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Abstract

This paper presents an enhanced version of our previous work, hybrid non-uniform subdivision sur-

faces [19], to achieve optimal convergence rates in isogeometric analysis. We introduce a parameter

λ ( 1
4 < λ < 1) to control the rate of shrinkage of irregular regions, so the method is called tuned

hybrid non-uniform subdivision (tHNUS). Our previous work corresponds to the case when λ = 1
2 .

While introducing λ in hybrid subdivision significantly complicates the theoretical proof of G1 conti-

nuity around extraordinary vertices, reducing λ can recover the optimal convergence rates when tuned

hybrid subdivision functions are used as a basis in isogeometric analysis. From the geometric point

of view, the tHNUS retains comparable shape quality as [19] under non-uniform parameterization. Its

basis functions are refinable and the geometric mapping stays invariant during refinement. Moreover,

we prove that a tuned hybrid subdivision surface is globally G1-continuous. From the analysis point

of view, tHNUS basis functions form a non-negative partition of unity, are globally linearly indepen-

dent, and their spline spaces are nested. We numerically demonstrate that tHNUS basis functions can

achieve optimal convergence rates for the Poisson’s problem with non-uniform parameterization around

extraordinary vertices.

Key words: Non-Uniform Subdivision, Extraordinary Vertex, Optimal Convergence Rates,

Isogeometric Analysis

1. Introduction

Isogeometric analysis (IGA) has emerged as a powerful technology to unify geometric modeling and

numerical simulation [13, 9], which employs the same basis functions used in computer-aided design

(CAD) and simulations. IGA has grown into a large family of numerical methods incorporating various

spline techniques, such as NURBS (Non-Uniform Rational B-Splines) [13], hierarchical B-splines [35],

T-splines [30, 21, 29, 34, 40, 20, 38, 41], polynomial splines over T-meshes [10], and locally refinable

B-splines [11].

The study of extraordinary vertices1 has been one of the most active research directions in IGA be-

cause they are inevitable in complex watertight geometric representations. Along this direction, simul-

taneously fulfilling the requirements from both design and analysis is a significant challenge. Numerous

methods have been developed over the past few years, but among them, only a few constructions can

∗Corresponding author, lixustc@ustc.edu.cn, tel: +86-551-63607202
1An interior vertex in a quadrilateral mesh is called an extraordinary vertex if it is shared by other than four faces.
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achieve optimal convergence rates in IGA, such as geometrically smooth multi-patch construction [8, 15],

degenerated Bézier construction [27, 33, 6], manifold-based construction [23], and blended C0 construc-

tion for unstructured hexahedral meshes [39]. A common simplification in all these constructions is to

adopt uniform parameterization around extraordinary vertices, i.e., the surrounding knot intervals are

assumed to be the same. While the support of non-uniform parameterization is a necessary step forward

to be compatible with the current industry standard in CAD, i.e., NURBS, the related study on the

above-mentioned constructions has not been reported in the literature.

On the other hand, subdivision methods, as a generalization of splines, provide a flexible means to

deal with extraordinary vertices, where an infinite series of spline patches are smoothly joined around

extraordinary vertices. The combination of flexibility and global smoothness makes them not only the

standard in the computer animation industry but also a promising candidate for IGA. Indeed, some of the

subdivision methods have been studied in the context of IGA, such as the use of Loop subdivision in thin-

shell analysis [7] and the development of Catmull-Clark solids [4]. However, several challenging problems

need to be carefully investigated before we can fully leverage the power of subdivision methods, such

as developing efficient quadrature rules to integrate infinite piecewise polynomials around extraordinary

vertices [14, 2], supporting non-uniform parameterizations to be compatible with NURBS [31, 25, 5,

24, 18], and recovering optimal convergence rates [22]. This paper intends to address both non-uniform

parameterization and optimal convergence behavior at the same time.

The present work is a follow-up of our preceding work on hybrid non-uniform subdivision (HNUS) [19],

which generalizes bicubic NURBS to arbitrary topology with proved G1 continuity around extraordi-

nary vertices. HNUS features high quality in geometric modeling under non-uniform parameterization.

When applied to IGA, HNUS basis functions are not optimal but lead to improved convergence rates

compared to Catmull-Clark subdivision.

Motivated by the idea of tuned Catmull-Clark subdivision [22] under uniform parameterization,

we introduce a parameter λ ∈ ( 1
4 , 1) in HNUS to control the shrinkage rate in irregular regions such

that we can recover optimal convergence. The enhanced version of HNUS is therefore called tuned

hybrid non-uniform subdivision (tHNUS). In fact, the parameter λ is the subdominant eigenvalue (the

2nd and 3rd eigenvalues which are equal) of the tHNUS subdivision matrix, that plays a crucial role

in surface continuity [28] as well as the convergence performance [22]. Note that tHNUS coincides

with the original HNUS when λ = 1
2 . From the geometric point of view, tHNUS retains comparable

shape quality as HNUS. Its basis functions are refinable and the geometric mapping stays invariant

during refinement. Moreover, we prove that the tHNUS surface is globally G1-continuous. From the

analysis point of view, tHNUS basis functions form a non-negative partition of unity, are globally linearly

independent, and their spline spaces are nested. Moreover, we numerically demonstrate that tHNUS

can achieve optimal convergence rates in the Poisson’s problem by reducing λ, regardless of whether

parameterization around extraordinary vertices is uniform or not. As an interesting side product, we

also show that simply applying the standard Gauss quadrature rule to every element (close to or far

away from extraordinary vertices) in tHNUS does not influence simulation accuracy or convergence.

The reminder of the paper is organized as follows. Section 2 presents the subdivision rules of tHNUS.

The proof of G1 continuity for tHNUS surfaces is given in Section 3. The tHNUS basis functions are

derived and their properties are discussed in Section 4. In Section 5, we present numerical tests of both

geometric modeling and IGA. Section 6 concludes the paper and discusses the future work.
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2. Tuned hybrid non-uniform subdivision surfaces

Our discussion assumes that the input control mesh is a regular manifold mesh where all the faces

are quadrilaterals. If initially a mesh has polygonal faces, we apply a single NURSS (Non-Uniform

Recursive Subdivision Surface) refinement [31, 18] to obtain an all-quadrilateral mesh. A non-negative

scalar, which is called the knot interval, is assigned to each edge of the control mesh. We further assume

that in each face, the knot intervals on the opposite edges coincide. A non-uniform parameterization

is obtained by assigning different knot intervals to different edges as long as the assumption for knot

intervals holds.

The tHNUS consists of two sets of rules: the topological rules to manipulate mesh connectivity,

and the geometric rules to update the coordinates of involved control points. Each set of rules can be

further divided into the first level and the subsequent levels. All the rules of tHNUS coincide with those

of the original HNUS [19] except for the geometric rule corresponding to the subsequent levels. We

will concisely cover all the rules in the following to keep the explanation self-contained. One may refer

to [19] for more details.

