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Abstract

We propose a mixed stress-displacement isogeometric collocation method for nearly incom-
pressible elastic materials and for materials exhibiting von Mises plasticity. The discretiza-
tion is based on isogeometric analysis (IGA) with non-uniform rational B-Splines (NURBS)
as basis functions. As compared to conventional IGA Galerkin formulations, isogeometric
collocation methods offer a high potential of computational cost reduction for higher-order
discretizations as they eliminate the need for quadrature. In the proposed mixed formu-
lation, both stress and displacement fields are approximated as primary variables with the
aim of treating volumetric locking and instability issues, which occur in displacement-based
isogeometric collocation for nearly incompressible elasticity and von Mises plasticity. The
performance of the proposed approach is demonstrated by several numerical examples.

Keywords: Isogeometric Analysis, Isogeometric Collocation, Volumetric Locking,
Elastoplasticity, Mixed Stress-Displacement Formulation.

1. Introduction

Isogeometric Analysis (IGA) can be considered as an extension of the finite element
method (FEM), with which it shares many characteristics. In contrast to the classical FEM,
discretizations in the IGA framework make use of smooth and higher-order basis functions,
which are popular in Computer Aided Design (CAD) environments, such as B-Splines or
non-uniform rational B-Splines (NURBS).

The main original purpose of its proposers [1, 2] was to realize a seamless interaction of
design and analysis. Since the introduction in [1, 2], it became clear that apart from the
original motivation, the higher accuracy per degree of freedom (DOF) makes IGA appealing
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for many applications. Nevertheless, the issue of computational efficiency arises, mainly due
to the cost of quadrature. Standard Gaussian quadrature rules are not well-suited for IGA,
since they do not exploit the higher continuity of isogeometric basis functions. This leads to
a large computational effort for the assembly of IGA system matrices, especially when basis
functions of high polynomial degree are used.

In the past years, many different approaches regarding alternative quadrature rules have
been proposed, striving at a reduction of the computational cost as, e.g., presented in [3, 4,
5, 6, 7, 8, 9, 10, 11]. Moreover, parallel implementations on GPUs [12] or other strategies to
accelerate IGA computations as for instance in [13, 14, 15, 16] have also been proposed.

Besides the aforementioned approaches, which are mainly based on Galerkin formu-
lations, isogeometric collocation methods have recently been proposed with the goal of
achieving further computational cost reduction. In isogeometric collocation methods, the
strong form of the governing differential equations is directly enforced at a set of evaluation
points, thus there is no need for numerical quadrature of integral equations, which is often
computationally expensive. Isogeometric collocation approaches have been successfully ap-
plied to various problems of solid and structural mechanics, such as shown for example in
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Further improvements of their efficiency could be
obtained by the application of the superconvergence theory to the isogeometric collocation
concept as demonstrated, e.g., in [28, 29, 30, 31] and by bridging the gap between colloca-
tion and Galerkin methods [29, 32]. Thus far, most of the studies regarding isogeometric
collocation have been concerned with linear or smooth non-linear problems. For non-linear
problems, the demand for computationally efficient numerical methods is significant, due to
the need for an iterative solution procedure and, in many cases, for a fine resolution of the
spatial discretization.

In this work, we address elastoplastic material behaviour, adopting classical von Mises
plasticity in conjunction with the standard return-mapping algorithm for time integration
(see, e.g., [33, 34, 35, 36, 37]). The non-smoothness inherent to the transition between
elastic and plastic behaviour raises stability issues for displacement-based collocation meth-
ods. Moreover, since the plastic flow in the considered plasticity model is isochoric, issues
of volumetric locking can be envisioned for the primal formulation. Therefore, the topic
of volumetric locking is investigated decidedly before the elastoplastic material behaviour
is considered, namely for the case of nearly incompressible elasticity. There exists a broad
variety of strategies against volumetric locking, which have been already applied to IGA
Galerkin, such as (selective) reduced integration [6], enhanced assumed strain [38], B-bar
and F-bar methods [39, 40] and mixed formulations [41, 42, 43].

