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Abstract

The Discontinuous Petrov-Galerkin (DPG) method is a widely employed discretization
method for Partial Differential Equations (PDEs). In a recent work, we applied the DPG
method with optimal test functions for the time integration of transient parabolic PDEs.
We showed that the resulting DPG-based time-marching scheme is equivalent to exponen-
tial integrators for the trace variables. In this work, we extend the aforementioned method
to time-dependent hyperbolic PDEs. For that, we reduce the second order system in time
to first order and we calculate the optimal testing analytically. We also relate our method
with exponential integrators of Gautschi-type. Finally, we validate our method for 1D/2D
+ time linear wave equation after semidiscretization in space with a standard Bubnov-
Galerkin method. The presented DPG-based time integrator provides expressions for the
solution in the element interiors in addition to those on the traces. This allows to design
different error estimators to perform adaptivity.

Keywords: DPG method, Ultraweak variational formulation, Optimal test functions,
Exponential integrators, Linear hyperbolic problems, ODE systems

1. Introduction

The Discontinuous Petrov-Galerkin (DPG) method with optimal test functions was in-
troduced by Demkowicz and Gopalakrishnan in 2010 [11, 13]. The main idea of this method
is to select optimal test functions that guarantee the discrete stability of non-coercive prob-
lems. For that, they proposed to employ test functions that realize the supremum in the
inf-sup condition. In general, it is impossible to calculate those optimal test functions
exactly (ideal DPG). Therefore, we usually approximate them using a Bubnov-Galerkin
method with enriched test spaces (practical DPG). In the last decade, the DPG method
[14, 15, 25] has been applied to many problems [9, 10, 12, 16, 18, 19, 21, 37], mostly in
frequency domain.

There exist previous works on transient PDEs where the DPG method is applied to the
whole space-time domain [17, 20, 22, 26]. This approach allows local space-time refinements
but is incompatible with time-stepping. In [23], authors applied the DPG method in space
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for the heat equation together with the backward Euler method in time. Recently, in [35],
we followed a third approach: to apply the DPG method only in the time variable. In this
way, we obtained a DPG-based time-marching scheme for linear transient parabolic PDEs
that is compatible with standard Finite Element Method (FEM) based on Bubnov-Galerkin
for the space variable.

In this article, we extend our previous work [35] to linear hyperbolic PDEs. First, we
consider a single second-order linear Ordinary Differential Equation (ODE). We reduce it to
a first order system of the form U ′(t) +AU(t) = F (t) by introducing the velocity variable.
Then, we consider an ultraweak variational formulation and we calculate the optimal test
functions analytically. In this case, it is possible to attain the ideal DPG method because
it is a 1D problem and we employ the adjoint norm for the optimal testing. Moreover, with
this particular variational setting, the ideal DPG method is equivalent to the optimal testing
introduced by Barret and Morton [7] in the 80’s. The optimal test functions we obtain are
exponentials of the matrix A that solve the adjoint problem. Finally, we substitute the
optimal test functions into the ultraweak variational formulation and we obtain the DPG-
based time-marching scheme. Here, we obtain an independent formula for the trace variables
and a system to locally compute the interiors of the elements. The generalization to a system
of ODEs coming from the spatial discretization of a hyperbolic PDE is straightforward.

The main benefit of the presented method is that it fits into the DPG theory. Therefore,
we can naturally apply adaptive strategies and a posteriori error estimation previously
studied by the DPG community.

As we showed in [35], the equation we obtain for the trace variables is called variation-
of-constants formula and it is the starting point of exponential integrators [30, 32]. Differ-
ent approximations of this formula lead to different methods [31, 33, 34]. In all of them,
it is necessary to approximate the exponential of a matrix and related functions called
ϕ−functions. For the hyperbolic case, there exist an alternative approach that uses the
ideas introduced by Gautschi [24] in the early 60’s. As the matrix A is anti-diagonal, we
can apply the Cayley-Hamilton theorem and express the system in terms of trigonometric
functions [4, 5, 36]. Although the theory of exponential integrators is classical, they have
recently gained popularity due to the rise of the available software and efficient algorithms
to compute the action of function matrices over vectors. There exist an extensive literature
and software to efficiently compute approximation of functions of matrices: exponential,
ϕ−functions, trigonometric functions, etc. See Higham et. al [28] and references therein.

