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PREFACE 

In the Spring Semester of 2020, the class CSE 397: Foundations of Predictive  
Computational Science, jointly listed as EM 397, was taught within the CSEM graduate 
program at University of Texas at Austin by JTO and Postdoctoral Assistant Prashant Jha 
(via Zoom).  As a final assignment, the class was asked to use the Bayesian-based 
methods for model calibration, validation, parameter estimation, and prediction of 
quantities of interest in the presence of uncertainties covered in class to study the 
predictability of a simple NIH growth model of cases of a disease in a pandemic such as 
COVID-19.  Data for COVID-19 cases from the US, Japan, and South Korea were 
available on the internet and were used as data. Prashant Jha also worked out an 
analysis using these data and made some of his calculations available to the class.  

This report contains the solutions provided by the class. Different metrics and tolerances 
for validation may be found among these results as well as different measures used to 
qualify uncertainty in quantities of interest, generally taken to be the total number of cases 
predicted to exist after around 100 days based on calibration data, over around 40 days, 
and validation data for a period of days after that. We believe these calculations provide 
very good examples of the steps that can be used to make meaningful scientific 
predictions in the presence of uncertainty for a very relevant and important class of 
biomedical phenomena.  We remark that the range of QoI predictions suggests that the 
simple model employed may be incapable of capturing the actual trends in this pandemic.  
Nevertheless, the general process of quantifying predictability is well demonstrated in 
various solutions. 

The  authors thank Charlott Low for organizing these assigned solutions into chapters and 
compiling them into a report suitable for for publication. 
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Gentle introduction to Bayesian calibration, validation, and prediction with
application to COVID-19 data

Prashant K. Jha, J. Tinsley Oden

Oden Institute for Computational Engineering and Sciences,
University of Texas at Austin, TX

Abstract

We apply the Bayesian techniques of the model calibration, validation, and prediction to the real world data. 
We consider the confirmed cases of COVID-19 in Japan as the data and calibrate and validate the generalized 
(sub-exponential) growth model. We use the calibrated model to make a prediction at 100th day and quantify 
the uncertainty in the prediction.

Keywords: Bayesian statistics, model calibration, prediction, quantity of interest

1. Introduction

Consider a transient scalar field C : [0, T ] → [0, ∞) denoting the number of confirmed cases of COVID-19 
virus as a function of time (in units of days) in some specific region, say Japan. We consider a simple 
generalized growth model for C. Following [5], we assume that C satisfies following ODE:

dC

dt
= rC(t)p, ∀t ∈ (0, T ], (1)

where r ≥ 0 is the growth rate and p ∈ [0, 1] is the deceleration of growth. When p = 0, the model is a linear 
growth model, and when p = 1, the model is an exponential growth model. Given the initial condition, i.e. the 
number of COVID-19 cases at t = 0, C0, (1) can be solved to get, for all t ∈ [0, T ],

C(t) =


(

r
m t+ (C0)1/m

)m
, when p ∈ (0, 1),

C0 + rt, when p = 0,

Co exp[rt], when p = 1,

(2)

Model, for different parameters (r, p), is depicted in Fig. 1.
Objective of this work is to introduce the Bayesian techniques of model calibration, validation, and 

prediction by applying it to the present day relevant problem. We consider Japan’s COVID-19 cases as the 
given data to fit the model (2) using Bayesian approach. We highlight and discuss various steps in the 
Bayesian approach including the practical challenges occurring during the numerical implementation.

We seek to find the optimal value of parameters (r, p) in the model (2) that best describes the real 
COVID-19 data. In other words, we want to fit (2) to the COVID-19 data. In the Bayesian approach, instead of 
finding one fixed value of parameter (r, p), we seek the joint probability distribution of (r, p). Using the joint 
probability distribution, we not only make the prediction about the quantity of interest (QoI), we can also 
measure the uncertainty in the prediction (or confidence in the prediction). In the remainder of this section, 
we present a brief overview of Bayesian learning in the context of fitting model (2) to the COVID-19 data. 
Interested readers can find more details in the reference [4] and references therein.

Email addresses: pjha@utexas.edu (Prashant K. Jha), oden@oden.utexas.edu (J. Tinsley Oden)
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Figure 1: Plot of the generalized growth model for different model parameters.

Let θ = (r, p) ∈ Θ := [0, ∞) × [0, 1] denote the model parameter where Θ is the space where the 
parameters live in. Let I = [0, T ] be the time interval of interest, where T is the final time at which we want to 
get the model prediction. We denote the discrete data Y = (Y1, Y2, .., YN ) where Yi is the total number of 
COVID-19 cases in specific region at day i. Let C(t; θ) denote the model output, i.e. the total number of 
confirmed cases, at time t for parameter θ.

Suppose π(θ) denotes the prior probability distribution of the model parameter, π(Y |θ) denotes the 
conditional probability of the data when the parameter is fixed to θ (also called the likelihood function), 
π(θ|Y ) denotes the conditional probability of the parameter for a given data Y (also called the posterior), 
and π(Y ) denotes the evidence. We apply the Bayes’ rule to relate the posterior (unknown) to the likelihood 
(known) and the prior (assumed):

π(θ|Y ) =
π(Y |θ)π(θ)

π(Y )
, (3)

where evidence π(Y ) is the marginalization of the numerator in (3) (so that the posterior is integrated to
1). It is given by

π(Y ) =

∫
Θ

π(Y |θ)π(θ)dθ. (4)

We see that, up to a proportionality constant, posterior is proportional to the multiple of likelihood
function and prior distribution. Once the definition of the prior and the likelihood function is fixed, we can
generate a parameter samples according to the posterior distribution using one of the Markov chain Monte
Carlo methods (more details below).

1.1. Prior distribution

We assume no prior knowledge about the parameters (r, p). Therefore, we define the prior distribution
as a uniform distribution over Θ, i.e.,

π(θ) = χΘ(θ), (5)

where χΘ is the usual indicator function.
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1.2. Noise in the data and the model inadequacy

1.2.1. Experimental noise

The data Y can be noisy, that is, the real number of COVID-19 cases could be bit different from the 
recorded data Y . This is called the experimental noise. Suppose g is the real data, Y is the recorded data with 
some margin of error, and ε is the noise, then Y must be related to g by some function f (unknown)

Y = f(g, ε).

To proceed further, we need to assume some reasonable form of this function f . We suppose that ε follows 
the Gaussian distribution with mean 0, take f(g, ε) = g + ε (additive noise). This results in

Y = g + ε. (6)

Since Y = (Y1, ..., YN ) is a vector, we can assume ε = (ε1, .., εN ) where each εi is given by the Gaussian
distribution with 0 mean and σi std deviation.

1.2.2. Model inadequacy

For fixed parameter θ, the model output at ti is denoted as C(ti; θ). Let C̄(θ) := (C(ti; θ), ..., C(tN ; θ))
is the vector of model output. Assuming that the model is imperfect, we introduce an additive modeling
error γ(θ) such that the real data and the model output C̄(θ) are related to each other by:

g − C̄(θ) = γ(θ). (7)

γ can be assumed to follow some simpler probability distribution. As we see next, we can combine the
experimental noise and the model inadequacy, and assume the probability distribution for the combined
error γ + ε.

Following [Section 4.3, [4]], and also see (6), we have

Y − ε− C̄(θ) = γ(θ)⇒ Y − C̄(θ) = ε+ γ(θ), (8)

i.e., the difference between the recorded data and the model output is equal to the sum of the noise and the
model inadequacy.

In rest of this article, we assume ε+γ(θ) ∼ N (0,σ), where σ is the N ×N diagonal matrix with σii = σ
for 1 ≤ i ≤ N . Here θ ∼ N (µ, σ) means that θ is sampled from Gaussian distribution or the θ is the random
variable with the probability distribution given by N (µ, σ).

1.3. Likelihood function

Recall that C̄(θ) = (C(t1; θ), ..., C(tN ; θ)) is a vector of model output at times (t1, ..., tN ) associated to
the data Y . We define the likelihood function as follows:

π(Y |θ) = N (Y − C̄(θ),σ)

=
N∏
i=1

1

σii
√

2π
exp

[
−|Yi − C(ti; θ)|2

2σ2
ii

]
, (9)

where we have assumed σ to be the diagonal matrix with σii = σ for 1 ≤ i ≤ N . We can also compute the
logarithm of the likelihood function:

log(π(Y |θ)) =
N∑
i=1

[
−|Yi − C(ti; θ)|2

2σ2
ii

− log(σii
√

2π)

]
. (10)
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1.4. Posterior distribution

With the definitions of the likelihood function and the prior distribution at hand, we apply the Bayes’
rule to get the posterior distribution:

π(θ|Y ) ∝ π(Y |θ)π(θ). (11)

One can change the proportionality sign to equality by introducing the evidence π(Y ), see (3).

1.5. Quantity of interest

Once the model is calibrated and validated, we use the posterior distribution for the model parameters
to compute the quantity of interest (QoI). Suppose Q(t, C) is the quantity of interest which is a function
of time t and function of model output C. With the posterior π(θ|Y ), the quantity of interest Q in the
Bayesian approach is a random field as

Q = Q(t, C) = Q(t, C(θ)) (12)

is a function of θ through model C, and θ is the random field with the probability distribution π(θ|Y ). The
mean of QoI is given by

E[Q](t, C) =

∫
Θ

Q(t, C(θ))π(θ|Y )dθ. (13)

The uncertainty in the predicted QoI is given by the standard deviation of Q, i.e.,

V[Q](t, C) =

∫
Θ

(Q(t, C(θ))− E[Q](t, C))2π(θ|Y )dθ. (14)

1.6. Markov chain Monte Carlo simulation

While (11) relates the known distributions, the likelihood function and the prior distribution, to the
desired posterior distribution, we still need a method to find the posterior distribution using (11).

Let f and g are two probability distributions such that f ∝ g. The idea is to use the known distribution
g to compute the target distribution f . This is achieved by methods collectively known as Markov chain
Monte Carlo. In this work, we use the Metropolis-Hastings method [1]. We consider a symmetric proposal
distribution q(θ′|θ) ∼ N (θ,σp) where θ′ is the new sample point, θ is the current sample point, and σp

is the covariance matrix. From (11), we have a target distribution f = π(θ|Y ) and the known probability
distribution g = π(Y |θ)π(θ). The acceptance distribution α(θ′, θ), which gives the probability of accepting
sample θ′ given that we are at sample θ, is defined as:

α(θ′, θ) =
q(θ|θ′)g(θ′)

q(θ′|θ)g(θ)
=
g(θ′)

g(θ)
, (15)

where we used the fact that q is symmetric and so q(x|y) = q(y|x). If α ≥ 1 then we accept the sample θ′

and if α < 1 then we reject the sample θ′ with probability α. The MH (Metropolis-Hastings) algorithm is
presented in Alg. 1.

1.7. Posterior distribution from the MCMC samples

One last practical aspect of the Bayesian approach is how one can sample from the accepted samples
of MCMC method or in other words what is the probability distribution inherent in the accepted MCMC
samples? This question arises when we go from the calibration step to the validation step. There are two
methods to obtain the probability distribution from the MCMC samples:

• Gaussian approximation: Compute the mean µsample and the standard deviation σsample of the sam-
ples and approximate the posterior by Gaussian distribution, π(θ|Y ) ∼ N (µsample, σsample).

• Kernel density estimation: A more accurate approach is to apply the kernel density estimation to
approximate the posterior.

We will compare the results with above two approximations in Sec. 4.

5



Algorithm 1 Metropolis-Hastings sampling method

1: # initialize parameter, create vectors to store samples
2: theta = theta0
3: accepted = [ ]
4: rejected = [ ]
5: # start random walk
6: for each integer 0 ≤ i ≤ Niters do
7: # new sample point
8: theta new ∼ q(·| theta)
9: like prior = likelihood(theta) ∗ prior(theta)

10: like prior new = likelihood(theta new) ∗ prior(theta new)
11: alpha = like prior new / like prior
12: if alpha ≥ 1 then
13: # accept theta new
14: accepted.add(theta new)
15: theta = theta new
16: else
17: # reject with probability alpha
18: U ∼ Uniform(0,1)
19: if U ≤ alpha then
20: # accept theta new
21: accepted.add(theta new)
22: theta = theta new
23: end if
24: end if
25: end for
26: return accepted

1.8. Calibration, validation, and prediction

Bayesian fitting of the data involves three steps:

• Calibration: We divide the data in the calibration set and the validation set. Let Y c, C̄c(θ), πc(θ), πc(Y c|θ), πc(θ|Y c)
denote the calibration data, model output at times associated to calibration data, prior in the calibra-
tion step, likelihood function defined on the calibration data Y c and model output C̄c, and calibration
posterior. The calibration of the model consists of three steps:

1. Select the prior as follows

πc(θ) = χΘ(θ).

The likelihood πc(Y c|θ) is defined according to (9) with the data Y c instead of Y . The posterior
follows the Bayes’ rule, i.e., πc(θ|Y c) ∝ πc(Y c|θ)πc(θ).

2. Apply MCMC to get the parameter samples following πc(θ|Y c) distribution.

3. Find the approximate posterior distribution πc(θ|Y c) from the MCMC samples, using either the
Gaussian approximation or the Kernel Density Estimation.

• Validation: Let Y v, C̄v(θ), πv(θ), πv(Y v|θ), πv(θ|Y v) are the validation data, model output at times
corresponding to validation data, prior in the validation step, likelihood function defined on the vali-
dation data, and the validation posterior. The steps are as follows:
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Figure 2: Confirmed cases in Japan.

1. Select prior as follows

πv(θ) = πc(θ|Y c). (16)

The likelihood πv(Y v|θ) is defined similar to πc(Y c|θ). The posterior satisfies π(θ|Y v) ∝ πv(Y v|θ)πv(θ).

2. Apply MCMC to get the parameter samples following πv(θ|Y v) distribution. Suppose the set of
samples is denoted as Θv = (θv1 , ..., θ

v
Nv ).

3. Compute the validation error. Quantity of interest is the number of confirmed cases at validation
times (tv1, ..., t

v
Nvalid

). At any given time, the number of confirmed cases is the mean of model
ouput over MCMC parameter samples, i.e.

Qv(t, C) :=
1

Nv

Nv∑
s=1

C(t; θvs ). (17)

We define the validation error ev as follows:

ev :=

∑Nvalid

i=1 |Y v
i −Qv(tvi , C)|2∑Nvalid

i=1 |Y v
i |2

. (18)

We consider the model as “Not invalid” if ev ≤ γtol. γtol is the user defined tolerance.

• Prediction: If the model is “Not invalid”, then the number of confirmed cases Q = C(T = 100; θ) is
the random field. The mean of Q is the model prediction and the standard deviation is the uncertainty
in the prediction.

2. COVID-19 data and the hyper parameters

The data f or novel coronavirus (COVID-19) i s f reely available f rom various sources. Three of these 
sources are l isted i n [ 2]. For the demonstration, we consider the number of confirmed cases recorded i n 
Japan at different days starting f rom 22 January 2020 until 14 April 2020 (total 84 days), see Fig. 2.

We consider Y c = (Y1, ..., Y60) at days tc = (1, ..., 60) as the calibration data and Y v = (Y61, ..., Y84) at 
days tv = (61, ..., 84) as the validation data. The final time is T = 100. This is also the time at which we 
want to predict the number of confirmed cases.

7



2.1. Hyper parameters

We fix the standard deviation σ in Gaussian distribution for the noise and the model inadequacy as
σ = 100.

The proposal distribution q(θ′|θ) in MCMC method is assumed to be the Gaussian N (θ,σp) where σp

is the covariance matrix. We consider

σp =

[
σp,11 0

0 σp,22

]
, (19)

where σp,11 = 1 and σp,22 = 0.01.
The number of MCMC iteration is fixed to Niter = 100000.

2.2. Model selection tolerance

We set γtol = 0.01.

3. Calibration step

The initial value of the parameter was taken as θ0 = (0, 0). The acceptance rate in the Metropolis-
Hastings was 0.481%. The samples generated in the first 20000 iteration (i.e. first 20% of the iterations)
were discarded. The mean of the samples was θcmean = (rcmean, p

c
mean) = (0.305, 0.751). The model output

using the mean of samples as parameter is shown in Fig. 3.
Histogram plot, see Fig. 4, shows that there is a strong correlation between parameter r and p. In Fig.

5, we show the histogram with the Gaussian and the KDE approximation of the posterior πc(θ|Y c).
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Figure 3: Calibration result.

4. Validation step

4.1. Gaussian approximation of the calibration posterior samples

We approximate the calibration posterior by Gaussian approximation of the calibration samples. The Ini-
tial value of parameter was taken as mean of the calibration samples. The acceptance rate in the Metropolis-
Hastings was 0.035%. The mean of the sample is θvmean = (rvmean, pvmean) = (0.132, 0.944). The model output 
using the mean of samples as parameter is shown in Fig. 6. The model output using the calibrated and the
validated mean at two portions of time is shown in Fig. 7.
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Figure 4: Histogram and scatter plot of calibration posterior samples.
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Figure 5: Histogram, Gaussian approximation, and KDE approximation of posterior πc(θ|Y c).