In this contribution, we propose a mixed formulation where both stress and displacement
fields are approximated as primary variables. The objective is twofold. On one hand, we
aim at addressing volumetric locking issues, which we investigate for nearly incompressible
elastic materials. On the other hand, we intend to solve the stability concerns of the primal
collocation formulation for elastoplasticity, where the mixed approach also takes care of the
volumetric incompressibility arising from the von Mises model. To the best of the authors
knowledge, this paper reports the first attempt to combine a mixed stress-displacement ap-
proach with isogeometric collocation for solid mechanics. In the companion paper [44] a
displacement-pressure formulation for isogeometric collocation is instead proposed. Exam-
ples of a mixed stress-displacement approach applied to elastoplasticity in a FEM environ-
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ment can, e.g., be found in [45, 46]. A mixed stress-displacement isogeometric formulation
for the analysis of elastoplastic solid-shell elements is reported in [47] and mixed isogeometric
collocation methods are investigated in [48, 49, 50, 51, 52, 53].

Since CAD geometries in engineering practice usually consist of multiple patches, suitable
coupling strategies are necessary. In this realm, it is shown how the proposed approach can
be extended to multi-patch parameterizations. In the IGA Galerkin framework various multi-
patch coupling strategies have been proposed, see, e.g., [54, 55, 56, 57, 58, 59], which usually
deal with non-conforming multi-patch parameterizations. In the present context of mixed
isogeometric collocation methods, we consider conforming multi-patch geometries for the
sake of simplicity. A comparable approach for a primal isogeometric collocation method can
be found in [18].

This paper is organized as follows: In section 2 the governing solid mechanics equa-
tions are given and the time discretization is addressed. In section 3 the considered spa-
tial discretizations are highlighted and the proposed mixed stress-displacement approach is
illustrated. Also the extension to multi-patch parameterizations and a hybrid collocation-
Galerkin approach are described. Several numerical examples featuring nearly incompressible
material elastic behaviour are investigated in section 4, while the results obtained with the
elastoplastic material model are illustrated in section 5. Conclusions are drawn and future
research directions are outlined in section 6.

2. Governing equations and return mapping algorithm

In this section, the governing equations for the solid mechanics problem and the time
integration algorithm needed for elastoplasticity are described. Firstly, the case of linear
elastic materials at small strains is addressed. Subsequently, the extension to von Mises
plasticity with isotropic hardening is considered. The return-mapping algorithm, applied for
the time integration of the elastoplastic constitutive equations, is also outlined. Although
plane strain conditions are used to model the numerical examples in sections 4 and 5, the
more general three-dimensional case is considered for the derivations, since the plane strain
condition can be simply incorporated afterwards.

2.1. Balance and kinematic equations and boundary conditions
This work considers quasi-static linear elastic and elastoplastic problems. The govern-

ing equations include balance, kinematic and constitutive equations, along with boundary
conditions. The balance of momentum localized at any point of a body within the domain
Ω ⊂ Rd (with d as the spatial dimension) reads

∇ · σ + b = 0 in Ω. (1)

Here ∇· is the divergence operator, σ is the stress tensor and b is the body force vector.
The momentum balance is complemented by the boundary conditions

σ · n = t on ΓN , (2a)
u = ū on ΓD, (2b)
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where t is the prescribed traction on the Neumann boundary ΓN , n is the outward unit
normal to the boundary Γ, u is the vector of the unknown displacements and ū are the
imposed displacements on the Dirichlet boundary ΓD, with Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅.

In case of small deformations, the strain tensor is defined as

ε = ∇Su =
1

2
(∇u+ (∇u)T ), (3)

where ∇ is the gradient operator and ∇S denotes the symmetric gradient operator.

2.2. Constitutive material models
In this subsection the constitutive material models, which relate the strain tensor ε with

the stress tensor σ, are described. Material models for linear elasticity and elastoplasticity
are considered in this work.

2.2.1. Linear elasticity
Under the assumption of linearly elastic isotropic material behaviour, the stress tensor

σ and the strain tensor ε are related by the following constitutive equation

σ = C : ε (4)

with the fourth-order elasticity tensor C defined as

C = λ1⊗ 1 + 2µI = κ1⊗ 1 + 2µ

(
I− 1

3
1⊗ 1

)
, (5)

where 1 = δijei⊗ ej is the second-order identity tensor, I = 1
2

[δikδjl + δilδjk] ei⊗ ej ⊗ ek⊗ el
is the fourth-order symmetric identity tensor, λ, µ are the Lamé constants and κ = λ + 2

3
µ

is the bulk modulus.
If nearly incompressible materials are modeled, the first Lamé constant λ becomes very

large. This might lead to an overly stiff behaviour and even loss of spatial convergence in
the solution of the discretized problem, which is known as volumetric locking. In this work
a mixed method is introduced to mitigate the effect of volumetric locking.