In this work, we relate our DPG-based time-marching scheme with both exponential
integrator approaches for hyperbolic problems: In the first one, we express the optimal test
functions from DPG in terms of ϕ−functions. Therefore, we obtain a classical exponential
integrator to compute the trace variables, and we compute the interiors of the elements.
The second approach expresses the DPG method in terms of trigonometric functions using
the Cayley-Hamilton theorem, and we obtain Gautschi-type methods for the trace variables.
In the numerical results of this article, we adopt the ϕ−functions approach. We employ two
MATLAB routines [8, 27] based on a scaling and squaring algorithm together with Padé
approximations.
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This work is organized as follows: Section 2 states the variational setting for a single
linear second order ODE. Section 3 provides an overview of the ideal DPG method with
optimal test functions, we proposed in [35]. We generalize the method in Section 4 for a
system of ODEs. Section 5 shows the relation between the proposed DPG method and
exponential integrators. In Section 6 we present the numerical results for a single ODE,
and 1D/2D+time linear wave equation. Section 7 summarizes the conclusions and future
research lines. Finally, in Appendix A we provide the Cayley-Hamilton theorem.

2. Variational setting of second order ODEs

Let I = (0, 1] ⊂ R. We consider the following second order Ordinary Differential
Equation (ODE) 

u′′(t) + α2u(t) = f(t) in I,

u(0) = u0,

u′(0) = v0,

(1)

where u′′ denotes the second derivative of u, α2 ∈ R−{0} and f ∈ L2(I). In (1), the source
f(t) and the initial conditions u0, v0 ∈ R are given data.

In order to obtain an ultraweak formulation, we first reduce (1) to a first order system
defining v(t) = u′(t) {

U ′(t) +AU(t) = F (t) in I,

U(0) = U0,
(2)

where

U(t) =

[
u(t)
v(t)

]
, A =

[
0 −1
α2 0

]
, F (t) =

[
0
f(t)

]
, U0 =

[
u0
v0

]
.

We denote by (·, ·) the usual dot product in Rn where (U,W ) = UT ·W and || · || the
Euclidean norm of Rn so || · ||2 = (·, ·). We now multiply the equation (2) by some suitable

test functions W (t) =

[
w(t)
σ(t)

]
and we integrate over I∫
I
(U ′ +AU,W ) dt =

∫
I
(F,W ) dt.

Integrating by parts in time and employing that (AU,W ) = (U,ATW ), we obtain∫
I
(U,−W ′ +ATW ) dt+ (U(1),W (1))− (U(0),W (0)) =

∫
I
(F,W ) dt.

We substitute U(0) by U0 and we consider the unknown U(1) as a separate variable that

we denote Û =

[
û
v̂

]
. Finally, we obtain the following ultraweak variational formulation of

problem (2) {
Find Z = {U, Û} ∈ U such that
B(Z,W ) = L(W ), ∀W ∈ W,

(3)
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where

B(Z,W ) :=

∫
I
(U,−W ′ +ATW ) dt+ (Û ,W (1)),

L(W ) :=

∫
I
(F,W ) dt+ (U0,W (0)).

The trial and test spaces are U = U0 × Û := L2(I,R2) × R2 and W = H1(I,R2), with the
following norms

||Z||2U =

∫
I
||U ||2dt+ ||Û ||2,

||W ||2W =

∫
I
|| −W ′ +ATW ||2dt+ ||W (1)||2.

(4)

Formulation (3) is equivalent to the following problem

Find {u, û} ∈ L2(I)× R, {v, v̂} ∈ L2(I)× R such that

−
∫
I
uw′ dt+ ûw(1)−

∫
I
vw dt = u0w(0), ∀w ∈ H1(I),

−
∫
I
vσ′ dt+ v̂σ(1) + α2

∫
I
uσ dt =

∫
I
fσ dt+ v0σ(0), ∀σ ∈ H1(I).

3. Overview of the ideal DPG method with optimal test functions

This section provides an overview of the ideal DPG method and how to calculate the
optimal test functions for a system of the form (2). More details on this part are explained
in [35].

3.1. Optimal test functions over a single element

Given a discrete subspace Uh = Uh,0 × Û ⊂ U , we introduce the following ideal Petrov-
Galerkin (PG) method as{

Find Zh = {Uh, Ûh} ∈ Uh,0 × Û such that

B(Zh,Wh) = L(Wh), ∀Wh ∈ Wopt
h ,

(5)

where Wopt
h is called the optimal test space for the continuous bilinear form B(·, ·). We

introduce the trial-to-test operator Φ : Uh −→W by

(ΦZh, δW )W = B(Zh, δW ), ∀δW ∈ W, Zh ∈ Uh, (6)

being (·, ·)W an inner product in W. Then, the optimal test space is defined by Wopt
h :=

Φ(Uh) and, from (6), we stablish it has the same dimension as Uh.
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Remark 1. We know from [14] that the solution Zh of the ideal PG method (5) is unique
and it holds

||Z − Zh||U ≤
M

γ
inf

Xh∈Uh
||Z −Xh||U ,

where Z is the exact solution of (3). Moreover, M = γ = 1 with respect the norms defined
in (4). It also holds that Zh is the best approximation to Z

||Z − Zh||E = inf
Xh∈Uh

||Z −Xh||E ,

in the energy norm defined by ||Z||E := sup
06=W∈W

|B(Z,W )|
||W ||W

.

