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Abstract

The outbreak of COVID-19 in 2020 has led to a surge in interest in the research of the math-
ematical modeling of epidemics. Many of the introduced models are so-called compartmental
models, in which the total quantities characterizing a certain system may be decomposed into
two (or more) species that are distributed into two (or more) homogeneous units called compart-
ments. We propose herein a formulation of compartmental models based on partial differential
equations (PDEs) based on concepts familiar to continuum mechanics, interpreting such models
in terms of fundamental equations of balance and compatibility, joined by a constitutive relation.
We believe that such an interpretation may be useful to aid understanding and interdisciplinary
collaboration. We then proceed to focus on a compartmental PDE model of COVID-19 within
the newly-introduced framework, beginning with a detailed derivation and explanation. We then
analyze the model mathematically, presenting several results concerning its stability and sensi-
tivity to different parameters. We conclude with a series of numerical simulations to support
our findings.

1 Introduction

Many phenomena in the physical and social sciences feature a compartmental structure, in which the
total quantities characterizing a system of interest may be decomposed into two (or more) species
that are distributed into (two or more) homogeneous units called compartments. As the system
evolves in time, the relative distribution of species across the compartments changes, as different
physical conditions alter the species state in each compartment and induce species migration from
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one compartment to another. Compartmental models have been used extensively in biological,
ecological, and chemical applications. Notable examples include the susceptible-infected-recovered
(SIR) models and their variants for epidemic modeling [2, 11, 15], the Lotka-Volterra models for
predator-prey dynamics [2, 7, 21], pharmacokinetic models used extensively in pharmacology [10],
and demographic and migration models found in sociology and demography [3, 16, 17].

The majority of compartmental models encountered in the literature consist of systems of
ordinary differential equations (ODEs). These models, while simple to formulate, analyze, and solve
numerically, are limited in their ability to describe dynamics in both space and time. A common
strategy to introduce spatial variation into such ODE models is by defining regional compartments
corresponding to different areas in physical space, with coupling terms added to the model equations
to account for the movement of species among the different regions [13, 19, 18, 26]. This approach
was recently employed in [8, 9] to model the spread of COVID-19 among the different administrative
regions in Italy. While this approach may be effective for some applications, description of complex
spatial dynamics within compartments is difficult and possibly even non-feasible in this framework.

In contrast, compartmental models based on partial differential equations (PDEs) incorporate
spatial information more naturally. Specifically, PDE models allow for a space-continuous descrip-
tion of the relevant dynamics, enabling one to describe dynamics in time and space across all scales.
This represents a significant advantage over ODE models, whose ability to describe spatial informa-
tion is limited by the number of spatial compartments one includes. Examples of compartmental
models based on PDEs can be found in [4, 5, 12, 14, 20, 25]. Likely owing to their apparent in-
creased mathematical complexity and more significant computational burden, compartmental PDE
models are less common and, to the authors’ knowledge, a systematic study of compartmental PDE
models in a general setting has not been performed.

The present work has two primary goals. First, we aim at formalizing PDE compartmental
models in a general framework more familiar to continuum mechanics. Accordingly, we reinterpret
such models as fundamental equations of balance and compatibility, with the relationship between
the balance and compatibility equations defined by a constitutive relation. We believe that such a
framework may be useful to researchers seeking to better understand general compartmental models,
and may ultimately help facilitate interdisciplinary collaboration. Our second goal is to improve
our understanding of a specific compartmental PDE model, which describes the spatiotemporal
spread of COVID-19 [24], from the physical, mathematical, and numerical points of view. As
the reinterpretation of the COVID-19 model within the continuum mechanics framework plays a
significant role in this study, the stated goals are complementary.

The current work is organized as follows. We begin by introducing compartmental PDE models
within the continuum mechanics framework in Section 2. As a preliminary example to aid un-
derstanding, we derive a simple two-compartment Lotka-Volterra-type model within this setting.
In Section 3 we turn our attention to the COVID-19 model discussed in [24], beginning with its
derivation within the newly-introduced notational system from continuum mechanics. We analyze
the model mathematically and establish its formal sensitivity to diffusivity and its stability in the
L1 norm. We also use an ODE variant of the model, which does not incorporate diffusion, to define
a basic viral reproduction number R0, which is extensively used as an epidemiological indicator of
infectious disease spread. A brief spectral analysis is also performed on the ODE variant. Then,
Section 4 presents a series of numerical simulations in 1D and 2D to examine different aspects of
the COVID-19 model behavior. In 1D, we seek to observe how changes to the spatial and temporal
discretization affect the model’s numerical solution. In 2D, we analyze how changes in diffusion
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affect the physical behavior of the model. For both the 1D and 2D problems, we evaluate the effec-
tiveness of the ODE-derived R0 as a predictor of model behavior, demonstrating the significance of
spatial diffusion on modeled viral reproduction. We conclude by summarizing the presented results
and suggesting directions for future research in Section 5.

2 General formulation of compartmental models in a continuum
mechanics framework

We consider a system which may be decomposed intoN distinct species: u1(x, t), u2(x, t), ..., uN (x, t).
Each ui is a function describing the spatiotemporal distribution of the given species with spatial
variable x and time variable t. It is often the case that

∑
i ui has a natural interpretation: for

example, the ui may represent well-defined subgroups of a given population, with their sum then
yielding the total population. However, this does not always hold. For instance, the ui may de-
scribe the populations of different animal species, rendering their summation physically meaningless
without additional normalization. It is always the case, however, that the ui are the fundamental
quantities of interest describing the system dynamics, and change in response to some or all of the
other species in the model.

We arrange the ui in a vector u in Rd such that u = [u1(x, t), u2(x, t), ..., un(x, t)]
T . Rather

than using the more traditional notation found in mathematical and biological references, we opt
here for a general notational convention more common to continuum mechanics. Hence, over a
spatial domain Ω and a time interval [t0, tend] our equations read:

∂tu−∇ · F + b = 0 (1)

ε = ∇u (2)

F = F (u, ε) (3)

b = b(u), (4)

plus appropriate initial and boundary conditions. In the system above, Eq. (1) represents a force
balance in terms of an internal force F , which is thermodynamically conjugate to u, and an
externally applied force b. Physically, we may interpret F as describing the changes in the extensive
properties of a given species. Eq. (2) represents the compatibility equation in terms of species u
and specie gradient ε. Physically, we may interpret ε as the specie gradient in space. Then, the
relationship between the balance and compatibility equations is defined by the constitutive relation
Eq. (3).