2.2.2. Elastoplasticity
If an elastoplastic material model with small deformations is considered, the total strain

tensor ε can be additively decomposed as ε = εe + εp into the elastic strain tensor εe and
the plastic strain tensor εp. Then the stress tensor σ can be calculated as σ = C : (ε− εp).

In this work the classical von Mises plasticity with linear isotropic hardening (see, e.g.,
[33, 34]) is adopted. The yield condition reads

f(σ, α) = ‖s‖ −
√

2

3
[σY +Kα] ≤ 0 (6)

with the deviatoric stress tensor s = dev [σ] = σ − 1
3

tr [σ] 1, the yield stress σY , the
equivalent plastic strain α and the isotropic hardening modulus K.
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The evolution equations for the variables εp and α are given as

ε̇p = γ
s

||s||
, (7a)

α̇ = γ

√
2

3
(7b)

with γ ≥ 0 as the consistency parameter and a superposed dot denoting time differentiation.
Loading and unloading follow the Kuhn-Tucker complementarity conditions

γ ≥ 0, f (σ, α) ≤ 0, γf (σ, α) = 0. (8)

By enforcement of the consistency condition

γḟ (σ, α) = 0 (if f (σ, α) = 0) (9)

it is ensured that the stress path remains inside the yield surface. The consistency condition
enables the determination of the consistency parameter γ. The combination with the evolu-
tion equations leads to the expression of the stress rate σ̇ in terms of the total strain rate ε̇
as follows

σ̇ = Cep : ε̇, (10)

where the continuum elastoplastic tangent modulus Cep is defined as

Cep =
∂σ

∂ε
=

{
C− 2µ n⊗n

1+ K
3µ

if f = 0, ḟ = 0,

C otherwise
(11)

and
n =

s

||s||
. (12)

2.3. Return mapping algorithm
Due to the dependence of the stress on the strain history, a suitable time integration

scheme is necessary for the solution of elastoplastic problems. In this work a predictor /
corrector method is applied. The main concept of these methods consists of having a purely
elastic prediction. If the elastic prediction is admissible, it corresponds to the sought solution.
Conversely, a plastic correction step is necessary if the elastic prediction leads to a result
which is outside of the yield surface and thus inadmissible.

For the plastic correction step, the classical return mapping algorithm for von Mises
plasticity (see, e.g., [33, 34] for further details) is used in this contribution. The return
mapping algorithm is summarized in figure 1. Here e = dev [ε] = ε− 1

3
tr [ε] 1 is the strain

deviator, the superscript (.)tr refers to the elastic trial solution and the subscripts (.)n+1 and
(.)n refer to the current and previous time step, respectively.
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1. Database at each point x ∈ Ω: {epn, αn}
2. Given strain field at x ∈ Ω: εn+1 = εn + ∆εn
3. Compute elastic trial stress and test for plastic loading:

en+1 = εn+1 − 1
3
tr (εn+1) 1

strn+1 = 2µ [en+1 − epn]
σtrn+1 = κtr (εn+1) 1 + strn+1

f trn+1 =
∥∥strn+1

∥∥−√2
3

[σY +Kαn]

if f trn+1 ≤ 0 then
Elastic step: Set (.)n+1 = (.)trn+1 and exit

else
Plastic step: Return mapping
nn+1 =

strn+1

‖strn+1‖
∆γ =

f trn+1

2(µ+K
3 )

> 0

σn+1 = κtr (εn+1) 1 + strn+1 − 2µ∆γnn+1

epn+1 = epn + ∆γnn+1

αn+1 = αn +
√

2
3
∆γ

end

Figure 1: Return mapping algorithm for von Mises plasticity with linear isotropic hardening (cf. [33]).