We start with the topological rules of tHNUS, which consist of rules for the first level and the

subsequent levels, as illustrated in Figure 1. The rule corresponding to the first level converts the input

quadrilateral mesh to its hybrid counterpart. Each extraordinary vertex is replaced by a polygonal face,

whereas each spoke edge2 is replaced by a quadrilateral face. To make the resulting mesh conforming,

additional vertices and edges are further replaced by certain faces; see Figure 1(a). Note that all the edges

of a newly added polygonal face have a zero knot interval. Under the assumption of knot intervals, this

means that all the newly added faces have a zero (parametric) measure. In regular regions, introducing

zero-knot-interval edges leads to a reduction in continuity of basis functions from C2 to C1.

d0 d1 d20 0
d3

d4

d5

d6

0

0

d70

(a) The first level (b) The subsequent levels

Figure 1: The topological rules of tHNUS. (a) Converting the input quadrilateral mesh (light grey dots and lines) to a

corresponding hybrid mesh (blue and red dots), and (b) refinement of the hybrid mesh in (a).

The topological rule for the subsequent levels is about how to split the initial hybrid mesh as in

Figure 1(a). Overall, every edge with a nonzero knot interval is split equally into two. As a result, a

quadrilateral face is split into four or two subfaces, depending on the number of nonzero-knot-interval

edges it has. All the polygonal faces3 stay unchanged (topologically).

2A spoke edge is an edge touching a certain extraordinary vertex.
3We refer to non-quadrilaterals as polygonal faces.
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We next introduce the geometric rules of tHNUS, which again are divided into the first level and the

subsequent levels. At the first level, the rule to update regular vertices is the same as NURBS refinement,

whereas the rule to compute polygon vertices is derived such that the limit surface of tHNUS has the

same limit point and tangent plane as that of the non-uniform subdivision via eigen-polyhedron [18].

We take the eigen-polyhedron-based subdivision as the reference because it shows demonstrated shape

quality under non-uniform parameterization. However, the computation is rather complicated and there

is no explicit formula available. Alternatively, a simple explicit rule was provided in [19], where each

polygon vertex is computed as a convex combination of neighboring vertices. However, this explicit rule

does not guarantee shape quality. Note that the geometric rule for the first level plays a crucial role

in determining shape quality, but it has nothing to do with the proof of surface G1 continuity or the

convergence performance in IGA.

P0,0
i

P 0,0
i+1

P0,0
i-1 P0,1

i-1

P1,0
i

P0,1
i P1,1

i

di

di+1

ai P2,0
i

P2,1
i

P0,1
i-1

P0,0
i

P 0,0
i+1

P0,0
i-1 P0,1

i-1

P1,0
i

P0,1
i P1,1

i

di

di+1

ai P2,0
i

P2,1
i

P0,1
i-1

(a) The first two-ring vertices (b) The third-ring vertices

Figure 2: The geometric rule of tHNUS for the subsequent levels. (a) is the rule for the first two-ring vertices, and (b) is

the rule for the third-ring vertices.

Now we provide the geometric rule of tHNUS for the subsequent levels, which differs from HNUS in

that there is an additional tuning parameter λ in the formula to update polygon vertices. Referring to

Figure 2 and given knot intervals ai, di, the points P
0,0

i , P
1,0

i , P
1,1

i and P
0,1

i in the refined mesh are

defined as

P
0,0
i = (1− λ)C + λP 0,0

i + 2λαi(−nP 0,0
i +

n−1∑
j=0

(1 + 2 cos(
2(j − i)π

n
))P 0,0

j ),

P
1,1
i =

didi+1P
1,1
i + di(di+1 + 2ai+1)P

1,0
i + di+1(di + 2ai)P

0,1
i + (di + 2ai)(di+1 + 2ai+1)P

0,0
i

4(di + ai)(di+1 + ai+1)
,

P
1,0
i =

didi+1P
0,1
i−1 + di(di+1 + 2di−1)P

1,0
i + di+1(di + 2ai)P

0,0
i−1 + (di + 2ai)(di+1 + 2di−1)P

0,0
i

4(di−1 + di+1)(di + ai)
,

P
0,1
i−1 =

didi−1P
1,0
i + di(2di+1 + di−1)P

0,1
i−1 + di−1(di + 2ai)P

0,0
i + (di + 2ai)(2di+1 + di−1)P

0,0
i−1

4(di−1 + di+1)(di + ai)
,

(1)

where αj = 1
n

dj−1dj+2

(dj−1+dj+1)(dj+dj+2)
, then

C =

∑n−1
i=0 (diP

0,0
i+1 + di+2P

0,0
i )(di−1 + di+3)∑n−1

j=0 (dj + dj+2)(dj−1 + dj+3)

.
=

n−1∑
i=0

βiP
0,0
i . (2)
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The remaining points are computed by the NURBS mid-knot insertion. For example,

P
2,0

i =
aiP

1,0

i

2(di + ai)
+

1

4

(di+1 + 2di−1)P 1,0
i + di+1P

0,1
i−1

di+1 + di−1
+

diP
3,0

i

2(di + ai)
,

P
2,1

i =
aiP

1,1

i

2(di + ai)
+

1

4

di+1P
1,1
i + (di+1 + 2ai+1)P 1,0

i

di+1 + ai+1
+

diP
3,1

i

2(di + ai)
,

P
2,2

i =
P 1,1
i

4
+
aiai+1P

1,1

i + diai+1P
3,1

i + aidi+1P
1,3

i + didi+1P
3,3

i

4(di + ai)(di+1 + ai+1)

+
ai+1

4(di+1 + ai+1)
M1 +

di+1

4(di+1 + ai+1)
M3 +

di
4(di + ai)

M2 +
ai

4(di + ai)
M4, (3)

where

M1 =
di+1P

1,1
i + (di+1 + 2ai+1)P 1,0

i

2(di+1 + ai+1)
, M2 =

P 1,1
i + P 2,1

i

2
,

M4 =
P 1,1
i + (di + 2ai)P

0,1
i

2(di + ai)
, M3 =

P 1,1
i + P 1,2

i

2
. (4)

Remark 2.1. All the computations of these points are the same as those in HNUS except for polygon

vertices P
0,0

i , where the tuning parameter λ is introduced to control the size of shrinkage in the updated

polygon: the smaller λ is, the more the polygon shrinks. As a result, isoparametric lines become more

concentrated around extraordinary vertices. We will see examples in Section 5. When λ = 1
2 , the

computation of P
0,0

i coincides with that in HNUS, and thus tHNUS is equivalent to HNUS in this

particular case. However, the generalization via introducing λ is not as straightforward as it appears. The

key insight is that λ turns out to be the subdominant eigenvalues (i.e., the 2nd and 3rd eigenvalues) of the

subdivision matrix in tHNUS. As has been reported in [22], convergence behavior in a subdivision scheme

is mostly influenced by the subdominant eigenvalues. Therefore, tuning λ is equivalent to “controlling”

convergence. We will have more detailed discussion about how λ improves convergence with specific

examples in Section 5.