The role of the externally applied forces defined in Eq. (4) is fundamental in compartmental
models, and warrants some additional discussion. As these forces depend on the unknown variable
u, often in a nontrivial way, their description as ‘externally applied’ may initially seem inconsistent.
To understand why such an interpretation is well-motivated, we recall that Eq. (1)-(4) describe N
different species and their relative distribution in time and space. A species ua may therefore act
on a different species ub, such that for ub this represents an external force. These intra-species
interactions are described by b in Eq. (1) and (4). We note additionally that b may only depend
algebraically on u. Often, these terms are referred to in the literature as ‘reaction terms’ [5]. We
consider Eq. (1)–(2) to be fundamental and fixed; i.e., any PDE compartmental model will share
these equations. The relations in Eq. (3)–(4) thus define the specific behavior of a given model.
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2.1 Example: two-compartment Lotka-Volterra-type model

We illustrate the continuum mechanics framework presented above by first considering a two-
compartment Lotka-Volterra model, also known as the predator-prey equations. This model de-
scribes the interaction between two animal populations, predator and prey, in time and space [21].
Let u = [r, w]T where r(x, t) represents a population of rabbits (prey) and w(x, t) a population
of wolves1. For ease of dimensional analysis, we denote characteristic population, length and time
scales as P , L and T . Our model assumptions are:

1. The movement of both rabbits and wolves exhibit no spatial preference and are independent
of each other;

2. The food supply for the rabbits is sufficiently plentiful such that it does not depend on rabbit
population (in biological terminology, we say there is no intraspecific competition[21]) ;

3. The wolves have no sources of food other than rabbits;

4. The mortality rate of the wolves, as well as the non-predation mortality rate of the rabbits,
does not depend on population size.

As the compatibility equation Eq. (2) describes the change in a population resulting from its
movement in space, with our constitutive relation Eq. (3) we therefore seek to describe the natural
tendency for a given population to move. This tendency to move (or resist movement) can be seen
as internal forces that regulate the rate at which movement occurs. Specifically, the source of such
forces in the current setting may be the level of exertion required for a member of a population
to move a certain distance. Therefore, we consider the following definition for the constitutive
relation2:

F (ε) = Eε, (5)

E =

[
νr 0
0 νw

]
, (6)

where νr > 0 and νw > 0 are scalar “diffusion” parameters with units L2T−1. The line above νr
and νw is to indicate that these are constant, scalar quantities, a convention we will use throughout
the present work. The constitutive relation Eq. (5)-(6) can also be seen as arising from the limit
of a probabilistic random walk [23]. That νr and νw are scalars (and not tensors, as may be the
case in general) results from assumption 1, which implies that movement exhibits no directional
preference [23].

We now define the external forces b. Assumption 2 implies that the reproduction rate of rabbits
grows with population size without any limiting factor, as their food supply is unconstrained. In
mathematical terms, this is expressed as:

∂tr ∝ αrr, (7)

1There is nothing special or physical about the choice of species. Unfortunately, as ‘predator’ and ‘prey’ both
begin with the same letter, a generic notation would be, in the author’s opinion, more arbitrary and confusing.

2Note: For the discussed model, we have two compartments in two dimensions, giving u dimension 2 × 1. For this
model, the physics is sufficiently simple such that one may define E simply as a 2 × 2 matrix. However, in general,
E may be a higher-order tensor if one wishes to define the ν as tensor quantities rather than the scalar quantities
used here.
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where αr > 0 is the reproduction rate of the rabbits and has units T−1.
Assumption 3, however, implies that the reproduction rate of wolves is naturally limited by the

size of the rabbit population. Accordingly:

∂tw ∝ αw(r)w, (8)

with the reproduction rate of the wolves αw a function of the rabbit population r. We consider the
simplest possible case and postulate αw is a linear in r:

∂tw ∝ αwrw, (9)

with αw > 0. Note that αw has units T−1P−1, reflecting its dependence on the local rabbit
population. We naturally expect, in turn, that the number of rabbits eaten by wolves increases
with the number of wolves. Then,

∂tr ∝ −γ(w)r, (10)

where γ is the predation rate and depends on w. We again assume this function to be linear in w,
giving:

∂tr ∝ −γwr, (11)

where γ > 0 has units T−1P−1.
Assumption 4 simply states that the mortality of wolves and the mortality of rabbits has no

dependence on the population size of either species. Mathematically, we may write this as :

∂tr ∝ −µrr (12)

∂tw ∝ −µww, (13)

where the mortality rates µr and µw are both nonnegative and with units T−1.
From Eq. (7)–(13), we may define b as:

b(u) = B (u)u, (14)

B (u) =

[
−αr + µr γr
−αww µw

]
. (15)

The relations in Eq. (5) and Eq. (14) are sufficient to define the model in terms of Eq. (1)-(4).
Written in a notation more common to mathematical biology, the model reads:

∂tr −∇ · (νr∇r)− αrr + µrr + γwr = 0 (16)

∂tw −∇ · (νw∇w)− αwrw + µww = 0. (17)

3 Spatiotemporal model of COVID-19 infection spread

We now discuss the COVID-19 model proposed by Viguerie et al. in [24]. We consider a population
p of individuals divided into compartments corresponding to disease status, modeling the movement
in space and time of the subpopulation in each compartment. Specifically, these compartments are
the susceptible population s, the exposed population e, the infected population i, the recovered
population r, and the deceased population d. Note that d refers only to deaths due to COVID-19.
We denote the living population pool as n = s+ e+ i+ r. Due to the names of the compartments
used, this model may be called a susceptible-exposed-infected-recovered-deceased (SEIRD) model.
We therefore formulate the problem in terms of the vector u = [s, e, i, r, d]T containing the different
compartments.
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3.1 Model derivation and explanation

Following the example of the Lotka-Volterra-type model shown in Section 2.1, we begin by making
several model assumptions:

1. Movement is proportional to population size; i.e., more movement occurs within heavily
populated regions;

2. No movement occurs among the deceased population;

3. There is a latency period between exposure and the development of symptoms;

4. The probability of contagion increases with population size;

5. Some portion of exposed persons never develop symptoms, and move directly from the exposed
compartment to the recovered compartment (asymptomatic cases);

6. Both asymptomatic and symptomatic patients are capable of spreading the disease;

7. All living persons are capable of reproduction (the population is not age-structured);

8. The non-COVID-19 mortality rate is independent of the population compartment;

9. New births are susceptible to the virus.

As in the Lotka-Volterra model, the compatibility equation describes the changes in a population
due to movement, and the constitutive relation will describe the natural extent to which a given
population moves. Assumption 1 above implies that such movement is proportional to the living
population size n, while assumption 2 sets the movement of the deceased population to zero.
Therefore, the constitutive relation for this model is given by:

F = nEε, (18)

E =


νs 0 0 0 0
0 νe 0 0 0
0 0 νi 0 0
0 0 0 νr 0
0 0 0 0 0

 . (19)

Note that the νs, νe, νi and νr have units L
2T−1P−1, in contrast to the units in Eq. (5)-(6), which

were L2T−1. This reflects the population-dependent movement rate implied by our assumption 1.
Having quantified the internal forces with the constitutive relation, we now focus on the external

forces. Assumption 3 implies that all persons who come into contact with the virus first move to
the exposed compartment e from the susceptible compartment s:

∂te ∝ −∂ts. (20)

However, assumption 6 implies that this contact could come from both patients showing symp-
toms (infected population i) or patients not showing symptoms (exposed population e), and from
assumption 4 we conclude that such contact must depend on population size n. Therefore,

∂ts ∝ −βe(e, n)s− βi(i, n)s (21)

∂te ∝ βe(e, n)s+ βi(i, n)s. (22)
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Color-coding has been introduced for ease of understanding, to clearly demonstrate that any ad-
dition to compartment e must be accompanied by an equal subtraction from compartment s. We
further assume the functions βe and βi to be linear in e and i respectively:

∂ts ∝ −A(n)βees−A(n)βiis (23)

∂te ∝ A(n)βees+A(n)βiis. (24)

Parameters βe > 0 and βi > 0 are called the contact rates (units P−1T−1) and correspond to
the likelihood of contagion resulting from contact with an asymptomatic or symptomatic person,
respectively. We now define the function A(n) as:

∂ts ∝ −
(
1−A/n

)
βese−

(
1−A/n

)
βisi (25)

∂te ∝
(
1−A/n

)
βese+

(
1−A/n

)
βisi. (26)

One can naturally see that for n >> A, the term
(
1−A/n

)
≈ 1, increasing with population as

desired. A is referred to as the Allee parameter (units P ) and has to be carefully selected [21].
From assumption 3 we know that some portion of the exposed population e will become symp-

tomatic after a latency period, and hence move to the infected compartment i:

∂te ∝ −σe (27)

∂ti ∝ σe, (28)

where σ > 0 is a parameter corresponding to the latency (or incubation period) with units T−1.
However, from assumption 5, we also know that some portion of the exposed population e will never
develop symptoms, moving directly to the recovered compartment r. These are called asymptomatic
cases. Therefore:

∂te ∝ −ϕee (29)

∂tr ∝ ϕee, (30)

where ϕe > 0 is the asymptomatic recovery rate with units T−1. In Eq. (27)–(30), we see again
that subtraction from one compartment is coupled with an equal addition to another.

Some portion of infected patients will recover, leading to movement into the recovered compart-
ment r:

∂ti ∝ −ϕii (31)

∂tr ∝ ϕii, (32)

while others will die, moving into the the deceased compartment d:

∂ti ∝ −ϕdi (33)

∂td ∝ ϕdi. (34)

Parameters ϕi and ϕd are the symptomatic recovery rate and disease mortality rate respectively,
both with units T−1. Finally, assumptions 7 and 9 imply that:

∂ts ∝ αn, (35)
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such that new births enter into the susceptible compartment s, with the birth rate defined by the
parameter α (units T−1). Lastly, assumption 8 states that the deaths that are not due to COVID-19
have no compartmental dependence, implying:

∂ts ∝ −µs, (36)

with µ > 0 representing the general mortality rate, with units T−1. Similar terms appear in
the exposed, infected, and recovered compartments as well. The terms in Eq. (35) and (36) are
not color-coded because they are not accompanied by a corresponding term of opposite sign in a
different compartment.

Finally, Eq. (25)–(36) allow us to define the external forces for this model as

b = B(u)u, (37)

B (u) =


µ− α

(
1− A

n

)
βes− α

(
1− A

n

)
βis− α −α 0

0 µ−
(
1− A

n

)
βes+σ+ϕe −

(
1− A

n

)
βis 0 0

0 −σ µ+ϕd+ϕr 0 0

0 −ϕe −ϕr µ 0

0 0 −ϕd 0 0

 . (38)

We note that the signs in B are reversed when compared to Eq. (25)–(36), as we have now placed
these terms on the external force term b of the left hand side of the equilibrium equation (Eq. (1)).

Additionally, the standard formulation of the COVID-19 model in mathematical biology would
be :

∂ts =∇ · (n νs∇s) + αn−
(
1−A/n

)
βisi−

(
1−A/n

)
βese − µs (39)

∂te =∇ · (n νe∇e) +
(
1−A/n

)
βisi+

(
1−A/n

)
βese−σe−ϕee − µe (40)

∂ti =∇ · (n νi∇i) +σe −ϕri−ϕdi− µi (41)

∂tr =∇ · (n νr∇r) +ϕee+ϕri − µr (42)

∂td = ϕdi (43)

3.2 Mathematical analysis

In this section, we examine four results: the sensitivity equations for the diffusion, the nature of
the equilibria of the non-diffusive (space-independent) system, the growth/decay behavior of the
total population n and the resulting stability in the L1 norm of Eq. (39)–(43), and a derivation of
the basic viral reproduction number R0 for an ODE variant of Eq. (39)-(43).

3.2.1 Sensitivity Equations for the Diffusion

A fundamental difference between a PDE model such as Eq. (39)-(43) and an ODE model is the
presence of diffusion. Understanding the nature in which the model solution depends on diffusion
is therefore of critical importance. To quantify the dependence of the solution on the diffusion
parameters νs, νe, νi, νr, we compute the sensitivity equations, to determine the quantities

sρ ≡ ∂νρu, ρ = s, e, i, r. (44)
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We proceed by applying standard arguments of perturbation analysis to Eq. (1) using the con-
stitutive relation introduced in Eq. (18)-(19) and the external forces defined as in Eq. (38). For
ρ = s, e, i, r we find the equations:

∂tsρ −∇ · (nE∇sρ)−∇ · (SρE∇u) +B(u)sρ + [uTJ T (u)]sρ = ∇ · (n diag(eρ)∇u) (45)

where es = [1, 0, 0, 0, 0], ee = [0, 1, 0, 0, 0], ei = [0, 0, 1, 0, 0], er = [0, 0, 0, 1, 0], the third-order tensor
J reads

Jij,k ≡ ∂Bij

∂uk
, (46)

and Sρ ≡
∑5

j=1 sρ,j .

For the sake of notation, set Θ(n) ≡
(
1− A

n

)
. Recalling that n = s + e + i + r, we have that

∂ρΘ(n) = − A
n2 for ρ = s, e, i, r. From now on, for simplicity, we set Θ′ ≡ − A

n2 .
Notice that the matrix [uTJ T (u)] has rows from 3 through 5 null since the entries of B are

constant. Then, the entries in the rows i = 1, 2 read

e
∂Bi2

∂ρ
+ i

∂Bi3

∂ρ

for ρ = s, e, i, r (in the columns 1,2,3,4), while column 5 is null. This leads to the submatrix

[uTJ T (u)][1,2;1−4] =[
eβe(Θ + Θ′s) + iβi(Θ + Θ′s) sΘ′(βee+ βii) sΘ′(βee+ βii) sΘ′(βee+ βii)

−eβe(Θ + Θ′s)− iβi(Θ + Θ′s) −sΘ′(βee+ βii) −sΘ′(βee+ βii) −sΘ′(βee+ βii)

]
.