In analogy to the continuum elastoplastic tangent modulus Cep, the so-called consistent
algorithmic tangent modulus Calg

n+1 for the incremental formulation can be derived consis-
tently with the return mapping algorithm for linear isotropic hardening as described in [33]:

Calg
n+1 =

∂σn+1

∂εn+1

=

{
κ1⊗ 1 + 2µθn+1

(
I− 1

3
1⊗ 1

)
− 2µθ̄n+1nn+1 ⊗ nn+1 f trn+1 > 0

C f trn+1 ≤ 0

(13)

with
θn+1 = 1− 2µ∆γ∥∥strn+1

∥∥ (14)

and
θ̄n+1 =

1

1 + K
3µ

− (1− θn+1) . (15)

The momentum balance equation (1) and the boundary conditions (2) read in incremental
form

∇ · σn+1 + bn+1 = 0 in Ω, (16a)
σn+1 · n = tn+1 on ΓN , (16b)
un+1 = ūn+1 on ΓD. (16c)
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3. Spatial discretization methods

This section is devoted to the description of the investigated spatial discretization meth-
ods. The discretization via NURBS, stemming from IGA, is a common feature of the Galerkin
and collocation approaches. Thus, the basics on NURBS basis functions are summarized at
the beginning of this section. Subsequently, the primal Galerkin formulation is introduced,
followed by the description of the proposed mixed isogeometric collocation approach. This
section is concluded by addressing a hybrid collocation-Galerkin approach and the extension
to multi-patch parameterizations.

3.1. Basis functions
In this subsection, we review the basics of B-Spline and NURBS basis functions, which

are commonly employed in modern CAD systems for design modelling. The isoparametric
concept is maintained in IGA, thus both the geometry parameterization and the construction
of the approximation spaces for the unknown fields are realized by the same basis functions,
in this contribution NURBS.

A B-spline basis of degree p is constructed by a so-called knot vector, which is a non-
decreasing sequence of real numbers

Ξ = {ξ1, ξ2, . . . , ξn+p+1}, (17)

where each ξi is a knot and n denotes the number of basis functions of degree p. Throughout
this paper, the knot vector is assumed to be open, which implies ξ1 = . . . = ξp+1 and
ξn+1 = . . . = ξn+p+1. Therefore the basis is interpolatory at both ends. If a knot has
multiplicity k, the continuity of the B-spline basis is Cp−k at that knot. The continuity is
C∞ in the interior of a knot span.

The zeroth degree B-Spline functions {Ni,0}i=1,...,n are defined as

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise. (18)

The p-th degree B-Spline basis functions are defined by means of the Cox-de Boor recursion
formula using the relation

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (19)

and adopting the convention 0
0

= 0.
Incorporating the so-called control points P i ∈ Rd, a B-spline curve C(ξ) can be ex-

pressed as a linear combination of the control points P i with the corresponding basis func-
tions Ni,p as

C(ξ) =
n∑
i=1

Ni,p(ξ)P i. (20)

Analogously a NURBS curve can be expressed as a linear combination of control points
P i and basis functions Ri,p of degree p as

C(ξ) =
n∑
i=1

Ri,p(ξ)P i (21)
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with
Ri,p(ξ) =

wiNi,p(ξ)∑n
î=1 wîNî,p(ξ)

(22)

as the NURBS basis functions with the associated weights wi. NURBS basis functions, such
as their B-Spline progenitors, are pointwise non-negative and identical continuity character-
istics apply.

Bivariate NURBS basis functions Rp,q
i,j of degrees p and q in the two parametric directions

ξ and η with the corresponding weights wi,j are defined by a product of the univariate
B-spline basis functions Ni,p(ξ), Mj,q(η) as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

. (23)

With the control points P i,j, a NURBS surface of degree p, q can thus be described as

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)P i,j. (24)

The extension to trivariate NURBS basis functions and NURBS volumes / solids can be
achieved by a completely analogue procedure and is therefore not reported. For more details
the reader is referred to [60].

3.2. Displacement-based Galerkin formulation
In the following, the basics of the Galerkin formulation are outlined, since Galerkin so-

lutions are used as reference in this work, whenever analytical solutions are not available.
Elastoplastic materials are considered directly, since the treatment of linear elasticity prob-
lems can be derived as a special case.