In [35], we calculate the optimal test functions analytically by solving (6). Given a trial
function Zh = {Uh, Ûh} ∈ Uh, we find W := ΦZh ∈ W satisfying (6), which is equivalent to
to the following Boundary Value Problem (BVP){

−W′ +ATW = Uh,

W(1) = Ûh.
(7)

The solution of (7) is

ΦZh = Φ{Uh, Ûh} = eA
T (t−1)Ûh +

∫ 1

t
eA

T (t−τ)Uh(τ)dτ. (8)

We select in (5) a trial space Uh,0 of piecewise polynomials of order p. Then, we express

the interiors of the solution Zh = {Uh, Ûh} ∈ Uh as

Uh(t) =

p∑
j=0

Uh,jt
j , Uh,j =

[
uh,j
vh,j

]
∈ R2, ∀j = 0, . . . , p.

We denote by {e1, e2} the canonical basis of R2 and 0 ∈ R2 the zero vector. Therefore,
Uh,0 = span{e1tj , e2tj , j = 0, . . . , p} and Û = span{e1, e2}. Now, we calculate the optimal
test functions corresponding to Uh employing the trial-to-test operator (8).

The optimal test functions corresponding to the trace variables are

Ŵi(A
T , t) := Φ{0, ei} = eA

T (t−1)ei, ∀i = 1, 2, (9)

and we calculate the optimal test functions corresponding to the interiors recursively as

Wr,i(A
T , t) := Φ{trei,0} =

∫ 1

t
eA

T (t−τ)τ reidτ

= (AT )−1
(
trIn − eA

T (t−1) + r

∫ 1

t
eA

T (t−τ)τ r−1dτ

)
ei,

= (AT )−1
(
tpei + pWp−1,i(A

T , t)− Ŵi(A
T , t)

) (10)
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∀r = 0, . . . , p, ∀i = 1, 2. From (7), these functions satisfy

−Ŵ′
i(A

T , t) +ATŴi(A
T , t) = 0, Wp,i(A

T , 1) = ei, ∀i = 1, 2,

−W′
r,i(A

T , t) +ATWr,i(A
T , t) = trei, Wr,i(A

T , 1) = 0, ∀i = 1, 2.
(11)

Therefore, the optimal test space in (5) isWopt
h = span{Ŵi,Wr,i, ∀r = 0, . . . , p, ∀i = 1, 2}

and we obtain the following scheme for problem (5)

(Ûh, ei) =
(
U0,Ŵi(A

T , 0)
)

+

∫ 1

0

(
F (t),Ŵi(A

T , t)
)
dt, ∀i = 1, 2,

∫ 1

0

 p∑
j=0

Uh,jt
j , trei

 dt =
(
U0,Wr,i(A

T , 0)
)

+

∫ 1

0

(
F (t),Wr,i(A

T , t)
)
dt,

∀r = 0, . . . , p, ∀i = 1, 2.
(12)

We express (12) in matrix form as
ÛTh = UT0 · Ŵ(AT , 0) +

∫ 1

0
F T (t) · Ŵ(AT , t)dt,

p∑
j=0

UTh,j

∫ 1

0
tj+rdt = UT0 ·Wr(A

T , 0) +

∫ 1

0
F T (t) ·Wr(A

T , t)dt, ∀r = 0, . . . , p,

(13)

where Ŵ(AT , t) = eA
T (t−1) and

Wr(A
T , t) = (AT )−1

(
trI2 + rWr−1(A

T , t)− Ŵ(AT , t)
)
, ∀r = 0, . . . , p. (14)

In [35], we also proved that the optimal test functions satisfy

Wr(A
T , t) = (AT )−r−1

(
Pr(AT , t)− Pr(AT , 1)Ŵ(AT , t)

)
, ∀r = 0, . . . , p. (15)

where Pp(AT , t) is a polynomial of order p defined as

Pp(AT , t) =

p∑
j=0

p!

j!
(AT t)j .