Tuned subdivision is a well studied subject aiming to optimized subdivision stencils (i.e., coefficients

in the subdivision matrix) to improve certain properties of a subdivision scheme, for example, to mini-

mize curvature variations to achieve a better surface fairness [12, 16, 1]. Recently, it has been explored

in the context of IGA to improve accuracy [42] as well as convergence [22]. In particular, the tuned

Catmull-Clark subdivision [22] is the first work in IGA that is able to use a subdivision scheme to achieve

optimal convergence rates (in the L2-norm error by solving the Poisson’s equation). However, the opti-

mization framework proposed in [22] only works for uniform parameterization and cannot be extended

to non-uniform subdivision schemes because the subdivision stencils in a uniform subdivision scheme

like Catmull-Clark only depend on the valence of a given extraordinary vertex, and the optimization

can be focused on a finite number of stencils of interest. Thus, optimization only needs to be done once

and the optimized stencils can be stored for future use. On the other hand, the subdivision stencils

in a non-uniform subdivision depend on not only the valence of an extraordinary vertex, but also the

surrounding knot intervals, leading to infinite possible cases of stencils. Therefore, it is not feasible to

apply optimization to non-uniform subdivision because otherwise it would be very time-consuming and

also problem specific.

Remark 2.2. We introduce λ explicitly to the formula of P
0,0

i . Note that λ is a single parameter for

all situations. It is independent of the valence of extraordinary vertices and the choice of knot intervals.
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However, this is only possible when bounded curvature is not of primary interest. tHNUS generally

does not have bounded curvature. Nonetheless, bounded curvature under non-uniform parameterization

remains an open problem and may not be available at all.

3. Proof of continuity

In order to prove tHNUS surfaces to be G1 continuous, we need to prove that the spectrum of

the subdivision matrix satisfies certain constraints and the associated characteristic map is regular and

injective. Note that introducing λ to HNUS indeed significantly complicates the proof of G1 continuity.

Referring to Figure 3 for the notations, the subdivision rule can be written into the following equations

since the neighbor knot intervals ai equals to di with enough subdivision levels.

P i

Pi-1

P i

P i

Pi

P i-1

Pi

Pi

Pi

di
di

di+1

1,0

1,1

0,1

0,10,0

1,0

1,1

0,1

0,0

a  =i

Figure 3: The notations to define the subdivision matrix around a polygonal face.



P
0,0
j = (1− λ)C + λP 0,0

j + 2λαj

[
−nP 0,0

j +

n−1∑
i=0

(1 + 2 cos(
2(j − i)π

n
))P 0,0

i

]
,

P
1,0
j =

3(2dj−1 + dj+1)

8(dj−1 + dj+1)
P 0,0
j +

3dj+1

8(dj−1 + dj+1)
P 0,0
j−1 +

(2dj−1 + dj+1)

8(dj−1 + dj+1)
P 1,0
j +

dj+1

8(dj−1 + dj+1)
P 0,1
j−1,

P
0,1
j−1 =

3dj−1

8(dj−1 + dj+1)
P 0,0
j +

3(dj−1 + 2dj+1)

8(dj−1 + dj+1)
P 0,0
j−1 +

dj−1

8(dj−1 + dj+1)
P 1,0
j +

(dj−1 + 2dj+1)

8(dj−1 + dj+1)
P 0,1
j−1,

P
1,1
j =

9

16
P 0,0
j +

3

16
P 0,0
j +

3

16
P 0,0
j +

1

16
P 1,1
j .

(5)
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We arrange them in a matrix form M = SnM , i.e.,

P
0,0

0

...

P
0,0

n−1
P

1,0

0

...

P
0,1

n−1
P

1,1

0

...

P
1,1

n−1



=



Qn 0 0

E0 . . . 0

>
...

. . . 0 0

0 0 En−1
1
16 0 0

> >
...

. . .

0 0 1
16





P 0,0
0
...

P 0,0
n−1

P 01,0
0
...

P 0,1
n−1
P 1,1
0
...

P 1,1
n−1



. (6)

Denote Qn = (Qi,j), where i, j ∈ {0, 1, . . . , n− 1}, and then we have

Qi,j =

{
(1− λ)βj + 2

(
1 + 2 cos

(
2(j−i)π

n

))
λαi, j 6= i

λ+ (1− λ)βi − 2(n− 3)λαi, j = i

and

Ej =

(
2dj−1+dj+1

8(dj−1+dj+1)
dj+1

8(dj−1+dj+1)
dj−1

8(dj−1+dj+1)
dj−1+2dj+1

8(dj−1+dj+1)

)
.

Lemma 3.1. Given an extraordinary vertex of any valence and an arbitrary choice of positive knot

intervals, the eigenvalues of Qn satisfy

λ1 = 1 > λ2 = λ3 = λ > |λk|, k = 4, 5, . . . , n. (7)

Proof. We use the discrete Fourier transform to compute the eigenvalues of Qn. Let pk and pk (k =

0, . . . , n− 1) be the Fourier vectors corresponding to Pj and P j , respectively, i.e.,

pk = 1
n

∑n−1
j=0 P

0,0
j ωjk, pk =

1

n

n−1∑
j=0

P
0,0

j ωjk, (8)

P 0,0
k =

∑n−1
j=0 pjω

jk, P
0,0

k =

n−1∑
j=0

pjω
jk, (9)

where ω = e
2π
n and ω = e−

2π
n . Now the subdivision rule can be formulated in terms of the Fourier

vectors,

n−1∑
k=0

pkω
jk =

n−1∑
k=0

n−1∑
j=0

(1− λ)βjω
jk

 pk + p0 +λωjp1 +λωj(n−1)pn−1 + 2λ

(
1

2
− nαj

) n−2∑
k=2

pkω
jk. (10)

Using the inverse discrete Fourier transform, we obtain
p0
p1
...

pn−1

 =


1 (1− λ)β1 · · · (1− λ)βn−1
0 λ > 0

0 0 Bn−3 0

0 0 > λ




p0

p1
...

pn−1

 , (11)
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where

Bn−3 = λI − 2λ


∑n−1
j=0 αj

∑n−1
j=0 αjω

j . . .
∑n−1
j=0 αjω

(n−4)j∑n−1
j=0 αjω

(n−1)j ∑n−1
j=0 αj · · ·

∑n−1
j=0 αjω

(n−5)j

...
...

. . .
...∑n−1

j=0 αjω
4j

∑n−1
j=0 αjω

5j · · ·
∑n−1
j=0 αj

 =: λI − 2λGn. (12)

Similar to [19], both Gn and I −Gn are positive definite. Denote λB,i the eigenvalues of Bn−3. As Gn

is positive definite, 1
2I −

1
2λBn−3 (= Gn) is also a positive definite matrix, which means that λB,i < λ.

On the other hand, I − Gn is a positive definite matrix as well because µk < 1, and equivalently,

I − ( 1
2I −

1
2λBn−3) is positive definite, which means that λB,i > −λ. Therefore, we complete the

proof.

Lemma 3.2. Given an extraordinary vertex of any valence and an arbitrary choice of positive knot

intervals, if λ > 1
4 , then the eigenvalues of Sn satisfy

λ1 = 1 > λ2 = λ3 = λ > |λk|,where k = 4, 5, . . . , 4n. (13)

Proof. The eigenvalues of Sn consist of those of Qn, Ei and 1
16In, where In is an n× n identity matrix.