4.1.1. Validation error

The validation error ev, see definition (18), is found to be 0.00505. This is below the γtol = 0.01 so we 
declare the model as “Not invalid”.

4.2. KDE approximation of the calibration posterior samples

We approximate the calibration posterior by the KDE approximation of the calibration samples. The Ini-
tial value of parameter was taken as mean of the calibration samples. The acceptance rate in the Metropolis-
Hastings was 0.031%. The mean of the sample is θvmean = (rvmean, pvmean) = (0.132, 0.946). Model output 
using the mean of samples as parameter is shown in Fig. 8. The Model output using the calibrated and the 
validated mean at two portions of time is shown in Fig. 9.

4.2.1. Validation error

The validation error ev, see definition (18), is found to be 0.00469. This is below the γtol = 0.01 so we 
declare the model as “Not invalid”.

4.3. Effect of approximation of posterior samples

From the results, we see that there is no significant effect of changing Gaussian approximation with 
more accurate KDE approximation of calibration posterior samples. The error ev in the case of Gaussian is 
0.00505 and in the case of KDE is 0.00469.
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Figure 6: Validation result with the Gaussian approximation of the calibration MCMC samples. The model
output at mean of the validation MCMC samples is shown along with the mean of QoI distribution (see
formula (17)). The mean of QoI is closer to the data which suggests that QoI should be computed using (17)
taking into account the MCMC samples.

5. Prediction and uncertainty in the prediction

5.1. Validation posterior obtained through Gaussian approximation of calibration posterior samples

Model prediction of QoI (number of cases at day 100) is Q = 27858 with the uncertainty 6026 i.e. 22%.

5.2. Validation posterior obtained through KDE approximation of calibration posterior samples

Model prediction of QoI (number of cases at day 100) is Q = 29155 with the uncertainty 6745 i.e. 23%.

5.3. QoI distribution

In Fig. 10, we show QoI distribution. In Fig. 11, we show the prediction by calibrated-validated model
in the interval [85, 100].

6. Conclusion

In this work, we have presented the Bayesian approach to the model fitting using the present day relevant 
COVID-19 data. This exercise shows various f acets of the method and highlights the practical i ssues 
encountered during the numerical i mplementation. I n our experience, the standard deviation i n the noise 
affects the number of accepted samples. Higher the std deviation, the higher the accepted samples. This seems 
reasonable as higher σ weakens the l ikelihood f unction. This exercise also shows that the Gaussian 
approximation of the posterior samples performs as good as the KDE approximation. It will be interesting 
to consider a more complex model which incorporates multiple features such as spread of COVID-19 age wise, 
region-wise, and also multiscale models (in time). The codes used in this work will be freely available at 
Github site [2].
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Figure 7: Validation results with the Gaussian approximation of the calibration MCMC samples, and the
calibration results.
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Figure 8: Validation result with the KDE approximation of the calibration MCMC samples. The model output
at mean of the validation MCMC samples is shown along with the mean of QoI distribution (see formula (17)).
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Figure 9: Validation results with the KDE approximation of the calibration MCMC samples, and the calibration
results.
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Figure 10: QoI distribution along with the mean.
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Figure 11: Model prediction from day 85 till 100.
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Bayesian Calibration, Validation, and Prediction
with Application to Infectious Disease Models

and COVID-19 Data
CSE 397 - Foundations of Predictive Computational Science

Lianghao Cao

April 28, 2020

For purpose of demonstration, consider the time evolution of the number of the novel
Coronavirus infected cases in Japan, with data shown in the plot below.
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Figure 1: The time evolution of the recorded number of infected cases in Japan.

We consider an exponential growth model for the evolution of the infected cases:

C(t) = (
r

m
t + C

1/m
0 )m (1)

where m = 1/(1− p) and C0 = C(0) = 1 is the given initial condition. The parameter r and
p are all positive number. Specifically, p ∈ [0, 1].

1 The Calibration Step

With the given data d ∈ R60 at t = 1, 2, . . . , 60, the parameters θ = [r, p] is calibrated via
the Bayesian approach. The prior density for the parameter is given by a uniform density
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Figure 2: The diagonal entries of the covariance matrix of the Gaussian noise that follows
(2) and data.

on the unit square [0, 1]2. The noise model on the data is naively set to be N (0,Σ2)1, where
Σ ∈ R60×60 is a diagonal matrix with entries:

Σii = 0.08 ln(di) + 1 , i = 1, 2, . . . , 60 . (2)

The diagonal entries of Σ2 is plotted with the provided data in Figure 2. This particular
noise model partly reflects the assumption that the number of infected cases is noisier when
it is large.

The log-likelihood function of a given parameter θ is formulated via l2 norm, scaled by
the covariance of the noise model:

60∑
i=1

1

2Σ2
ii

|C(θ, ti)− di|2, i = 1, 2, . . . , 60 . (3)

The sampling method employed to obtain the equilibrium distribution of the posterior
density is the MCMC with Metropolis-Hasting proposals, where the covariance matrix of
the proposal Gaussian kernel has diagonal of 0.04.

The result of the calibration is shown in Figure 3 and 4 below2. The posterior den-
sity of the calibration step reveals that the parameters are highly correlated for the given
data. The posterior density highly resembles the probability density of a multivariate normal
distribution, with an estimated mean θm ≈ [0.2596, 0.7875].

1Ideally, the noise on the data should be strictly positive, meaning that the data could only underestimate
the number of infected cases. For the purpose of demonstration and simplicity, we use the additive Gaussian
noise, which is by no mean truthful.

2The full numerical implementation could be find at https://github.com/lcao11/bayes covid
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Figure 3: The posterior samples of the calibration step and their Gaussian kernel density es-
timation. In total samples of 100, 000, 37576 samples are accepted by the MCMC algorithm.
The latter half of the chain is used to represent the calibration posterior above.
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Figure 4: The forward solution corresponds to the mean of the calibration posterior compared
to the data

2 The Validation Step

Using the additional data at t = 61, 62, . . . , 84, a validation step via Bayesian approach is
preformed. The prior density for the parameter is taken as the Gaussian kernel density
estimation of the calibration posterior3. The same noise model, likelihood formulation, and
sampling method as mentioned above are used.

The result for the validation step is shown in Figure 5, and 6. The validation posterior

3The Gaussian kernel density estimation is computed with scipy.stats.gaussian kde
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again resembles the probability density of a multivariate normal distribution, with estimated
mean θm = [0.2250, 0.8227].
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Figure 5: The posterior samples of the validation step and their Gaussian kernel density
estimation. In total samples of 100,000, 8843 samples are accepted by the MCMC algorithm.
The latter half of the chain is used to represent the validation posterior above.
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Figure 6: The forward solution corresponds to the mean of the validation posterior.
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Figure 7: A comparison between the calibration posterior (red samples) and the validation
posterior (blue samples).

With the collected validation posterior samples, the expectation value Ev[·] and variance
V arv[·] of the total number of infected cases at t = 84 are calculated to be

Ev[C(·, 84)] ≈ 4000 , V arv[C(·, 84)] ≈ 314.5 , (4)

while the data has the total number of infected cases at 7645. The error in the quantity of
interest is given by

|Ev[C(·, 84)]− d84|
d84

≈ 0.4768 . (5)

The large discrepancy between data and the expectation value of the validation posterior on
the total number of infected cases at t = 84 indicates that we have an invalid forward model
or (and) an invalid noise model.
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Figure 8: The Gaussian kernel density estimation of the distribution of the quantity of
interest C(84), the number of infected cases at day 84.
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3 The Prediction Step

Despite our previous conclusion that the model is invalid, we use the validation posterior
samples to predict the expectation value of the total number of infected cases at t = 100,
and it turns out to be approximately 8657, with variance of 3239.
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Figure 9: The Gaussian kernel density estimation of the distribution of the quantity of
interest C(100), the number of infected cases at day 100.
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Taemin Heo (th29685) 

COVID-19 Bayesian-statistical inverse calculation assignment 

Model 1 

𝐶(𝑡) = (
𝑟

𝑚
𝑡 + (𝐶0)

1
𝑚 )

𝑚

where 𝑚 =
1

1−𝑝
 and 𝐶0 = 𝐶(0). 

1. def model_1(t, r, p):
2. m = 1/(1-p)
3. return (r*t/m+C0**(1/m))**m

Data 

We consider COVID 19 data at discrete times 𝒕̅ = (𝑡1 = 0, 𝑡2 = 1, … , 𝑡𝑁 = 83), where 𝑁 = 84, 

and corresponding total confirmed cases 𝒀(𝒕̅) = (𝑌1, 𝑌2, … , 𝑌𝑁).

We partition the data into two sets, 𝒚𝑐 for calibration and 𝒚𝑣 for validation, 

𝒚𝑐 = (𝑡𝑐̅, 𝑌(𝑡𝑐̅)) 

where 𝑡𝑐̅ = ((𝑡1 = 0, 𝑡2 = 1, … , 𝑡50 = 49)), 

𝒚𝑣 = (𝑡𝑣̅, 𝑌(𝑡𝑣̅)) 

where 𝑡𝑐̅ = ((𝑡51 = 50, 𝑡52 = 51, … , 𝑡𝑁 = 83)). 

QoI 

𝐶(100) 

Parameter 

𝜽𝒎𝟏 = (𝑟, 𝑝) 

Prior 

𝜋𝑝𝑟𝑖𝑜𝑟(𝑟) ~ 𝑈𝑛𝑖𝑓([0, ∞)) 

𝜋𝑝𝑟𝑖𝑜𝑟(𝑝) ~ 𝑈𝑛𝑖𝑓([0,1]) 

The statistical independence between 𝑟, 𝑝 is assumed. 

∴ 𝜋𝑝𝑟𝑖𝑜𝑟(𝜽𝒎𝟏) = 𝜋𝑝𝑟𝑖𝑜𝑟(𝑟)𝜋𝑝𝑟𝑖𝑜𝑟(𝑝) 
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1. def prior_1(x):
2. #x[0] = r, x[1]=p (new or current)
3. if(x[0] <= 1.e-5):
4. return 1.e-8
5. elif (x[1] <= 1.e-5 or x[1] >= 1. - 1.e-5):
6. return 1.e-8
7. else:
8. return 1.

Likelihood 

𝜋𝑙𝑖𝑘𝑒 ∝ exp [−
‖𝒀 − 𝐶(𝜽𝒎𝟏)‖2

2𝜎2
] 

where 𝐶(𝜽𝒎𝟏) is the model output when parameter is 𝜽𝒎𝟏 and ‖𝒀 − 𝐶(𝜽𝒎𝟏)‖2 is given by

‖𝒀 − 𝑪(𝜽𝒎𝟏)‖2 = ∑|𝑌𝑖 − 𝐶(𝑡𝑖; 𝜽𝒎𝟏)|2

𝑛

𝑖=1

. 

Then, the logarithmic likelihood function is 

log(𝜋𝑙𝑖𝑘𝑒) ∝ −
1

2𝜎2
∑|𝑌𝑖 − 𝐶(𝑡𝑖; 𝜽𝒎𝟏)|2

𝑛

𝑖=1

. 

Here, the standard deviation of residual will be assumed as 500.  In context, it means that the 

confirmed cases number has noise of zero mean and standard deviation of 100 people.  

1. def log_like_1(x,data):
2. #x[0]=r, x[1]=p (new or current)
3. #data[0]=t, data[1]=C_obs(t)
4. C = model_1(data[0],x[0],x[1])
5. return (-1. / (2. * noise_sig * noise_sig)) * np.dot(data[1] - C,data[1] - C)

Calibration 

The posterior updated by 𝑆𝑐 via Bayes’ rule, 

𝜋𝑝𝑜𝑠𝑡(𝜽𝒎𝟏|𝒚𝑐, 𝑆𝑐) =
𝜋𝑙𝑖𝑘𝑒(𝒚𝑐|𝜽𝒎𝟏, 𝑆𝑐)𝜋𝑝𝑟𝑖𝑜𝑟(𝜽𝒎𝟏)

𝜋(𝒚𝑐|𝑆𝑐)
. 

The calibration posterior is obtained by Metropolis-Hastings MCMC, 

1. #Defines whether to accept or reject the new sample
2. def acceptance(x, x_new):
3. if x_new>x:
4. return True
5. else:
6. accept=np.random.uniform(0,1)
7. # Since we did a log likelihood, we need to exponentiate in order to compare to

the random number
8. # less likely x_new are less likely to be accepted
9. return (accept < (np.exp(x_new-x))) 
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10. 

11. def metropolis_hastings(likelihood_computer,prior, transition_model, param_init,iterati
ons,data,acceptance_rule):

12. # likelihood_computer(x,data): returns the likelihood that these parameters generat
ed the data

13. # transition_model(x): a function that draws a sample from a symmetric distribution
and returns it

14. # param_init: a starting sample
15. # iterations: number of accepted to generated
16. # data: the data that we wish to model
17. # acceptance_rule(x,x_new): decides whether to accept or reject the new sample
18. x = param_init
19. accepted = []
20. rejected = []
21. for i in range(iterations):
22. x_new =  transition_model(x)
23. x_lik = likelihood_computer(x,data)
24. x_new_lik = likelihood_computer(x_new,data)
25. if (acceptance_rule(x_lik + np.log(prior(x)),x_new_lik+np.log(prior(x_new)))):

26.  x = x_new   
27.  accepted.append(x_new) 
28. else:
29.  rejected.append(x_new) 
30.
31. return np.array(accepted), np.array(rejected)

The transition model, standard deviation of the noise, and initial guess of the parameters are 

set as follows.  

1. transition_model_m1c = lambda x: np.random.normal(x,[0.01,0.0001],(2,))
2. noise_sig = 500.
3. theta0_m1c = [1., 0.4]
4. accepted_m1c, rejected_m1c, itr_a_m1c, itr_r_m1c = metropolis_hastings(log_like_1,prior

_1,transition_model_m1c,theta0_m1c,500000,data[:,:50],acceptance)
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Calibration Result 

MCMC convergence 
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Calibration Posterior 

Kernel Density Estimation 

Gaussian kernel with bandwidth = 0.01 is used for r. 

Gaussian kernel with bandwidth = 0.001 is used for p. 
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Calibration graphical consistency check 

Validation 

The posterior updated by 𝑆𝑣 via Bayes’ rule, 

𝜋𝑝𝑜𝑠𝑡(𝜽𝒎𝟏|𝒚𝑣, 𝒚𝑐, 𝑆𝑣, 𝑆𝑐) =
𝜋𝑙𝑖𝑘𝑒(𝒚𝑣|𝜽𝒎𝟏, 𝒚𝑐, 𝑆𝑐, 𝑆𝑣)𝜋𝑝𝑜𝑠𝑡(𝜽𝒎𝟏|𝒚𝑐 , 𝑆𝑐)

𝜋(𝒚𝑣|𝒚𝑐, 𝑆𝑣)
. 

The validation predictive posterior is obtained by Metropolis-Hastings MCMC as we did for the 

calibration. 

1. #calibration posterior
2. #prior distribution for validation
3. def prior_c_1(x):
4. #x[0] = r, x[1]=p (new or current)
5. logprob_r = kde_r.score_samples(x[0].reshape(1,-1))
6. logprob_p = kde_p.score_samples(x[1].reshape(1,-1))
7. return np.exp(logprob_r + logprob_p)
8.
9. %%capture --no-display
10. transition_model_m1v = lambda x: np.random.normal(x,[0.0001,0.00001],(2,))
11. noise_sig = 500.
12. accepted_m1v, rejected_m1v, itr_a_m1v, itr_r_m1v = metropolis_hastings(log_like_1,prior

_c_1,transition_model_m1v,mu_m1c,150000,data[:,50:],acceptance)
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Validation Result 

MCMC convergence 
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Validation Posterior 

Kernel Density Estimation 

Gaussian kernel with bandwidth = 0.001 is used for r. 

Gaussian kernel with bandwidth = 0.0001 is used for p. 
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Validation graphical accuracy check 

Due to small variance of validation posterior predictive distribution, 5,000 replications drawn 

from the validation posterior predictive posterior has small band as shown above Figure.  

However, as we can see from the Figure the validation predictions accuracy is poor.  This is 

because the limitation of the model. 

Here, the metric for the validation defined as below. 

|𝐶(83) − 𝑌84| < 0.1 ∗ 𝑌84 

This metric is devised from our quantity of interest, 𝐶(100).  Since our QoI is predicting the 

confirmed cases of far-future, the error at the most far day that we can validate is selected as 

our metric. 

For the model 1, the metric  |𝐶𝑚1(83) − 𝑌84| = 0.53 ∗ 𝑌84.  Therefore, we conclude that the 

calibrated model 1 is invalid.  
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Model 3 

𝐶(𝑡) = 𝑎 exp [𝑏 (1 −
1

1 − (1 −
𝑡
𝑇)

𝑃)] + 𝐶0 

where 𝑎, 𝑏, 𝑝 are model parameters. 𝑇 is the bound on time beyond which this model will fail to 

work. This is the limitation of this model.  We can take 𝑇 = 100.  