Finally, if we transpose the whole system (13), as

(Ŵ(AT , t))T = Ŵ(A, t), (Wr(A
T , t))T = Wr(A, t), ∀r = 0, . . . , p,

we obtain
Ûh = Ŵ(A, 0) · U0 +

∫ 1

0
Ŵ(A, t) · F (t)dt,

p∑
j=0

Uh,j

∫ 1

0
tj+rdt = Wr(A, 0) · U0 +

∫ 1

0
Wr(A, t) · F (t)dt, ∀r = 0, . . . , p.

(16)
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3.2. Extension to a general number of elements

We consider a partition of the time interval Ih as

0 = t0 < t1 < . . . < tm−1 < tm = 1, (17)

and we define Ik = (tk−1, tk) and the time step size hk = tk − tk−1, ∀k = 1, . . . ,m. We now
repeat the same process of Subsection 3.1 over a generic element Ik. First, we express the
interior and the traces of the approximated solution Uh(t) over the generic element Ik as

Ukh (t) =

p∑
j=0

Ukh,j

(
t− tk−1
hk

)j
, Ukh,j =

[
ukh,j
vkh,j

]
, Ûkh =

[
ûkh
v̂kh

]
.

The optimal test functions are Ŵk(AT , t) = eA
T (t−tk), and

Wk
r (AT , t) = (AT )−1

((
t− tk−1
hk

)r
I2 +

r

hk
Wk

r−1(A
T , t)− Ŵk(AT , t)

)
=

1

hrk
(AT )−r−1

(
Pkr (AT , t)− Pkr (AT , tk)Ŵ

k(AT , t)
)
,

(18)

where Pkr (AT , t) is defined as

Pkr (AT , t) =
r∑
j=0

r!

j!
(AT )j (t− tk−1)j .

Here, the optimal test functions (18) satisfy
−(Ŵk(AT , t))′ +ATŴk(AT , t) = 0, Ŵk(AT , tk) = I2,

−(Wk
r (AT , t))′ +ATWk

r (AT , t) =

(
t− tk−1
hk

)r
I2, Wk

r (AT , tk) = 0, ∀r = 0, . . . , p,

and we obtain the following time-marching scheme ∀k = 1, . . . ,m
Ûkh = Ŵk(A, tk−1) · Ûk−1h +

∫
Ik

Ŵk(A, t) · F (t)dt,

p∑
j=0

Ukh,j

∫
Ik

(
t− tk−1
hk

)j+r
dt = Wk

r (A, tk−1) · Ûk−1h +

∫
Ik

Wk
r (A, t) · F (t)dt, ∀r = 0, . . . , p,

(19)
where Û0

h = U0. Therefore, computing the optimal test functions over one element Ik, we

obtain scheme (19). Here, we know Ûk−1h which is the solution at tk−1. Then, we employ the
second equation of (19) to compute the interior of the solution at Ik and the first equation
of (19) to calculate the solution at tk, i.e., Ûkh . Finally, the trace solution Ûkh becomes the
initial condition for the next interval.
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3.3. Global optimal test functions

Alternative to Section 3.2, we can express the optimal testing problem globally by
introducing the following broken test space

W = H1(Ih,R2) = {W ∈ L2(I,R2) |W|Ik ∈ H
1(Ik,R2), ∀Ik ∈ Ih},

with associated norm

||W ||2W =
m∑
k=1

∫
Ik

|| −W ′ +ATW ||2dt+ ||[W ]k||2. (20)

where W (t±k ) := lim
ε→0+

W (tk ± ε), [W ]k = W (t+k ) −W (t−k ), ∀k = 1, . . . ,m − 1, and [W ]m =

−W (t−m). We also set U = L2(I,R2)× R2m, Z = {U, Û1, . . . , Ûm} ∈ U and

||Z||2U =
m∑
k=1

∫
Ik

||U ||2dt+
m∑
k=1

||Ûk||2,

B(Z,W ) :=
m∑
k=1

∫
Ik

(U,−W ′ +ATW ) dt− (Ûk, [W ]k),

Given a discrete subspace Uh ⊂ U and (·, ·)W an inner product in W, the ideal Discon-
tinuous Petrov-Galerkin (DPG) method reads{

Find Zh = {Uh, Û1
h , . . . , Û

m
h } ∈ Uh such that

B(Zh,Wh) = L(Wh), ∀Wh ∈ Wopt
h ,

(21)

where Wopt
h = Φ(Uh) and the trial-to-test operator Φ : Uh −→W is defined by

(ΦZh,W )W = B(Zh,W ), ∀W ∈ W, Zh ∈ Uh. (22)

In [35], we computed the optimal test functions selecting in (22) the inner product
defined by (20). In this case, (22) is equivalent to m overlapped BVPs. We proved that
selecting piecewise polynomials of order p for the trial space Uh in (22), we obtain the
optimal test functions defined in (18). Therefore, in (21) we obtain the same time-marching
scheme defined in (19). In conclusion, both approaches deliver the same solution.