As proved in Lemma 3.1, the first three eigenvalues of Qn are 1, λ, λ, and the remaining ones are less

than λ. 1
16In has n equal eigenvalues 1

16 (< λ). It is also straightforward to verify that the eigenvalues

of the 2× 2 matrix Ei are 1
4 (< λ) and 1

8 (< λ). Therefore, we conclude that the eigenvalues of Sn are

λ1 = 1 > λ2 = λ3 = λ > |λk|,where k = 4, 5, . . . , 4n. (14)

The next step is to compute the characteristic map and prove that it is regular and injective. We

first prove the following lemma.

Lemma 3.3. Let Pi =
(
cos( 2iπ

n ), sin( 2iπ
n )
)
∈ R2 (i = 0, . . . , n−1), CP =

∑n−1
i=0 βiPi, and P be an n×2

vector containing all Pi, i.e., P = [P0, P1, . . . , Pn−1]T . Then we have

Sn(P − CP ) = λ(P − CP ). (15)

Proof. Denote P = SnP , and we can obtain

P j − CP =λ(Pj − CP ) + 2λαj

[
−n
(
cos(

2jπ

n
), sin(

2jπ

n
)

)
+

n−1∑
i=0

(
1 + 2 cos(

2(j − i)π

n
)

)(
cos(

2iπ

n
), sin(

2iπ

n
)

)]

=λ(Pj − CP ) + 2λαj

[
−n
(
cos(

2jπ

n
), sin(

2jπ

n
)

)
+

n−1∑
i=0

2 cos

(
2(j − i)π

n

)(
cos(

2iπ

n
), sin(

2iπ

n
)

)]

=λ(Pj − CP ) + 2λαj [−n(cos(2jπ
n

), sin(
2jπ

n
))+

n−1∑
i=0

(cos(
2jπ

n
) + cos(

2(j − 2i)π

n
), sin(

2jπ

n
)− sin(

2(j − 2i)π

n
))]

=λ(Pj − CP ).

Since the above equation holds for any 0 ≤ j ≤ n− 1, we conclude

Sn(P − CP ) = λ(P − CP ). (16)

8



Pi-1
0,0

Ei-1

Ei

C

Pi-1
0,1 P i-1

0,2 P i-1
0,3

P i
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C
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1,0 P i

2,0 P i
3,0

P i
0,1
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0,2

P i
0,3

P i
1,1

Pi
2,1

P i
3,1
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1,2
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2,2

P i
3,2

P i
1,3

P i
2,3
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(a) Control points P j,ki , j = 0 or k = 0 (b) The other control points

Figure 4: The control points of the characteristic map of tHNUS. (a) shows the control points P 0j
i and P j0

i while (b)

shows the rest of the control points of the characteristic map.

Lemma 3.4. The characteristic map of tHNUS is regular and injective for any valence extraordinary

vertices and any positive knot intervals if λ ∈ ( 1
4 , 1).

Proof. To prove that the characteristic map is regular and injective, we need a 4 × 4 grid of control

points. We first compute the coordinates of this control grid that is used to define the characteristic

map. The key idea is based on the fact that applying subdivision to the control grid of a characteristic

map is equivalent to scaling the control grid by λ.

Referring to Figure 4, we have control points P j,ki , where 0 ≤ j, k ≤ 3 (0 ≤ i ≤ n − 1). According

to Lemma 3.3, if we let P 0,0
i = (cos( 2iπ

n ), sin( 2iπ
n )) ∈ R2, C =

∑n−1
i=0 βiP

0,0
i , then we have Sn[P 0,0

0 −
C, . . . , P 0,0

n−1 − C]T = λ[P 0,0
0 − C, . . . , P 0,0

n−1 − C]T .

Further let Ei = di
di+di+2

P 0,0
i+1 + di+2

di+di+2
P 0,0
i , p = P 0,0

i − C, v = Ei−1 − C and w = Ei − C. By

definition, we have

1

4
(
di+1 + 2di−1
2di+1 + 2di−1

(P 1,0
i − P 0,0

i ) +
di+1

2di+1 + 2di−1
(P 0,1
i−1 − P

0,0
i−1)) +

1

2
(Ei−1 − C) = λ(P 1,0

i − P 0,0
i ),

1

4
(

di−1
2di+1 + 2di−1

(P 1,0
i − P 0,0

i ) +
di−1 + 2di+1

2di+1 + 2di−1
(P 0,1
i−1 − P

0,0
i−1)) +

1

2
(Ei−1 − C) = λ(P 0,1

i−1 − P
0,0
i−1).

Solving the linear systems, we obtain

P 1,0
i − P 0,0

i = P 0,1
i−1 − P

0,0
i−1 =

4(1− λ)

4λ− 1
v +

4(1− 2λ)

8λ− 1
(p− v). (17)

Similarly, we compute P 2,0
i , P 3,0

i , P 0,3
i−1, P 0,3

i−1 as follows,

P 2,0
i − P 1,0

i =
18(1− λ)

(8λ− 1)(4λ− 1)
v +

18(1− 2λ)

(16λ− 1)(8λ− 1)
(p− v),

P 3,0
i − P 2,0

i =
6(1− λ)(1 + λ)

(8λ− 1)λ(4λ− 1)
v +

3(1− 4λ2)

(16λ− 1)λ(8λ− 1)
(p− v).
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We can also compute the remaining control points P j,ki (1 ≤ j, k ≤ 3), whose coefficients are complex

expressions in λ. The detailed expressions are given in the Appendix.

With all these control points, we can now extract the Bézier control points for patches P1, P2 and

P3; see Figure 4(b). For example, in the patch P2, let Bj,k2 (j, k = 0, . . . , 3) be the 4× 4 Bézier control

points. We denote Sj,k2 = Bj+1,k
2 − Bj,k2 and T j,k2 = Bj,k+1

2 − Bj,k2 . All Sj,k2 and T j,k2 can be written

as linear combinations of p, v and w, where the coefficients are again complex expressions in λ; see

Appendix. We further plot some of these coefficients as functions of λ ∈ ( 1
4 , 1); see Figures 5 and 6. We

observe that Sj,k2 are convex combinations of vectors p, v and −w, while T j,k2 are convex combinations of

p, −v and w. Moreover, C is a convex combination of the points Ei from Equation (2), so the patch P2

is regular and injective. As a result, all the control points P j,ki (0 ≤ j, k ≤ 3) lie in the region bounded

by two rays CEi−1 and CEi, which means that any two different patches must not intersect with one

another. Similar results can also be achieved for patches P1 and P3. Therefore, the characteristic map

of tHNUS is regular and injective for any λ ∈ ( 1
4 , 1), any valence extraordinary vertices and any positive

knot intervals.

1/4 1

x

y

1/4 1
x

y

1/4 1
x

y

1/4 1

x

y

S0,0
2 S1,1

2 S2,2
2 S2,3

2

Figure 5: The plots of the coefficients of Sj,k
2 in terms of λ ∈ ( 1

4
, 1), where the x-axis represents λ and y-axis represents the

value of the coefficients. The green, blue and orange lines represent coefficients corresponding to v, p and w, respectively.

Each Sj,k
2 is a convex combination of p, v and −w.