1. def model_3(t, a, b, p):
2. return a * np.exp(b*(1-1/(1-(1-t/100)**p)))+C0

Data 

We consider COVID 19 data at discrete times 𝒕̅ = (𝑡1 = 0, 𝑡2 = 1, … , 𝑡𝑁 = 83), where 𝑁 = 84, 

and corresponding total confirmed cases 𝒀(𝒕̅) = (𝑌1, 𝑌2, … , 𝑌𝑁).

We partition the data into two sets, 𝒚𝑐 for calibration and 𝒚𝑣 for validation, 

𝒚𝑐 = (𝑡𝑐̅, 𝑌(𝑡𝑐̅)) 

where 𝑡𝑐̅ = ((𝑡1 = 0, 𝑡2 = 1, … , 𝑡50 = 49)), 

𝒚𝑣 = (𝑡𝑣̅, 𝑌(𝑡𝑣̅)) 

where 𝑡𝑐̅ = ((𝑡51 = 50, 𝑡52 = 51, … , 𝑡𝑁 = 83)). 

QoI 

𝐶(100) 

Parameter 

𝜽𝒎𝟑 = (𝑎, 𝑏, 𝑝) 

Prior 

𝜋𝑝𝑟𝑖𝑜𝑟(𝑎) ~ 𝑈𝑛𝑖𝑓([0, ∞)) 

𝜋𝑝𝑟𝑖𝑜𝑟(𝑏) ~ 𝑈𝑛𝑖𝑓([0, ∞)) 

𝜋𝑝𝑟𝑖𝑜𝑟(𝑝) ~ 𝑈𝑛𝑖𝑓([1, ∞)) 

The statistical independence between 𝑎, 𝑏, 𝑝 is assumed. 

∴ 𝜋𝑝𝑟𝑖𝑜𝑟(𝜽𝒎𝟑) = 𝜋𝑝𝑟𝑖𝑜𝑟(𝑎)𝜋𝑝𝑟𝑖𝑜𝑟(𝑏)𝜋𝑝𝑟𝑖𝑜𝑟(𝑝) 

1. def prior_3(x):
2. #x[0] = a, x[1]=b, x[2]=p (new or current)
3. if(x[0] <= 1.e-5):
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4. return 1.e-8
5. elif (x[1] <= 1.e-5):
6. return 1.e-8
7. elif (x[2] <= 1. + 1.e-5):
8. return 1.e-8
9. else:
10. return 1.

Likelihood 

𝜋𝑙𝑖𝑘𝑒 ∝ exp [−
‖𝒀 − 𝐶(𝜽𝒎𝟑)‖2

2𝜎2
] 

where 𝐶(𝜽𝒎𝟑) is the model output when parameter is 𝜽𝒎𝟑 and ‖𝒀 − 𝐶(𝜽𝒎𝟑)‖2 is given by

‖𝒀 − 𝑪(𝜽𝒎𝟑)‖2 = ∑|𝑌𝑖 − 𝐶(𝑡𝑖; 𝜽𝒎𝟑)|2

𝑛

𝑖=1

. 

Then, the logarithmic likelihood function is 

log(𝜋𝑙𝑖𝑘𝑒) ∝ −
1

2𝜎2
∑|𝑌𝑖 − 𝐶(𝑡𝑖; 𝜽𝒎𝟑)|2

𝑛

𝑖=1

. 

Here, the standard deviation of residual will be assumed same as 500. 

1. def log_like_3(x,data):
2. #x[0]=a, x[1]=b, x[2]=p (new or current)
3. #data[0]=t, data[1]=C_obs(t)
4. C = model_3(data[0],x[0],x[1],x[2])
5. return (-1. / (2. * noise_sig * noise_sig)) * np.dot(data[1] - C,data[1] - C)

Calibration 

The posterior updated by 𝑆𝑐 via Bayes’ rule, 

𝜋𝑝𝑜𝑠𝑡(𝜽𝒎𝟑|𝒚𝑐, 𝑆𝑐) =
𝜋𝑙𝑖𝑘𝑒(𝒚𝑐|𝜽𝒎𝟑, 𝑆𝑐)𝜋𝑝𝑟𝑖𝑜𝑟(𝜽𝒎𝟑)

𝜋(𝒚𝑐|𝑆𝑐)
. 

The calibration posterior is obtained by Metropolis-Hastings MCMC. 

The transition model, standard deviation of the noise, and initial guess of the parameters are 

set as follows.  

1. transition_model_m3c = lambda x: np.random.normal(x,[100.,1.,0.1],(3,))
2. noise_sig = 500.
3. theta0_m3c = [0.1*np.max(data[1,:50]), 0.4, 4.]
4. accepted_m3c, rejected_m3c, itr_a_m3c, itr_r_m3c = metropolis_hastings(log_like_3,prior

_3,transition_model_m3c,theta0_m3c,300000,data[:,:50],acceptance)
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Calibration Result 

MCMC convergence 
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Calibration Posterior 

Kernel Density Estimation 

Gaussian kernel with bandwidth = 3.0 is used for a. 

Gaussian kernel with bandwidth = 1.0 is used for b. 

Gaussian kernel with bandwidth = 0.01 is used for p. 
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Graphical consistency check 

Validation 

The posterior updated by 𝑆𝑣 via Bayes’ rule, 

𝜋𝑝𝑜𝑠𝑡(𝜽|𝒚𝑣, 𝒚𝑐, 𝑆𝑣, 𝑆𝑐) =
𝜋𝑙𝑖𝑘𝑒(𝒚𝑣|𝜽, 𝒚𝑐, 𝑆𝑐, 𝑆𝑣)𝜋𝑝𝑜𝑠𝑡(𝜽|𝒚𝑐, 𝑆𝑐)

𝜋(𝒚𝑣|𝒚𝑐, 𝑆𝑣)
. 

The validation predictive posterior is obtained by Metropolis-Hastings MCMC as we did for the 

calibration. 

1. #calibration posterior
2. #prior distribution for validation
3. def prior_c_3(x):
4. #x[0] = r, x[1]=p (new or current)
5. logprob_a = kde_a.score_samples(x[0].reshape(1,-1))
6. logprob_b = kde_b.score_samples(x[1].reshape(1,-1))
7. logprob_p = kde_p.score_samples(x[2].reshape(1,-1))
8. return np.exp(logprob_a + logprob_b + logprob_p)
9.
10. %%capture --no-display
11. transition_model_m3v = lambda x: np.random.normal(x,[1.,0.01,0.001],(3,))
12. noise_sig = 500.
13. accepted_m3v, rejected_m3v, itr_a_m3v, itr_r_m3v = metropolis_hastings(log_like_3,prior

_c_3,transition_model_m3v,mu_m3c,150000,data[:,50:],acceptance)
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Validation Result 

MCMC convergence 
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Validation Posterior 

Kernel Density Estimation 

Gaussian kernel with bandwidth = 1.0 is used for a. 

Gaussian kernel with bandwidth = 0.1 is used for b. 

Gaussian kernel with bandwidth = 0.01 is used for p. 
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Graphical accuracy check 

The validation metric for the model 3, |𝐶𝑚3(83) − 𝑌84| = 0.1 ∗  𝑌84. 

Prediction 

QoI mean: 9,503 

QoI standard deviation: 58 
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Predicting COVID19 trends with Markov chain Monte Carlo: A
simple exercise of the Metropolis–Hastings algorithm

Jing Hu

May 2020

1 Introduction
Coronavirus disease 2019 (COVID19) is a highly infectious disease first identified in December 2019 in Wuhan,
China. It has caused more 3.5 millions of cases and more than 248,000 deaths till now as of 5 May 2020[1].
The rapid spread of the novel disease not only poses a direct threat to people health, it also causes significant
economic recessions all around the world. To curb a wider transmission of COVID19, it is essential to predicting
the trends of COVID19 in different regions of the world to further make corresponding policies to alleviate its
impact. In this report, we make an attempt to deliver a reliable predictive model based on a phenomenological
epidemic growth model whose up-to-date parameters are evaluated by constantly assimilating available data
through a Markov chain Monte Carlo method (MCMC).

2 Implementation
In this section, we present the implementation of the Metropolis–Hastings algorithm for predicting COVID19
trends in Japan, South Korea and the US. We adopt the following two-parameter generalized-growth model[2]

C(t) =
(
r

m
t+ (C0)1/m

)m
(1)

where C(t) : [0, t]→ [0,∞)] is the total confirmed COVID19 cases at time, C0 is the initial condition and r and
m are two parameters we would sampling through the Metropolis–Hastings algorithm. The implementation is
illustrated in the following algorithm (1).

In the implementation, we adopt the following distribution function, which is proportional to the posterior
probability, as

π(Yi|θ)) ∼ e−
(Yi−f(ti,θ))2

2σ2 (2)

where f(ti, θ) is the model outputs at time ti given parameter θ = {r,m} and we let the model noise σ = 10. We
enforce non-negativity for the prior π(θ) and π(θ′) given that no prior knowledge is available in the calibration.
In the validation and Bayesian learning process, we evaluate π(θ) and π(θ′) making use of the prior evidence
and we also assume {r,m} follow Gaussian distributions and r and m are independent on each other. We set
the burn in rate as 50% in calibration and 25% in daily validation.

In the following we will use COVID19 data at discrete times t̄ = (t1 = 0, t2 = 1, ..., tN = 83) where N = 84
and and corresponding total confirmed cases Y (t̄) = (Y1, Y2, ..., YN ) from Japan, South Korea and the US to
investigate the efficacy of the proposed model. We divide the data in calibration and validation by taking first
70 days data as calibration data and rest data as validation and also Bayesian learning data. We will keep
assimilating newly logged data and updating the model parameters on a daily base after calibration.
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Algorithm 1: The Metropolis–Hastings algorithm for COVID19 prediction
1. calibration;
initialization with guessed {r,m};
while iterations n: training data size do

generate a candidate through the transition model;

calculate the acceptance a = (
∏n

i=1
π(Yi|θ

′
))π(θ

′
)

(
∏n

i=1
π(Yi|θ))π(θ)

, where n is calibration data size;

if a > 1 or a generated uniform random number u ∈ [0, 1] that u < a then
accept the candidate;

else
reject the candidate;

end
end
2. validation and updating the model by assimilating newly logged data;
while iterations m: validation data size do

calculate mean and standard deviation of {r,m} of the accepted sample from last step;
initialize {r,m} with the posterior from last step, e.g. mean and standard deviation;
while iterations n: training data size do

generate a candidate through the transition model;

calculate the acceptance a = (
∏k

i=1
π(Yi|θ

′
))π(θ

′
)

(
∏k

i=1
π(Yi|θ))π(θ)

, where k is prior data size;

if a > 1 or a generated uniform random number u ∈ [0, 1] that u < a then
accept the candidate;

else
reject the candidate;

end
end

end

3 Results and discussion
Figure (1) below illustrates the general fit of the predictive models to the number of confirmed cases and the
efficacy of the model to infer the near future trends based on prior knowledge for Japan, South Korea and the
US. It can be observed that the proposed predictive models are less suitable for South Korea than for Japan
and the US, because the epidemic growth model [2] is merely able to capture sub-exponential and exponential
epidemic growth, however the outbreak in South Korea mainly displays a ”S”-shaped growth. This indicates
a more sophisticated model is desired for more extensive epidemic growth of COVID19 in different regions of
the world. The deficiency of the model is also reflected in the discouraging performance in inferring near future
COVID19 trend in South Korea, as indicated by the blue lines in Figure (1).

Figure (2) below presents the Markov chain marching trajectories in the Metropolis–Hastings algorithm.
For all three countries, we let the initial parameters {r,m} = {1, 1} and we generate 5000 samples for both
calibration and each step in validation. As seen in Figure (2), {r,m} would gradually localize in the parameter
space along the temporal evolution. The model with the localized parameters predicts well the global trend of
epidemic growth, however it may not be able to serve as a predictive model if the model cannot capture the
development of the event in each period.

As shown in Figure (3) and (4), the distributions of {r,m} of all accepted samples do not meet the Gaussian
distribution assumption well. In future work, kernel density estimation (KDE) is desired for further improve-
ment. Besides, a selective stochastic process model would be worthwhile to be considered due to the temporal
nature of the epidemic events. Figure (5) presents the joint distribution of r and m. It is clear that r and m are
correlated with each other and their correlation could be beneficial to consider to improve the current model.
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(a) Japan (b) South Korea

(c) US

Figure 1: Comparison of predictions with observance: (a) Japan, (b) South Korea and (c) US

4 Conclusion
In this report, we attempt to propose a simple and reliable model to predict COVID19 trends in Japan, South
Korea and the US, with Markov chain Monte Carlo realized through the Metropolis–Hastings algorithm. The
main conclusions of this study can be drawn as follows:
(a) The proposed model performs well when the number of COVID19 cases displays a sub-exponential and
exponential epidemic growth form. However for more general epidemic growth, a more developed model is
required.
(b) The assumptions made about the parameter distributions are not well-informed in this report. More educated
assumptions would be desired to improve the performance of the proposed model.

42

20000 

V 15000 

~ 

_8 10000 
§ 
z 

5000 

- new cases 

--- final pred ict ion 
- predic t ion t hroug h Bayesi an learning 

20 40 60 
Day 

; 
: 

I 
I 

,' 
I 

,' 
: 

,' 

,,/ 

80 

- new cases 

100 

17500 

15000 

12500 

V 

~ 10000 
'o 

I 7500 

z 
5000 

2500 

0 

2500000 - - · final pred ict ion 

- predic t ion throug h Bayesia n learning 

2000000 

1500000 

1000000 

500000 

20 40 60 
Day 

- new cases 

--- final pred ict ion 
- predic t ion throug h Bayesia n lea rning 

80 

20 

I 
I 

' ' ' I 

: 
I 

I 
,' 

,' 
I 

I 

: 
I 

/ 

100 

40 60 
Day 

~ / 

,/ 

80 

' ' ' 

' ' ' ' 

100 



(a) Japan (b) South Korea

(c) US

Figure 2: Markov chain marching trajectories: (a) Japan, (b) South Korea and (c) US
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(a) Japan (b) South Korea

(c) US

Figure 3: r histogram: (a) Japan, (b) South Korea and (c) US
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(a) Japan (b) South Korea

(c) US

Figure 4: r histogram: (a) Japan, (b) South Korea and (c) US
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(a) Japan (b) South Korea

(c) US

Figure 5: {r,m} joint distribution: (a) Japan, (b) South Korea and (c) US
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A Appendix. code

1 import pandas as pd
2 import numpy as np
3 from numpy import genfromtxt
4 import matplotlib
5 matplotlib.use('Agg')
6 import matplotlib.pyplot as plt
7 import scipy.stats
8

9 # extract data
10 df1 = genfromtxt('Japan.csv', delimiter=',')
11 df2 = genfromtxt('Korea, South.csv', delimiter=',')
12 df3 = genfromtxt('US.csv', delimiter=',')
13

14 # size of calibration data (days)
15 d=71
16 # size of total data (days)
17 dt=84
18

19 # prepare training data
20 df1t=df1[0:d,] # Japan
21 df2t=df2[0:d,] # South Korea
22 df3t=df3[0:d,] # US
23

24 # define model
25 pred= lambda x: (r/m*(x)+df3t[0,0]**(1/m))**m
26

27 #####################################
28 # define tranistion model
29 transition_model = lambda x: np.random.normal(x,[0.1,0.1],(2,))
30 import math
31

32 # prior without any information
33 def prior(r,m,r_sig,m_sig,w):
34 if (abs(r)<0.0000000000001 and abs(m)<0.0000000000001 and abs(r_sig)<0.0000000000001

and abs(m_sig)<0.0000000000001): # calibration↪→

35 if( w[0]<=0 or w[1] <=0): # enforce nonnegtivity in calibration
36 return 0
37 else:
38 return 1
39 else: # validation
40 return scipy.stats.norm(r, r_sig).pdf(w[0])*scipy.stats.norm(m, m_sig).pdf(w[1])
41

42

43 # calculate log likelihood
44 def manual_log_lik1(c0,x,data):
45 sigma=10.0 # noise
46 return

np.sum(((x[0]/x[1]*data[:,0]+c0**(1/x[1]))**x[1]-data[:,1])**2.)*(-0.5)/sigma/sigma↪→

47 # x[0]: r
48 # x[1]: m
49

50 # defines whether to accept or reject the new sample
51 def acceptance(x, x_new):
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52 if x_new>x:
53 return True
54 else:
55 accept=np.random.uniform(0,1)
56

57 def metropolis_hastings(c0,likelihood_computer,prior, transition_model,
param_init,iterations,data,acceptance_rule,r,m,r_sig,m_sig):↪→

58 # likelihood_computer(x,data): returns the likelihood that these parameters generated
the data↪→

59 # transition_model(x): a function that draws a sample from a symmetric distribution
and returns it↪→

60 # param_init: a starting sample
61 # iterations: number of samples to generat
62 # data: the data that we wish to model
63 # acceptance_rule(x,x_new): determine whether to accept or reject the new sample
64 x = param_init
65 accepted = []
66 rejected = []
67 for i in range(iterations):
68 x_new = transition_model(x)
69 x_lik = likelihood_computer(c0,x,data)
70 x_new_lik = likelihood_computer(c0,x_new,data)
71 if (acceptance_rule(x_lik +

np.log(prior(r,m,r_sig,m_sig,x)),x_new_lik+np.log(prior(r,m,r_sig,m_sig,x_new))
)):