4. Application to linear ODE systems

We now consider the following linear system of ODEs
u′′(t) + Cu(t) = f(t), in I,

u(0) = u0,

v(0) = v0,

(23)
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where C ∈ Rn×n, u0, v0 ∈ Rn and u, f : I −→ Rn

u(t) =

u1(t)...
un(t)

 , f(t) =

f1(t)...
fn(t)

 , u0 =

u0,1...
u0,n

 , v0 =

v0,1...
v0,n

 .
We are interested in the particular case where C is a matrix resulting from a spatial dis-
cretization of a linear hyperbolic PDE.

As in Section 2, we reduce (23) to a first order system by defining v(t) = u′(t) so we
have {

U ′(t) +AU(t) = F (t) in I,

U(0) = U0,
(24)

where

U(t) =

[
u(t)
v(t)

]
, A =

[
0 −In
C 0

]
, F (t) =

[
0
f(t)

]
, U0 =

[
u0
v0

]
.

Here, 0 denotes the zero matrix or vector of appropriate size, U,F : I −→ R2n, U0 ∈ R2n

and A ∈ R2n×2n. The application of the DPG method defined in Section 3 to system (24)
is straightforward.

5. Relation between ideal DPG method and exponential integrators

Exponential integrators are a class of well-stablished methods for solving semilinear
systems of ODEs [32]. The starting point of many exponential integrators is the fact that
the analytical solution of system (2) can be expressed by the variation-of-constants formula

U(t) = e−AtU0 +

∫ t

0
eA(τ−t)F (τ)dτ. (25)

From (25), we can express the solution at each time step as

U(tk) = e−hkAU(tk−1) +

∫
Ik

eA(τ−tk)F (τ)dτ, (26)

and different approximations of the right-hand-side of (26) lead to different methods. In
the DPG-based time-marching scheme (19), as Ŵk(A, t) = eA(t−tk), we have the variation-
of-constants formula (26) for the trace variables. Therefore, the DPG method in time is
equivalent to exponential integrators for the traces and we have an additional equation
to compute the interiors of the solution. In the following subsections, we explain how to
approximate (19) employing the ideas from exponential integrators.
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5.1. ϕ−functions

Similar to our previous work for parabolic problems [35], we can approximate the right-
hand-side of system (19) with exponential quadrature rules and so-called ϕ−functions.
First, we select s integration points ci ∈ [0, 1], ∀i = 1, . . . , s and we approximate the source
at each element Ik as

F (t)|Ik
≈

s∑
i=1

F ki L
k
i (t),

where Fi := F (tk−1 + cihk) and Lki (t) are the Legendre polynomials at Ik defined as

Lki (t) =
s∏
j=1
j 6=i

t− (tk−1 + cjhk)

(tk−1 + cihk)− (tk−1 + cjhk)
, ∀i = 1, . . . , s.

Then, (19) becomes

Ûkh = Ŵk(A, tk−1) · Ûk−1h +

s∑
i=1

(∫
Ik

Ŵk(A, t)Lki (t)dt

)
· Fi,

p∑
j=0

Ukh,j

∫
Ik

(
t− tk−1
hk

)j+r
dt = Wk

r (A, tk−1) · Ûk−1h +
s∑
i=1

(∫
Ik

Wk
r (A, t)Lki (t)dt

)
· Fi,

∀r = 0, . . . , p.
(27)

The optimal test functions satisfy the following identities

Ŵk(A, tk−1 + θhk) = Ŵ(Ahk, θ),

Wk
r (A, tk−1 + θhk) = hkWr(Ahk, θ), ∀r = 0, . . . , p,

where Ŵ(A, t) and Wr(A, t) are the optimal test functions defined over the master element
[0, 1]. We now express (27) over [0, 1] and we obtain

Ûkh = Ŵ(Ahk, 0) · Ûk−1h + hk

s∑
i=1

(∫ 1

0
Ŵ(Ahk, θ)Li(θ)dθ

)
· Fi,

hk

p∑
j=0

Ukh,j

∫ 1

0
θj+rdθ = hkWr(Ahk, 0) · Ûk−1h + hk

s∑
i=1

(∫ 1

0
hkWr(Ahk, θ)Li(θ)dθ

)
· Fi,

∀r = 0, . . . , p,
(28)

where Li(θ) are the Legendre polynomials defined over [0, 1].
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Finally, integrating the left-hand-side of (28) and simplifying hk from the second equa-
tion, we obtain

Ûkh = Ŵ(Ahk, 0) · Ûk−1h + hk

s∑
i=1

(∫ 1

0
Ŵ(Ahk, θ)Li(θ)dθ

)
· Fi,

p∑
j=0

Ukh,j
1

j + r + 1
= Wr(Ahk, 0) · Ûk−1h + hk

s∑
i=1

(∫ 1

0
Wr(Ahk, θ)Li(θ)dθ

)
· Fi,

∀r = 0, . . . , p.

