Ĩ
G̃kl

∫

D̂
B̃k(x̂)Bi(x̂) dx̂

∫

D̂′
B̃l(x̂

′)Bj(x̂
′) dx̂′

Hence, using the tensor product structure of the interpolation space we have separated the 2d-dimensional
integral into a product of two d-dimensional integrals. In matrix notation we may write Ã = M>G̃M, or

Ãij =
∑

k,l∈Ĩ
G̃klMkiMlj (29)

Here M := Mij is a mass matrix

Mij =

∫

D̂
B̃i(x̂)Bj(x̂) dx̂. (30)

Similarly, as we did for matrix Z in (22), we can exploit the Kronecker structure and decompose M into d
univariate mass matrices Mk := Mikjk

M = M1 ⊗ · · · ⊗Md with Mikjk =

∫ 1

0

B̃ik,p̃k
(x̂k)Bjk,pk

(x̂k) dx̂k (31)

As in the case of Zk, k = 1, ..., d, these univariate matrices are computed up to machine precision as discussed
in remark 3.2. The approximation error A−Ã is entirely due to the interpolation error G−G̃. Hence, accurate
approximation of G should result in an accurate approximation of A.

14

4.4. Matrix-free solution strategy

The interpolation based quadrature technique introduced in the previous section involves computation
of the matrix of coefficients G̃ := G̃kl. This matrix is dense and has Ñ2 entries. Consequently, storage of G̃
is just as inconvenient as storing Ã and becomes quickly intractable with problem size. In this section we
propose a matrix-free evaluation of the matrix-vector product v′ 7→ Ãv′ that does not require explicit access
to matrix G̃ or Ã.

4.4.1. Basic setup

We have the following standard algebraic eigenvalue problem

Ã′v′ = λhv′. (32a)

Here, the system matrix Ã′ can be written as

Ã′ = L−1M>B̃−1JΓJB̃−>ML−>, (32b)

where J is a diagonal matrix with diagonal entries given by the square roots of Jacobian determinants
evaluated at the Greville abscissa, and B, M and L are all Kronecker product matrices. Consequently, a
matrix-vector product with any of these matrices can be performed close to linear time complexity. The
matrix vector product v′ 7→ Ã′v′ can be subdivided into the following operations

Γ := Γ̂(x̂k, x̂
′
l) (Evaluation of the kernel at the Greville abscissa) (32c)

G = JΓJ (Scaling of the kernel) (32d)

G̃ = B̃−1GB̃−> (Interpolation of the scaled kernel) (32e)

Ã = M>G̃M (Evaluation of the integrals) (32f)

Ã′ = L−1ÃL−> (Application of the preconditioner) (32g)

In the following subsection we present a matrix-free matrix-vector product that incorporates each of the
above steps. Except for the diagonal matrix J, none of the above matrices are stored explicitly. Only the
corresponding univariate matrices are stored and used in the Kronecker products, while the entries of Γ are
computed on the fly.

4.4.2. Matrix-free algorithm

Let Γ̂k1...kdl1...ld := Γ̂(x̂1,k1 , . . . , x̂d,kd
, x̂′1,l1 , . . . , x̂

′
d,ld

) ∈ Rñ1×···×ñd×ñ1×···×ñd denote the function values

of the kernel evaluated at the tensor product grid of the Greville abscissa in D̂×D̂. The proposed evaluation
order of the matrix-free matrix-vector product is summarized in Algorithm 1.

Algorithm 1 Matrix-free evaluation of the matrix-vector product v′ 7→ Ã′v′

Input: vi1...id ∈ Rn1×···×nd , Jl1...ld ∈ Rñ1×···×ñd , Bikjk ∈ Rñk×ñk and Mlkjk ∈ Rñk×nk

Output: v′i1...id ∈ Rn1×···×nd

1: Vj1...jd ← L−1i1j1
· · ·L−1idjd

vi1...id . Preconditioning from right
2: Xk1...kd

←Mk1j1 · · ·MkdjdVj1...jd
3: Yl1...ld ← B−1k1l1

· · ·B−1kdld
Xk1...kd

. Use LU-factorization of Bk, k = 1, ..., d
4: Y ′l1...ld ← Jl1...ld � Yl1...ld
5: Z ′k1...kd

← Γ̂k1...kdl1...ldY
′
l1...ld

. Evaluate in parallel without forming Γ
6: Zk1...kd

← Jk1...kd
� Z ′k1...kd

7: Yj1...jd ← B−1j1k1
· · ·B−1jdkd

Zk1...kd
. Use LU-factorization of Bk, k = 1, ..., d

8: Vl1...ld ←Mj1l1 · · ·MjdldYj1...jd
9: v′i1...id ← L−1i1l1

· · ·L−1idld
Vl1...ld . Preconditioning from left

15

The matrix-free matrix vector product v′ 7→ Ã′v′ is evaluated in nine separate stages. Stage one applies
back-substitution of the upper triangular matrix L> and exploits its Kronecker structure. Stage two applies
a matrix vector product with matrix M and again exploits its Kronecker structure. Stage three applies back-
substitution using the factorization of the interpolation matrix B. Again, Kronecker structure is essential to
reduce both the space and time complexity of the back-substitution. In stage four the coefficient vector is
element-wise multiplied by the square root of the Jacobian determinant evaluated at the Greville abscissa.
Here, element-wise multiplication is denoted by the � symbol. Stage five dominates the computational
cost of Algorithm 1. This stage represents a dense matrix-vector product. To perform this step without
explicitly forming matrix Γ we compute its entries on the fly, one row at a time . We compute products of
the coefficient vector with several rows of Γ in parallel. Stages six to nine are equivalent to stages four to
one, due to the symmetry of the operator.

Due to the iterative solution process, the matrix-vector product needs to be evaluated at each iteration.
The number of iterations is dependent on the number of required eigenmodes, the conditioning of the
algebraic eigenvalue problem and the efficiency of the eigensolver. In this work we use the standard implicitly
restarted Lanczos method [15].

5. Computational complexity analysis

The goal of a time-complexity analysis is to obtain an estimate of the computational cost that scales
linearly with time. This cost is expressed in terms of certain parameters that depend on the problem size,
the dimension and the polynomial degree. For this purpose, let us introduce the following notation:

n number of degrees of freedom of the trial space in one component direction;
ñ number of degrees of freedom of the interpolation space in one component direction;
N := nd total number of degrees of freedom of the trial space;

Ñ := ñd total number of degrees of freedom of the interpolation space;
Ne total number of spatial elements in the trial space;
Nq number of quadrature points in a standard quadrature loop.
Niter number of iterations of the matrix-free algorithm;
Nthread number of simultaneous shared memory processes in the matrix-vector product.