↪→

↪→

72 x = x_new
73 accepted.append(x_new)
74 else:
75 rejected.append(x_new)
76

77 return np.array(accepted), np.array(rejected)
78

79

80 #=============================================================================
81 # Calibration
82 r=0.0
83 m=0.0
84 r_sig=0.0
85 m_sig=0.0
86

87 # Viboud et al 2015. formula
88 accepted, rejected =

metropolis_hastings(df3t[0,0],manual_log_lik1,prior,transition_model,[1, 1],
5000,df3t,acceptance,r,m,r_sig,m_sig)

↪→

↪→

89 acceptedall=accepted
90 rejectedall=rejected
91

92 # truncate burn in
93 temp=np.array(accepted.shape)
94 accepted1=accepted[int(round(temp[0]/2)):,]
95

96 # calculate {r,m} averge for initialization
97 r=np.average(accepted1[:,0])
98 m=np.average(accepted1[:,1])
99 r_sig=np.std(accepted1[:,0])
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100 m_sig=np.std(accepted1[:,1])
101

102

103 # calculate the difference between validation data and observance
104 pred_array=[0]*(dt-d)
105 pred_array[0]=pred(d)
106

107 #=============================================================================
108 # Validation and Bayesian learning
109 # conduct validation and updates {r,m} through MCMC
110 print('start validation process')
111 print('=========================================')
112 for i in range(dt-d-1):
113 # Prepare training data
114 df1t=df1[0:(d+i+1),] # Japan
115 df2t=df2[0:(d+i+1),] # South Korea
116 df3t=df3[0:(d+i+1),] # US
117

118 print(i,'==',(d+1+i),'==',acceptedall.shape,'==',accepted.shape)
119 print(r,m,r_sig,m_sig)
120

121 # Viboud et al 2015. formula
122 accepted, rejected =

metropolis_hastings(df3t[0,0],manual_log_lik1,prior,transition_model,[r, m],
5000,df3t,acceptance,r,m,r_sig,m_sig)

↪→

↪→

123 temp=np.array(accepted.shape)
124 if (temp[0]==0):
125 acceptedtemp=acceptedall
126 else:
127 acceptedtemp=np.concatenate((acceptedall, accepted))
128

129 acceptedall=acceptedtemp
130 rejectedtemp=np.concatenate((rejectedall, rejected))
131 rejectedall=rejectedtemp
132

133 # truncate burn in
134 temp=np.array(accepted.shape)
135 accepted1=accepted[int(round(temp[0]/4)):,]
136

137 # calculate {r,m} averge for initialization
138 if (temp[0]!=0):
139 r=np.average(accepted1[:,0])
140 m=np.average(accepted1[:,1])
141 r_sig=np.std(accepted1[:,0])
142 m_sig=np.std(accepted1[:,1])
143

144 # calculate the difference between validation data and observance
145 pred_array[(i+1)]=pred(d+i+1)
146

147 #=============================================================================
148 # post-processing
149 # plot Markov chain tranjectory
150 fig = plt.figure(1)
151 line1,=plt.plot(rejectedall[:,0],rejectedall[:,1],'o',

color='black',markersize=0.5,label='rejected samples')↪→
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152 line2,=plt.plot(acceptedall[:,0],acceptedall[:,1],'-x',
color='red',markersize=2.5,label='accepted samples',linewidth=0.5)↪→

153 plt.xlabel('r')
154 plt.ylabel('m')
155 lgnd=plt.legend(handles=[line1, line2])
156 lgnd.legendHandles[0]._legmarker.set_markersize(1)
157 lgnd.legendHandles[1]._legmarker.set_markersize(3)
158 plt.savefig('USPresultplot', dpi=fig.dpi)
159

160 # plot prediction and evidence
161 fig = plt.figure(2)
162 line3,=plt.plot(df3[:,0],df3[:,1],'k',label='new cases')
163 line4,=plt.plot(np.arange(1,100,1),pred(np.arange(1,100,1)),'r--',label='final

prediction')↪→

164 line5,=plt.plot(np.array(np.arange(d, dt,
1)),np.array(pred_array),'-x',color='b',markersize=2.5,label='prediction through
Bayesian learning')

↪→

↪→

165

166 lgnd=plt.legend(handles=[line3, line4, line5])
167 plt.xlabel('Day')
168 plt.ylabel('Number of cases')
169 plt.savefig('USplot', dpi=fig.dpi)
170

171 # plot {r,m} histogram
172 fig = plt.figure(3)
173 plt.hist(acceptedall[:,0], bins=15)
174 plt.xlabel('r')
175 plt.ylabel('Number of accepted samples')
176 plt.savefig('US_r_hist', dpi=fig.dpi)
177

178 fig = plt.figure(4)
179 plt.hist(acceptedall[:,1], bins=15)
180 plt.xlabel('m')
181 plt.ylabel('Number of accepted samples')
182 plt.savefig('US_m_hist', dpi=fig.dpi)
183

184 fig= plt.figure(5)
185 plt.hist2d(acceptedall[:,0],acceptedall[:,1],bins=(20, 20),cmap=plt.cm.jet)
186 plt.colorbar()
187 plt.xlabel('r')
188 plt.ylabel('m')
189 plt.savefig('US_rm_hist', dpi=fig.dpi)
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localhost:8888/nbconvert/html/GitHub/StudyCovid19/process/bayesian/Assignment on Bayesian Inversion.ipynb?download=false

Fitting COVID19 trends using Bayesian method
by Mathew Hu

In this assignment, our goal is to fit the COVID 19 trends (confirmed cases of COVID 19 as a function of date) 
using the generalized growth model given by

where  is the time (in units of days),  is the growth rate,  is the 'decceleration of
growth' parameter, see Viboud et al 2015. Special cases:  gives linear growth model and  gives
exponential growth model.

 is the total confirmed COVID 19 cases at time . When , Eq (1) can be solved to
get

where  and  is the initial condition. For special cases  and ,  can be
found easily.

When , 
When , 

= rC(t ,
dC(t)

dt
)p (1)

t ∈ [0, T] r ≥ 0 p ∈ [0, 1]

p = 0 p = 1

C : [0, T] → [0, ∞) t 0 < p < 1

C(t) = ,( t + ( )
r

m
C0)1/m

m

(2)

m = 1/(1 − p) = C(0)C0 p = 0 p = 1 C

p = 0 C = + rtC0

p = 1 C = exp[rt]C0

Alternative model
Another model is given as

where  are model parameters and  is the fixed exponent.

C(t) = a exp[b(1 − )] + ,
1

1 − (1 − t/T)p
C0 (3)

a, b p > 1

1. Problem
We cosider COVID 19 data at discrete times , where , and
corresponding total confirmed cases .

Model prediction is  where  is given by Eq (2). The model parameters are 
. Take uniform prior for  and consider a Guassian noise with zero mean and standard deviation .

Divide the data in calibration and validation by taking first  as the calibration data and rest 
 as validation data. You can also try different priors for parameters and divide data differently in

calibration and validation set.

Problem: Predict the total confirmed cases at  day for three countries US, Japan, and South Korea.

= ( = 0, = 1, . . . , = 83)t̄ t1 t2 tN N = 84

Y( ) = ( , , . . . , )t̄ Y1 Y2 YN

C( ) = (C( ), C( ), . . . , C( ))t̄ t1 t2 tN C( )ti

θ = (r, p) θ σ

= 50Nc

= N −Nv Nc

T = 100
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localhost:8888/nbconvert/html/GitHub/StudyCovid19/process/bayesian/Assignment on Bayesian Inversion.ipynb?download=false

1.1 Data
Data for current epidemic COVID 19 can be found in several places such as:

datasets/covid-19 (https://github.com/datasets/covid-19)
CSSEGISandData/COVID-19 (https://github.com/CSSEGISandData/COVID-19)
nytimes/covid-19-data (https://github.com/nytimes/covid-19-data)

In StudyCovid19 (https://github.com/prashjha/StudyCovid19) you will find python scripts to process data and
this notebook in directory process/bayesian .

Below we plot the confirmed cases for various countries

In [1]: import pandas as pd
import sys
sys.path.insert(0,'../')

In [15]: from data import plot_countries_all_plus_normalize_1 as plot
from data import save_country_data_1 as save
df = pd.read_csv('../../data/datasets/time-series-19-covid-combined.csv'
)
# plot
plot(df, ['US', 'Japan', 'Korea, South'])
# save data
save(df, ['US', 'Japan', 'Korea, South'])

2. Inplement Bayessian method
Take South Korea as an example. Following we will apply the calibration and validation, and give
QoI(#Confirmed case at T=100)'s expectation and distribution.

Num days: 84 
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localhost:8888/nbconvert/html/GitHub/StudyCovid19/process/bayesian/Assignment on Bayesian Inversion.ipynb?download=false

In [3]: import numpy as np
import matplotlib.pyplot as plt
from numpy import linalg as LA
from scipy.stats import multivariate_normal
from models import model1, model3
T = 100

2.1 Preparation
Given data of a specific country, we fist need to split it into a training set and a testing set. My approach is to set
80% of the data as training, and the rest 20% as testing. Also, we need to specify a forward model which takes
some parameters as input and returns the numbers of confirmed cases as its output. The models are aready
given above.

To apply the bayessian rule we need a prior and a likelihood function. Here we give prior as an uniform
distribution, which implies that we know nothing about the parameters initially. And here we give likelihood as an
Gaussian distribution, which is because we suppose a Gaussian noise for the data.
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In [4]: # prepare data, model, and the corresponding prior and likelihood
def prepare_data(country): 
    # open file 
    df = pd.read_csv(country+'.csv',header=None) 
    data = np.array(df) 
    # split into calibration and validation sets 
    train_size = int(data.shape[0] * 0.8) 
    data_c = data[:train_size,:] 
    data_v = data[train_size:,:] 
    return data_c, data_v 

def prepare_method(model,country,data,noise_arg): 
    # prepare model 1 
    if model == model1: 

def log_prior_c(theta): 
if theta[0]<0 or theta[1]<0 or theta[1]>1:   # r>0  0<=p<=1 

return -inf 
return 0 

# arguments used in the model 
fix_params = [data[0,1]] 
trans_param = [0.005,0.0005] 
param_init = [0.5,0.5]   

    # prepare model 3 
    if model == model3: 

# uniform prior 
def log_prior_c(theta): 

if theta[0]<0 or theta[1]<0:   # a>0,b>0 
return -np.inf 

return 0 
# arguments used in the model 
fix_params = [data[0,1],T,4] 
trans_param = [noise_arg,.001*noise_arg] 
if country=='Korea, South': 

param_init = [12000,8] 
if country=='US': 

param_init = [480000,100] 
if country=='Japan': 

param_init = [1000,8] 
    return log_prior_c, fix_params, trans_param, param_init 

def log_likelihood(theta, data): 
    tdata = data[:,0] 
    ydata = data[:,1] 
    return np.sum( - np.log(noise_arg * np.sqrt(2*np.pi)) 

- ((ydata-model(theta,tdata,fix_params))**2)/(2*noise
_arg**2) )

In addition, we will use MCMC to draw samples from the posterior we derive. Here we inplement the
Metropolis–Hastings algorithm.

localhost:8888/nbconvert/html/GitHub/StudyCovid19/process/bayesian/Assignment on Bayesian Inversion.ipynb?download=false
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In [5]: # prepare MCMC
def acceptance_rule(x, x_new):     # acceptance rule under log density 
    if x_new>x: 

return True 
    else: 

accept = np.random.uniform(0,1) 
# Since we did a log likelihood, we need to exponentiate in orde

r to compare to the random number 
# less likely x_new are less likely to be accepted 
return (accept < (np.exp(x_new-x))) 

def metropolis_hastings(log_likelihood,log_prior, transition_model, para
m_init,iterations,data,acceptance_rule): 
    # likelihood_computer(x,data): returns the likelihood that these par
ameters generated the data 
    # transition_model(x): a function that draws a sample from a symmetr
ic distribution and returns it 
    # param_init: a starting sample 
    # iterations: number of accepted to generated 
    # data: the data that we wish to model 
    # acceptance_rule(x,x_new): decides whether to accept or reject the
 new sample 
    theta = param_init 
    accepted = [] 
    rejected = []   
    for i in range(iterations): 

theta_new = transition_model(theta)    
lik = log_likelihood(theta,data) 
lik_new = log_likelihood(theta_new,data)  
if (acceptance_rule(lik + log_prior(theta),lik_new + log_prior(t

heta_new))):
theta = theta_new 
accepted.append(theta_new) 

else: 
rejected.append(theta_new)

    return np.array(accepted), np.array(rejected) 

def show_mcmc(accepted, rejected): 
    fig = plt.figure(figsize=(10,6)) 
    ax = fig.add_subplot(1,1,1) 
    ax.plot(accepted[:,0], accepted[:,1], label="Path") 
    ax.plot(accepted[:,0], accepted[:,1], 'b.', label='Accepted',alpha=
0.3) 
    ax.plot(rejected[:,0], rejected[:,1], 'rx', label='Rejected',alpha=
0.3) 
    ax.set_xlabel("first parameter") 
    ax.set_ylabel("second parameter") 
    ax.legend() 
    ax.set_title("MCMC sampling with Metropolis-Hastings. All samples ar
e shown.") 

def burn_accepted(accepted, burn_in=0.8, show=True): 
    total_iters = accepted.shape[0] 
    burnin_iters = int(burn_in*accepted.shape[0]) 
    accepted_burnin = accepted[:burnin_iters,:] 
    accepted_burned = accepted[burnin_iters:,:] 
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    if show: 
for i in range(2): 

fig = plt.figure(figsize=(15,7)) 
ax = fig.add_subplot(1,2,1)

#             ax.plot(range(burnin_iters),accepted_burnin[:,0], color='g
ray', label='burn_in') 

ax.plot(range(burnin_iters,total_iters),accepted_burned[:,i
], color='blue', label='burned') 

ax.set_title("Trace for #{} parameter (burned)".format(i+1)) 
ax.set_xlabel("Iteration") 
ax.set_ylabel("parameter") 
ax.legend() 
ax = fig.add_subplot(1,2,2) 
ax.hist(accepted_burned[:,i], bins=20, density=True) 
ax.set_ylabel("Frequency (normed)") 
ax.set_xlabel("parameter") 
ax.set_title("Histogram of #{} parameter (burned)".format(i+

1)) 
fig.tight_layout()   

    return accepted_burned

2.2 Let's start with a country and a method!
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In [6]: country = 'Korea, South'
model = model3
data_c, data_v = prepare_data(country)
noise_arg = .001 * data_c[-1,1]
print('noise standard deviation = ', noise_arg)
log_prior_c, fix_params, trans_param_c, param_init_c = prepare_method(mo
del,country,data_c,noise_arg) 

plt.figure(figsize=(8,5))
plt.plot(data_c[:,0],data_c[:,1], label="training data")
plt.plot(data_v[:,0],data_v[:,1], label="testing data")
plt.xlabel("days")
plt.ylabel("confirmed cases")
plt.legend()
plt.title("Confirmed Cases of "+ country)  
plt.show()

2.3 Calibration

In [7]: transition_model_c = lambda theta: np.random.normal(theta,trans_param_c,
(2,))
accepted_c, rejected_c = metropolis_hastings(log_likelihood,log_prior_c,
transition_model_c, 

param_init_c,50000,data_c,a
cceptance_rule)
print('# accepted = ' + str(accepted_c.shape[0]))

noise standard deviation =  9.478 

# accepted = 8736 
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In [8]: show_mcmc(accepted_c, rejected_c)
accepted_burned_c = burn_accepted(accepted_c, burn_in=0.8, show=True) 

mean_c = np.mean(accepted_burned_c, axis=0)
cov_c = np.cov(accepted_burned_c.T)
print(mean_c)
print(cov_c)
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[1.11898787e+04 6.85988185e+00] 
[[1.64794278e+01 1.35641516e-02] 
 [1.35641516e-02 2.43714818e-05]] 
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2.4 Validation

In [9]: param_init_v = mean_c
def log_prior_v(theta): 
    return multivariate_normal.logpdf(theta, mean=mean_c, cov=cov_c) # a
pproximate posterior by normal distributon
transition_model_v = lambda theta: multivariate_normal.rvs(mean=theta, c
ov=cov_c)
# transition_model_v = lambda theta: np.random.normal(theta,trans_param_
c,(2,))
accepted_v, rejected_v = metropolis_hastings(log_likelihood,log_prior_v,
transition_model_v, 

param_init_v,50000,data_v,a
cceptance_rule)
print('# accepted = ' + str(accepted_v.shape[0]))

# accepted = 20516 
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In [10]: show_mcmc(accepted_v, rejected_v)
accepted_burned_v = burn_accepted(accepted_v, burn_in=0.8, show=True) 

mean_v = np.mean(accepted_burned_v, axis=0)
cov_v = np.cov(accepted_burned_v.T)
print(mean_v)
print(cov_v)
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[1.06969164e+04 6.48237556e+00] 
[[4.81635227e+00 4.35802594e-03] 
 [4.35802594e-03 1.65535668e-05]] 

63



5/4/2020 Assignment on Bayesian Inversion

localhost:8888/nbconvert/html/GitHub/StudyCovid19/process/bayesian/Assignment on Bayesian Inversion.ipynb?download=false

To validate the model, we compute the  distance between the prediction on validation scenarios and the
observed data

where  is the parameter updated in validation, which is ramdon and subjected to a posterior we derived.