The starting point is the time-discretized form of the momentum balance equation (along
with the corresponding boundary conditions) in equation (16). The Galerkin method is based
on the approximation of the corresponding weak formulation. For its definition, the following
two spaces

Un+1 = {u|u ∈ (H1(Ω))d,u|ΓD = ūn+1}, V = {v|v ∈ (H1(Ω))d,v|ΓD = 0} (25)

are introduced.
The weak formulation at the current time step n + 1 consists of finding un+1 ∈ Un+1

such that for all v ∈ V the non-linear equation

Rn+1 =

∫
Ω

∇Sv : σn+1(un+1)dΩ−
∫

Ω

v · bn+1dΩ−
∫

ΓN

v · tn+1dΓN = 0 (26)

holds.
The spatial discretization uh of the displacement vector u is introduced as

uh =

nd∑
i=1

Riûi (27)
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with the NURBS basis functions Ri as defined in the previous subsection 3.1, the unknown
displacement control variables ûi and nd as the total number of unknown displacement
control variables. Analogously, the approximation of the test function is introduced as

vh =

nd∑
i=1

Riv̂i (28)

with the test control variables v̂i.
The spatially discretized version of equation (26) thus reads

Rh
n+1 =

∫
Ω

∇Svh : σn+1(uhn+1))dΩ−
∫

Ω

vh · bn+1dΩ−
∫

ΓN

vh · tn+1dΓN = 0. (29)

In this work, a Newton-Raphson scheme is applied to solve the non-linear equations on
the global level. To obtain the corresponding tangent, one needs to linearize equation (29),
which yields

∆Rh
n+1 =

∫
Ω

∇Svh : ∆σn+1(uhn+1)dΩ (30)

with
∆σn+1 = Calg

n+1 : ∇S(∆uhn+1). (31)

Note that in this context ∆ is used as a symbol to indicate the linearized increment.

3.3. Mixed stress-displacement Galerkin formulation
In order to introduce the mixed stress-displacement isogeometric collocation method,

the corresponding mixed stress-displacement Galerkin formulation is presented first and the
collocation approach is deduced afterwards in section 3.4. This procedure enables a straight-
forward introduction of a hybrid collocation-Galerkin approach in section 3.5.

For the mixed stress-displacement formulation, the stress is introduced in form of the
additional variable σ̃. In the context of the Galerkin method, the equality between the
newly introduced stress tensor σ̃ and the stress tensor σ calculated from the displacement
vector u is weakly enforced over the whole domain.

First the additional space

S = {σ̃|σ̃ ∈ (L2(Ω))d×d} (32)

is defined. The mixed form of the weak formulation at the current time step n+1 consists of
finding un+1 ∈ Un+1 and σ̃n+1 ∈ S such that for all v ∈ V and w ∈ S the weak momentum
balance equation (including boundary conditions)

Rmom
n+1 =

∫
Ω

∇Sv : σ̃n+1dΩ−
∫

Ω

v · bn+1dΩ−
∫

ΓN

v · tn+1dΓN = 0 (33)

and the weak stress coupling equation

Rstr
n+1 =

∫
Ω

w : (σ̃n+1 − σn+1(un+1))dΩ = 0 (34)
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are fulfilled.
The spatial discretization σ̃h of the newly introduced stress tensor σ̃ is given as

σ̃h =
ns∑
i=1

Riσ̂i (35)

with the NURBS basis functions Ri, the unknown stress control variables σ̂i and ns as the
total number of stress control variables. Analogously, the approximation of the corresponding
test functions is defined as

wh =
ns∑
i=1

Riŵi. (36)

Note that the shear components σxy and σyx are discretized as a single DOF and not
independently in order to reduce the number of DOFs and to enforce the symmetry of the
stress tensor.

The spatially discretized versions of equations (33) and (34) read

Rmom,h
n+1 =

∫
Ω

∇Svh : σ̃hn+1dΩ−
∫

Ω

vh · bn+1dΩ−
∫

ΓN

vh · tn+1dΓN = 0, (37)

Rstr,h
n+1 =

∫
Ω

wh : (σ̃hn+1 − σn+1(uhn+1))dΩ = 0. (38)

The linearizations of equations (37) and (38) are given in the discretized version as

∆Rmom,h
n+1 =

∫
Ω

∇Svh : ∆σ̃hn+1dΩ (39)

and
∆Rstr,h

n+1 =

∫
Ω

wh : (∆σ̃hn+1 −∆σn+1(uhn+1))dΩ, (40)

respectively, where ∆σn+1(uhn+1) can be calculated as shown in equation (31).