5.1. Standard finite element procedures

In the following we present the computational complexity of standard finite element procedures for
higher-order finite elements. We use the tensor product structure of the high-dimensional space D̂ × D̂ to
minimize the involved computations. The general setting for this analysis is (1) D̂×D̂ has N2

e elements; and

(2) we assume a quadrature rule Q(f) :=
∑Nq

k=1 wkf(xk), with 1 ≤ Nq ≤ (p+ 1)d, to integrate the products

on every d-dimensional element �d in D̂.
The leading term in formation and assembly is determined by the cost of forming the element matrices.

Consider the following element matrix

Ae
ij =

∫

�d

Bi(x̂)

∫

�d

Γ(x̂, x̂′)Bj(x̂
′) dx̂′dx̂

≈
Nq∑

k=1

wkBi(x̂k)

Nq∑

l=1

wlΓ(x̂k, x̂
′
l)Bj(x̂

′
l)

=

Nq∑

k=1

CikDkj with Dkj =

Nq∑

l=1

wlΓ(x̂k, x̂l)Bj(x̂l)

with i, j ∈ I. We see that Ae
ij can be formed by the matrix product of matrices C ∈ R(p+1)d×Nq and

D ∈ RNq×(p+1)d . This matrix product costs O
(
Nq(p+ 1)2d

)
. The formation of Cik is neglible. The formation

16

of Dkj on the other hand is O
(
N2

q (p+ 1)d
)
. Since Nq ≤ (p + 1)d the leading term is Nq(p + 1)2d. Hence,

the total cost of forming one element matrix is O
(
Nq(p+ 1)2d

)
. In total we have to integrate over all N2

e

multidimensional elements of D̂ × D̂. With that, the total cost of forming A is O
(
N2

eNq(p+ 1)2d
)
. Using a

Gauss-Legendre quadrature rule with (p+ 1) quadrature points in every coordinate direction gives in total
Nq = (p+ 1)d quadrature points, and we can expect a leading cost proportional to O

(
N2

e (p+ 1)3d
)
.

5.2. Finite element procedures employing sum factorization

Estimates presented in the previous subsection hold for classical hp finite element procedures employing
a standard quadrature loop. Next we discuss the complexity of finite element procedures that employ sum
factorization instead of a standard quadrature loop. Sum factorization significantly speeds up the element
array formation by exploiting the tensorial structure of both the finite element basis and the used quadrature
rules [42, 55, 57]. It’s worth noting that, due to the structure of the integral operator, the sum factorization
technique looks somewhat different than is standard in the hp finite element method.

The setting for this analysis is (1) D̂ × D̂ has N2
e rectangular elements; (2) we use a tensor product basis

of polynomial degree p on every element; and (3) we use a tensor product of univariate Gauss-Legendre

quadrature rules Q(f) :=
∑p+1

k=1 ωkf(xk) to integrate the products on every d-dimensional element �d in D̂.
Consider the element matrix

Ae
ij =

∫

�d

Bi(x)

∫

�d

Γ(x, x′)Bj(x
′) dx′dx

≈
p+1∑

k1=1

Bi1,p(x1,k1
)

p+1∑

k2=1

Bi2,p(x2,k2
) · · ·

p+1∑

kd=1

Bid,p(xd,kd
)

p+1∑

l1=1

Bj1,p(x′1,l1)

p+1∑

l2=1

Bj2,p(x′2,l2) · · ·
p+1∑

ld=1

Γ(x1,k1
, . . . , xd,kd

, x′1,l1 , . . . , x
′
d,ld

)Bjd,p(x′d,ld)

with i, j ∈ I. Sum factorization is essentially tensor contraction. The kernel evaluated at the grid of
quadrature points is a tensor Γk1...kdl1...ld ∈ R(p+1)×···×(p+1) and is contracted with matrices Bjz,p(x′z,lz) ∈
R(p+1)×(p+1), for z = 1, . . . , d, and subsequently with matrices Biz,p(xz,kz

) ∈ R(p+1)×(p+1) for z = 1, . . . , d.
The cost of every contraction is O

(
(p+ 1)2d+1

)
flops. In total there are 2d such tensor contractions. Hence,

the element matrix formation cost for Ae is O
(
2d(p+ 1)2d+1

)
flops. With N2

e elements, the leading cost of

forming A is O
(
2dN2

e (p+ 1)2d+1
)

flops.

5.3. Proposed strategy using interpolation based quadrature

In order to analyze the computational complexity of the proposed solution strategy we must address each
stage of the matrix-free matrix-vector product introduced in Algorithm 1. Let us consider the complexity
in one iteration of the matrix-free algorithm.

Stage 1 has a cost O
(
dnd+1

)
.

Stage 2 has a cost depending on the chosen projection space,
for n > ñ the cost is O

(
dpnd

)
,

for n = ñ the cost is O
(
dpnd

)
,

for n < ñ the cost is O
(
dpñd

)
.

Stage 3 has a cost O
(
dñd+1

)
.

Stage 4 has a cost O
(
ñd
)
.

Stage 5 has a cost O
(
Ñ2/Nthread

)
.

The remaining steps 6, 7, 8 and 9 are equivalent to steps 4, 3, 2 and 1. In step 2 we assume sparse matrix
algebra. In dense algebra, p can be replaced by n. In steps 1 and 3 we assume that the Cholesky and LU

17

factorizations of the univariate matrices of size n × n and ñ × ñ, respectively, have been precomputed and
are available. Subsequently, the solver costs are O

(
n2
)

and O
(
ñ2
)

flops, respectively, for each application
of the factorization. The cost of a single iteration is typically dominated by step 5, which does not depend
on the polynomial degree p. Fortunately, this step is embarrassingly parallel. Hence, the time complexity

of the matrix free algorithm is O
(
Ñ2Niter/Nthread

)
flops.

5.4. Storage comparison

Both matrix-free and non-matrix-free methods need to store the resulting eigenmodes. Storage of the
results takes roughly L·8N bytes, where L is the number of eigenmodes that need to be computed. Addition-
ally, the standard approach that stores the dense left-hand-side system matrix A ∈ RN×N requires storage
of N ×N floating point numbers. Using double precision floating point arithmetic the storage requirements
are 8N2 bytes. The additional storage of the matrix-free approach scales linearly with problem size, with an
asymptotic leading term of roughly 2 · 8N bytes, again using double precision floating point arithmetic. If
step 4 of the matrix-free algorithm is performed using shared memory parallelism then one can expect this
to increase to (1 +Nthread) · 8N where Nthread is the number of simultaneous processes. Consequently, the
storage cost of the matrix-free approach is typically governed by storage of the results and is thus optimal.
Table 2 and 3 summarize the leading terms in storage of the two alternatives.