Furthermore, we have this distance devided by  as a normalization.

In summary, if the normalized error is smaller than a tolerance, then we say that the model is valid.

l2

d(d( , ), ) = ‖d( , ) − = ( |C( , ) − y( )θ∗∗ Sv yv Eθ ∗∗ θ∗∗ Sv yv‖2 Eθ ∗∗ ∑
∈ti Sv

ti θ∗∗ ti |2 )1/2

θ∗∗

‖ = ( |y( )yv‖2 ∑ ∈ti Sv
ti |2 )1/2

(d( , ), ) = <dnormalized θ∗∗ Sv yv

d(d( , ), )θ∗∗ Sv yv

‖yv‖2

γtol

In [11]: tol_v = .05
dists = [LA.norm(data_v[:,1]-model(theta,data_v[:,0],fix_params)) for th
eta in accepted_burned_v]
dist = sum(dists)/len(dists)
vad = dist / LA.norm(data_v[:,1])
print('normalized error = ', vad)
print('tolerance = ', tol_v)
if vad<tol_v: 
    print('The model is valid.')
else:  
    print('The model is invalid.')

2.5 Show fitting curves and QoI

normalized error =  0.018813350806337722 
tolerance =  0.05 
The model is valid. 
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In [12]: fig = plt.figure(figsize=(8,5)) 

# plot the curve
plt.plot(data_c[:,0],data_c[:,1], 'b-', label="training data")
plt.plot(data_v[:,0],data_v[:,1], 'g-', label="testing data")
plt.plot(np.arange(T), model(mean_c, np.arange(T), fix_params), 'b--', l
abel="model after calibration")
plt.plot(np.arange(T), model(mean_v, np.arange(T), fix_params), 'g--', l
abel="model after validation") 

plt.xlabel("days")
plt.ylabel("confirmed cases")
plt.legend()
plt.title("Confirmed Cases of "+ country) 
plt.show()
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In [13]: QoIs = [model(theta,[100],fix_params)[0] for theta in accepted_burned_v] 

fig = plt.figure(figsize=(8,5))
ax = fig.add_subplot(1,1,1)
ax.hist(QoIs, bins=20, density=True)
ax.set_ylabel("Frequency (normed)")
ax.set_xlabel("QoI")
ax.set_title("Histogram of QoI") 

QoI = sum(QoIs)/len(QoIs)
print('We expect the number of confirmed cases at T=100 is about', QoI)

3. Compare models

3.1 By errors in validation

We have errors computed in validation, so we can compare the errors derived with different models.

We expect the number of confirmed cases at T=100 is about 10697.9163527
61991 
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In [14]: country = 'Korea, South'
data_c, data_v = prepare_data(country)
noise_arg = .001 * data_c[-1,1]
errs = []
for model in [model1, model3]: 
    log_prior_c, fix_params, trans_param_c, param_init_c = prepare_metho
d(model,country,data_c,noise_arg) 

    transition_model_c = lambda theta: np.random.normal(theta,trans_para
m_c,(2,)) 
    accepted_c, rejected_c = metropolis_hastings(log_likelihood,log_prio
r_c,transition_model_c, 

param_init_c,50000,data
_c,acceptance_rule) 
    accepted_burned_c = burn_accepted(accepted_c, burn_in=0.8, show=Fals
e) 
    mean_c = np.mean(accepted_burned_c, axis=0) 
    cov_c = np.cov(accepted_burned_c.T) 
    param_init_v = mean_c 
    def log_prior_v(theta): 

return multivariate_normal.logpdf(theta, mean=mean_c, cov=cov_c) 
# approximate posterior by normal distributon 
    transition_model_v = lambda theta: multivariate_normal.rvs(mean=thet
a, cov=cov_c) 
    accepted_v, rejected_v = metropolis_hastings(log_likelihood,log_prio
r_v,transition_model_v, 

param_init_v,50000,data
_v,acceptance_rule) 
    accepted_burned_v = burn_accepted(accepted_v, burn_in=0.8, show=Fals
e) 
    dists = [LA.norm(data_v[:,1]-model(theta,data_v[:,0],fix_params)) fo
r theta in accepted_burned_v] 
    dist = sum(dists)/len(dists) 
    err = dist / LA.norm(data_v[:,1]) 
    errs.append(err)
print(errs)
if errs[0]<errs[1]: 
    print('Model 1 is better.')
else: 
    print('Model 3 is better.')

References
Viboud et al 2015 Viboud, C., Simonsen, L. and Chowell, G., 2016. A generalized-growth model to
characterize the early ascending phase of infectious disease outbreaks. Epidemics, 15, pp.27-37.

[0.0912322339603141, 0.019728819625629473] 
Model 3 is better. 
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Bayesian Parameter Estimation for COVID-19 Models 

I. Model Selection

In order to estimate the number of cases in Japan on the 100th day (our QoI), we will use the model: 

𝐶(𝑡) = (
𝑟

𝑚
𝑡 + 𝐶𝑜

1
𝑚)

𝑚

, 𝑚 =
1

1 − 𝑝

where t is the number of days since the outbreak, 𝐶𝑜 is the number of positive cases on day zero, and r 
and p are the parameters to be fit. In order to fit the model parameters to the data, we will use the 
Metropolis-Hastings (MH) algorithm. 

II. Calibration

For the calibration step, we assume that p is drawn from the uniform distribution between (0,1) 
and r is drawn from the uniform distribution between (0,10). Let 𝜽 = {𝑟, 𝑝} and denote our uniform 
prior for the calibration step as 𝜋(𝜽).  Then we estimate the posterior distribution for the calibration 
data as  

𝜋(𝜽|𝒚𝒄, 𝑆𝑐) ∝ 𝜋(𝒚𝒄|𝜽, 𝑆𝑐) 𝜋(𝜽), 

where 𝒚𝒄 is the calibration data, 𝑆𝑐 denotes the calibration scenario, 𝜋(𝜽|𝒚𝒄, 𝑆𝑐) is the calibration 
posterior and 𝜋(𝒚𝒄|𝜽, 𝑆𝑐) is the calibration likelihood. If we assume that the noise for the data is 
normally distributed, we can write the likelihood for the calibration as  

𝜋(𝒚𝒄|𝜽, 𝑆𝑐) ∝ exp (−
‖𝒚𝒄 − 𝐶(𝜽)‖2

2

2𝜎2
) 

where 𝜎 is the standard deviation of the noise associated with 𝒚𝒄. Upon running MH for one thousand 
iterations and the cases for 𝑡 ∈ [0,53] as calibration data, we find the following distributions for the 
accepted r and p values (Fig. 1).  

Using the computed means for r and p (𝜇𝑟 and 𝜇𝑝 respectively), Figure 2 shows the prediction 

compared to the calibration data.  
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III. Validation

Next, we wish to update our model to incorporate the full range of data available as well as validate 
the final model. During this validation step, we similarly use the MH algorithm but our validation prior is 
the calibration posterior, i.e.,  

𝜋(𝜽|𝒚𝒗, 𝒚𝒄, 𝑆𝑣, 𝑆𝑐) ∝ 𝜋(𝒚𝒗|𝜽, 𝒚𝒄, 𝑆𝑣 , 𝑆𝑐) 𝜋(𝜽|𝒚𝒄, 𝑆𝑐), 

or 

𝜋(𝜽|𝒚𝒗, 𝒚𝒄, 𝑆𝑣, 𝑆𝑐) ∝ 𝜋(𝒚𝒗|𝜽, 𝒚𝒄, 𝑆𝑣 , 𝑆𝑐) 𝜋(𝒚𝒄|𝜽, 𝑆𝑐) 𝜋(𝜽). 

Upon taking the log of the validation posterior, we see that 

log(𝜋(𝜽|𝒚𝒗, 𝒚𝒄, 𝑆𝑣, 𝑆𝑐)) ∝ −
‖𝒚𝒗−𝐶(𝜽)‖2

2

2𝜎2 −
‖𝒚𝒄−𝐶(𝜽)‖2

2

2𝜎2 +log( 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜽)).  Now, we update the MH

algorithm and again run for one thousand iterations. Figure 3 shows the posterior distributions for r and 
p. 

Fig. 1:  The calibration posterior distribution for Model One’s parameters p (left) and r (left). The 
distributions were assumed to be normal with 𝜎𝑝 = 0.005, 𝜇𝑝 = 0.86, 𝜎𝑟 = 0.004, and 𝜇𝑟 =0.19 

Fig. 2:  The calibration data shown with the model with 𝑝 = 𝜇𝑝 and  𝑟 = 𝜇𝑟. 
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Using the computed means for r and p (𝜇𝑟 and 𝜇𝑝 respectively), Figure 4 shows the prediction 

compared to the validation data. Viewing the validation data and model in log-scale enables us to see 
that the growth in the total number of cases changes abruptly around the 60-day mark, and that our 
model is following that trend rather than previous trends in the data. Given that our QoI is predicting 
the total number of cases at 100 days, we should only use the data from the 60-day mark forward to 
validate our model.  Then only comparing our model to the total cases between days 60-84 reveals that 
we are on average 10% off from the measured data. 

IV. QoI prediction and uncertainty quantification

Fig. 3:  The validation posterior distribution for Model One’s parameters p (left) and r (left). The 
distributions were assumed to be normal with 𝜎𝑝 = 0.004, 𝜇𝑝 = 0.96, 𝜎𝑟 = 0.003, and 𝜇𝑟 =0.12 

Fig. 4:  The validation data shown with the model with 𝑝 = 𝜇𝑝 and  𝑟 = 𝜇𝑟 (left) and the 

validation data shown with the model in log-scale.  
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Our model predicts that there will be 32,757 total cases in Japan after 100 days with a 95% (two-
sigma) confidence interval that the number of cases will be between 23,400 and 49,600 . Figure 5 shows 
the validation data along with our model with accompanying two-sigma uncertainty up to 100 days in 
log-scale.  

Fig. 5:  The validation data shown with the model along with the model’s two-sigma uncertainty 

(shaded region around the prediction) 
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Problem on Bayesian Inversion

Following the numbering given in the second document for this assignment, we are working with

models 1 and 3.

Model 1 is given by

Ĉ(t) = d1(t, θ) =


(
r(1− p)t+ C1−p

0

)1/(1−p)
0 ≤ p < 1,

C0 exp (rt) p = 1,
(1)

where r > 0 and p ∈ [0, 1] are the model parameters (θ = (r, p)). C0 = C(0) is the initial condition

which is going to be set to C0 = 2.

Model 3 is given by

Ĉ(t) = d3(t, θ) = a exp

[
b

(
1− 1

1− (1− t/T )p

)]
+ C0, (2)

= exp

[
ln a+ b

(
1− 1

1− (1− t/T )p

)]
+ C0, (3)

where a, b > 0 are to be determined, while T = 100, C0 = 20 and p = 4 are fixed a priori. For

reasons that will turn clear below, we don’t directly regard a as a parameter but ln a instead. Then

our model parameters in this case are θ = (ln a, b)

We have been given data of confirmed cases of COVID-19 in three countries: United States (i = 1),

South Korea (i = 2) and Japan (i = 3). The data covers N = 84 days (from t = 0 through t = 83).

The goal is to propose a prediction for t = 100 using a calibrated and, if possible, validated model

from the ones above.

As suggested, the first NC = 50 numbers in each time series are serving as the calibration data,

whereas the remaining NV = 34 will be the validation data.

The quantity of interest is the number of confirmed cases at certain time tq, C(tq).

1 General assumptions and definitions

We assume that the relationship between the data and the model output corresponds to a multi-

plicative noise model, that is,

C(t) = dM (t, θ)ε, (4)
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where ε ∼ Lognormal(0, σ2ε ) is a random variable whose logarithm is a Gaussian of mean zero and

variance σ2ε , and M represents the model number.

In our computations, the (logarithmic) noise standard variation is equal for all models and countries,

setting it to σε = 0.5.

The current problem deals with growth along time, with a range of several orders of magnitude.

Switching to a logarithmic scale, both in the data and the model, seems natural for dealing with

this kind of growth. By taking the natural logarithm of (4) we have

lnC(t) = ln dM (t, θ) + ln ε.

In this logarithmic form, the noise has become additive. The assumption on the noise distribution

together with (1) imply that

π(lnC(t)|θ) ∝ N (lnC(t)| ln dM (t, θ), σ2ε ),

As a likelihood for modelM , scenario S and the n-th data pair of the data set Y S = {(tSn , lnCSn ), n =

1, 2, ..., NS}, the previous density function is reinterpreted as a function over θ by

πnlike,M (θ|S, Y S) ∝ N (lnCSn | ln dM (tSn , θ), σ
2
ε ), (5)

giving rise, in turn, to the joint likelihood distribution

πlike,M (θ|S, Y S) =

NS∏
n=1

πnlike,M (θ|S, Y S). (6)

The strategy to attempt a predicted value of C follows the prediction pyramid taught in class:

calibration, validation and (if model not invalid) prediction of a quantity of interest. We consider

the calibration and validation two different scenarios that are introduced to the same Bayesian

inversion procedure that we now describe.

Provided a model M (1 or 3), a scenario S (S = SC,i for calibration or S = SV,i for validation,

with respect to country i), data Y S and the corresponding prior pdf πprior,M (θ|S) and likelihood

distribution πlike,M (θ|S, Y S), by Bayes’ rule the posterior pdf is proportional to the product:

πpost,M (θ|S, Y S) ∝ πlike,M (θ|S, Y S)πprior,M (θ|S). (7)

In this work we will not compute the evidence, so πpost,M will not be necessarily a normalized pdf.

Inspired by the example on Bayesian linear regression presented by Bishop [1, pp.152-156], we want

to obtain the posterior distribution by sequentially getting the individual contribution of each data

point, allowing for a so called on-line or sequential learning. Let 1 ≤ n ≤ NS , then define the

posterior at each step by:

πnpost,M (θ|S, Y S) ∝

{
π1like,M (θ|S, Y S)πprior,M (θ|S) if n = 1,

πnlike,M (θ|S, Y S)πn−1
post,M (θ|S, Y S) if 2 ≤ n ≤ NS ,

(8)

75



with NS being either NC or NV , according to the current stage. By (6) it is clear that

πpost,M (θ|S, Y S) = πNS
post,M (θ|S, Y S).

Thus, we can also have our own version of his Figure 3.7, where the prior, likelihood and posterior

distributions at each step are plotted. This will be expanded in the results section.

Next, we choose the prior distributions for the two models, followed by presenting the components

of the Bayesian inversion process used at each stage.

2 Prior distributions

2.1 Model 1

The first parameter θ1 = r is a positive real. Since it must not be zero and the probability of being

large must decay, we propose a log-normal distribution

πrprior(θ1) = Lognormal(θ1|0, 1).

The second parameter θ2 = p is a real number in the closed unit interval. Since there is no additional

prior information, we set a uniform distribution

πpprior(θ2) = U(θ2|0, 1).

We assume independence of events for the parameters, and then the joint probability is

πr,pprior(θ) = πrprior(θ1)π
p
prior(θ2). (9)

2.2 Model 3

In this model, the number of cases starts at an initial value C0 and when time reaches t = T , Ĉ 
converges to a steady state with number of cases equal to a + C0. The value of a might be any 
number between 1 and the total number of susceptible people in the country, which we may say is the

whole population. To reduce the magnitude of the variations of a we may take its logarithm as the

actual parameter, as mentioned above. Notice that, disregarding the effect of C0, our logarithmic 
model 3 is linear with respect to our chosen parameter θ1 = ln a.

Let Pi denote the population of country i, then our prior for ln a is the uniform pdf:

πlnpri
a
or(θ1) = U(θ1|0, ln Pi).
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Concerning b, it must be positive and should have a decaying pdf, just as in the model 1:

πbprior(θ2) = Lognormal(θ2|0, 1).

As a consequence, the joint prior probability for this model is

πln a,bprior(θ) = πln aprior(θ1)π
b
prior(θ2). (10)

3 Calibration stage

The calibration prior for model 1 is given by (9):

πprior,1(θ|SC,i) = πr,pprior(θ).

The calibration prior for model 3 is given by (10):

πprior,3(θ|SC,i) = πln a,bprior(θ).

Both priors are independent of the country number i.

We are provided the calibration data sets Y SC,i , each consisting of NC pairs.

The likelihood is determined by function (5), where it is required the evaluation of dM (t
SC,i
n , θ) for

a fixed t = t
SC,i
n and varying θ, either through (1) or (3) according to the model number M . This

must be done for all 1 ≤ n ≤ NC .

After applying (7) or (8), we obtain the posterior πpost,M (θ|SC,i, Y SC,i).