(47)
while all the other entries of the 5× 5 matrix [uTJ T (u)] are 0.
Equations (45) are equipped with homogeneous initial and boundary conditions of the same type
of the conditions for u. The resulting solution s then describes the sensitivity of a given point in
time and space to vary with changes in a given diffusion coefficient.

3.2.2 Equilibria of the non-diffusive system

An analysis of the equilibria of the non-diffusive (space-independent) system provides guidelines on
what to expect for the asymptotic behavior of the solution in time also for our PDE system. The
equilibria of the space-independent case are obtained by solving the nonlinear algebraic system

B(u∗)u∗ = 0. (48)

It is promptly computed that this system has the following solutions:

- for α ̸= µ the equilibrium reads u∗ = [0, 0, 0, 0, C5];

- for α = µ ̸= 0 the equilibrium reads u∗ = [C1, 0, 0, 0, C5];

- for α = µ = 0 the equilibrium reads u∗ = [C1, 0, 0, C4, C5];
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Figure 1: Non diffusive SEIRD model for α = µ ̸= 0. The linearized analysis suggests the equilib-
rium u∗ = [C1, 0, 0, 0, C5], found by the numerical simulation of the nonlinear system. At the end
of the epidemic, populations s, d become constant.

here, C1, C4, C5 are constants depending on the initial conditions. Notice that this solution is not
incompatible with the occurrence of n at the denominator of some entries of B, as the singularity
is eliminated by the multiplication of the term A/n by the terms se or si.

A local stability analysis around those equilibria can be rapidly achieved, as for i = 0 the
eigenvalues of −B(u∗) are explicitly computed as

λ1 = α− µ, λ2 = −(µ+ σ) + (1−A/n∗)βes
∗, λ3 = −(µ+ ϕd + ϕr), λ4 = −µ, λ5 = 0. (49)

These eigenvalues are all real, so we do not expect an oscillatory behavior of the solution in time.
If α > µ we have a positive eigenvalue, that means that in absence of diffusion the solution
asymptotically diverges in time (as one may expect). For α < µ, the equilibrium u∗ = [0, 0, 0, 0, C5]
for the first four components is stable.

For α = µ, we may expect an asymptotic behavior with the susceptible, recovered and deceased
converging to a steady nontrivial equilibrium, while exposed and infected tend to the depletion of
the epidemic.

Remark. This is a linearized analysis, so the behavior of the system in practice may differ.
However, numerical simulations seem to confirm the results. For instance, in Fig. 1 we report the
simulation of a case with α = µ = 0.1, ϕd = 1/160, ϕe = 1/6, ϕr = 1/24, A = 400, βi = 1./2.,
βe = 1/2, σ = 1/8 confirming the nontrivial equilibrium u∗ = [C1, 0, 0, 0, C5].

3.2.3 Growth/decay of the total population and L1 stability

In this section, we examine the behavior of Eq. (39)–(42). One one easily observes from the lack of
diffusion in Eq. (43) and final column of B(u) in Eq. (38) that d does not influence the dynamics of
the system. Adding Eq. (39)–(42) together, we observe cancellation of all the colored terms except
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ϕdi, leaving:

∂tn = (α− µ)n−ϕdi+∇ · (n (νs∇s+ νe∇e+ νi∇i+ νr∇r)) . (50)

We let η1 = s, η2 = e, η3 = i, η4 = r, ν1 = νs, ν2 = νe, ν3 = νi, ν4 = νr and rewrite Eq. (50),
yielding:

∂tn = (α− µ)n−ϕdi+∇ ·

n
∑
j

νj∇ηj

 . (51)

We now multiply Eq. (51) by a test function w and integrate over Ω, giving:

∫
Ω
∂tnw dΩ =

∫
Ω
(α− µ)nw dΩ−

∫
Ω
ϕdiw dΩ+

∫
Ω
∇ ·

n
∑
j

νj∇ηj

w dΩ. (52)

Applying the divergence theorem, we obtain∫
Ω
∂tnw dΩ =

∫
Ω
(α− µ)nw dΩ−

∫
Ω
ϕdiw dΩ−

∫
Ω

n
∑
j

νj∇ηj

 · ∇w dΩ+

∫
∂Ω

n
∑
j

νj∇ηj

nw dζ.

(53)

From the assumption of zero-flux boundary conditions, the boundary term on the right-hand side
of Eq. (53) vanishes. Note that n is the outward-pointing normal vector on ∂Ω and is not to be
confused with n. We now let w = 1 globally, causing the third term on the right-hand side of
Eq. (53) to vanish as well, leaving:∫

Ω
∂tndΩ =

∫
Ω
(α− µ)ndΩ−

∫
Ω
ϕdi dΩ. (54)

We define the total population N(t) and total infected population I(t) as:

N(t) =

∫
Ω
n(x, t) ∂Ω and (55)

I(t) =

∫
Ω
i(x, t) ∂Ω (56)

respectively. Then, Eq. (54) can be rewritten as the ODE:

∂tN(t) = (α− µ)N(t)− ϕdI(t), (57)

whose solution is:

N(t) = N(t0) exp
[
(α− µ)(t− t0)

]
− ϕd

∫ t

t0

I(τ) exp
[
(α− µ)(t− τ)

]
dτ, (58)

which describes the growth/decay behavior of the total population N . This also amounts to an L1

stability result for the system, assuming s, e, i, r > 0 (as is the case in the present applications).
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Remark. If one assumes that the diffusivities are constant and all equal, Eq. (50) reduces
further to:

∂tn−∇ · (νn∇n) = (α− µ)n−ϕdi (59)

The above suggests that one may interpret the global behavior of the system as a nonlinear con-
tinuity equation for n transported over the convective field ν∇n. It can also be interpreted as a
reaction-diffusion equation.

3.2.4 Determination of R0

The basic viral reproduction number R0 serves an important role in the discussion of SIR-type
models. In a wholly susceptible population, R0 describes the average number of additional infections
caused by each infected individual. Naturally, R0 > 1 implies growth of the epidemic, whereas
R0 < 1 implies decay in infectious spread [21]. The concept of R0 is well-defined for ODE models.
However, its extension to a PDE model is unclear, owing to the influence of diffusion. We derive
R0 for the ODE version of the PDE model given by Eq. (39)-(43) and will evaluate its efficacy with
numerical tests in Section 4.

The ODE version of the COVID-19 model reads:

.
s = −βisi−βese (60)
.
e = βisi+βese−σe−ϕee (61)
.
i = σe−ϕd i−ϕri (62)
.
r = ϕri+ϕee (63)
.
d = ϕd i. (64)

Here, we denote the time derivatives with dots, as we now consider the derivative of a function of
a single variable, rather than partial derivatives as done previously in this work. For simplicity, we
are not considering non-COVID19 deaths, new births, and the Allee term (hence, µ = α = A = 0;
although their inclusion is not a problem for the analysis shown here.