Table 2: The leading terms in storage costs of a method that explicitly stores the main system matrix. Here L refers to the
number of eigenmodes that need to be stored. The storage cost is dominated by storage of the system matrix.

Number of degrees of freedom 103 104 105 106

Results storage L · 8 KB L · 80 KB L · 800 KB L · 8 MB
Matrix storage 8 MB 800 MB 80 GB 8 TB

Table 3: The leading terms in storage costs of a matrix-free approach. Here L refers to the number of eigenmodes that need
to be stored. The storage cost of the matrix-free method is typically dominated by the storage of the results.

Number of degrees of freedom 103 104 105 106

Results storage L · 8 KB L · 80 KB L · 800 KB L · 8 MB
Matrix-free approach 2 · 8 KB 2 · 80 KB 2 · 800 KB 2 · 8 MB

6. Numerical results

In this section we present numerical results that illustrate the accuracy, robustness and computational
efficiency of the proposed matrix-free Galerkin method. An accuracy study is performed in the case of one
dimension. This study case gives insight into the accuracy attained by interpolation based quadrature of
the covariance function and its affect on approximating the eigenvalue spectra. Several three-dimensional
benchmarks illustrate the computational performance attained for a range of polynomial degrees and different
refinement strategies of the interpolation as well as the solutions space. The computations are performed
on two Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz (24 threads) and 12x8 GB of ECC DDR3L 1600MHz
RAM. The Python implementation in this work relies heavily on the packages Numpy [56] and Scipy [53]
for the linear algebra and solver functionalities. In order to achieve high performance, crucial parts of the
code base are just-in-time compiled using the LLVM-based Python-compiler Numba [32, 33].

6.1. One-dimensional case study

Consider a one-dimensional random field defined on domain D = [0, 1] ⊂ R. We investigate

(i) the relative L2(D) interpolation error of the kernel, G − G̃, with respect to uniform h-refinement
enforcing Cp−1 continuity across element boundaries. We consider the cases where G is the Gaussian
and exponential kernel with b = 0.1, a characteristic domain length L = 1 and a variance σ2 = 1.

18

(ii) the normalized spectra corresponding to an exponential kernel with b = 1.

Remark 6.1. Normalized spectra corresponding a Gaussian kernel cannot be reliably computed across the
full range of eigenvalues because the smallest eigenvalues quickly approach zero up to machine precision.

Kernel approximation

Figure 3a shows the convergence towards the Gaussian kernel for polynomial degrees 1 through 8. It seems
that the even degrees p = {2, 4, 6, 8} perform relatively better than the preceding odd degrees p = {1, 3, 5, 7}.
It is evident that higher-order interpolation of a smooth kernel leads to a higher-order convergence rate in
the approximation. The smooth interpolation space is not as suitable for approximation of kernels that
have low regularity. Approximation of the exponential kernel in Figure 3b, which is C0 along x = x′, shows
that higher-order continuity of the basis does not lead to an increased convergence rate. This behavior is in
agreement with convergence estimates for spline approximation of arbitrary smoothness [50].

Spectral approximation

Although the proposed method, in its current form, is best suited for smooth kernels like the Gaussian
kernel, excellent approximation of the eigenvalues corresponding to non-smooth kernels is still possible.
Figure 4 depicts the full spectrum corresponding to the exponential kernel with b = 1. The proposed
Galerkin method using interpolation based quadrature (IBQ) is compared to the isogeometric Galerkin
method proposed in [47] and a classical C0 finite element solution in the case of polynomial degree p = 2.
The interpolation space is set to h̃ = 0.005 ·bL. The proposed method (IBQ) exhibits the same advantageous
characteristics as the standard isogeometric Galerkin method [47] and exhibits no branching phenomena as
in the case of the C0-continuous finite element approximation. Due to their increased continuity across
element boundaries, splines achieve a higher accuracy per degree of freedom and increased robustness as
compared with classical C0 finite element methods. These results are in agreement with several other studies
that have investigated spectral approximations corresponding to eigenvalue problems in structural mechanics
[6, 22, 23, 46].

Remark 6.2. The reference solution is computed using a standard isogeometric Galerkin method [47] with
fifty thousand degrees of freedom. The first twenty eigenvalues have been validated up to machine accuracy
by the analytical approach described in [14, Ch. 2.3.3, page 28-35]. The analytical computation of these
eigenvalues involves solving for roots of a complex equation and is for that reason avoided beyond the first
twenty eigenvalues.

6.2. Random field with exponential kernel in a three-dimensional half-open cylindrical domain

In the first three-dimensional example we investigate a random field defined in a half-open cylindrical
domain as shown in figure 5. The kernel is set to the exponential covariance function with a correlation
length bL equal to the half of the characteristic length L. The variance of the random field is σ2 = 1. We
note that this example is also studied in [47].

Since the kernel is C0 along x = x′, there is no gain in using a high-order interpolation space. Therefore,
the chosen refinement strategy is simple uniform h-refinement in each parametric direction. The polynomial
order in each direction is the minimal order, which allows an exact representation of the geometry. This
implies quadratic splines in the circumferential direction and linear splines in the other directions. The
solution space and the interpolation space meshes for each refined case are shown in Figure 6. The first
twenty largest eigenvalues together with information about the mesh and computational cost are tabulated
in Table 4. The first nine eigenfunctions corresponding to the nine largest eigenvalues are visualized in
Figure 7 by weighting each eigenfunction by the square root of the corresponding eigenvalue.

The presolution formation and assembly time includes the formation and assembly of the univariate
mass matrices, the interpolation matrices and their factorizations as well as the computation of the Jacobian
determinants at the Greville abscissa. The results in Table 4 indicate that these setup costs are negligibly
small compared to the total solution time of the Lanczos eigenvalue solver, which is dominated by the
matrix-free evaluation of the matrix-vector product (step 5 in Algorithm 1). The number of iterations of

19

10−2 10−1

h̃

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

‖G
(x
,x
′)
−
G̃

(x
,x
′)
‖ L

2
‖G

(x
,x
′)
‖−

1
L

2

9 : 1

5 : 1

2 : 1

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

10−1 100
h̃/(bL)

(a) Gaussian kernel

10−2 10−1

h̃

10−2

10−1

‖G
(x
,x
′)
−
G̃

(x
,x
′)
‖ L

2
‖G

(x
,x
′)
‖−

1
L

2

1.5 : 1

p = 1

p = 2

p = 4

p = 6

p = 10

10−1 100
h̃/(bL)

(b) Exponential kernel

Figure 3: Normalized L2 interpolation error in the one-dimensional study case for multiple polynomial degrees. The error is
given with respect to the mesh size of the interpolation space (bottom axis), as well as the mesh size of the interpolation space

normalized by the correlation length (top axis). The convergence rates are approximately O
(
h̃p+1

)
in (a) and O

(
h̃3/2

)
in (b).