(29)

In (29), we relate the optimal test functions with the so-called ϕ−functions defined as
ϕ0(A) = eA,

ϕp(A) =

∫ 1

0
e(1−θ)A

θp−1

(p− 1)!
dθ, ∀p ≥ 1,

(30)

which satisfy the following recurrence relation

ϕp(A) =
1

p!
In +Aϕp+1(A), (31)

where In denotes the identity matrix in Rn. Note that ϕp(A) is another matrix of size n×n.
In [35], we proved that

Ŵ(A, 0) = e−A = ϕ0(−A), (32a)∫ 1

0
Ŵ(A, θ)θqdθ =

∫ 1

0
eA(θ−1)θqdθ = q!ϕq+1(−A), (32b)

and also

Wr(A, 0) =

r∑
j=0

r!

j!
(−1)r−jϕr−j+1(−A), (33a)

∫ 1

0
Wr(A, θ)θ

qdθ = q!

r∑
j=0

r!

j!
(−1)r−jϕr−j+q+2(−A). (33b)

Therefore, we can express Li(θ) as linear combinations of polynomials of type θq and
then use (32) and (33) to express (29) in terms of the ϕ−functions.

Remark 2. There is a classical result that relates the following action

p∑
j=1

ϕj(A)wp−j+1,

for some vectors {wj}pj=1, with the exponencial of an augmented matrix Ã (See Theorem 2.1.
in [3]). Therefore, in the right-hand-side of (29), we can avoid the approximations of the
corresponding ϕ−functions by computing the single exponential of a slightly larger matrix.
We will adopt this approach in the numerical results for the 2D+time wave equation.
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5.2. Trigonometric functions

In hyperbolic systems of type (2) or (24), from the reduction to a first order system, the
matrix A is always anti-diagonal. Therefore, we can calculate its eigenvalues and apply the
Cayley-Hamilton theorem (see Appendix A). For simplicity, we focus on system (2) where
the matrix A has complex eigenvalues ±iα. From the Cayley-Hamilton theorem, we have

eAt =

[
cos(αt) − 1

α sin(αt)
α sin(αt) cos(αt)

]
. (34)

Now, in (19) we obtain

Ŵk(A, t) = eA(t−tk) =

[
cos(α(t− tk)) − 1

α sin(α(t− tk))
α sin(α(t− tk)) cos(α(t− tk))

]
, (35)

Ŵk(A, tk−1) = e−Ahk =

[
cos(αhk)

1
α sin(αhk)

−α sin(αhk) cos(αhk)

]
, (36)

and the equation for the trace variables in (19) becomes[
ûkh
v̂kh

]
=

[
cos(αhk)

1
α sin(αhk)

−α sin(αhk) cos(αhk)

] [
ûk−1h

v̂k−1h

]
+

∫
Ik

[
− 1
α sin(α(t− tk))
cos(α(t− tk))

]
f(t)dt.

Similarly for the second equation of (19), we express Wk
r (A, t) and Wk

r (A, tk−1) in terms of
(35) and (36) employing relation (18). Finally, we approximate the right-hand-side of (19)
approximating f(t) and integrating exactly.

Example: For p = 0 and approximating f(t) ≈ f(tk−1), the first equation of system (19)
becomes [

ûkh
v̂kh

]
=

[
cos(αhk)

1
α sin(αhk)

−α sin(αhk) cos(αhk)

] [
ûk−1h

v̂k−1h

]
+

[
1
α2 (1− cos(αhk))

1
α sin(αhk)

]
f(tk−1). (37)

From (18), we have

Wk
0(A, t) = A−1

(
I2 − Ŵk(A, t)

)
=

[
− 1
α sin(α(t− tk)) 1

α2 (1− cos(α(t− tk)))
cos(α(t− tk))− 1 − 1

α sin(α(t− tk))

]
,

Wk
0(A, tk−1) =

[
1
α sin(αhk)

1
α2 (1− cos(αhk))

cos(αhk)− 1 1
α sin(αhk)

]
,

and the second equation of (19) becomes

hk

[
ukh,0
vkh,0

]
=

[
1
α sin(αhk)

1
α2 (1− cos(αhk))

cos(αhk)− 1 1
α sin(αhk)

] [
ûk−1h

v̂k−1h

]
+

[
1
α3 (αhk − sin(αhk))

1
α2 (1− cos(αhk))

]
f(tk−1).