We proceed using the next-generation matrix procedure outlined in [6]. This approach considers
all compartments regarded as ‘diseased’ in a given model. ‘Diseased’ in this context means groups
capable of transmitting the infection to others. The terms in the model corresponding to new
diseased cases are grouped into a matrix N , while the terms describing the movement of existing
diseased cases into different compartments are grouped into a matrix V . The basic reproduction
number R0 is then obtained as the spectral radius of NV −1. The justification for this is based on
the Perron-Frobenius theorem and is not straightforward. The interested reader is referred to [6].

In our model, there are two compartments that we consider ‘diseased’: the exposed and the
infected compartments. Thus, we consider the equation:[ .

e.
i

]
= (N − V )

[
e
i

]
. (65)

As stated above, N is the matrix containing the new appearances of diseased patients into any
compartment, and V contains terms which transfer already diseased individuals from one compart-
ment to another. In this case, we stress that movement from e to i is due to the matrix V , as an
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exposed patient moving to the infected category is not considered a new entry into the ’diseased’
category and hence does not participate in N . Thus, we define N and V as:

N =

[
βes βis
0 0

]
, V =

[
σ + ϕe 0

−σ ϕd + ϕr

]
(66)

A simple computation shows:

V −1 =


1

σ + ϕe

0

σ

(σ + ϕe)(ϕd + ϕr)

1

ϕd + ϕr

,

 (67)

which in turn yields:

NV −1 =

 βes

σ + ϕe

+
βiσs

(σ + ϕe)(ϕd + ϕr)

βis

ϕd + ϕr
0 0

 . (68)

Hence,

R0 =
βes

σ + ϕe

+
βiσs

(σ + ϕe)(ϕd + ϕr)
. (69)

Applied directly to the ODE model Eq. (60)-(64), the above Eq. (69) will provide an indication
of viral growth rate, as intended. However, given that Eq. (69) does not account for the diffusion
present in Eq. (39)-(43), its effectiveness as an indicator of viral reproduction for the PDE model
is unclear and will be examined during the numerical simulations.

4 Numerical Simulations

In this section, we present two numerical simulation studies of the COVID-19 model in 1D and 2D,
respectively, to examine the behavior of the model in Eq. (39)-(43) in detail.

4.1 1D Simulation study

In this section, we perform a series of simulations using a one-dimensional version of the model
in Eq. (39)–(43). We aim at examining the impact of various numerical solution techniques. In
particular, we analyze the spatial and temporal convergence of the computed solutions over various
discretization schemes. We also examine the model dynamics more generally and evaluate the
efficacy of the R0 definition Eq. (69) for the PDE model.

4.1.1 Problem setup

We consider the spatial domain Ω given by [0, L] and a time interval [0, T ], with T = 200 days. In
the simulations presented in this section, we normalize in space with respect to the characteristic
length L of the spatial domain. Hence, we denote x∗ = x/L. The units and values for the relevant
space-normalized parameters for the simulations are accordingly presented in Table 1.

13



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Initial values for susceptible compartment s0 and exposed compartment e0 for the 1D
simulations.

For the initial conditions, we set s(x∗, 0) = s0(x
∗) and e(x∗, 0) = e0(x

∗) as follows

s0(x
∗) = e−(x∗+1)4 + e−

(x∗−.35)2

1e−2 +
1

8

(
e−

(x∗−.62)4

1e−5 + e−
(x∗−.52)4

1e−5 + e−
(x∗−.42)4

1e−5

)
+

1

4
e−

(x∗−.735)4

1e−5 , (70)

e0(x
∗) =

1

20
e−

(x∗−.75)4

1e−5 . (71)

Fig. 2 shows these initial conditions. We further set i(x∗, 0) = 0, r(x∗, 0) = 0, and d(x∗, 0) = 0.
Qualitatively, these initial conditions represent a large population center around x∗ = .35 with no
exposed persons and a small population center around x∗ = .75 with some exposed individuals. We
also enforce homogeneous Neumann boundary conditions at x∗ = 0 and a zero-population Dirichlet
boundary condition at x∗ = 1 for all model compartments. The latter represents a non-populated
area at x∗ = 1.

Additionally, to assess mesh and time integration convergence, we will analyze the total infected
population I(t), defined previously as Eq. (56), and the analogously-defined total deceased popula-
tion D(t). We will also study the time evolution of the total susceptible population S(t), the total
exposed population E(t) and the total recovered population R(t), all defined analogously to I(t).

4.1.2 Numerical methods

We use linear finite elements to discretize the spatial domain and we integrate in time using either
a second-order implicit (BDF2) or first-order implicit Backward Euler scheme. Each time step is
solved fully implicitly using a Picard linearization. All linear systems are solved using GMRES
with a Jacobi preconditioner. We employ mass-lumping on all reaction terms.
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Parameter Units Value

σ Days−1 1/8

βe Persons−1· Days−1 1/2

βi Persons−1· Days−1 1/2

ϕr Days−1 1/24

ϕe Days−1 1/6

ϕd Days−1 1/160

µ Days−1 0

α Days−1 0

ν∗s Persons−1· Days −1 5·10−5

ν∗e Persons−1· Days −1 1·10−3

ν∗i Persons−1· Days −1 1·10−10

ν∗r Persons−1· Days −1 5·10−5

Table 1: Parameter values for the 1D simulations. Note all values have been normalized in space
by a characteristic length scale L, with this normalization reflected in the units.

∆x∗ t̂ I(t̂) I(118) D(T )

1/500 122 .038401 .037923 .01265

1/1000 119 .038556 .038482 .012804

1/2000 119 .038667 .038662 .012875

1/4000 118 .038738 .038738 .012910

Table 2: Mesh convergence of 1D simulations in terms of the peak infection date t̂, the peak total
infected population I(t̂), the total infected population at peak date of the finest mesh I(118), and
the final total deceased population D(T ). The relative difference of all these metrics between the
cases ∆x∗=1/2000 and ∆x∗=1/4000 is inferior to 1%.

4.1.3 Mesh convergence

In this analysis, we compare numerical solutions computed on successively refined uniform grids
with mesh size ∆x∗=1/500, 1/1000, 1/2000, and 1/4000. Time integration in this study is per-
formed exclusively with a BDF2 scheme using a constant time step ∆t = 0.25 days.

In Table 2, we assess mesh convergence using the peak infection date t̂, the peak total infected
population I(t∗), and the final total deceased population D(T ). As the peak infection date for
∆x∗ = 1/4000 is t̂ =118 days, we also evaluate I(118) for each level of spatial resolution. We
observe a steady increase in all these metrics as ∆x∗ is refined and they all progressively approach
the corresponding result for the finest mesh. In particular, the quantities reported in Table 2
vary less than 1% between ∆x∗=1/2000 and ∆x∗=1/4000, which suggests a good level of spatial
convergence for ∆x∗=1/2000.