20

0.0 0.2 0.4 0.6 0.8 1.0

k/N

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

λ
h
,k
/
λ
k

p = 2

C1 isogeometric Galerkin method

C1 isogeometric Galerkin method using IBQ

C0 finite element method

1

0.712

0.714

0.716

0.718

0.720

Figure 4: Ratio of the approximated eigenvalues to the reference eigenvalues over a full spectrum of 501 eigenmodes in the
one-dimensional study case with an exponential kernel and a correlation length equal to the domain length.

the Lanczos algorithm is equal in each benchmark case. The maximum resident memory increases in each
benchmark case, but is negligibly small, when compared to standard methods.

21

R
r

H

Exponential kernel

b = 0.5
L = 10

Figure 5: Half-open cylindrical geometry in the first three-dimensional benchmark. The geometry is modeled as a single NURBS
patch using polynomial degrees p = {2, 1, 1} and knot vectors Ξ1 = (0, 0, 0, 0.5, 0.5, 1, 1, 1), Ξ2 = (0, 0, 1, 1), Ξ3 = (0, 0, 1, 1).
This case is also studied in [47]

32× 8× 1 elements 108× 58× 7 elements 158× 84× 11 elements 318× 169× 22 elements

(a) Solution space meshes with subsequent h-refinement

32× 8× 1 elements 52× 29× 3 elements 78× 42× 5 elements 158× 84× 11 elements

(b) Interpolation space meshes with subsequent h-refinement

Figure 6: Half-open cylindrical geometry illustrating the solution and interpolation spaces that are used. The meshes from left
to right correspond to cases one through four in Table 4. Except for the first case, the mesh size of the interpolation space is
roughly half of the mesh size in the solution space. The meshes 2–4 are nearly uniform in each parametric direction (1, 2, 3).

22

(a) 1st eigenfunction (b) 2nd eigenfunction (c) 3rd eigenfunction

(d) 4th eigenfunction (e) 5th eigenfunction (f) 6th eigenfunction

(g) 7th eigenfunction (h) 8th eigenfunction (i) 9th eigenfunction

-18.0 0 18.0

Figure 7: First nine normalized eigenfunctions weighted by the square root of the corresponding eigenvalues in example 1.
Results from the benchmark case 4.

23

Table 4: Enumeration of twenty largest eigenvalues corresponding to the half-open cylinder problem with exponential kernel.
The numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing interpolation based
quadrature for the four different cases of solution and interpolation spaces depicted in Figure 6. Computations executed in
parallel on 24 threads.

Mode Eigenvalue
Case 1 Case 2 Case 3 Case 4 Benchmark [47]

1 162.9780174 162.7993245 162.7970353 162.7964588 162.7993688
2 91.60945568 91.43092739 91.42851673 91.42791690 91.43079317
3 57.71077642 57.56741771 57.56494967 57.56435726 57.56765769
4 51.25928107 51.09028325 51.08805606 51.08750688 51.09029418
5 38.94737779 38.79796382 38.79533658 38.79471081 38.79808752
6 28.07061519 27.90416545 27.90174465 27.90116381 27.90392169
7 25.20395629 25.05648777 25.05403032 25.05344659 25.05681566
8 19.47353676 19.36965439 19.36706688 19.36647412 19.36866576
9 16.31659674 16.15727094 16.15488504 16.15431116 16.15702078
10 15.94684063 15.79586713 15.79322880 15.79261328 15.79601336
11 15.25982561 15.14713224 15.14435936 15.14372663 15.14613720
12 11.33010899 11.21401641 11.21139196 11.21079288 11.21341529
13 10.32857874 10.17949575 10.17688327 10.17627225 10.17964708
14 9.850456030 9.693951600 9.691442730 9.690860550 9.693535348
15 8.180517780 8.055672110 8.052867970 8.052234280 8.055143387
16 7.646028240 7.579744590 7.577085830 7.576500070 7.576970969
17 6.864934846 6.723174560 6.720429030 6.719805090 6.722768096
18 6.530850643 6.447248670 6.444416950 6.443791080 6.444800351
19 6.327439841 6.177714250 6.175219510 6.174649400 6.177288031
20 5.893677242 5.764614360 5.761833040 5.761202410 5.764324956

Total number of elementsa 256 (256) 43848 (4524) 145992 (16380) 1182324 (145992) 256 (–b)
Number of degrees of freedoma 1050 (1050) 59940 (8525) 179998 (24948) 1317384 (179998) 1050 (–b)
Mesh sizea 2.857 (2.857) 0.465 (0.997) 0.311 (0.645) 0.155 (0.311) 2.857 (–b)
Mesh size/correlation lengtha 0.571 (0.571) 0.093 (0.199) 0.062 (0.129) 0.031 (0.062) 0.571 (–b)
Pre-solution formation and assembly time 0.46 s 0.59 s 0.63 s 1.07 s –c

Number of iterations 64 63 63 63 –c

Maximum resident memory [GB] 0.347 0.376676 0.586868 2.210916 –c

Solution time 0.72 s 12.91 s 90.33 s 1.92 h > 24 h

a [solution space] ([interpolation space])
b using exact kernel
c not provided in [47]

The rightmost column summarizes the results obtained by the spectral stochastic isogeometric Galerkin
method proposed in [47]. On the same mesh (Case 1) we observe a speed-up of around 5 orders in magnitude.
This comparison is not completely fair because full Gaussian quadrature performed in [47] is much more
accurate than our interpolation based quadrature technique on the same mesh. It may be observed that
qualitatively similar results are obtained with the meshes in Case 2 and 3. The speed-up here is, relatively,
four and three orders of magnitude.

6.3. Random field with Gaussian kernel in a three-dimensional hemispherical shell

We consider the hemispherical shell with stiffener depicted in figure 8. This three dimensional shell
structure is similar to the model published in [48] but has a slightly different stiffener profile. We use the
Gaussian covariance function with a correlation length bL = 0.5L, where the characteristic domain length,
L ≈ 176, is the diameter of the stiffener ring.