(38)
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In exponential integrators, the trigonometric functions are usually given in terms of sinc(ξ) =
sin(ξ)/ξ. Therefore, applying basic trigonometric identities, (37) and (38) become[

ûkh
v̂kh

]
=

[
cos(αhk) hksinc(αhk)
−α sin(αhk) cos(αhk)

] [
ûk−1h

v̂k−1h

]
+ hk

[
hk
2 sinc2(αhk2 )
sinc(αhk)

]
f(tk−1),

[
ukh,0
vkh,0

]
=

[
sinc(αhk)

hk
2 sinc2(αhk2 )

−α2hk
2 sinc2(αhk2 ) sinc(αhk)

] [
ûk−1h

v̂k−1h

]
+

[ 1
α2 (1− sinc(αhk))

hk
2 sinc2(αhk2 )

]
f(tk−1).

(39)

The first equation of (39) is called Gautschi method [24].

Remark 3. Note that for system (23), the argument of the trigonometric functions defined
in (39) is

√
C which is a square root of matrix C, i.e., (

√
C) · (

√
C) = C. There exists some

research to approximate such functions (see [4, 5, 36]). In [1], the authors approximate of
the action of a trigonometric function over a vector without actually computing

√
C.

Remark 4. The theory presented in this paper is consistent with the case α = 0. Note that
when α = 0, matrix A is nilpotent, i.e., A2 = 0. Therefore, from the series expansion of
the exponential we have

eAt = I +At =

[
1 −t
0 1

]
. (40)

In this case, recurrence relation (18) is not valid because A is a singular matrix. We can
calculate the optimal test function explicitly using the trial-to-test operator (8) and (40).

6. Numerical results

There exist multiple algorithms to compute exponential matrices and related functions
(see the recent catalogue by N. J. Highman et al [28]). In the numerical results, we approx-
imate (19) employing ϕ−functions as explained in Section 5.1. The application of codes
using trigonometric functions [1, 4, 5, 36] as in Section 5.2 to the presented DPG-based
time integration method is left as future work.

We validate the results by employing two MATLAB routines based on scaling and
squaring algorithm together with Padé approximations:

• The EXPINT package [8] to approximate the ϕ− functions.

• The built-in MATLAB function expm [2, 27] together with the reformulation explained
in Remark 2.

In the subsequent numerical results for 1D/2D + time wave equation, we employ a FEM
with piecewise linear functions for the numerical discretization of the space variable.
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Example 1: We consider the second order ODE (1) where the exact solution is

u(t) = c1 cos(αt) + c2 sin(αt),

where we set α = 18π and I = [0, 1]. Here, we have f = 0, u0 = c1 and v0 = c2α. We also
set c1 = 1 and c2 = 0. Figures 1 - 4 show the exact and the DPG solutions solving (19)
for p = 0, 1, 2, 3. Figure 5 illustrates the convergence of the error for p up to 3 where we
observe a convergence rate of p+ 1. We obtain analogue results as in the DPG method for
the 1D wave equation in frequency domain [37].

Figure 1: Approximated solution u(t) (first row) and velocity v(t) (second row) of Example 1 with p = 0.
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Figure 2: Approximated solution u(t) (first row) and velocity v(t) (second row) of Example 1 with p = 1.

Figure 3: Approximated solution u(t) (first row) and velocity v(t) (second row) of Example 1 with p = 2.
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Figure 4: Approximated solution u(t) (first row) and velocity v(t) (second row) of Example 1 with p = 3.
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Figure 5: Convergence of the error for p = 0, 1, 2, 3 of Example 1.
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Example 2: We now consider the 1D+time linear wave equation
utt − (αux)x = f(x, t), ∀(x, t) ∈ Ω× I,
u(x, t) = 0, ∀(x, t) ∈ ∂Ω× I,
u(x, 0) = u0(x), ∀x ∈ Ω,

ut(x, 0) = v0(x), ∀x ∈ Ω,

(41)

where the data is selected in such a way that the exact solution is

u(x, t) = cos(α0t) sin(α1x).

We set Ω = (0, 1), I = (0, 1], α0 = 14π and α1 = 2π. For the discretization in space
we employ a FEM with piecewise linear functions and 103 elements. Figure 6 shows the
approximated solutions and velocities for p = 0, 1, 2 with a fixed number of time steps.
Figure 7 displays the relative error in % for p = 0, 1, 2, 3. We conclude that the error
remains constant when the discretization error in space becomes dominant.