1/4 1

x

y

1/4 1
x

y

1/4 1
x

y

1/4 1

x

y

T 0,0
2 T 1,0

2 T 2,0
2 T 3,0

2

Figure 6: The plots of the coefficients of T j,k
2 in terms of λ ∈ ( 1

4
, 1), where the x-axis represents λ and y-axis represents the

value of the coefficients. The green, blue and orange lines represent coefficients corresponding to v, p and w, respectively.

Each T j,k
2 is a convex combination of p, −v and w.

Theorem 3.1. Given an arbitrary 2-manifold control mesh with any choice of positive knot intervals

and any λ ∈ ( 1
4 , 1), the corresponding tHNUS limit surface is globally G1-continuous.

Proof. The theorem is a direct result of Lemma 3.1, Lemma 3.2 and Lemma 3.4.

4. Hybrid subdivision basis functions

In this section, we introduce basis functions of hybrid non-uniform subdivision. The derivation

of such subdivision functions essentially follows Stam’s method for Catmull-Clark subdivision [32].

10



However, there are two major differences. First, Catmull-Clark basis functions are associated with the

input quadrilateral control mesh, whereas tHNUS basis functions are associated with the hybrid control

mesh; see Figure 1(a). Second, Catmull-Clark subdivision features uniform knot intervals everywhere,

leading to a subdivision matrix that only depends on the valence of a particular extraordinary vertex.

In contrast, tHNUS (or HNUS) supports general non-uniform knot intervals, so the subdivision matrix

depends not only on the valence of the extraordinary vertex, but also on the surrounding knot intervals.

4.1. Definition of basis functions

We now introduce how tHNUS basis functions are defined on a hybrid control mesh. We start with

distinguishing different types of faces. Recall that there exists both quadrilateral and polygonal faces in

the hybrid mesh, and each edge in a polygonal face is assigned with a zero knot interval by construction.

The knot intervals of other edges inherit from the input quadrilateral mesh and are constrained by the

assumption that opposite edges in a quadrilateral face have the same knot interval. Moreover, note that

edges perpendicular to the boundary also have zero knot intervals to make use of open knot vectors. An

example of the knot interval configuration is shown in Figure 7(b), where the hybrid mesh is obtained

from the input mesh in Figure 7(a).

(a) (b) (c)

Figure 7: Knot intervals and mesh terminologies. (a) The input quadrilateral mesh, (b) edges with zero knot intervals

(blue) and nonzero intervals (orange), and (c) different types of faces: quadrilateral faces with zero-measure (green),

polygonal faces (orange), regular faces (blue), and irregular faces (red).

We identify faces of zero-measure and nonzero-measure according to their parametric areas, which

are computed using knot intervals. Zero-measure faces are not used in geometric representation and have

no contribution to analysis. Note that all the polygonal faces and boundary faces have a zero-measure.

The nonzero-measure faces, on the other hand, are divided into regular and irregular faces. An irregular

face is a nonzero-measure face that shares a vertex with a certain polygonal face; all the other nonzero-

measure faces are regular; see Figure 7(c). The tHNUS basis functions defined on a regular element4

are simply B-spline basis functions. In what follows, we restrict our attention to those defined on an

irregular element. For simplicity of explanation, we assume that there is only one polygonal face in the

1-ring neighborhood of an irregular element. The 1-ring neighborhood of a face is a collection of faces

that share vertices with this face, and recursively, the n-ring (n ≥ 2) neighborhood consists of faces in

the (n− 1)-ring neighborhood as well as the faces sharing vertices with the (n− 1)-ring neighborhood.

4We use face and element interchangeably, but “face” emphasizes mesh topology whereas “element” is IGA-oriented.
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Remark 4.1. In a hybrid control mesh, each interior vertex is shared by four faces (or edges) and

thus it has a regular valence of four. However, it does not mean that mesh irregularities are removed

by converting the input quadrilateral mesh to its hybrid counterpart. In fact, irregularities are now

manifested in the polygonal faces, which will be detailed in the following.

Given an irregular element Ω, let N denote the number of vertices in its adjacent polygonal face

which is equivalent to the valence of the corresponding extraordinary vertex in the input quadrilateral

mesh. There are K := N + 12 basis functions defined on Ω, associated with a local mesh around the

polygonal face; see Figure 8(a). We denote

B0(u, v) = [B0,1(u, v), B0,2(u, v), . . . , B0,K(u, v)]T

and

P0 = [P0,1, P0,2, . . . , P0,K ]T

the basis functions and the corresponding control vertices, respectively. Their indices are ordered ac-

cording to Figure 8(a). The surface patch, i.e., the geometric mapping restricted to Ω is then represented

by

s(u, v) = PT
0 B0(u, v), (u, v) ∈ Ω. (18)

Note that Ω naturally has a parametric domain [0, d1]× [0, d2] that is determined by the corresponding

knot intervals. We rescale it to Ω = [0, 1]2 to unify the treatment of irregular elements. The influence

of the rescaling will be discussed in Remark 4.2.

Our focus is to derive B0, which relies on subdivision of the corresponding control mesh P0. Applying

subdivision once yields Level-1 control vertices, denoted by

P1 = [P1,1, P1,2, . . . , P1,K ]T = S1P0,

P̄1 = [P1,1, P1,2, . . . , P1,K , P1,K+1, . . . , P1,M ]T = S̄1P0, (19)

where M := K + 9 = N + 21. The subdivision matrices S1 and S̄1 have the dimension of K ×K and

M ×K, respectively. Clearly, S̄1 yields additional 9 vertices compared to S1. The entries of S1 and S̄1

come from the tHNUS geometric rules as well as the mid-knot insertion of B-splines, see Equations (1,

2) and (3, 4), respectively. Among the four subelements at Level 1, three of them Ω1
k (k = 1, 2, 3) are

regular and correspond to regular C1 B-spline patches. In other words, the surface patch restricted to

Ω1
k is given by

s(u, v) = PT
1,kN1,k(u, v), (u, v) ∈ Ω1

k ⊂ Ω, (20)

where P1,k is a subvector of P̄1 and N1,k(u, v) is the vector of B-splines defined on Ω1
k (k = 1, 2, 3);

see Figure 8(c–e). Both P1,k and N1,k have a dimension of 16 due to the bicubic degree setting. P1,k

can be obtained with the help of a permutation matrix Tk, i.e., P1,k = TkP̄1 = TkS̄1P0. Therefore,

Equation (20) becomes

s(u, v) = (TkS̄1P0)TN1,k(u, v) = PT
0 (TkS̄1)TN1,k(u, v), (u, v) ∈ Ω1

k. (21)

For Equations (18, 21) to be equivalent under arbitrary choice of P0, we need

B0(u, v) = (TkS̄1)TN1,k(u, v), (u, v) ∈ Ω1
k. (22)

In other words, we have found the definition of B0 on three quarters (Ω1
1, Ω1

2 and Ω1
3) of Ω.
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(c) (d) (e)

Figure 8: Local meshes of an irregular element Ω and its refined subelements Ω1
k (k = 1, 2, 3). (a) The local mesh and

surrounding knot intervals of Ω, (b) the globally refined mesh, and (c–e) the local meshes of Ω1
k, where the orange lines

indicate the boundary of Ω, and indices in light gray imply that the corresponding basis functions have no support on the

highlighted subelement.