We perform two case studies across a range of polynomial degrees p = {2, 6, 10, 14, 16}. The two cases
differ in the following way:

(I) The solution mesh is the same as the interpolation mesh.

(II) The solution mesh is twice as fine as the interpolation mesh in every component direction.

In both studies we use interpolation and solution meshes obtained by p-refinement of the geometrical model,
followed by uniform h-refinement. The continuity of these spaces is thus C0 at knots that are present in the
initial coarse geometrical model and Cp−1 continuity at new knots introduced by h-refinement.

24

α = 30◦

β = 10◦

γ = 360◦

R = 100

L1 = 3
L2 = 4
t1 = 1
t2 = 4

C

t1

t2

L1
L2

O

R

α

β

γ

x

y

z

Figure 8: Hemispherical shell with a stiffener. The geometry is modeled as a single NURBS patch using polynomial degrees
p = {2, 2, 2} and knot vectors Ξ1 = (0, 0, 0, 1, 1, 2, 2, 3, 3, 3), Ξ2 = (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4), Ξ3 = (0, 0, 0, 1, 1, 1).

25

Case I

Figures 9a and 9b depict the interpolation and solution meshes, respectively, that are used in this
benchmark. As described they are identical. The numerical results are summarized in Table 5. As in the
previous three-dimensional benchmark problem the presolution setup costs hardly contribute to the total
cost of the method. Again, the main computational cost lies in the matrix-free matrix-vector product that
is evaluated in each iteration of the Lanczos eigenvalue solver. Due to the increased number of degrees
of freedom for higher polynomial degrees the associated computational cost increases. Interestingly, the
number of iterations is reduced in the case p = 16 as compared to the lower polynomial degrees.

Table 5: Enumeration of twenty largest eigenvalues corresponding to the hemispherical shell with stiffener problem with
Gaussian kernel. The numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing
interpolation based quadrature using the interpolation and solution mesh depicted in Figure 9a and 9b, respectively. Compu-
tations are executed in parallel on 12 threads.

Mode Eigenvalue
p = 2 p = 6 p = 10 p = 14 p = 16

1 14548.14836 14502.90405 14476.37478 14476.28290 14476.27783
2 6590.886122 6553.622930 6531.848385 6531.774420 6531.770729
3 6590.886122 6553.622930 6531.848385 6531.774420 6531.770728
4 2118.360157 2101.642900 2091.911569 2091.878625 2091.877012
5 2118.358449 2101.642996 2091.911569 2091.878625 2091.877003
6 1994.090912 1979.961757 1971.740772 1971.739918 1971.747135
7 558.7902107 554.9316152 552.6952326 552.7038312 552.7086269
8 558.7902107 554.9316152 552.6952326 552.7038312 552.7086185
9 530.3814344 525.2418684 522.2580040 522.2479339 522.2474594
10 530.3814344 525.2418684 522.2580040 522.2479339 522.2474525
11 114.2741328 113.5448612 113.1241037 113.1279916 113.1296326
12 114.2740407 113.5448612 113.1241037 113.1279916 113.1296295
13 107.9782997 106.7763105 106.0789732 106.0766531 106.0765638
14 107.9781271 106.7763105 106.0789732 106.0766530 106.0765540
15 101.9364272 101.4389135 101.1503447 101.1560706 101.1581902
16 21.52017977 21.44679212 21.40372683 21.40541424 21.40600231
17 21.52017977 21.44679212 21.40372683 21.40541424 21.40599155
18 19.28909583 19.17852048 19.11482729 19.11584295 19.11622952
19 19.28909583 19.17852048 19.11482729 19.11584292 19.11622323
20 18.44129352 18.21491774 18.08322462 18.08280013 18.08278502

Number of elementsa 3864 (3864) 3864 (3864) 3864 (3864) 3864 (3864) 3864 (3864)
Number of degrees of freedoma 9612 (9612) 32760 (32760) 74052 (74052) 138096 (138096) 180090 (180090)
Max. mesh sizea 7.992 (7.992) 7.992 (7.992) 7.992 (7.992) 7.992 (7.992) 7.992 (7.992)
Max. mesh size/correlation lengtha 0.091 (0.091) 0.091 (0.091) 0.091 (0.091) 0.091 (0.091) 0.091 (0.091)
Pre-solution formation and assembly time 0.51 s 0.58 s 0.70 s 0.81 s 0.88 s
Number of iterations 52 52 52 52 41
Maximum resident memory [GB] 0.51 0.577 0.702 1.028 1.339
Solution time 15.28 s 160.03 s 0.210 h 1.175 h 1.65 h

a [solution space] ([interpolation space])

Case II

In the second benchmark the element size of the solution mesh is halved, see Figure 9c. The interpolation
mesh is kept the same as in the first benchmark. The obtained results are presented in Table 6. By comparing
these results with those in Table 5 it may be observed that the dimension of the solution space does not
significantly affect the total solver costs. Indeed, the number of degrees of freedom are more than doubled,
yet the timings stay more or less the same, independent of polynomial degree. The increased dimension of
the solution space mesh is reflected in the maximum resident memory, which has increased as compared to
to the results in Table 5. As witnessed in the previous benchmark, the higher order simulations required
fewer iterations than the lower order ones.

Remark 6.3. Note that the flexibility in mesh size of the interpolation versus the trial space mesh provides
a mechanism by which the error due to quadrature versus the error due to discretization can be effectively
controlled.

26

(a) Interpolation space mesh in case I and II with 23× 84× 2 elements in parametric directions (1, 2, 3)

(b) Solution space mesh in case I with 23× 84× 2 elements in parametric directions (1, 2, 3)

(c) Solution space mesh in case II with 46× 168× 4 elements in parametric directions (1, 2, 3)

Figure 9: The solution space and interpolation space meshes and the cross-sections used in example 2a and 2b.

27

Table 6: Enumeration of twenty largest eigenvalues corresponding to the hemispherical shell with stiffener problem with Gaus-
sian kernel. The numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing inter-
polation based quadrature using the interpolation and solution mesh depicted in Figure 9a and 9c, respectively. Computations
are executed in parallel on 12 threads.