3.4. Mixed stress-displacement isogeometric collocation formulation
In contrast to weighted residual formulations, the concept of isogeometric collocation is

based on the direct evaluation of the strong form of the boundary value problem. In this work,
a mixed approach is considered, where both stresses and displacements are independently
discretized.

To deduce the proposed isogeometric collocation approach from the mixed Galerkin
method, the weak momentum balance equation (33) is integrated by parts such that there
are no more derivatives on the test functions:

Rmom
n+1 = −

∫
Ω

v · (∇ · σ̃n+1 + bn+1)dΩ +

∫
ΓN

v · (σ̃n+1 · n− tn+1)dΓN = 0. (41)

Note that this increases the demand on the regularity of σ̃n+1, which must now belong to
the Hilbert space H(div,Ω).
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In the Galerkin approaches described before, NURBS are used for the discretization of
the test functions, as shown in equations (28) and (36). For the isogeometric collocation
approach Dirac delta functions δ are chosen as test functions. These functions satisfy the
so-called sifting property, i.e.,∫

Ω

fΩ(τ )δ(τ − τ ij)dΩ = fΩ(τ ij), (42)

∫
Γ

fΓ(τ )δ(τ − τ ij)dΓ = fΓ(τ ij) (43)

for every function fΩ continuous about the point τ ij ∈ Ω and for every function fΓ continuous
about the point τ ij ∈ Γ [21, 17, 18].

By applying the sifting property to equations (41) and (34) it can be deduced that
the following strong form equations, expressed in terms of displacements and stresses as
independent variables, have to be solved at the set of collocation points τ uij and τ σij:

[∇ · σ̃n+1 + bn+1](τ uij) = 0 τ uij ∈ Ω, (44a)
[σ̃n+1 − σn+1(un+1)](τ σij) = 0 τ σij ∈ Ω, (44b)

[σ̃n+1 · n− tn+1](τ uij) = 0 τ uij ∈ ΓN . (44c)

The set of collocation points τ uij and τ σij is obtained from to the discretization of the
displacement and stress fields, respectively. A common choice for the collocation point
locations in the IGA framework are the images of the Greville abscissae, which can be
calculated for a one-dimensional B-Spline of degree p as

τ̂i =
1

p

i+p∑
j=i+1

ξj, (45)

where ξj are the entries of the knot vector Ξ. For multi-variate discretizations, the Greville
abscissae are obtained via the tensor product of equation (45) in the corresponding para-
metric directions. As mentioned in the introduction, there exist more advanced strategies to
find improved abscissae values as e.g. shown in [28, 29, 30, 31]. However these approaches
are not directly applicable to mixed formulations, especially in case of non-linear problems,
hence they are not adopted herein.

For the trial functions uhn+1 and σ̃hn+1 the same discretizations with NURBS as in the
mixed Galerkin method (see equations (27) and (35)) are used for the collocation method.
Thus the discretized equations in residual form read

Rmom,h
n+1 = ∇ · σ̃hn+1 + bn+1 = 0, (46)

Rstr,h
n+1 = σ̃hn+1 − σn+1(uhn+1) = 0, (47)

Rneu,h
n+1 = σ̃hn+1 · n− tn+1 = 0. (48)

The corresponding linearizations are easily obtained as

∆Rmom,h
n+1 = ∇ ·∆σ̃hn+1, (49)
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∆Rstr,h
n+1 = ∆σ̃hn+1 −∆σn+1(uhn+1), (50)

∆Rneu,h
n+1 = ∆σ̃hn+1 · n. (51)

The same linearization of the stress tensor ∆σn+1(un+1) as given in equation (31) for the
Galerkin method is also valid for the proposed mixed collocation method. Therefore, the
same source code at the material point level can be used to incorporate the constitutive
equations. In contrast to a pure displacement-based collocation approach, it is not necessary
to linearise the algorithmic tangent modulus of the return mapping algorithm in the proposed
method. Therefore, instabilities due to the non-differentiability of the tangent modulus at
the elastoplastic boundary are circumvented.