Now we are left to find the definition of B0 on the remaining quarter [0, 12 ]2, and we proceed with

the same idea explained above. As a result, the domain Ω is partitioned into an infinite series of tiles,

Ω =

∞⋃
n=1

3⋃
k=1

Ωnk ,

where

Ωn1 =

[
1

2n
,

1

2n−1

]
×
[
0,

1

2n

]
,

Ωn2 =

[
1

2n
,

1

2n−1

]
×
[

1

2n
,

1

2n−1

]
,

Ωn3 =

[
0,

1

2n

]
×
[

1

2n
,

1

2n−1

]
.

Analogous to Equation (19), we have

Pn = SnPn−1 = SnSn−1 · · ·S1P0,

P̄n = S̄nPn−1 = S̄nSn−1 · · ·S1P0.

Again, Sn and S̄n (n ≥ 1) have the dimension of K × K and M × K, respectively. Note that S2 =

S3 = · · · = Sn (n ≥ 2) and S̄3 = S̄4 = · · · = S̄n (n ≥ 3) because the ratios of knot intervals around
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an irregular subelement become fixed as the subdivision level increases. Therefore, following the same

argument in deriving Equation (22), we have the general expressions for B0,

B0(u, v) =


(TkS̄1)TN1,k(u, v) n = 1(
TkS̄2S1

)T
N2,k(u, v) n = 2(

TkS̄3 (S2)
n−2

S1

)T
Nn,k(u, v) n ≥ 3

,

where (u, v) ∈ Ωnk , and Nn,k(u, v) (n ≥ 1) is the vector of B-splines defined on Ωnk .

Remark 4.2. Rescaling Ω to [0, 1]2 only affects the knot vectors (or equivalently, the vectors of knot

intervals) of B-splines Nn,k(u, v) (n ≥ 1). For example, when n = 1 without scaling, the vector of knot

intervals in the u direction is {
d3
2
,
d3
2
, 0,

d1
2
,
d1
2
,
a1
2
,
a1
2
,
b1
2

}
,

whereas after scaling with respect to d1, it becomes

U1 =

{
d3
2d1

,
d3
2d1

, 0,
1

2
,

1

2
,
a1
2d1

,
a1
2d1

,
b1

2d1

}
,

and similarly, we have the vector of knot intervals in the v direction,

V1 =

{
dN
2d2

,
dN
2d2

, 0,
1

2
,

1

2
,
a2
2d2

,
a2
2d2

,
b2

2d2

}
.

Moreover, when n = 2, we have

U2 =

{
d3

22d1
,
d3

22d1
, 0,

1

22
,

1

22
,

1

22
,

1

22
,
a1

22d1

}
, V2 =

{
dN

22d2
,
dN

22d2
, 0,

1

22
,

1

22
,

1

22
,

1

22
,
a2

22d2

}
,

and when n ≥ 3,

Un =

{
d3

2nd1
,
d3

2nd1
, 0,

1

2n
,

1

2n
,

1

2n
,

1

2n
,

1

2n

}
, Vn =

{
dN

2nd2
,
dN

2nd2
, 0,

1

2n
,

1

2n
,

1

2n
,

1

2n
,

1

2n

}
.

Nn,k(u, v) are defined using Un and Vn.

In fact, it is practically useful to rescale each tile Ωnk to [0, 1]2 by

k = 1 ξ = 2nu− 1, η = 2nv,

k = 2 ξ = 2nu− 1, η = 2nv − 1,

k = 3 ξ = 2nu, η = 2nv − 1.

Correspondingly, the vectors of knot intervals are rescaled to

n = 1 Ξ1 =
{
d3
d1
, d3d1 , 0, 1, 1,

a1
d1
, a1d1 ,

b1
d1

}
, Θ1 =

{
dN
d2
, dNd2 , 0, 1, 1,

a2
d2
, a2d2 ,

b2
d2

}
,

n = 2 Ξ2 =
{
d3
d1
, d3d1 , 0, 1, 1, 1, 1,

a1
d1

}
, Θ2 =

{
dN
d2
, dNd2 , 0, 1, 1, 1, 1,

a2
d2

}
,

n ≥ 3 Ξ3 =
{
d3
d1
, d3d1 , 0, 1, 1, 1, 1, 1

}
, Θ3 =

{
dN
d2
, dNd2 , 0, 1, 1, 1, 1, 1

}
,

where the rescaled knot intervals are now independent of the subdivision level n when n ≥ 3. In

summary, the basis functions of interest are defined as

B0(u, v) =


(TkS̄1)Tb1,k(ξ(u), η(v)) n = 1(
TkS̄2S1

)T
b2,k(ξ(u), η(v)) n = 2(

TkS̄3 (S2)
n−2

S1

)T
b3,k(ξ(u), η(v)) n ≥ 3

, (23)

where (ξ, η) ∈ [0, 1]2 and bl,k(ξ, η) are B-splines defined using Ξl and Θl (l = 1, 2, 3). Note that when

n = 1, 2, we have Nn,k(u, v) = bn,k(ξ(u), η(v)), and when n ≥ 3, Nn,k(u, v) = b3,k(ξ(u), η(v)).
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Remark 4.3. Evaluation of B0(u, v) at (0, 0) in an irregular element needs the computation of limn→∞(S2)n−2.

Following [32], we need to eigen-decompose S2 such that S2 = VΛV−1, where Λ is a diagonal matrix

containing the eigenvalues of S2 and V is an invertible matrix with columns being the corresponding

eigenvectors. Accordingly, we have limn→∞(S2)n−2 = limn→∞VΛn−2V−1. Recall that all the eigen-

values are smaller than 1 (and greater than 0) except the first one λ1 = 1, so limn→∞Λn−2 is a matrix

whose entries are all zero except the first-row-first-column entry, which is one. On the other hand, the

derivatives of B0(u, v) are not bounded around (0, 0). We can see this by applying the chain rule, for

example,
∂B0(u, v)

∂u
= 2n

(
TkS̄3 (S2)

n−2
S1

)T ∂b3,k(ξ, η)

∂ξ
,

where the factor comes from dξ/du = 2n. A differentiable version of B0 (with respect to certain pa-

rameters) can be obtained via characteristic-map-based reparameterization [3]. However, in this paper,

we are interested in applying tHNUS basis functions in the context of IGA, so we only need derivatives

at quadrature points that are away from (0, 0). Moreover, what we eventually need is derivatives with

respect to the physical coordinates, for example,

∂B0 ◦ s−1(x, y)

∂x
=
∂B0

∂u

∂u

∂x
+
∂B0

∂v

∂v

∂x
,

where s−1 is the inverse mapping of s(u, v). The troublesome factor 2n, which may cause overflow

when n becomes too large, is canceled out with that from ∂u/∂x (which is 2−n) and does not cause any

numerical issues. The same argument applies to higher order derivatives.