Mode Eigenvalue
p = 2 p = 6 p = 10 p = 14 p = 16

1 14548.14836 14502.90404 14476.37478 14476.28290 14476.27783
2 6590.886122 6553.622930 6531.848385 6531.774420 6531.770729
3 6590.886122 6553.622930 6531.848385 6531.774420 6531.770725
4 2118.360157 2101.642996 2091.911569 2091.878625 2091.877015
5 2118.358449 2101.642996 2091.911569 2091.878625 2091.877012
6 1994.090912 1979.961757 1971.740772 1971.739918 1971.747136
7 558.7902107 554.9316152 552.6952326 552.7038312 552.7086262
8 558.7902107 554.9316152 552.6952326 552.7038312 552.7086255
9 530.3814344 525.2418684 522.2580040 522.2479339 522.2474587
10 530.3814344 525.2418684 522.2580040 522.2479339 522.2474574
11 114.2741328 113.5448612 113.1241037 113.1279916 113.1296371
12 114.2740407 113.5448612 113.1241037 113.1279916 113.1296317
13 107.9782997 106.7763105 106.0789732 106.0766530 106.0765590
14 107.9781271 106.7763105 106.0789732 106.0766530 106.0765573
15 101.9364271 101.4389135 101.1503447 101.1560706 101.1581809
16 21.52017977 21.44679212 21.40372683 21.40541425 21.40600074
17 21.52017977 21.44679212 21.40372683 21.40541424 21.40599922
18 19.28909583 19.17852048 19.11482729 19.11584292 19.11623197
19 19.28909583 19.17852048 19.11482729 19.11584292 19.11623140
20 18.44129352 18.21491774 18.08322462 18.08280013 18.08278785

Number of elementsa 30912 (3864) 30912 (3864) 30912 (3864) 30912 (3864) 30912 (3864)
Number of degrees of freedoma 51900 (9612) 117180 (32760) 212380 (74052) 342108 (138096) 421360 (180090)
Max. mesh sizea 4.019 (7.992) 4.019 (7.992) 4.019 (7.992) 4.019 (7.992) 4.019 (7.992)
Max. mesh size/correlation lengtha 0.046 (0.091) 0.046 (0.091) 0.046 (0.091) 0.046 (0.091) 0.046 (0.091)
Pre-solution formation and assembly time 0.63 s 0.67 s 0.74 s 0.90 s 1.00 s
Number of iterations 52 52 52 41 41
Maximum resident memory [GB] 0.546 0.891 2.290 5.276 7.483
Solution time 16.86 s 162.78 s 0.256 h 0.912 h 1.63 h

a [solution space] ([interpolation space])

7. Conclusion

This paper presented an efficient matrix-free Galerkin method for the Karhunen-Loève (KL) series ex-
pansion of random fields. The KL expansion requires the solution of a generalized eigenvalue problem
corresponding to the homogeneous Fredholm integral eigenvalue problem of the second kind, and is compu-
tationally challenging for several reasons. Firstly, the Galerkin method requires numerical integration over
a 2d-dimensional domain, where d, in this work, denotes the spatial dimension. Consequently, classical for-
mation and assembly procedures have a time complexity that scales O

(
N2

e · p3d
)

with increasing polynomial

degree p and number of elements Ne. Secondly, the main system matrix is dense and requires O
(
N2
)

bytes
of storage, where N is the global number of degrees of freedom. This means that a discretization involving
a hundred thousand degrees of freedom requires at least 80GB of RAM to store the main system matrix in
double precision. Hence, the computational complexity as well as memory requirements of standard solution
techniques become quickly computationally intractable with increasing polynomial degree, problem size and
spatial dimension.

We proposed an efficient solution methodology that significantly ameliorates the aforementioned compu-
tational challenges. Our approach is based on the following key ingredients

1. A trial space of rational spline functions, whose Gramian or mass matrix has a Kronecker structure
independent of the geometric mapping;

2. An inexpensive reformulation of the generalized algebraic eigenvalue problem into a standard algebraic
eigenvalue problem;

3. A degenerate kernel approximation of the covariance function using smooth tensor product splines;

28

(a) 1st eigenfunction (b) 2nd eigenfunction (c) 3rd eigenfunction

(d) 4th eigenfunction (e) 5th eigenfunction (f) 6th eigenfunction

(g) 7th eigenfunction (h) 8th eigenfunction (i) 9th eigenfunction

-144.0 0 144.0

Figure 10: First nine normalized eigenfunctions weighted by the square root of the corresponding eigenvalues in example 2b

29

4. Formulation of an efficient matrix-free and multi-threaded matrix-vector product for iterative eigen-
value solvers, which utilizes the Kronecker structure of the system matrices.

In Step 2 the reformulation to a standard eigenvalue problem significantly reduces the computational cost
while improving conditioning. This can be done efficiently due to the Kronecker structure of the mass
matrix, which is a result of the particular choice of trial space, see Step 1. In Step 3 the degenerate kernel
approximation enables us to evaluate the resulting integrals exactly with a minimal number of evaluation
points. Both steps involve matrices that are endowed with a Kronecker structure and can be performed
matrix-free in O

(
N ·N1/d

)
time. The leading cost of the method is due to the Lanczos eigenvalue algorithm,

which involves dense matrix-vector multiplications. As noted in Step 4, we perform this step matrix-free, by
computing the necessary components on the fly, and in parallel in approximately O

(
N2Niter/Nthreads

)
time.

Here Niter denotes the number of iterations of the eigensolver and Nthreads is the number of simultaneous
processes. Several three dimensional benchmark problems involving non-trivial geometrical mappings have
illustrated exceptional efficiency and effectiveness of the proposed solution methodology. In particular, we
showed that the proposed methodology scales favorably with polynomial degree and works particularly
well for smooth covariance functions, such as the Gaussian kernel. The Python implementation used to
generate these results has been provided as open-source software and is available for download at https:

//github.com/m1ka05/tensiga.
In a follow-up study we plan to extensively study the accuracy of the proposed solution methodology.

There are two sources of error: (1) a quadrature error due to the degenerate kernel approximation of the
covariance function; and (2) a discretization error due to the finite dimensional representation of the eigen-
modes. We will perform a-priori as well as a-posteriori error analysis and formulate criteria for bounding the
error due to quadrature by the discretization error. Within the same context of accuracy and robustness it is
interesting to extend the spectral analysis results in [23] to generalized eigenvalue problems corresponding to
Fredholm integral equations for different covariance functions as well as polynomial order of approximation.

We also plan to further improve the efficiency of the proposed method where possible. The proposed
matrix-free algorithm lends itself for acceleration on graphics processing units (GPU’s). Furthermore, ex-
ploiting particular structure (such as sparsity or symmetry) of the covariance function may lead to improved
solver cost. For example, the hierarchical matrix method proposed in [29] performs the matrix-vector prod-
ucts in O(N logN) time, by exploiting certain structure of the covariance function.