Fig. 3 (a)-(e) show plots of the total populations S(t), E(t), I(t), R(t), and D(t) for all the mesh
sizes considered in this study. Additionally, Figs. 4-6 respectively present plots of s(x, t), i(x, t) and
d(x, t) for the different spatial resolutions. Qualitatively, these plots confirm the existence of mesh
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convergence, as the difference in the plotted variables progressively reduces as we refine the mesh.
Indeed, the change between the results for ∆x∗ = 1/2000 and ∆x∗ = 1/4000 cases is negligible.

We further assess mesh convergence with an operator δc∆x∗, r that evaluates the percent change

in L2 norm for each model compartment c when a given mesh resolution ∆x∗ is refined by a factor
of r:

δc∆x∗, r =

√√√√√√√√
∫ T

0

(∫ 1

0
c∆x∗/r(x

∗, t)− c∆x∗(x∗, t) dx∗
)2

dt∫ T

0

(∫ 1

0
c∆x∗/r(x

∗, t) dx∗
)2

dt

. (72)

In Fig. 3 (f), we plot the values of this operator for all compartments and ∆x∗=1/500, 1/1000,
1/2000 (note the refinement ratio r=2 for all cases). Again, we observe good evidence of mesh
convergence, as δc1/2000,2 is notably smaller than δc1/500,2 and δc1/1000,2 for all compartments c in the
model.

An interesting phenomenon we observe is that the largest source of error does not seem to come
from over-diffusion or an underestimation of peaks. In fact, peak quantities are predicted similarly
across schemes with only slight variation; instead, dispersion error, in which the primary source of
error is not the magnitude but instead the phase of the solution, seems the largest problem here.
This is particularly apparent looking at Fig. 3, where the cases of ∆x∗ = 1/500 appear similar to
the more refined simulations, but with a delay in their occurrence. This is further supported by
the predictions of t̂ shown in Table 2. Referring to Figs. 4c, 4d, 5c, 5d, 6c, and 6d, one may see
this effect in time across various compartments.

4.1.4 Temporal convergence

In this analysis, we examine the impact of time integration and time-step size ∆t on the numer-
ical approximation of the model solution. We consider both the Backward Euler and BDF2 time
integration schemes with time step sizes ∆t=0.25, 0.125, and 0.0625 days. As the results in Sec-
tion 4.1.3 suggested ∆x∗=1/2000 was a sufficiently fine spatial discretization, we utilize this mesh
resolution here. Table 3 reports the peak infection day t̂, the peak total infection population I(t̂),
and final total deceased population D(T ) for each ∆t and time integration scheme. As we reduce
∆t, these quantities slightly vary for the Backward Euler scheme, while the changes are negligible
for the BDF2 schemes. Additionally, we plot the time evolution of the total population in each
model compartment in Fig. 7 for all time steps considered in this analysis and for both time inte-
gration algorithms. These plots also show that the results for the Backward Euler method exhibit
small but perceptible difference, while the solutions obtained with the BDF2 scheme are virtually
the same for all time steps.

We also define relevant error quantities for a compartment c using a related but distinct notation
to Eq. (72). Some adjustments must be made owing to the fact that we now consider not only one
point of comparison as before (the spatial resolution resolution in the case of Eq. (72)) but two
(both time step size and time integration scheme). For a compartment c, this quantity reads:

δc∆t,SCHEME (73)

where c gives the compartment, ∆t the time step, and SCHEME the time integration scheme. In
all instances, we compare with the case computed using BDF2 with ∆t = .0625. So, for example,
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∆t Scheme t̂ I(t̂) D(T )

0.25 Backward Euler 116 .0384732 .0129437

0.125 Backward Euler 118 .0385545 .0129038

0.0625 Backward Euler 118 .0386006 .0128836

0.25 BDF2 119 .0386668 .0128755

0.125 BDF2 119 .0386587 .0128688

0.0625 BDF2 119 .0386536 .0128658

Table 3: Temporal convergence of 1D simulations in terms of the peak infection date t̂, the peak
total infected population I(t̂), , and the final total deceased population D(T ). As we reduce ∆t,
the selected metrics show a slight variation for the Backward Euler method, while the changes are
negligible for the BDF2 scheme.

to quantify relative error of the solution of c computed with the Backward-Euler scheme (BE) using
a given ∆t, δc∆t, BE is defined as:

δc∆t, BE =

√√√√√√√√
∫ T

0

(∫ 1

0
c∆t, BE(x

∗, t)− c.0625, BDF2(x
∗, t) dx∗

)2

dt∫ T

0

(∫ 1

0
c.0625, BDF2(x

∗, t) dx∗
)2

dt

. (74)

Fig. 8 plots the temporal convergence in terms of Eq. (74). We observe that the L2 norm differ-
ence decreases as ∆t is refined for all model compartments, which indicates temporal convergence.
The solutions obtained with the Backward Euler method differ noticeably at the coarser time steps,
but this difference reduces as we refine ∆t. In contrast, BDF2 appears to be well-resolved in time
even at the coarsest time step ∆t = .25, with the refinement to ∆t = .125 showing minimal de-
crease in L2 norm. Thus, the BDF2 scheme provides satisfactory time resolution, even for large
time steps.

4.1.5 Model dynamics

This analysis focuses on the general model behavior, which we examine in a simulation using the
BDF2 scheme with ∆t=.0625 days, ∆x∗=1/2000. The results for all model compartments are
shown in Fig. 9. The infection begins localized in a small population center around x∗ = .75 and
remains localized for the first part of the simulation. At day t ≈ 60, the virus reaches the large
population center at x∗ = .35, and the number of infections begins to increase dramatically. By
day t = 200, nearly all of the population near x∗ = .35 has been exposed to the virus. Eventually,
due to lack of susceptible individuals, the virus spread ceases.