4 Validation stage

The prior for the validation stage of country i is set to the respective calibration posterior:

πprior,M (θ|SV,i) = πpost,M (θ|SC,i, Y SC,i).

Identically as above, using the validation data sets Y SV,i , each with NV pairs, we can compute the

likelihood πnlike,M (θ|SV,i, Y SV,i) for every 1 ≤ n ≤ NV .

This is followed by the determination of the validation posterior πpost,M (θ|SV,i, Y SV,i , SC,i, Y SC,i ) 
using again (7) or (8).

We must choose a metric and a tolerance to decide whether the model is invalid or not. In order 
to carry this out, we want to have a realization of the model using the mean of the posterior 
distribution, or a good approximation to it.
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By using a MCMC sampling method, we may compute θ̄M,i, the arithmetic mean of all the points

in the sample, and use those parameter values to evaluate (1) and (3) at the desired value of t.

With this in mind the metric is

δ
(
dM (·, θ̄M,i), (Y

SC,i ∪ Y SV,i)
)

=


N∑
n=1
| ln dM (tn,i, θ̄M,i)− lnCn,i|2

N∑
n=1
| lnCn,i|2


1/2

, (11)

where

(tn,i, Cn,i) =

{
(t
SC,i
n , C

SC,i
n ) if 1 ≤ n ≤ NC ,

(t
SV,i

n−NC
, C

SV,i

n−NC
) if NC + 1 ≤ n ≤ NC +NV .

Under this metric, which is simply a relative `2 error in terms of logarithmic values, the tolerance 
is set to γ = 0.05.

If for any model M and data of country i we get δ ≤ γ, we say that dM (·, θ̄M,i) is not invalid. If 
so, we can use it to evaluate at tq = 100 and propose a predicted value.

The results obtained through this metric must be seen cautiously though. The idea behind using 
the logarithmic values helps balancing the differences in orders of magnitude of C as time varies. 
But it may happen that the error is concentrated in the last portion of the curve, where small 
differences in the log scale correspond to pretty large differences in the regular linear scale.

5 Results

5.1 Implementation

The problem solution was addressed by means of a MATLAB code, using many of the functionalities 
of that program. We have taken advantage of the predefined probability density functions of 
MATLAB, as well as the sampling, graphics, function handles and capacity of dealing with floating 
point numbers of impressively small magnitude. Because of the latter, and that the problem 
complexity was not very high, we have been able of doing computations that in other circumstances 
would become intractable. The models and priors are written in different MATLAB files. Later, 
inside the program driver we use those routines through function handles (objects of the form 
y = @(x) f(x)). Consequently, our posterior distributions can be obtained through recursive 
multiplications of function handles. Thus, we actually have access to the exact function determining 
the posterior distribution and we can sample from it, or directly evaluate it and plot it.

As we mentioned initially, we want to visualize the sequential Bayesian learning process. For 
that purpose, let us start by describing the calibration stage with the help of Figure 1 (all figures 
have been moved to the end of the document). Here, for one model and one country, the prior 
distribution i s first shown. I n the next row, we have the l ikelihood of the parameters i n regard
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of the first calibration data point. This likelihood function is scaled so that its peak has a height

close to 1. In the right column we then find the posterior for this first data point, which is the

multiplication of the previous two functions. In the next row, we have the likelihood corresponding

to the second calibration data point. The second posterior is therefore the multiplication of the

previous two functions. This process is continued for n = 3, as observed in the bottom row. After

all data points are exhausted, we obtain the last likelihood and last posterior of the calibration

stage, as depicted on Figure 2. This plot allows perceiving a shape of the likelihood quite different

from the initial steps, what is caused by the larger values of the data.

In our code, the function handle of the calibration posterior passes directly to serving as the prior

for the validation stage, save for a re-scaling. After doing so, we proceed with the exact same

procedure as in the calibration, until all the validation data points are exhausted. On Figure 3 we

show the validation prior, which is clearly just a stretched version of the posterior of the previous

figure. In the bottom, we find the likelihood and posterior of the last step of the validation stage.

Notice how the shape of the validation posterior changed with respect to that of the calibration.

The resulting posterior distribution is used inside the MCMC sampling. For this task, we define

a subset of the parameter space where we focus our attention (also used for plotting). We use a

rectangle [0, Lx]× [0, Ly]. For model 1, Lx = 2 and Ly = 1. For model 3, Lx = lnPi (it depends on

the country) and Ly = 100. The sampling is done with the mhsample function. The starting point

of the Markov chain is a parameter vector equal to (Lx/2, Ly/2). We decide the number of samples

to be 10,000, which are obtained after a burn-in of 1,000. The randon number generator for the

symmetric proposal distribution is a bivariate Gaussian of covariance equal to
(
Lx/20 0

0 Ly/20

)
.

To visualize the results of the sampling process, we use a bivariate histogram and a 3D scatter 
plot of πpost(θ1, θ2) evaluated at every sample point. In Figure 4 we have one posterior distribution 
followed by the histogram and the scatter plot with the 10,000 points. Notice that both plots are 
well localized on the area where the peak of the posterior is. An arithmetic mean of this sample is 
seemingly a good approximation to the actual distribution’s mean. As mentioned above, we take 
that mean to generate a realization of the calibrated/validated model. Since this realization is in 
principle not reproducible, for this exercise we run the code and compute the mean 3 times for each 
model-country pair, and check the validation metric every time (results reported below).

Finally, when running the code, besides generating the plots, it delivers the value of θ̄M,i according 
to the random samples, before and after validation. It also evaluates the error metric and prints 
whether the model is invalid or not. In the end, the code shows the predicted number of cases in

country i using the updated θ̄M,i in the model M , for t = tq.

The MATLAB scripts are given as an attachment to this report. The code that we provide is 
capable of plotting all this sequence, to dynamically visualize the sequential Bayesian learning 
process for any given model and country included in this work. The users can choose the model, 
country and whether they wish to generate all the plots and save them as an animated GIF.

Now that we have explained the methodology and how the code works, we present the results.
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5.2 Model 1

Figure 5 presents the comparison of the data against the results of (one realization of) model 1, in

logarithmic terms, before and after the validation process. Moreover, on Table 1 we are reporting

the results of three realizations of the model for each country. The information includes the mean

θ̄M,i of samples before and after validation. Next, we show the result of δ obtained with the latter.

We compare against the tolerance γ = 0.05 and, in the sixth column we determine whether the

model realization qualifies as invalid or not invalid. Finally, we compute the output of the model

for tq = 100 in all cases, indicating those where the model did not fail the validation test. In this

case, that happened for one of the countries only (Japan).

Country
Realization

No.

Calibration

sample mean

Validation

sample mean
δ

Qualifies

as

Prediction

at tq = 100

U.S.A. 1
r = 0.1026,

p = 0.9840

r = 0.1466,

p = 0.9987
0.1655 INVALID 3978154

U.S.A. 2
r = 0.1019,

p = 0.9836

r = 0.1540,

p = 0.9916
0.1718 INVALID 3626853

U.S.A. 3
r = 0.0980,

p = 0.9918

r = 0.1494,

p = 0.9925
0.1716 INVALID 2629687

South

Korea
1

r = 0.1750,

p = 0.9904

r = 0.2317,

p = 0.8898
0.1345 INVALID 121144

South

Korea
2

r = 0.1703,

p = 0.9899

r = 0.2418,

p = 0.8824
0.1338 INVALID 113096

South

Korea
3

r = 0.1715,

p = 0.9885

r = 0.2288,

p = 0.8897
0.1353 INVALID 111153

Japan 1
r = 0.1880,

p = 0.8660

r = 0.1874,

p = 0.8630
0.0394

NOT

INVALID
13158

Japan 2
r = 0.1958,

p = 0.8558

r = 0.1842,

p = 0.8675
0.0389

NOT

INVALID
13836

Japan 3
r = 0.1935,

p = 0.8564

r = 0.1841,

p = 0.8707
0.0400

NOT

INVALID
15256

Table 1: Results with model 1. Predicted values obtained with not invalid models are underlined.

5.3 Model 3

With the same format as in the first model, we show the data and modeled curves in Figure 6, 
while the remaining information is given on Table 2. Unlike the previous one, this model turned 
out to be invalid for every country.
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Country
Realization

No.

Calibration

sample mean

Validation

sample mean
δ

Qualifies

as

Prediction

at tq = 100

U.S.A. 1
ln a = 8.6132,

b = 28.9367

ln a = 12.6497,

b = 76.3253
0.1188 INVALID 311685

U.S.A. 2
ln a = 8.5315,

b = 28.2734

ln a = 12.6631,

b = 76.6859
0.1189 INVALID 315897

U.S.A. 3
ln a = 8.5384,

b = 28.3272

ln a = 12.6508,

b = 76.3626
0.1188 INVALID 312034

South

Korea
1

ln a = 10.7577,

b = 19.1488

ln a = 9.5783,

b = 14.1601
0.1157 INVALID 14468

South

Korea
2

ln a = 10.7661,

b = 19.1412

ln a = 9.5744,

b = 14.1643
0.1158 INVALID 14411

South

Korea
3

ln a = 10.7715,

b = 19.1754

ln a = 9.5705,

b = 14.1330
0.1157 INVALID 14356

Japan 1
ln a = 6.6987,

b = 7.5260

ln a = 7.6714,

b = 12.2328
0.1255 INVALID 2166

Japan 2
ln a = 6.7085,

b = 7.6011

ln a = 7.6616,

b = 12.1813
0.1256 INVALID 2145

Japan 3
ln a = 6.6948,

b = 7.5713

ln a = 7.6715,

b = 12.2980
0.1256 INVALID 2166

Table 2: Results with model 3. All the models are qualified as invalid with the preset tolerance.

6 Conclusions

The Bayesian sequential learning has been applied to the modeling of confirmed cases of COVID-19.

Because of the quick change in order of magnitude in the data, we switched to logarithmic scale,

in which a single noise model was sufficient to work for all cases.

Two different simple models were subjected to the process. By setting constant initial conditions,

we have reduced the parameter space of both models to two variables only. This furthermore helps

visualizing the evolution of the learning process.

Only one model, applied to only one country, passed the validation test and was qualified as not
invalid. From Table 1 we see that we are talking about model 1 and Japan, with a predicted

number of cases for tq = 100 of around 13158, 13836 or 15256.

A more complete work may comprise the calibration of a larger parameter space, including C0 and 
the hyperparameter σε. The same strategy taken in this work would still apply, but the visualization 
of the Bayesian sequential learning would be less straightforward.

A MATLAB code and animated GIFs with the results herein presented are attached to this report.
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Figure 1: Bayesian sequential learning - First calibration steps (Model 1, Country 3). 
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Figure 2: Bayesian sequential learning - Last calibration step (Model 1, Country 3).

Figure 3: Bayesian sequential learning - Validation stage: prior, and last likelihood and posterior 
(Model 1, Country 3).
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Figure 4: Posterior distribution after validation stage, and sampling through the Metropolis-

Hastings MCMC method (Model 3, Country 2).
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Figure 5: Comparison of data against model 1 before and after the validation stage for each country.
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Figure 6: Comparison of data against model 3 before and after the validation stage for each country.
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Bayesian Calibration and Validation of a COVID-19 Contagion Model

Cyrus Neary
The University of Texas at Austin

April, 2020

Given data on the number of confirmed Covid-19 cases in each of the 84 days since the first 
reported case, we wish to model the spread of the virus and to subsequently predict the num-ber of 
confirmed cases at day T = 100. The primary objective of this exercise is to apply the model 
calibration and validation techniques learned in CSE 397: Predictive Computational Science 
Fundamentals to a real-world model and dataset.

1 The Generalized Growth Model

We use the generalized growth model [1] to predict the number of confirmed cases of COVID-19 at 
time t. Let C(t) represent the number of confirmed cases after t days have elapsed since the first 
confirmed case. We define two parameters: the growth rate r ≥ 0 and the deceleration parameter p ∈ 
[0, 1]. The generalized growth model is then given by Equation 1.

dC(t)

dt
= rC(t)p (1)

Let m = 1
1−p and C0 = C(0), then we may write the solution to the above ODE as:

C(t) =


rt+ C0 if p = 0

( rm t+ C
1/m
0 )m if 0 < p < 1

C0e
rt if p = 1.

(2)

2 Bayesian Model Calibration and Validation

To express our modeling and prediction goals in the language of Bayesian model calibration, we
first define model vector θ = (r, p) ∈ R2. Our aim to find the posterior distribution π(θ|y): the
density function of parameter vector θ given the observed data y = {y0, y1, ..., y83}. While we do
not know this posterior distribution, we may compute it using Bayes’ theorem.

π(θ|y) =
π(y|θ)π(θ)

π(y)
(3)

Here, π(y|θ) is the likelihood of data y being produced by the model with parameters θ. We
assume this distribution is generated by our model and additive observation noise. The prior
distribution π(θ) encodes our prior knowledge of the values that θ may take. π(y) is called the
evidence.
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Once we have the posterior distribution, we obtain a distribution over the values of our QoI:
π(Q(θ)|y). We then predict the QoI to be the average value of this distribution E[Q(θ)|y] and we
use the variance of the QoI’s distribution to describe the uncertainty in this prediction.

Following the ”prediction pyramid” hierarchy discussed in class, we break our process up into
three tasks: model calibration, model validation, and prediction of the QoI.

2.1 Model Calibration

In model calibration, we choose a prior π(θ) for the calibration scenario Sc and use preliminary
calibration data yc to obtain the calibration posterior π(θ|yc, Sc). This stage is meant to calibrate
our model by finding parameters using data that is typically obtained through simple component
tests.

π(θ|yc, Sc) =
π(yc|θ, Sc)π(θ)

π(yc|Sc)
(4)

2.2 Model Validation

Once the calibration posterior has been obtained, we move to the validation scenario Sv. We
typically validate the model using data yv generated by experiments specifically designed to test
our model’s ability to accurately predict the QoI. Mathematically, we use Bayes’ rule to update
our previous estimate of the posterior distribution on θ to include yv as described in Equation 5.

π(θ|yv,yc, Sv, Sc) =
π(yv|θ,yc, Sv, Sc)π(θ|yc, Sc)

π(yv|yc, Sv, Sc)
(5)

At this stage, we use a problem-specific metric d(., .) to verify that our model is sufficiently
accurate. To do this, we pre-specify some tolerance γtol, and check that d(M(),yv) ≤ γtol, where
M(θ) denotes the model output given the selected parameter vector θ. If this inequality is satisfied,
we say that our model is valid with respect to the selected metric and tolerance, and we move onto
prediction of the QoI using the posterior distribution described by Equation 5.

3 Markov Chain Monte Carlo (MCMC)

Because we aren’t able to obtain closed-form expressions for the posterior distributions described
in Section 2, we use Markov Chain Monte Carlo as a way to sample them. This technique works by
constructing a Markov chain that has the desired posterior distribution as its limiting distribution.
We may thus approximate the posterior distribution by simulating random walks through the
designed Markov chain. In this project, we use the Metropolis Hastings Algorithm for MCMC.

4 Calibrating a Model for the Japan Dataset

In this project I use data on the confirmed cases in Japan. Because we are not able to design
and test experiments to create a separate validation scenario for our model, the existing 84-
day dataset is instead split into calibration and validation components. Data from the first 50
days yc = {y0, y1, ..., y49} is used to calibrate the model, while the data from the remaining days
yv{y50, y51, ..., y83} is used to validate it.
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For a given parameter vector θ, we may compute the value of the posterior distribution π(θ|yc, Sc)
using Equation 4. Here, the prior π(θ) is taken to be a uniform distribution on the possible parame-
ter values. To compute the likelihood π(yc|θ, Sc), we assume that all observation error is described
by additive Gaussian noise with zero mean and standard deviation σ.

For a given data-point, yt the number of confirmed cases at day t, we may then compute the
likelihood π(yt|θ, Sc) for a selected instantiation of θ using Equation 6.

π(yt|θ, Sc) ∝ e
(yt−Cθ(t))

2

2σ2 (6)

Assuming the gaussian noise is sampled i.i.d. with each new data-point, the likelihood of the
entire calibration dataset may be written as in Equation 7.

π(yc|θ, Sc) ∝ e
1

2σ2

∑
t(yt−Cθ(t))2 (7)

A quantity proportional to the log of the desired posterior distribtuion may then be computed
for a particular value of θ using Equation 8.

log(π(θ|yc, Sc)) ∝ log(Uniform(θ))− 1

2σ2

∑
t

(yt − Cθ(t))2 (8)

Note that to sample π(θ|yc, Sc) we use the Metropolis-Hasings algorithm. To construct the
Markov chain for MCMC, this algorithm uses only relative values of the posterior distribution for
different points θ, θ′ in the parameter space. So, we need not compute the evidence π(yc|Sc).

In our implementation, we used a value of σ = 8 to model the gaussian noise.
The results of running MCMC are shown in Figure 1. The random walk through the parameter

space quickly converges towards an area in the top left of Figure 1b, where it appears to stay in
subsequent iterations of the algorithm. This indicates that it is in this area of the parameter space
where the posterior density is the highest. To compute an estimate of the average value of θ under
the posterior distribution π(θ|yc, Sc), denoted θ̂, we compute the empirical average of the accepted
parameter values after a certain number of buffer iterations. We exclude all algorithm-accepted
parameters before the specified number of buffer iterations to ensure the random walk has had
sufficient time to settle into the equilibrium distribution of the constructed Markov chain.
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(a) Parameter values accepted by the Metropo-
lis Hastings algorithm. The parameter values
were initialized to θ = (0.5, 0.5).