There are several other interesting avenues for future research. Some or all of the techniques proposed
here could be applied to linear as well as non-linear Fredholm integral differential equations of the first as
well as the second kind. While the proposed method is designed for smooth kernels it would be interesting
to develop similar methods that are tailored towards continuous kernels, such as the exponential kernel, or
even singular kernels, which are typical in boundary integral equations.

Finally we would like to mention that similar techniques can be applied in the context of the collocation
method. The computational cost of such a method would be similar to that of the proposed Galerkin
method.

Acknowledgments

M. L. Mika, R.R. Hiemstra and D. Schillinger gratefully acknowledge funding from the German Research
Foundation through the DFG Emmy Noether Award SCH 1249/2-1. T.J.R. Hughes and R.R. Hiemstra were
partially supported by the National Science Foundation Industry/University Cooperative Research Center
(IUCRC) for Efficient Vehicles and Sustainable Transportation Systems (EV-STS), and the United States
Army CCDC Ground Vehicle Systems Center (TARDEC/NSF Project # 1650483 AMD 2). Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation. The authors thank Mona Dannert and
Udo Nackenhorst for very helpful discussions and comments.

30

https://github.com/m1ka05/tensiga
https://github.com/m1ka05/tensiga

References

[1] Allaix, D. L., and Carbone, V. I. Karhunen-Loève decomposition of random fields based on a hierarchical matrix
approach. International Journal for Numerical Methods in Engineering 94, 11 (June 2013), 1015–1036.

[2] Arthur, D. W. The Solution of Fredholm Integral Equations Using Spline Functions. IMA Journal of Applied Mathe-
matics 11, 2 (1973), 121–129.

[3] Atkinson, K. E. The Numerical Solution of Integral Equations of the Second Kind, 1 ed. Cambridge University Press,
June 1997.

[4] Betz, W., Papaioannou, I., and Straub, D. Numerical methods for the discretization of random fields by means of the
Karhunen–Loève expansion. Computer Methods in Applied Mechanics and Engineering 271 (Apr. 2014), 109–129.

[5] Calabrò, F., Sangalli, G., and Tani, M. Fast formation of isogeometric Galerkin matrices by weighted quadrature.
Computer Methods in Applied Mechanics and Engineering 316 (Apr. 2017), 606–622.

[6] Cottrell, J., Hughes, T., and Reali, A. Studies of refinement and continuity in isogeometric structural analysis.
Computer Methods in Applied Mechanics and Engineering 196, 41-44 (Sept. 2007), 4160–4183.

[7] Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. Isogeometric analysis: toward integration of CAD and FEA.
Wiley, Chichester, West Sussex, U.K. ; Hoboken, NJ, 2009. OCLC: ocn335682757.

[8] Courant, R., and Hilbert, D. Methods of Mathematical Physics, 1 ed. Wiley, Apr. 1989.
[9] Dahmen, W., Harbrecht, H., and Schneider, R. Compression Techniques for Boundary Integral Equations—

Asymptotically Optimal Complexity Estimates. SIAM Journal on Numerical Analysis 43, 6 (Jan. 2006), 2251–2271.
[10] De Boor, C. A practical guide to splines. No. 27 in Applied mathematical sciences. Springer-Verlag, New York, 1978.
[11] Ding, C., Hu, X., Cui, X., Li, G., Cai, Y., and Tamma, K. K. Isogeometric generalized n th order perturbation-based

stochastic method for exact geometric modeling of (composite) structures: Static and dynamic analysis with random
material parameters. Computer Methods in Applied Mechanics and Engineering 346 (Apr. 2019), 1002–1024.

[12] Eckert, C., Beer, M., and Spanos, P. D. A polynomial chaos method for arbitrary random inputs using B-splines.
Probabilistic Engineering Mechanics 60 (Apr. 2020), 103051.

[13] Eiermann, M., Ernst, O. G., and Ullmann, E. Computational aspects of the stochastic finite element method. Com-
puting and Visualization in Science 10, 1 (Feb. 2007), 3–15.

[14] Ghanem, R. G., and Spanos, P. D. Stochastic Finite Elements: A Spectral Approach. Springer New York, New York,
NY, 1991.

[15] Golub, G. H., and Van Loan, C. F. Matrix computations, 3rd ed ed. Johns Hopkins studies in the mathematical
sciences. Johns Hopkins University Press, Baltimore, 1996.

[16] Hackbusch, W., Khoromskij, B. N., and Tyrtyshnikov, E. E. Hierarchical Kronecker tensor-product approximations.
Journal of Numerical Mathematics 13, 2 (Jan. 2005).

[17] Harbrecht, H., Peters, M., and Siebenmorgen, M. Efficient approximation of random fields for numerical applications.
Numerical Linear Algebra with Applications 22, 4 (Aug. 2015), 596–617.

[18] Hiemstra, R. R., Calabrò, F., Schillinger, D., and Hughes, T. J. Optimal and reduced quadrature rules for
tensor product and hierarchically refined splines in isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering 316 (2017), 966 – 1004. Special Issue on Isogeometric Analysis: Progress and Challenges.

[19] Hiemstra, R. R., Sangalli, G., Tani, M., Calabrò, F., and Hughes, T. J. Fast formation and assembly of finite element
matrices with application to isogeometric linear elasticity. Computer Methods in Applied Mechanics and Engineering 355
(Oct. 2019), 234–260.

[20] Hien, T. D., and Noh, H.-C. Stochastic isogeometric analysis of free vibration of functionally graded plates considering
material randomness. Computer Methods in Applied Mechanics and Engineering 318 (May 2017), 845–863.

[21] Hughes, T., Cottrell, J., and Bazilevs, Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. Computer Methods in Applied Mechanics and Engineering 194, 39-41 (Oct. 2005), 4135–4195.

[22] Hughes, T., Reali, A., and Sangalli, G. Duality and unified analysis of discrete approximations in structural dynamics
and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied
Mechanics and Engineering 197, 49-50 (Sept. 2008), 4104–4124.

[23] Hughes, T. J., Evans, J. A., and Reali, A. Finite element and NURBS approximations of eigenvalue, boundary-value,
and initial-value problems. Computer Methods in Applied Mechanics and Engineering 272 (Apr. 2014), 290–320.

[24] Jahanbin, R., and Rahman, S. An isogeometric collocation method for efficient random field discretization. International
Journal for Numerical Methods in Engineering 117, 3 (Jan. 2019), 344–369.