In Fig. 10, we compare R0 as defined by Eq. (69) with the exposed and infected compartments.
Although the definition in Eq. (69) does not account for diffusion, we observe that R0 still predicts
model behavior reasonably well, with the point where R0 < 1 corresponding almost exactly with
the decrease in new exposures. This is further corroborated by the results depicted in Fig. 9, where
the regions where R0 < 1 at t = 0 ultimately show very little contagion, and indeed a distinct ‘hitch’
forms in the distribution infections between the two population centers. Although there is some
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Parameter Units Feb.27-Mar.9 Mar.9-22 Mar.22-28 Mar.28-May3 May3-

σ Days−1 1/7 1/7 1/7 1/7 1/7

βe Persons−1·Days−1 3.3·10−4 8.5·10−5 6.275·10−5 4.125·10−5 6.6·10−5

βi Persons−1·Days−1 3.3·10−4 8.5·10−5 6.275·10−5 4.125·10−5 6.6·10−5

ϕr Days−1 1/24 1/24 1/24 1/24 1/24

ϕe Days−1 1/6 1/6 1/6 1/6 1/6

ϕd Days−1 1/160 1/160 1/160 1/160 1/160

νs km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

νe km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

νi km2· Persons−1·Days−1 1.0·10−4 1.0·10−4 1.0·10−4 1.0·10−4 1.0·10−4

νr km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

A Persons 1.0·103 1.0·103 1.0·103 1.0·103 1.0·103

Table 4: Parameter values for the 2D Lombardy simulations. The values change with date as these
correspond to various restrictions (or relaxtions) taken by the government during the epidemic. We
note that these parameters are not normalized in space.

slight discrepancy owing to the diffusion, we find the definition of R0 given by (69) to be a reliable
predictor of the viral behavior for this 1D simulation scenario.

The model dynamics shown in the 1D simulation in Fig. 9 is similar to that shown for Lombardy
in [24] and in the following section. Indeed, for sustained spread of the disease, a certain level of
population density is required. Although the disease contagion will diffuse through low-density re-
gions, the growth in those areas tends to be small. Though there have been some notable exceptions,
this behavior pattern is similar to what has been observed worldwide, where low population-density
regions have largely avoided the catastrophic contagion found in high-density areas [22] .

4.2 2D simulation study

The primary difference between the PDE version and the ODE version of the COVID-19 model lies
in the influence of the diffusive term. The impact of diffusion on disease spread is a priori difficult
to quantify. Increased diffusion leads to a faster and wider dispersion of the virus. However, it also
has regularizing effects and may reduce peaks in general. Therefore, exploring such dynamics in
detail is important for a full understanding of the model.

In this section, we examine the role of diffusion using the Italian region of Lombardy as our
test geometry, using both qualitative analysis and the formally derived sensitivity equation shown
in Eq. (45). The problem configuration is identical to the one given in [24] for the simulation
scenario labelled ‘Global Reopening B’. This simulation is intended to model the spread of the
COVID-19 epidemic in Lombardy, beginning on February 27, accounting for various governmental
restrictions and relaxations as they occur. We report the relevant parameter values in Table 4 and
refer the reader to [24] for further discussion regarding the calibration of these values. The problem
was solved using linear finite elements on an unstructured triangular mesh. The time integration
was performed with a Backward Euler scheme, with a Picard-type linearization used to solve the
nonlinear system at each time step. All linear systems were solved with GMRES using a Jacobi
preconditioner.

In addition to the simulation shown in [24], we now examine two additional cases: one in which
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the values of νs, νe, νi and νr are doubled, and another in which they are halved. We also consider
a case in which νr, νe, and νi are doubled but νs is halved. This is similar to the parameter setup
in the 1D simulations. The main motivation is to avoid possibly nonphysical diffusion among the
susceptible population, causing reduced population density in general.

Figs. 11 and 12 show the spatial distribution of infected individuals at t=14 and t=30 days,
respectively. We see that larger diffusion leads to a wider geographic range of affected areas. This
is particularly noticeable in the southeastern clusters in Fig. 11. There, the double-diffusion case
produces a homogeneous, continuous region of infection. In contrast, the half-diffusion case shows
more localized dynamics, and a clear separation into distinct regions. This separation is maintained
in Fig. 12 at t=30 days, whereas the baseline and double-diffusion cases predict a single, larger area
of infection. The simulation case in which νr, νe, and νi are doubled but νs is halved produces
intermediate results between the double-diffusion and half-diffusion cases.

In Fig. 13, we plot the time evolution of the total active infections I(t) throughout the entire
region of Lombardy. Both the baseline and half-diffusion simulations show a distinct long-term
growth trend that is not observed in the double-diffusion case. While it is tempting to say that
increased diffusion leads to reduced outbreak severity, the reality is more complex. Indeed, the case
in which νs is halved while νr, νe, and νi are doubled shows a higher peak and slightly faster growth
when compared to the baseline simulation, although the long-term growth more closely resembles
the baseline than either the double-diffusion and half-diffusion cases. This makes intuitive sense, as
the low diffusion among the susceptible population leads to higher population densities and more
contagion, while increasing diffusivity among the exposed and infected compartments accelerates
the speed and area of propagation.

In Fig. 14, we plot the computed sensitivity parameters found using Eq. (45) at t = 20 days.
The shown plots quantify sensitivity to νe (left) and νs (right). The regions most sensitive to νe
are regions currently affected by the outbreak. However, the sensitivity to νs shows larger values in
more highly-populated areas. At the time shown, the area around Milan (in the west of the shown
region, the most populated area of Lombardy) was not experiencing a large outbreak in cases. This
is reflected in its relatively low sensitivity to νe. However, its high sensitivity to νs indicates its
vulnerability, irrespective of its current outbreak status. Indeed, the Milan area was ultimately
heavily impacted by the epidemic [1].

Finally, we find the definition of R0 given by Eq. (69) to be less useful as a predictor of disease
spread than in the 1D simulation. This is likely due to the increased role of diffusion. We observe
increase in disease exposure and infected individuals in areas where R0 < 1 both locally and globally,
particularly around Milan (as shown in Fig. 15). This suggests the need to revise the definition of
R0 in Eq. (69) for the PDE version of the model to account for the influence of diffusion.

5 Conclusions

In this work, we introduced a new notational framework for understanding reaction-diffusion com-
partmental models by interpreting them as balance equations similar to those found in continuum
mechanics. We first used this system to derive and explain a simple two-compartment Lotka-
Volterra model as a simple example. We then examined a more complex compartmental system:
the model of COVID-19 spatiotemporal contagion dynamics introduced in [24]. We showed that this
model may be regarded as a sort of conservation law, further justifying the continuum-mechanics
type interpretation.
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We proceeded to formally derive the model’s sensitivity to diffusion, describe its growth and
decay, and establish its stability in the L1 norm. We then looked at an ODE version of the model,
using it to derive a basic reproduction number R0 as well as analyzing its spectrum. Additionally, we
performed a series of numerical simulations, showcasing the role that numerical methods, diffusion,
and R0 play in the behavior of the system. We found that implicit models are effective in describing
the temporal dynamics of the system, and second-order in-time methods in particular. We also
found that the ODE-based R0 is not consistently reliable as applied to the PDE model, as it worked
well for the 1D simulations but did not for the corresponding 2D simulations.