3.5. Hybrid approach
The treatment of the boundary regions plays an important role in isogeometric colloca-

tion methods. In [18] the influence of the definition of normals at corner points has been
studied in detail. Further investigations on the treatment of Neumann boundary conditions
have been conducted in [22]. In the latter study it is shown that the strong imposition of
Neumann boundary conditions may lead to a significant loss in accuracy induced by spu-
rious oscillations. In this context two strategies were proposed. The first one is called
“enhanced collocation”, whereby the Neumann boundary conditions are imposed consider-
ing both boundary and bulk contributions weighted through a penalty-like constant. The
second approach is named “hybrid collocation” and is characterised by the evaluation of the
boundary contributions in an integral form. For more details the reader is referred to [22].

Based on this hybrid formulation, an adaptive hybrid approach for isogeometric colloca-
tion has been introduced and applied to phase-field fracture models in [61]. It is shown in
section 3.4 that the mixed isogeometric collocation method can be derived from the mixed
isogeometric Galerkin formulation by using Dirac delta functions as test functions. This can
also be done selectively for each NURBS basis function, enabling a local switch between the
Galerkin and the collocation method.

To avoid issues induced by the boundaries in the linear elastic examples of this work and
still maintaining an efficient approach, only the test functions corresponding to boundary
control points are kept as NURBS in the momentum balance equation, whereas the other
ones are discretized by Dirac delta functions. To enable a comparison between the hybrid
and the standard approach, the results of the collocation approach without hybrid treatment
of the boundaries are reported in the appendix.

For the examples on elastoplasticity, the test functions of the momentum balance equation
are all approximated by NURBS. Since the corresponding system of equations has to be
initialized only once at the beginning of the simulation and remains the same over all load
steps and Newton-Raphson iterations, the additional effort is comparatively low.

3.6. Multi-patch parameterizations
A multi-patch parameterization of a geometry is taken into account in this study, since

complex geometries of real simulation models usually consist of several patches. A domain
Ω ⊂ Rd, composed of N non-overlapping domains Ωi such that Ω = Ω1 ∪ Ω2 ∪ ... ∪ ΩN , is
considered. The coupling interface Γcj,k between two adjacent patches can thus be determined
as Γcj,k = Ωj ∩ Ωk.
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In this study, a conforming multi-patch configuration is tested, which means that the
parameterizations of adjacent boundaries exactly match. Thus, in case of NURBS, the degree
and the knot vectors at connected interfaces have to be identical. The patch interfaces can
be coupled via linear constraints on the corresponding boundary control points. In the case
of the proposed mixed isogeometric collocation approach, one needs to decide which DOFs
should be coupled at the boundaries of the multi-patch parameterizations. In this work,
the displacement DOFs are coupled between adjacent patches. An additional coupling of
the stress DOFs led in some cases to a negative effect on the convergence of the Newton-
Raphson method and is therefore omitted. Thus the continuity of the stress field is not
enforced in the formulation. Kapl et. al [62] recently presented a multi-patch approach
for isogeometric collocation, which leads to a globally C2-smooth discretization space. An
extension of this approach to the mixed formulation presented in this manuscript might be
an interesting field of research for further studies. The coupling of the displacement DOFs is
enforced strongly via the control points. Similarly, the Galerkin formulation was extended to
conforming multi-patch parameterizations in order to have an equivalent reference solution.

4. Numerical examples on nearly incompressible elasticity

In this section, the behaviour of the proposed approach regarding volumetric locking
effects in case of nearly incompressible elastic material behaviour is studied by means of three
examples. Since the choice of the approximation spaces can have a significant influence on
the locking behaviour, different combinations are compared with each other. In a Galerkin
framework the corresponding mixed formulation leads to a saddle-point problem and the
inf-sup condition can be used as a criterion to select suitable approximation spaces. Since
this criterion is not directly applicable to the collocation method, herein it is only possible
to report numerical observations.