Remark 4.4. In [32], the eigen structure (Λ,V) is precomputed for different valence numbers and

stored in a file for repeated use. However, the same scheme cannot be applied to tHNUS because the

subdivision matrix S2 depends on not only the valence number but also the surrounding knot intervals,

leading to infinite possible cases of S2. Therefore, the eigen structure of S2 needs to be found in real time

for every irregular element. Alternatively, we can directly perform matrix multiplications to compute

(S2)n−2, especially when the valence number is small and basis functions need to be computed at points

other than (0, 0). This is indeed the case in IGA where evaluation is needed at quadrature points. In

practice, we adopt a near-machine-precision tolerance (e.g., 10−13) to prevent a potential overflow issue.

Remark 4.5. In the previous discussion, B0 is derived under the assumption that there is only one

polygonal face next to an irregular element, which, however, is not a necessary condition. When an

irregular element has multiple adjacent polygonal faces, we treat it as a macro element and pseudo-

subdivide it once. Each of the resulting four subelements only has one polygonal face, where basis

functions are defined according to our previous discussion. In other words, basis functions are well

defined on each quarter of the original macro element. This extension follows the same idea proposed

in [37], which extends Stam’s derivation [32] to arbitrary unstructured quadrilateral meshes.

4.2. Quadrature

To apply the standard Gauss quadrature rule, we need to guarantee that the involved basis functions

are polynomials (rather than piecewise polynomials) on each integration cell. However, the functions

in B0 are piecewise smooth polynomials defined on an infinite series of subdomains, i.e., {Ωnk}∞n=1

(k = 1, 2, 3). The straightforward way is to apply the Gauss quadrature rule on each cell Ωnk up to a

certain fine level, which was adopted in several subdivision-based isogeometric methods [26, 37]. We call

such a quadrature the full quadrature scheme. In our patch test, we observe that the solution achieves
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machine precision (∼ 10−16) when the 4-point rule is used and the level n is set to be 10. As a result,

a total number of 496 quadrature points are needed for a single irregular element. In contrast, only 16

Gauss quadrature points are used for a regular element.

Alternatively, we can “brutally” apply the Gauss quadrature rule to the entire irregular element.

In other words, only 16 Gauss quadrature points are placed on an irregular element. We observe

that such a reduced quadrature scheme does not influence convergence. In fact, it does not introduce

noticeable numerical error in terms of the L2- or H1-norm error compared to the full quadrature. We

will numerically compare the two schemes in the next section.

4.3. Properties

Now we briefly discuss several properties of tHNUS basis functions, including non-negative partition

of unity, refinability (equivalent to nested spline spaces), and global linear independence. The non-

negative partition of unity of tHNUS basis functions follows from the fact that all the entries in the

subdivision matrix are non-negative and each row sum of the subdivision matrix is one. Refinability

states that each basis function of a given mesh can be represented as a linear combination of those defined

on a refined mesh. In fact, we can see this property in the derivation of B0, where basis functions are

always expressed as linear combinations of functions in the refined meshes.

Finally, the global linear independence implies linear independence on the entire domain, and it can

be easily shown under the mild assumption that each irregular element has at least one regular element

as its direct neighbor. Under this assumption, every basis function has support on a certain regular

element, where it is simply a B-spline. As B-splines are linearly independent on such an element, we can

conclude that all the basis functions are linearly independent on the entire domain by going through all

the regular elements. The proof on general meshes becomes more involving because we need to resolve

different configurations of polygonal faces, or equivalently, configurations of extraordinary vertices in

the input mesh. A complex configuration usually occurs when the mesh is very coarse such that many

extraordinary vertices may be next to one another. When this is the case, we can perform global

refinement to guarantee linear independence.

5. Numerical examples

In this section, we present several numerical examples using tHNUS surfaces in both geometric

modeling and IGA.

5.1. Geometric modeling with tHNUS surfaces

We show some tHNUS limit surface examples and compare them with the existing non-uniform

subdivision schemes. We first show the graphs of blending functions for the extraordinary points (EPs)

with different valences, such as valence-5 EP in Figure 9, valence-6 EP in Figure 10 and valence-7 EP in

Figure 11. As stated in [19], the approaches in [31], [5] and [17] produce limit surfaces with very similar

quality in all the examples. Therefore, we only show the limit surface comparisons in one example as

shown in Figure 9. All the rest of the examples only show the limit surface of the new tHNUS with

different λ. We can observe that all different λ can produce better shape quality than those approaches

in [31], [5] and [17], but the small λ produces worse shape quality surround the EPs, see Figures 12 and

13 for the details.
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(a) The control grid (b) Result produced by [31] (c) Result produced by [5]

(d) Result produced by [17] (e) Result produced by [18] (f) Result produced by [19]

(g) tHNUS with λ = 0.26 (h) tHNUS with λ = 0.35 (i) tHNUS with λ = 0.65

Figure 9: The blending function for a valence-5 non-uniform EP using different approaches, where the knot intervals of

the red edges are 10 and those of the other edges are 1.

(a) λ = 0.26 (b) λ = 0.35 (c) λ = 0.65

Figure 10: The blending function for a valence-6 non-uniform EP using different λ.

(a) λ = 0.26 (b) λ = 0.35 (c) λ = 0.65

Figure 11: The blending function for a valence-7 non-uniform EP using different λ.
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(a) λ = 0.26 (b) λ = 0.35 (c) λ = 0.65

Figure 12: The blending function for a valence-6 non-uniform EP using different λ, where larger λ produces more satis-

factory reflection lines.

(a) λ = 0.26 (b) λ = 0.35 (c) λ = 0.65

Figure 13: A comparison of different λ applied to the helmet model. The artifact for the reflection lines exists for λ = 0.26.

5.2. IGA applications using tHNUS basis functions

In this section, we test the performance of tHNUS basis functions in the context of IGA. We solve

the Poisson’s equation with several unstructured quadrilateral meshes as the input. We start with

convergence tests on a unit square, whose input control mesh has two EPs, one of valence 3 and the

other of valence 5; see Figure 7(a). These tests are aimed at studying: (1) the role of λ in convergence,

(2) the feasibility of using reduced quadrature, and (3) the influence of non-uniform parameterizations

on convergence.

First, we study the influence of the tuning parameter λ on convergence behavior, where we choose

λ to be 0.65, 0.5, and 0.26. Recall that tHNUS is equivalent to the original HNUS when λ = 0.5. We

adopt uniform parameterization (i.e., same knot intervals) around EPs as well as full quadrature in this

study. With the manufactured solution u(x, y) = sin(πx) sin(πy), we summarize the convergence plots

in Figure 14. We observe that a smaller λ delivers a better convergence behavior, and particularly,

optimal convergence rates are achieved when λ = 0.26. The tuned Catmull-Clark subdivision (with

uniform parameterization) was studied in [22], where optimal convergence rates in the L2-norm were

observed in the Poisson’s problem when λ = 0.39. It indicates that the tuning parameter in tHNUS

plays a less sensitive role than that in [22] because tHNUS requires a smaller λ to recover optimal

convergence. The reason may be that λ brings more vertices to move further towards each EP than in

tHNUS. As a result, the tuned Catmull-Clark subdivision has a faster shrinkage in irregular regions.

We will provide insights about why reducing λ recovers optimal convergence later when we study the

meshes with high-valence EPs.