Figure 6: Approximated solution (top row) and derivative (bottom row) of Example 2 with 25 time steps.
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Figure 7: Convergence of the error for p = 0, 1, 2, 3 of Example 2.

Example 3: We consider a 1D+time example that is similar to the one considered in [26].
In (41), we set Ω = (0, 1) and I = (0, 1.5], and we select f(x, t) = 0,

α(x) =

{
2, if x < 1/2,

1/2, if x ≥ 1/2,

and the initial conditions

u(x) = e−250(x−0.25)
2
, v(x) = 0.

Figure (8) shows the approximations of u(x, t) and v(x, t) for p = 0, 1, 2, 3 for a fixed number
of 25 time steps and 500 elements in space.
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Figure 8: Approximated solution of u(x, y) (top row) and v(x, t) (bottom row) of Example 3 for p = 0, 1, 2, 3
and 25 time steps.

Example 4: We consider a 2D+time example similar to one shown in [6]
utt −∇ · (α∇u) = f(x, y, t), ∀(x, y, t) ∈ Ω× I,
u(x, y, t) = 0, ∀(x, y, t) ∈ ∂Ω× I,
u(x, y, 0) = u0(x, y), ∀(x, y) ∈ Ω,

ut(x, y, 0) = v0(x, y), ∀(x, y) ∈ Ω,

(42)

where Ω = (−0.5, 0.5)2 and I = (0, 1]. We set a discontinuous wave speed

α(x, y) =

{
1, if y < 1/8,

8, if y ≥ 1/8,

f(x, y, t) = 0, and the initial conditions

u0(x, y) = e−|xs|2(1− |xs|2)Θ(1− |xs|), v0(x, y) = 0,

where |xs| = (x/s)2 + (y/s)2 with s = 0.05, and the jump function symbol is given by

Θ(x, y) =

{
0, if x < 0,

1, if x ≥ 0.

For the discretization in space, we select a mesh of 128× 128 elements and we perform
mass lumping [29] to obtain a diagonal mass matrix. We select 24 time steps and piecewise
constant functions in time. Figure 9 shows the colormap of the solution in the element
interiors in time at different time steps.
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Figure 9: Approximated interior solution of u(x, y, t) (left column) and v(x, y, t) (right column) of Example
4 for p = 0 at different times. 20



7. Conclusions

We extend our previous work [35] on DPG-based time integrators for linear parabolic
PDEs to hyperbolic problems. We first reduce the second-order equation to a first order
system in time by introducing the velocity v = ut. This doubles the system size compared to
the parabolic case. Then, we calculate the optimal test functions analytically and we obtain
exponentials of the operator in space. We relate our method to exponential integrators
using either ϕ−functions or trigonometric functions. Finally, we numerically show the
performance of our method employing ϕ−functions to compute the optimal testing. In
space, we employ a FEM. For the 2D+time example, we perform mass lumping to obtain a
diagonal mass matrix. In all cases, we obtain p+1 convergence order for uniform refinements
in time.

Possible future work includes: (a) to extend the proposed DPG method in time to
transient nonlinear PDEs; (b) to combine both DPG in space together with DPG-based
time-marching scheme; (c) to perform time adaptivity based on the error representation
function from DPG; (d) to design different (goal-oriented) adaptive strategies.

Appendix A. Cayley-Hamilton theorem

We consider a square matrix A of dimension n. The characteristic polynomial of A is
defined as

P (s) = det(sIn −A) =
n∑
i=0

cis
i,

and we know that p(λi) = 0, ∀i = 1, . . . , n, where λi are the eigenvalues of A.
Similarly, we define the following matrix polynomial

P (X) =

n∑
i=0

ciX
i,

where X is an arbitrary matrix of size n and X0 = In. The Cayley-Hamilton theorem states
that P (A) = 0.

We can use this result to express a matrix function f(A) as a finite matrix polynomial.
First, we assume that the scalar function f(s) has the following series expansion

f(s) =
∞∑
k=0

βks
k.

We can express f(s) as
f(s) = Q(s)P (s) +R(s),

where P (s) is the characteristic polynomial of A and R(s) is a polynomial of order n − 1.
From the Cayley-Hamilton theorem, as P (A) = 0, we have that

f(A) = R(A) =
n−1∑
k=0

αkA
k,
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and we compute the coefficients αk employing the eigenvalues of A

f(λi) = R(λi) =
n−1∑
k=0

αkλ
k
i , ∀i = 1, . . . , n.
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