(b) The random walk through the parameter
space resulting from MCMC.

Figure 1 – A visualization of the process of running the Metropolis-Hastings algorithm for MCMC to
sample the posterior distribution π(θ|yc, Sc).

Once we have an estimate θ̂ of the mean parameter vector under the posterior distribution
π(θ|yc, Sc) for the calibration scenario, we may construct the corresponding model solution Cθ̂(t)
and plot it as a function of t to verify visually that it fits the calibration data. This plot is shown
in Figure 2.

Figure 2 – Confirmed case data and calibrated model predictions. Black rectangles show the confirmed
case data-points included in the calibration data-set. The blue curve shows the predicted number of
confirmed cases given by the model Cθ̂(t), where θ̂ is our estimate of the mean value of θ computed
using our MCMC-sampled parameter values.
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5 Model Validation

To validate the model we use MCMC to sample the posterior distribution π(θ|yv,yc,Sv,Sc). This
distribution is conditioned on the validation data yv = {y50, y51, ..., y83} as well as the information
gained from the calibration step. For any given sample of the parameter vector θ, we use Equation 5
to compute the value of π(θ|yv,yc,Sv,Sc). Following similar mathematical steps to those described
in Section 4, we obtain the following expression for the log of the posterior distribution.

log(π(θ|yv,yc, Sv, Sc)) ∝ log(π(θ|yc, Sc)))−
1

2σ2

∑
t∈Sv

(yt − Cθ(t))2 (9)

Where π(θ|yc, Sc) is estimated to be a multi-variate normal distribution with mean µ and
covariance matrix Σ. The values of µ and Σ are computed as the empirical mean and covariance
of the accepted sample points from the calibration run of MCMC described in Section 4. The
results of the Metropolis-Hastings algorithm are shown in Figure 3. For validation, the algorithm is
initialized to the mean parameter values computed during calibration. We note from Figure 3 that
the inclusion of the validation data yv appears to have changed the most likely parameter values.

(a) Parameter values accepted by the Metropo-
lis Hastings algorithm. The parameter values
were initialized to θ = (0.19, 0.87).

(b) The random walk through the parameter
space resulting from MCMC.

Figure 3 – A visualization of the process of running the Metropolis-Hastings algorithm for MCMC to
sample the posterior distribution π(θ|yv,yc, Sc, Sv).

Once again, to visually verify that the model fits the data, we compute an empirical estimate
θ̂ of the mean value of θ with respect to the posterior π(θ|yv,yc, Sv, Sc). The resulting model
predictions are shown in Figure 4.
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Figure 4 – Confirmed case data and validated model predictions. Blue triangles show the confirmed
case data-points included in the validation data-set. The orange curve shows the predicted number of
confirmed cases given by the model Cθ̂(t), where θ̂ is our estimate of the mean value of θ computed
using our MCMC-sampled parameter values from the validation-scenario posterior distribution.

To finish the validation process, we select the validation metric d(., .) to be the Chebyshev
distance. That is, we wish to verify that d(Cθ̂(τv),yv) = ||Cθ̂(τv) − yv||∞ ≤ γtol. Here, Cθ̂(τv) is
a vector representing the model’s predictions at the days τv = {50, 51, ..., 83} corresponding to the
data-points in the validation dataset yv. As the number of confirmed cases during the time period
specified by τv are on the order of 1e3, we select γtol = 500.

For the model Cθ̂(t) corresponding to the estimate θ̂ of the mean value of θ with respect to
distribution π(θ|yv,yc, Sv, Sc), we observe that

||Cθ̂(τv)− yv||∞ = 363 ≤ γtol
and thus our model is valid with respect to the selected metric and tolerance.

6 Predicting the Quantity of Interest (QoI)

Our QoI, Q(θ), is the number of confirmed cases at day T = 100. In other words, Q(θ) = Cθ(100).
Given the posterior distribution π(θ|yv,yc, Sv, Sc) we may compute a probability distribution
π(Q(θ)|yv,yc, Sv, Sc) over the values that Q could take. We would then predict the value of
Q to be the mean of this distribution, and use the variance of the distribution to measure our
uncertainty in the prediction.

To estimate the mean and variance of Q, we use our samples of π(θ|yv,yc, Sv, Sc) from Section
5. Let Θ be the set of all MCMC-accepted samples of θ after the number of buffer iterations
illustrated in Figure 3a by a dotted line. The value of our prediction can then be computed as:

Q̂ =
1

|Θ|
∑
θ∈Θ

Q(θ) = 34587.

A measurement of the uncertainty, an estimate of the standard deviation in the value of Q, is
computed as:
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σ̂Q =

√
(Q(θ)− Q̂)2

|Θ| − 1
= 113

7 References

[1] Cécile Viboud, Lone Simonsen, and Gerardo Chowell. “A generalized-growth model to char-
acterize the early ascending phase of infectious disease outbreaks”. In: Epidemics 15 (2016),
pp. 27–37.
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fit_model1_USA

May 5, 2020

1 Akhil Potla (ap44876)

2 Model 1 US
[1]: import sys

sys.path.insert(0,'../')

import pandas as pd
import numpy as np
import scipy
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

from data import plot_countries_all_plus_normalize_1 as plot
from data import save_country_data_1 as save

# import models
from models import model1, model2, model3

df = pd.read_csv('../../data/datasets/time-series-19-covid-combined.csv')

[24]: df_US = pd.read_csv('./US.csv', header=None)
calibration_US, validation_US = df_US.iloc[:50], df_US.iloc[50:]

calibration_times = calibration_US[0].to_numpy()
validation_times = validation_US[0].to_numpy()

The following code is based on this tutorial and the starter code for the models provided by
Prashant.

Model 1 is imported from this file.

The description for model 1 is from this file.

Model 1 has two parameters that we need to tune for the scenario, r and p. These two parameters
together will be represented using θ, where θ = (r, p)
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2.1 Noise
We assume Gaussian noise for the model. With an average µ = 0 and a standard deviation σ,
which will be selected during calibration and validation by calculating the standard deviation of
the samples for their respective steps.

2.2 Prior
The prior for the parameters in θ is considered to be uniform.

• r is nonnegative value.
• p is any value [0, 1]

We essure that the value for both r and p is valid. If either of the values is not valid it returns
zero, otherwise it returns 1.

2.3 Likelihood
We assume a Gaussian likelihood function.

πlike(y|θ) ∝ exp[−||Y − C(θ)||2

2σ2
] (1)

• C(θ) is the output of the model with parameter θ.
• ||Y − C(θ)||2 is the squred norm of |Y − C(θ)|

We take the logarithm of the likelihood function because it is more efficient.

log(πlike(Y |θ)) ∝ − 1

2σ

N∑
i=1

|yi − C(ti; θ)|2 (2)

2.4 Posterior

πpost(θ|Y ) =
πlike(Y |θ)πprior(θ)

πevidence(Y )
(3)

Since the evidence is very difficult to compute, we use MCMC, so we can simplify.

πpost(θ|Y ) ∝ πlike(Y |θ)πprior(θ) (4)

We take the logarithm because it is more efficient.

log(πpost(θ|Y )) ∝ log(πlike(Y |θ)) + log(πprior(θ)) (5)
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2.5 Calibration
During the calibration step we take the data from the first 50 days and we use it to calibrate the
values of the model parameters. The parameters of this model are r and p. These two parameters
together will be represented using θ, where θ = (r, p)

For that we select a transition model to take us from one state to another. The transition model
selects the values for r and p based on the previous value for r and p and given a reasonable
standard deviation. We use a Gaussian/Normal distribution to randomly select the next value for
these parameters.

[3]: calibration_cases = calibration_US[1].to_numpy()
calibration_noise = np.std(calibration_cases)
n_iter = 50000

[4]: transition_model1 = lambda theta: [np.random.normal(theta[0], 0.1), np.random.
↪→normal(theta[1], 0.01)]

def prior(theta):
if (theta[0] < 1.e-5 or theta[1] <= 1.e-5):

return 1.e-8
elif theta[1] >= (1 - 1.e-5):

return 1.e-8
else:

return 1

# likelihood
def log_lik(theta, model, t, data, fix_params, noise_sigma):

# get model output
C = model(theta, t, fix_params)
# log likelihood
b = data - C
return (-1. / (2. * noise_sigma * noise_sigma)) * np.linalg.norm(data - C)␣

↪→** 2

def acceptance(theta, theta_new):
if theta_new > theta:

return True
else:

accept = np.random.uniform(0, 1)
return (accept < (np.exp(theta_new - theta)))

def metropolis_hastings(model, likelihood, prior, transition_model, param_init,␣
↪→iterations,

t, data, fix_params, acceptance_rule, noise_sigma):
# likelihood_computer(x,data): returns the likelihood that these parameters␣

↪→generated the data
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# transition_model(x): a function that draws a sample from a symmetric␣
↪→distribution and returns it

# param_init: a starting sample
# iterations: number of accepted to generated
# data: the data that we wish to model
# acceptance_rule(x,x_new): decides whether to accept or reject the new␣

↪→sample
x = param_init
accepted = []
rejected = []
num_accepted = []
for i in range(iterations):

x_new = transition_model(x)
x_lik = likelihood(x, model, t, data, fix_params, noise_sigma)
x_new_lik = likelihood(x_new, model, t, data, fix_params, noise_sigma)
if (acceptance_rule(x_lik + np.log(prior(x)),

x_new_lik+np.log(prior(x_new)))):
x = x_new
accepted.append(x_new)

else:
rejected.append(x_new)

return np.array(accepted), np.array(rejected)

We run the Metropolis Hastings Algorithm 50,000 times, and we burn the first 80% of the accepted
trials.

[6]: accepted, rejected = metropolis_hastings(model1, log_lik, prior,␣
↪→transition_model1, [0., 0.], n_iter,

calibration_times, calibration_cases,␣
↪→[1, 100], acceptance, calibration_noise)

print('Number of Accepted: ', len(accepted))
after_burn_in = int(len(accepted) * 0.8)
accepted = accepted.T

Number of Accepted: 5125

[7]: r = accepted[0, after_burn_in:]
p = accepted[1, after_burn_in:]
r_average = np.average(r)
r_std = np.std(r)
p_average = np.average(p)
p_std = np.std(p)

[8]: plt.hist(r)
plt.title('Histogram of Parameter R')
plt.figure()
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plt.hist(p)
plt.title('Histogram of Parameter P')
plt.figure()
plt.hist2d(r, p)
plt.title('Histogram of Parameter R & P')

print('R average: ', r_average)
print('R std: ', r_std)
print('P average: ', p_average)
print('P std: ', p_std)

R average: 0.1810073008676782
R std: 0.05068135528198024
P average: 0.9235651215065477
P std: 0.07044537382761534
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[9]: t = [float(i) for i in range(84)]
T = 100.
C_0 = 1.

[10]: C = model1([r_average, p_average], t, [C_0, T])
fig = plt.figure(figsize=(15., 10.))
plt.plot(t, C, label='r: {}, p: {}'.format(r_average, p_average))
plt.title('Model 1 for USA')
plt.xlabel('Time (days)')
plt.ylabel('Confirmed cases')
plt.legend()

[10]: <matplotlib.legend.Legend at 0x104676cd0>

2.6 Validation
[11]: validation_cases = validation_US[1].to_numpy()

validation_noise = np.std(calibration_cases)
cov = np.cov([r, p])
mu = np.array([r_average, p_average])

103



[12]: transition_model1 = lambda theta: [np.random.normal(theta[0], r_std), np.random.
↪→normal(theta[1], p_std)]

def prior_val(theta):
if (theta[0] < 1.e-5 or theta[1] <= 1.e-5):

return 1.e-8
elif theta[1] >= (1 - 1.e-5):

return 1.e-8
else:

return scipy.stats.multivariate_normal.pdf(theta, mean=mu, cov=cov)

We run the Metropolis Hastings Algorithm 50,000 times, and we burn the first 80% of the accepted
trials.

[13]: val_accepted, val_rejected = metropolis_hastings(model1, log_lik, prior_val,␣
↪→transition_model1, [r_average, p_average],

n_iter, validation_times,␣
↪→validation_cases, [1, 100], acceptance, validation_noise)

after_burn_in = int(len(val_accepted) * 0.8)
val_accepted = val_accepted.T

[14]: val_r = val_accepted[0, after_burn_in:]
val_p = val_accepted[1, after_burn_in:]
val_r_average = np.average(val_r)
val_r_std = np.std(val_r)
val_p_average = np.average(val_p)
val_p_std = np.std(val_p)

[15]: plt.figure()
plt.hist(val_r)
plt.title('Histogram of Parameter R')
plt.figure()
plt.hist(val_p)
plt.title('Histogram of Parameter P')

print('R average: ', val_r_average)
print('R std: ', val_r_std)
print('P average: ', val_p_average)
print('P std: ', val_p_std)

R average: 0.3513542586919303
R std: 0.000850071655461424
P average: 0.896248239690765
P std: 0.0002957058087295114
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[20]: t = [float(i) for i in range(84)]
T = 100.
C_0 = 1.

[26]: C = model1([val_r_average, val_p_average], t, [C_0, T])
print('r2_score: ', r2_score(C[50:], validation_cases))

r2_score: 0.9725454490704682

2.7 Prediction
We take the validation parameters and their standard deviations, then we sample a prediction.

[16]: def model1_prediction_sampler(theta, theta_std, iterations):
r = theta[0]
p = theta[1]

r_std = theta_std[0]
p_std = theta_std[1]

T = 100
C_0 = 1

predictions = []
for i in range(iterations):

r_i = np.random.normal(r, r_std)
p_i = np.random.normal(p, p_std)
prediction = model1([r_i, p_i], [T], [C_0])
if prediction in [np.inf] or prediction < 0:

continue
elif prediction > 1e8:

continue
predictions.append(prediction)

return predictions

We run the prediction 50,000 times, and we burn the first 80% of the accepted trials.

[17]: predictions = model1_prediction_sampler([val_r_average, val_p_average],␣
↪→[val_r_std, val_p_std], n_iter)

[18]: predictions = np.array(predictions)
predictions = predictions.T
after_burn_in = int(len(predictions) * 0.8)
predictions = predictions[after_burn_in:]
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[19]: print(int(model1([val_r_average, val_p_average], [T], [C_0, T])))
print(int(np.average(predictions)))

2685315
2686550

The prediction from the model using just the validation parameters is 2,685,315 total cases on the
100th day in the US. The prediction from the model using the samples is 2,668,550 total cases on
the 100th day in the US.
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COVID-19 Trend Analysis for the US

Sheroze Sheriffdeen
CSE397 - Foundations of Predictive Computational Science

University of Texas at Austin

April 27, 2020

1 Problem

The goal of this assignment is to fit the confirmed COVID-19 cases as a function of date
using the generalized growth model given by,

dC(t)

dt
= rC(t)p

where, t ∈ [0, T ] is the time (in units of days), r ≥ 0 is the growth rate, p ∈ [0, 1] is the
’deceleration of growth’ parameter. 1 For 0 < p < 1, the above equation can be solved:

C(t) =
( r
m
t+ C

1/m
0

)m

where m = 1/(1− p) and C0 = C(0) is the initial condition.

2 Model Description and Data

The dataset for confirmed COVID-19 in USA is used for this analysis. The dataset consists
of timestamps t̄ = (t1 = 0, t2 = 1, ..., tN = 83), where N = 84, and corresponding total con-
firmed cases Y (t̄) = (Y1, Y2, ..., YN). The model prediction is C(t̄) = (C(t1), C(t2), ..., C(tN))
where C(ti) is evaluated with learned parameters θ = {r, p}.

2.1 Model Particulars

2.1.1 Parameter Priors

A uniform prior is used for both parameters with r ∼ U [0.0001, 0.99] and p ∼ U [0.01, 10].

2.1.2 Model Likelihood

The observation model assumes that the confirmed cases are corrupted with Gaussian noise,
i.e. Y (t̄) = Y true(t̄) + ε where ε(t) ∼ N (0, σ(t)2). Thus, the likelihood is evaluated as:

P(C(t̄)|Y (t̄),Σ) =
1

2πT/2|Σ|1/2
exp{−1

2
(C(t̄)− Y (t̄))TΣ−1(C(t̄)− Y (t̄))}

where Σ = diag(σ(0)2, σ(1)2, . . . , σ(T )2). The noise variance σ2(t) was chosen to be 1 + 20t.