For future work on the COVID-19 model, we would like to extend the diffusion to model the
effects of geographic features like roads, rivers, and mountains. We would also like to examine the
effectiveness of the model over larger geometries and longer time intervals against measured data.
To render the model more effective to decision-makers, incorporating an age-structured population
is important for accurately evaluating aspects such as hospitalizations and mortality. More gener-
ally, we would like to apply the continuum mechanics framework shown here to a larger class of
compartmental models.
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Figure 3: Mesh convergence analysis in the 1D simulation study. (a) Total susceptible population
S(t). (b) Total exposed population E(t). (c) Total infected population I(t) . (d) Total recovered
population R(t). (e) Total deceased population D(t). (f) Percent change in L2 norm with successive
refinement. These plots show evidence of mesh convergence, with the solutions for ∆x∗=1/2000
and ∆x∗=1/4000 showing minimal differences.
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Figure 4: Evolution of the susceptible population compartment s(x∗, t) over time for varying mesh
sizes in 1D. (a) t = 0 days. (b) t = 40 days. (c) t = 90 days. (d) t = 110 days. (e) t = 150 days.
(f) t = 200 days. We see similar results across the different meshes, with some noticeable transient
discrepancy occurring at t=90 and t=110 days. This indicates that the coarser mesh resolutions
cause dispersion error, in which the phase of the solution is affected. In this instance, the solution
on the coarse meshes appears delayed.
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Figure 5: Evolution of the infected population compartment i(x∗, t) over time for varying mesh
sizes in 1D. (a) t = 0 days. (b) t = 40 days. (c) t = 90 days. (d) t = 110 days. (e) t = 150 days.
(f) t = 200 days. We see noticeable transient discrepancy occurring at t=90, t=110, and t = 150
days, again suggesting dispersion error arising from the coarse discretizations.
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Figure 6: Evolution of the deceased population compartment d(x∗, t) over time for varying mesh
sizes in 1D. (a) t = 0 days. (b) t = 40 days. (c) t = 90 days. (d) t = 110 days. (e) t = 150 days.
(f) t = 200 days. We see similar results across the different meshes, with some noticeable transient
discrepancy occurring at t=90 and t=110 days, where once again the dispersion error on the coarse
meshes is apparent.
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Figure 7: Temporal convergence analysis in the 1D simulation study. (a) Total susceptible pop-
ulation S(t). (b) Total exposed population E(t). (c) Total infected population I(t) . (d) Total
recovered population R(t). (e) Total deceased population D(t). The model solutions obtained with
the Backward Euler method change appreciably when the time step is reduced. In contrast, the
BDF2 solutions appear well-resolved in time and change minimally as we refine the time step.
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Figure 8: Percent difference in the L2 norm between 1D solutions obtained with the Backward
Euler (dashed lines) and BDF2 methods (dotted lines) for each ∆t. All cases are compared to the
BDF2 solution with ∆t = .0625, with the formal of definition δ in Eq. (74). The decreasing trends
in both plots show temporal convergence. The BDF2 appears well-resolved in time for even the
coarsest time step ∆t=.25 days. The Backward Euler method requires a fine time step to render
results with comparable accuracy to the BDF2 scheme.

27



0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(a)

0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(b)

0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(c)

0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(d)

0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(e)

0 0.2 0.4 0.6 0.8 1
.0001

.001

.01

.1

1

10

(f)

Figure 9: Evolution of all model compartments and R0 as defined by Eq. (69) in time and space in 1D. At t = 0
days (a), we see an initial exposed population centered around x∗ = .75. As time progresses to t = 30 days (b), the
outbreak around x∗ = .75 has grown, with increasing numbers of infected, recovered, and deceased individuals in
that region. By t = 60 days (c), we begin to see the infection reach the large population center around x∗ = .35, and
by t = 90 days (d), the outbreak severity in the areas around x∗ = .35 and x∗ = .75 are similar. By t = 120 days, the
outbreak around x∗ = .75 has died down, with the area around x∗ = .35 now the most affected region; owever, the
R0 < 1 around x∗ = .35 indicates that the epidemic may begin to subside. This is indeed the case, and by t = 200
days (f), we see decreases in infections and increases in recoveries near x∗ = .35.
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Figure 10: Evolution in time of R0 as defined by Eq. (69) as well as the total exposed and total
infected populations in 1D. We see that R0 is in good agreement with the observed model dynam-
ics, with the decrease of new exposures corresponding nearly exactly to the point where R0 < 1
(indicated with the dotted horizontal and vertical lines for ease of visualization). The presence of
diffusion, not accounted for in Eq. (69), is likely the source of the slight discrepancy.
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Figure 11: Spatial distribution of the infected population at t = 14 days in the 2D simulations
over the Italian region of Lombardy. (a) Baseline scenario. (b) Half-diffusion case. (c) Double-
diffusion case. (d) Simulation case in which the baseline νr, νe, and νi are doubled but νs is halved.
With halved diffusion (b), we see that outbreaks are more severe, but also concentrated in smaller
regions, particularly apparent in the southwest. In contrast, increased diffusion (c) show a less
intense peak over a greater overall area. In (d), where the diffusion among susceptibles is decreased
but increased in other compartments, outbreak severity seems similar to the baseline in (a), but
covering a slightly larger area (again, most apparent in the southwest).
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Figure 12: Spatial distribution of the infected population at t = 30 days in the 2D simulations over
the Italian region of Lombardy. (a) Baseline scenario. (b) Half-diffusion case. (c) Double-diffusion
case. (d) Simulation case in which the baseline νr, νe, and νi are doubled but νs is halved. In
(b), we see both increased severity and interesting localization dynamics; in (a), (c), and (d) there
appear to be three primary epicenters of infection, while in the case of (b) there appear to be four.
The outbreak in (c) is much less severe than the other cases, owing to the increased diffusion. In
the case of (d), we see a larger overall infected area and similar intensity of infection to the baseline
(a).
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Figure 13: Time evolution of the total active infections I(t) throughout the entire region of Lom-
bardy, showing that diffusion has a strong influence on the dynamics of disease infection. The
double-diffusion case has a distinctly different qualitative pattern, with no substantial increase af-
ter t = 60, while the baseline and half-diffusion cases increase significantly. The dynamics of I(t) for
the case in which νs is halved while νr, νe, and νi are doubled suggests that varying each of these
diffusion parameters may induce dramatically different changes in the evolution of the outbreak.
In the particular scenario considered here, the number of total infected cases grows slighlty faster
and has a higher peak when compared to the baseline case.
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Figure 14: Sensitivity of the computed baseline solution at t = 20 days for sensitivity to νe (left) and
νs (right). The sensitivity to νe is based primarily on currently affected regions, reflecting the state
of epidemic progression. The sensitivity to νs, corresponds primarily to highly populated regions.
Even though the number of exposed and infected patients is low in certain heavily populated
regions (particularly the area around Milan, in the west), the high susceptible sensitivity shown
here indicates the region’s vulnerability to the pandemic (which does eventually occur).

Figure 15: Comparison between R0 value and infected population. Even though R0 < 1 globally,
we still observe growth in some regions, suggesting that the definition (69) of R0 does always not
hold in the presence of diffusion.
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