[25] Jahanbin, R., and Rahman, S. Stochastic isogeometric analysis in linear elasticity. Computer Methods in Applied
Mechanics and Engineering 364 (June 2020), 112928.

[26] Karhunen, K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Suomalaisen Tiedeakatemian toimituksia.
Zugl.: Helsinki, Univ., Diss., 1947, Helsinki, 1947.

[27] Keese, A. A Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations
(Stochastic Finite Elements). Braunschweig, Institut für Wissenschaftliches Rechnen (2003).

[28] Keese, A. Numerical Solution of Systems with Stochastic Uncertainties: A General Purpose Framework for Stochastic
Finite Elements, June 2004.

[29] Khoromskij, B. N., Litvinenko, A., and Matthies, H. G. Application of hierarchical matrices for computing the
Karhunen–Loève expansion. Computing 84, 1-2 (Apr. 2009), 49–67.

[30] Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Amarasinghe, S. The tensor algebra compiler. Proceedings of the
ACM on Programming Languages 1, OOPSLA (Oct. 2017), 1–29.

31

[31] Kress, R. Linear integral equations, third edition ed. No. volume 82 in Applied mathematical sciences. Springer, New
York, 2014.

[32] Lam, S. K., Pitrou, A., and Seibert, S. Numba: a LLVM-based Python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC - LLVM ’15 (Austin, Texas, 2015), ACM Press, pp. 1–6.

[33] Lattner, C., and Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In
Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (USA, 2004), CGO ’04, IEEE Computer Society, p. 75. event-place: Palo Alto, California.

[34] Li, K., Gao, W., Wu, D., Song, C., and Chen, T. Spectral stochastic isogeometric analysis of linear elasticity. Computer
Methods in Applied Mechanics and Engineering 332 (Apr. 2018), 157–190.

[35] Li, K., Wu, D., and Gao, W. Spectral stochastic isogeometric analysis for static response of FGM plate with material
uncertainty. Thin-Walled Structures 132 (Nov. 2018), 504–521.

[36] Li, K., Wu, D., and Gao, W. Spectral stochastic isogeometric analysis for linear stability analysis of plate. Computer
Methods in Applied Mechanics and Engineering 352 (Aug. 2019), 1–31.

[37] Li, K., Wu, D., Gao, W., and Song, C. Spectral stochastic isogeometric analysis of free vibration. Computer Methods
in Applied Mechanics and Engineering 350 (June 2019), 1–27.

[38] Loève, M. Functions aleatoires du second ordre. Processus stochastique et mouvement Brownien. Paris, Gauthier-Villars
(1948), 366–420.

[39] Mantzaflaris, A., and Jüttler, B. Integration by interpolation and look-up for Galerkin-based isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering 284 (Feb. 2015), 373–400.

[40] Melchers, R. E., and Beck, A. T., Eds. Structural Reliability Analysis and Prediction. John Wiley & Sons Ltd,
Chichester, UK, Oct. 2017.

[41] Mercer, J. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 209, 441-458 (Jan.
1909), 415–446.

[42] Orszag, S. A. Spectral methods for problems in complex geometries. Journal of Computational Physics 37, 1 (Aug.
1980), 70–92.

[43] Pan, M., Jüttler, B., and Giust, A. Fast formation of isogeometric Galerkin matrices via integration by interpolation
and look-up. Computer Methods in Applied Mechanics and Engineering 366 (July 2020), 113005.

[44] Phoon, K., Huang, S., and Quek, S. Implementation of Karhunen–Loeve expansion for simulation using a wavelet-
Galerkin scheme. Probabilistic Engineering Mechanics 17, 3 (July 2002), 293–303.

[45] Piegl, L., and Tiller, W. The NURBS Book. Monographs in Visual Communications. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1995.

[46] Puzyrev, V., Deng, Q., and Calo, V. Spectral approximation properties of isogeometric analysis with variable continuity.
Computer Methods in Applied Mechanics and Engineering 334 (June 2018), 22–39.

[47] Rahman, S. A Galerkin isogeometric method for Karhunen–Loève approximation of random fields. Computer Methods
in Applied Mechanics and Engineering 338 (Aug. 2018), 533–561.

[48] Rank, E., Düster, A., Nübel, V., Preusch, K., and Bruhns, O. High order finite elements for shells. Computer
Methods in Applied Mechanics and Engineering 194, 21-24 (June 2005), 2494–2512.

[49] Saad, Y. Numerical methods for large eigenvalue problems, rev. ed ed. No. 66 in Classics in applied mathematics. Society
for Industrial and Applied Mathematics, Philadelphia, 2011.

[50] Sande, E., Manni, C., and Speleers, H. Explicit error estimates for spline approximation of arbitrary smoothness in
isogeometric analysis. Numerische Mathematik 144, 4 (Apr. 2020), 889–929.

[51] Sangalli, G., and Tani, M. Matrix-free weighted quadrature for a computationally efficient isogeometric k -method.
Computer Methods in Applied Mechanics and Engineering 338 (Aug. 2018), 117–133.

[52] Schwab, C., and Todor, R. A. Karhunen–Loève approximation of random fields by generalized fast multipole methods.
Journal of Computational Physics 217, 1 (Sept. 2006), 100–122.

[53] SciPy 1.0 Contributors, Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore,
E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P. SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nature Methods 17, 3 (Mar. 2020), 261–272.

[54] Sudret, B., and Kuyreghian, A. Stochastic finite element methods and reliability: a state-of-the-art report. Berkeley,
Department of Civil and Environmental Engineering, University of California, 2000.

[55] Tino Eibner, J. M. M. Fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison, 2005.
[56] van der Walt, S., Colbert, S. C., and Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical

Computation. Computing in Science & Engineering 13, 2 (Mar. 2011), 22–30.
[57] Vos, P. E., Sherwin, S. J., and Kirby, R. M. From h to p efficiently: Implementing finite and spectral/hp element

methods to achieve optimal performance for low- and high-order discretisations. Journal of Computational Physics 229,
13 (July 2010), 5161–5181.

[58] Wang, W., Chen, G., Yang, D., and Kang, Z. Stochastic isogeometric analysis method for plate structures with random
uncertainty. Computer Aided Geometric Design 74 (Oct. 2019), 101772.

[59] Xiu, D., and Karniadakis, G. E. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM
Journal on Scientific Computing 24, 2 (Jan. 2002), 619–644.

[60] Zhang, H., and Shibutani, T. Development of stochastic isogeometric analysis (SIGA) method for uncertainty in shape.

32

International Journal for Numerical Methods in Engineering (Dec. 2018), nme.6008.

33