1Viboud et al 2015 Viboud, C., Simonsen, L. and Chowell, G., 2016. A generalized-growth model to
characterize the early ascending phase of infectious disease outbreaks. Epidemics, 15, pp.27-37.
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2.2 Model Calibration

The first Nc = 60 days are used to calibrate the above model. Metropolis-Hastings algorithm
is used to perform Markov Chain Monte Carlo sampling of the posterior. The posterior mean
of the parameters are used to validate the model and predict cases at t = 100. The posterior
variance is used to compute uncertainty of the prediction. PyMC3 implementation of the
Metropolis-Hastings algorithm was used to generate the results for this assignment. Two
parallel chains with 20000 samples each was used to form the posterior. 3000 tuning samples
were used to tune the hyperparameters of the model such as the initial values of the chains
and proposal variance.

3 Results

The predicted parameters using the Metropolis-Hastings algorithm is described below:

Parameter Posterior Mean Posterior Std. Dev. Effective Samples
Growth rate (r) 0.175 0.0012 553

Deceleration of growth (p) 0.989 0.0012 458

The mean squared validation error of the model using the posterior mean as the parameters
is 0.5 million.

Figure 1: Predicted cases calibrated with 60 days of data with uncertainty visualized
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Figure 2: Posterior sample histogram of parameters
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Figure 3: Trace plot of parameter samples shows a well mixed chain. The proposal density
is scaled during the 3000 tunings steps.

Finally, the calibrated and validated model predicts 7.5 million cases at t = 100 days. The
uncertainty of this prediction is computed by solving the model for 1 standard deviation
below and above for the parameters, leading to an optimistic prediction of 5.8 million cases
and a pessimistic prediction of 9.7 million cases.

Figure 4: Model prediction of future cases: 7,503,814 cases at 100 days with 1 standard
deviation bounds being [5,837,875, 9,718,257]

112



Chapter 11 

113



Covid Simulated Annealing

Chase Tessmer

May 2020

1 Model

I decided to use a logistic curve model because it is derived by integrating a
VERY simple population growth differential equation which seems appropriate
for virus spread when we only have information on virus growth. Also, the
parameter L will be the final virus count after the pandemic is over if the model
is valid (Figure 1).

p =
L

1 + e−r(x−p)
(1)

L final case count
r logistic growth rate
p inflection point

2 Using the Code

The model can be changed by changing the forward3 function.
All of the parameters are under Parameters in the code.
You can change the starting value of the parameters and the standard deviation 
of the distributions the MCMC algorithm will be sampling from along with the 
number of iterations and the acceptance delay which determines how long the 
model is allowed to settle into the Metropolitan-Chain distribution.
Finally you can edit the data covariance matrix to change the ”emphasis” on 
different data points. I edited it to have more emphasis on the final data point 
and less emphasis on the beginning.
You can also change the start and stop temperatures if you want to use simulated 
annealing. Just keep in mind that the temperatures are in log base.
You can also change the calibration and validation split. I went for the first 
sixty datapoints in calibration and the final twenty-three in validation.
The parameters are selected by averaging the accepted parameters after the 
acceptance delay. The standard deviation is selected by taking the standard 
deviation of the accepted parameters after the acceptance delay.
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Figure 1: By Qef (talk) - Created from scratch with gnuplot, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=4310325

3 Calibrated Model

I calibrate on the first 60 datapoints for ten different models and whichever
model performs the best on the entire dataset, I take that one. Generally you
want to have about a 20% acceptance rate to say your model has converged. I
generally have about a 10% acceptance rate, but I think that’s good enough.
Finally the quantity of interest is the number of cases at 100 days, and its mean
and standard deviation are found in the exact same way as the parameters. I
calculated the QOI for every set of accepted parameters and also took the mean
and standard deviation of that.

According to the model, the final case count will be 10,930 cases ±56 at 95%
confidence . I only fit the Korean data because the US and Japan cases hadn’t
hit an inflection point and trying to predict them simply from the data doesn’t
seem realistic. One big problem I had is that most of the calibrated models
predicted an L < 1 which would mean that the final case count would be less
than the current case count, which is obviously unreasonable. Fortunately, the
validation step removed all of these models.

QOI (100th day cases) 10,903 ± 56 @ 95%
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Figure 2: Best Model. L=1.035
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Yang, Christine 

Course: EM397 Foundation of Predictive Computational Science 
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Objective: 
    The objective of this write-up is to utilize Bayesian approach to predict the confirmed cases of 
COVID-19 until 100 days in the United States and South Korea. For the example of United 
States, the procedure is described in detailed along with the results; for the example of South 
Korea, since the same procedure and approach are followed, the write-up focus on presenting the 
results. The python coding methodology is strongly based on Moukarzei’s journal paper on the 
toward-data-science website [1].  

Methodology: 
    Compared to the frequentists, which only considers a limited case of repeated measurements, 
Bayesian approach represents the belief about the probabilities of the future (posterior) based on 
the previous events (prior beliefs) and current events (evidence). Bayesian approach is powerful 
in many areas of science and engineering. For example, it can be used to examine the structural 
health monitoring (SHM), finding the most probable structural model based on incomplete noisy 
modal data (e.g. partial mode shapes of the some of the modes of a structural system) [2].  

    Bayesian theorem can be expressed as equation 1. 

𝑃(𝐴|𝐵) = !(#|%)!(%)
!(#'

    (1) 
where, 

𝑃(𝐴|𝐵)	represents the probability of A occurring given that event B has occurred. 
P(B|A) is the likelihood 

P(A) is the prior 
P(B) is the evidence 

    Since the goal is to sample the posterior distribution, the process can become very tedious due 
to the complexity of the model involving multidimensional integration. Thus, MCMC (Markov 
Chain Monte Carlo) can be implemented to draw sample from conditional posterior distributions. 
In addition, Metropolis-Hastings, an algorithm suitable for high-dimensional spaces, is utilized to 
implement MCMC.  

    The training data from the observable data will be used for calibration first. The initial 
proposal prior and the initial guess values will be implemented into the MCMC algorithm. After 
the MCMC is implemented, a certain amount of the beginning of iterations will be “thrown 
away”, which is called “burn-in”. The average of the accepted mean values after burn-in will be 
used as the new initial guess values, and the new prior will be defined as the multivariate 
Gaussian density function. The testing data will be implemented into the new defined MCMC to 
validate the model. Again, the validated parameters used to determine QoI (Quality of Interest) 
will be the mean values after burn-in.   

120



Process: 
1. Import Data

The data of the confirmed cases of the country includes 84 days. The data of the first 50 days is 
used as training data for calibration, and the rest of 34 days is used for validation, as Figure 1.  

Figure 1. Confirmed Cases of the US from the Data. 

2. Define the Model

The model is given as:

𝐶(𝑡) = 𝑎𝑒𝑥𝑝 /𝑏 11 − (

()*()!"+
#45 + 𝐶'     (2) 

where, 
C is the confirmed cases at the certain time 

C$ is the initial condition, (i.e. the cases at the first day) 
a and b are model parameters  

T is the final day at which we want to model prediction 
p is assumed to be equal to 4 

3. Define the PDF (Probability Distribution Function) and the Transition Model

Since the Metropolis-Hastings algorithm requires a proposal distribution 𝑄 8 ,%&'
,()**&%!

9, which is 
also called transition model, to draw samples from posterior distribution. 

The Gaussian distribution is used: 

𝑄 8 ,%&'
,()**&%!

9 = 	𝒩(𝜇 = 𝜃-.//012 , 𝜎)    (3) 

It should be noted that 𝜎 only affects the computational time of the algorithm, and it does not 
affect the results.  
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4. Define the Prior for Calibration

The goal is to find the proper a and b for the model. The prior 𝜃 are enforced as nonnegativity as 
equation 3.  

𝜋3/45/(𝜃) = 	𝒳%(𝜃)   (4)

where, 𝜃 = [a, b], and A = [0, ∞] × [0,∞]. 

def prior(theta):
    if (theta[0]<=0 or theta[1]<=0): 
        return 0 
    else:
        return 1

5. Define the Likelihood Function

Next step is to define the likelihood:

𝜋6470648559(𝑌|𝜃) ∝ 𝒇 = 	exp	[− ||:);(,)||+

<=+
]    (5) 

where, Y is the observable data, 𝜎 is the standard deviation of the noise of the data, and 𝐶(𝜃) is 
the model output. 
It should be noted that the logarithm of the likelihood will be used. 

def log_like(theta,data):
    t = observation[:,0]
   Y = observation[:,1]
    C = model(theta,t,model_param)
    return (-1. / (2. *noise_sigma * noise_sigma)) * np.dot(Y - C, Y-C)

6. Define the Acceptance Rule

Using Baye’s theorem, the following ratio is computed,

𝑟𝑎𝑡𝑖𝑜 = 	 !(>|,
,)!(,,)

!(>|,)!(,)
    (6) 

The random number r will be drawn from a uniform distribution in [0,1]. If the ratio is larger 
than this random number, then the new algorithm will accept the new parameters.  

#Defines whether to accept or reject the new sample
def acceptance_rule(x,x_new):
    if x_new > x: 
      return True 

    else: 
        accept = np.random.uniform(0,1) 
#since we use log likelihood, we need to exponentiate in order to compare to the random number
        return (accept < (np.exp(x_new-x))) 
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7. Employ the Metropolis-Hastings Algorithm

Given the likelihood function, the proposal distribution, the initial guess of the parameters, 𝜃, the 
for loop will use the acceptance rule to determine if the new parameters can be accepted or 
rejected.  

def metropolis_hastings(likelihood_computer, prior, transition_model,param_init, iterations, data, acceptace_rule):
#model: reference to the output model 
#likelihood_model(x,data): returns the likelihood that these parameters generated the data
#transition_model(x): a function that draws a sample from a symmetric distribution and returns it 
#param_init: a starting sample
#iterations: number of accepted to generated 
#data: the data we wish to model
x = param_init
accepted = []
rejected = []

for i in range(iterations):
    x_new = transition_model(x)
    x_lik = likelihood_computer(x,data)
    x_new_lik = likelihood_computer(x_new,data)
    if (acceptance_rule(x_lik + np.log(prior(x)),x_new_lik + np.log(prior(x_new)))): 
        x = x_new 
        accepted.append(x_new) 
   else: 
        rejected.append(x_new) 
return np.array(accepted),np.array(rejected)
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Case: US 
Calibration 
a. The initial guess of the parameters 𝜃 = [𝑎, 𝑏] = [607670, 100]. The number 607670 is the

maximum value in the observable data. In addition, the standard deviation in the likelihood in
equation 5 is set to be 100.

init_guess = [np.max(observation),100]
noise_sigma = 100.

b. The proposal distribution is defined as equation (3), and the 𝜎 = [100,1].

transition_model_calibration = lambda x:np.random.normal(x,[100,1] ,(2,))

c. Results:

Figure 2 shows both accepted and rejected samples using the training data for total 100,000 
iterations.  

accepted_calibration, rejected_calibration = metropolis_hastings(log_like, prior, transition_model_calibration , 
init_guess, iteration = 100,000, data_calibration, acceptance_rule)

plot_sampling(accepted_calibration, rejected_calibration) 

Figure 2. MCMC Sampling for Parameters of Training Data. All Samples Are Shown. 

It was also found that 1841 iterations are accepted. This value changes every time the algorithm 
is performed.  

print(accepted_calibration.shape)
(1841,2)
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The burn-in percentage is set to 50%, and the final mean value of the calibrated parameter is: 

𝜃 = [𝑎, 𝑏] = [6.46295377e + 05	1.32483842e + 02]	 

Figure 3. Histogram of the Parameters after Calibration and Burn-In. 

Figure 3 shows the histogram of the calibrated parameters after burn-in. They both look like 
following the Gaussian distribution, and it can be concluded that they converge well.  
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Validation 
a. The new initial guess now is set to be the mean values of calibrated data after burn-in.

prior_new = mean_calibration 

b. From equation 3, again, the new prior should be defined as multivariate normal distribution.

def posterior_new_prior(theta):
    return multivariate_normal.pdf(theta, mean = mean_calibration, cov = covariance_calibration) 

transition_model_validation = lambda theta:multivariate_normal.rvs(theta, covariance_calibration ) 
#generate random variation in multivariate normal distribution  

c. Again, MCMC is implemented with the testing data,

accepted_validation, rejected_validation = metropolis_hastings(log_like, posterior_new_prior, 
transition_model_validation , prior_new, iteration = 100000, data_validation, acceptance_rule) 

Figure 4. MCMC Sampling for Parameters of Testing Data. All Samples Are Shown. 

Figure 4 shows that most accepted parameters are around [646300, 132.45]. For the total of 
100,000 iterations, the total of 39747 iterations are accepted.  

print(accepted_validation.shape)
(39747,2) 

The burn-in percentage is set to be 25%. And the mean values of the parameters are: 

𝜃 = [𝑎, 𝑏] = [6.46294957e + 05	1.32483397e + 02]	, 
Which is approximately equal to the values obtained from the calibration.  
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Figure 5 presents the histogram of the parameters. They follow the Gaussian distribution closer 
to the calibration data.  

Figure 5. Histogram of the Parameters after Validation and Burn-In. 
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Conclusion: Fitting Curves and QoI 

Figure 6. Curve Fitting from Training and Testing data Compared to the Observable Data 

Figure 6 shows the curve fitting of the training and testing data. As seen from the previous 
sections, the mean values of the parameters are almost the equal from training and testing data, 
thus, the curve-fitting after the 84th day are the same. The validated data after 50 days matches 
the observable data well.   

Figure 7. shows the posterior distribution of the predictive model at the 84th day. From the 
observable data, the true value is 607670 cases, which is around 2.5% difference from the 
predictive model. Figure 8 represents the probability distribution of the model at the 100th day. 

 
Figure 7.  Posterior Distribution of Predictions at the (a) 84th Day (b) 100th Day 

a. 
 

b. 
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Case: South Korea 
The model is the same as before, and the same procedure is used. Part A is to estimate the 
confirmed cases until the 100 days, and part B is for 200 days. 

A. 100 Days
Calibration  
init_guess = [np.max(observation),10]
noise_sigma = 1. 
transition_model_calibration = lambda x:np.random.normal(x,[1,0.001] ,(2,)) 
accepted_calibration, rejected_calibration = metropolis_hastings(log_like, prior, transition_model_calibration , init_guess, 
iteration = 100000, data_calibration, acceptance_rule) 
print(accepted_calibration.shape)
(14810,2) 

Figure 8. MCMC Sampling for Parameters of Training Data. All Samples Are Shown. 
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Figure 9. Histogram of the Parameters after Calibration and Burn-In. (a) parameter “a” (b) parameter “b” 

Burn-in = 0.5  
print(mean_calibration) 
[1.07375478e+04 6.49988446e+00] 

In the calibration, less than 20% of the iterations are accepted. The histogram follows the trend 
of the Gaussian distribution. From the histogram and the mean values, the parameters converge 
to 10737.5 and 6.5. 

a. 
 

b. 
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Validation 

Figure 10 shows all samples from the validated data after implementing the mean values of 
parameters from the calibration as the new initial guess in the MCMC. Again, the proposal 
distribution is assumed to be multivariate normal distribution. 
Figure 11 shows the histogram of the samples from the testing data. 

Burn-in = 0.3  
print(mean_validation) 
[1.07375447e+04 6.49988355e+00] 
print(accepted_calibration.shape)
(39664,2) 

Figure 10. MCMC Sampling for Parameters of Testing Data. All Samples Are Shown. 

Figure 11. Histogram of the Parameters after Validation and Burn-In. 
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Conclusion: Fitting Curves and QoI 

Figure 12. Curve Fitting from Training and Testing data Compared to the Observable Data 

Figure 13.  Posterior Distribution of Predictions at the (a) 100th Day (b) 84th Day 

At the 84th day, the error from the true value is around 1.18% which could be considered 
acceptable. From the figure 12, there seems to be larger discrepancy in the training data, but, 
after 60 days, the curve-fitting correlate with the testing data better.  

a. 
 

b. 
 

132



B. 200 Days
Calibration:

init_guess = [15000,2]
noise_sigma = 1. 
transition_model_calibration = lambda x:np.random.normal(x,[1,0.001] ,(2,)) 
accepted_calibration, rejected_calibration = metropolis_hastings(log_like, prior, transition_model_calibration , init_guess, 
iteration = 100000, data_calibration, acceptance_rule) 
print(accepted_calibration.shape)
(3821,2) 

Figure 14. MCMC Sampling for Parameters of Training Data. All Samples Are Shown. 

Figure 15. Histogram of the Parameters after Calibration and Burn-In. 

print(mean_calibration) 
[1.49578378e+04 1.82953523e+00] 
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Validation 
accepted_validation, rejected_validation = metropolis_hastings(log_like, posterior_new_prior, transition_model_validation , 
prior_new, 100000, data_validation, acceptance_rule) 

Figure 16. MCMC Sampling for Parameters of Testing Data. All Samples Are Shown. 

Conclusion: Fitting Curves and QoI 

Figure 17. Curve Fitting from Training and Testing data Compared to the Observable Data. 
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Figure 18.  Posterior Distribution of Predictions at the 200th Day. 

 
Figure 15.  Posterior Distribution of Predictions at the (a) 100th Day (b) 84th Day. 

Since the evidence may not be sufficient enough to predict to the 200th day, the discrepancy is 
much larger. The error at the 84th day is around 10% which is 10 times greater than the 
prediction of 100 days. The results may not be sufficiently reliable.  

a. 
 

b. 
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