Throughout this work, the polynomial degrees of an approximation field are chosen to
be the same for all parametric directions and the polynomial degrees of the displacement
and stress fields are denoted as pd and ps, respectively. Besides the choice for pd and ps, the
possible combinations differ in having the same Bézier mesh or an equal number of control
points. Among the combinations

1. pd = ps, same Bézier mesh / same number of control points (∗)
2. pd = ps + 1, same Bézier mesh
3. pd = ps + 1, same number of control points (∗)
4. ps = pd + 1, same Bézier mesh (∗)
5. ps = pd + 1, same number of control points

the best results were obtained for the options marked with an asterisk. Therefore, these three
options are investigated in this section. For the other two options the errors were several
orders of magnitude higher for most of the refinement steps. Therefore we excluded these
options. The Bézier meshes and control nets of an example geometry for the combinations
marked with an asterisk are shown in figures 2 - 4. For all investigated discretizations the
knot vectors are uniform.
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(a) Displacements: Bézier mesh (b) Stresses: Bézier mesh

(c) Displacements: Control net (d) Stresses: Control net

Figure 2: Quarter of annulus: Example for discretization with equal degrees (pd = ps = 2) and same number
of control points (nd = ns = 7).

(a) Displacements: Bézier mesh (b) Stresses: Bézier mesh

(c) Displacements: Control net (d) Stresses: Control net

Figure 3: Quarter of annulus: Example for discretization with enriched displacement field (pd = ps +1 = 3)
and same number of control points (nd = ns = 7).
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(a) Displacements: Bézier mesh (b) Stresses: Bézier mesh

(c) Displacements: Control net (d) Stresses: Control net

Figure 4: Quarter of annulus: Example for discretization with enriched stress field (ps = pd + 1 = 3) and
same Bézier mesh (number of control points ns = nd + 1 = 8).

For reasons of comparability, the number of control points in the convergence plots always
refers to the displacement approximation space. The relative errors Eu and Eσ of the
displacements and stresses, respectively, are reported in terms of the L2-norm, whenever
an analytical solution is available. Due to symmetry of the stress tensor, the shear stress
component σyx is not taken into account for the calculation of the error Eσ.

As described in section 3.5, a hybrid collocation-Galerkin approach is applied to incor-
porate Neumann boundary conditions. The results from the collocation approach without
hybrid treatment of the boundaries are given in the appendix for comparison purposes. For
the last example surface plots are shown to visualize field outputs. To capture the general
distribution patterns, the colour bar limits are set manually for these plots and thus do not
necessarily coincide with the actual data ranges.
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4.1. Quarter of annulus with body load

(a) Geometry and boundary conditions

Simulation setup

Number of control points:
nd = 10× 10− 160× 160

Polynomial degree:
pd/ps = 2− 7

Lamé’s first parameter:
λ = 1 or 104

Lamé’s second parameter:
µ = 1

(b) Simulation parameters

Figure 5: Quarter of annulus with body load: Geometry, boundary conditions and simulation setup.

For the volumetric locking investigations, a quarter of annulus as illustrated in figure 5 is
considered as first benchmark test. The domain is represented by a single patch parameteri-
zation and homogeneous Dirichlet boundary conditions are assumed on the whole boundary.
Following [18], the pre-defined divergence-free manufactured solution

u1,ref (x, y) =10−6x2y4(x2 + y2 − 16)(x2 + y2 − 1)

(5x4 + 18x2y2 − 85x2 + 13y4 + 80− 153y2),

u2,ref (x, y) =− 2 · 10−6xy5(x2 + y2 − 16)(x2 + y2 − 1)

(5x4 − 51x2 + 6x2y2 − 17y2 + 16 + y4).

(52)

is assigned via the corresponding body forces.
As a motivation for the mixed approach and for comparison purposes, the results ob-

tained with a primal collocation approach are reported first. A description of the primal
isogeometric collocation method for linear elasticity can, e.g., be found in [18]. Figures 6
and 7 show the relative errors Eu and Eσ of the displacements and stresses. The behaviour
for the compressible case is shown on the left-hand side and on the right-hand side the
nearly incompressible counterpart is given. There is hardly any convergence detectable for
the polynomial degrees p = 2 and p = 3 and nearly incompressible material behaviour,
which indicates volumetric locking issues. Higher polynomial degrees lead to a recovery of
the expected convergence rates, however, with errors of two to three orders of magnitude
higher for the nearly incompressible case than for the compressible case.
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