Second, we compare two quadrature schemes in irregular elements, full quadrature versus the reduced

quadrature, under uniform parameterization with λ = 0.26 and λ = 0.5. We observe in Figure 15(a)

that there is no noticeable difference in terms of both L2- and H1-norm errors. In other words, both

quadrature schemes deliver the same level of accuracy when λ = 0.26. In contrast, quadrature plays an
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Figure 14: Convergence plots using λ = {0.65, 0.5, 0.26}. Particularly, λ = 0.5 corresponds to the original HNUS whereas

λ = 0.26 recovers optimal convergence rates.

important role when λ = 0.5, where the full quadrature yields nearly one-order higher convergence rates

than the reduced quadrature. This indicates that when λ = 0.26, the corresponding basis functions

(piecewise polynomials) in irregular elements can be better approximated by polynomials than those

using λ = 0.5, and 16 quadrature points seem to suffice to retain accuracy. However, further study is

needed to fully understand the mechanism behind.

Third, we study several different non-uniform parameterizations for convergence test, which can be

obtained by assigning different knot intervals to the edges in the input control mesh. Semi-uniform

knot intervals are usually adopted in the literature, where all the edges are assigned a unit knot interval

except for those perpendicular to the boundary, which are assigned a zero knot interval. To have non-

uniform parameterization around EPs, we modify the semi-uniform setting in two ways: (1) the knot

interval (denoted by d) of highlighted spoke edges takes values d ∈ {1, 2, 5, 10}; and (2) every spoke

edge is assigned a different knot interval; see Figure 16(a, b). In both cases, we observe in Figure 16(c,

d) that tHNUS basis functions can achieve optimal convergence rates with λ = 0.26. We also observe

that the convergence plots corresponding to a larger d slightly shift up, meaning that larger difference

in knot intervals yields larger approximation error. In other words, the “distortion” in parameterization

influences accuracy rather than convergence.

Now, we consider meshes with high-valence EPs (valence 6, 7 and 8), where each spoke edge is

assigned a different knot interval. We again observe optimal convergence rates with λ = 0.26; see Figure

17. Moreover, let us have a close look at how λ influences parameterization around EPs. In particular,

we compare isoparametric lines using two different λ’s (0.5 versus 0.26) around a valence-6 EP, where the

same input control mesh in Figure 17(a) is used in both cases. We find in Figure 18 that isoparametric

lines are overlaid with one another in most regions, and with a smaller λ, the isoparametric lines (blue

curves) are more bent towards the extraordinary surface point s(0, 0). Equivalently speaking, a smaller

λ yields smaller refined irregular elements in the physical domain. Therefore, the mesh around s(0, 0)

becomes denser than that using a larger λ, and as a result, the asymptotic approximation error controlled

by s(0, 0) can be reduced using such a denser mesh. Ideally, optimal convergence rates can be achieved

by reducing λ, which indeed is the case in all our numerical tests when λ = 0.26.
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Figure 15: Convergence plots using full and reduced quadrature.

Remark 5.1. Although the globally smooth tHNUS basis functions can be applied to solve 4th-order

partial differential equations (PDEs), our preliminary tests only show suboptimal convergence in solving

the biharmonic equation, where obtained convergence rates in terms of L2-, H1- and H2-norm errors

are around 2, 2, and 1, respectively. This is consistent with the result reported in [42], where a thin-

shell problem was solved and the reported convergence rates in L2- and energy norm errors are 2 and

1, respectively. In other words, reducing λ alone is not sufficient for high-order PDEs. We conjecture

that to recover the optimal convergence in this case, we may need more degrees of freedom around

EPs following similar ideas in [33, 39]. However, this would further complicate the current subdivision

framework, so we postpone related results in a follow-up work.

6. Conclusions and future work

We have presented a tuned version of hybrid non-uniform subdivision, tHNUS, by introducing a pa-

rameter λ ∈ ( 1
4 , 1), which is also the second and third eigenvalues of the subdivision matrix. The tHNUS

surface is proved to be G1-continuous for any positive knot intervals and extraordinary vertices of any

valence. The tHNUS surface has satisfactory shape quality for any λ under non-uniform parameteriza-

tion. However, the highest shape quality is achieved when λ = 0.5. In other words, the original HNUS

generally performs better in geometric modeling than tHNUS. On the other hand, tHNUS basis func-

tions can achieve optimal convergence rates when λ is reduced to 0.26, regardless of which quadrature

scheme is used and whether parameterizations are uniform or non-uniform around EPs.

In the future, we can extend tHNUS in the following three issues. First, converting an input quadri-

lateral mesh to its hybrid counterpart can be restricted locally to irregular regions without introducing

zero-measure faces throughout the entire mesh. This can be done by allowing T-junctions [30] in the

hybrid mesh, but support of T-junctions in a hybrid mesh requires a much more sophisticated data

structure to accommodate both polygonal faces and quadrilaterals with T-junctions. Second, tHNUS

can be adapted to hierarchical splines [35] due to its refinability property, where the initial level cor-

responds to the initial hybrid mesh. The construction of hierarchical tHNUS essentially follows those

proposed for truncated hierarchical Catmull-Clark subdivision surfaces [36, 37], but the differences lie
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Figure 16: Convergence plots under different non-uniform parameterizations. (a, b) The configurations of knot intervals

around EPs, and (c, d) convergence plots in L2- and H1-norm errors.

in dealing with hybrid meshes and non-uniform knot intervals. Third, improving tHNUS to achieve op-

timal convergence rates in solving high-order PDEs is another challenging but very interesting direction

to pursue. Currently, we can only show optimal convergence in solving the 2nd-order PDE. In the case

of high-order PDEs, our preliminary tests suggest that it is not sufficient to tune λ alone and additional

treatment is needed. We plan to our investigation by adding more control points around extraordinary

vertices.
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Figure 17: Convergence plots using meshes with high-valence EPs. (a–c) The configurations of knot intervals around EPs,

and (d–f) convergence plots corresponding to the input meshes in (a–c), respectively.

Appendix

The control points P j,ki (1 ≤ j, k ≤ 3) of the characteristic map are listed as follows.

P
1,1
i

= −
(λ − 2)

((
32λ3 − 100λ2 + 31λ − 2

)
p − 12λ2(v + w)

)
(λ − 4)λ(4λ − 1)(8λ − 1)

P
1,2
i

=
6λ2

((
256λ3 + 136λ2 − 2251λ − 232

)
v + 2

(
128λ3 − 184λ2 − 149λ + 10

)
w

)
+

(
−4096λ6 + 18688λ5 − 14576λ4 − 22112λ3 + 8275λ2 − 608λ + 20

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)

P
1,3
i

=
6λ2

(
2
(
320λ3 − 919λ2 − 800λ + 7

)
v +

(
160λ3 − 314λ2 − 13λ + 2

)
w

)
+

(
−2560λ6 + 15904λ5 − 29348λ4 + 3535λ3 + 928λ2 − 62λ + 2

)
p

(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)

P
2,1
i

=
6λ2

((
256λ3 − 368λ2 − 298λ + 20

)
v +

(
256λ3 + 136λ2 − 2251λ − 232

)
w

)
+

(
−4096λ6 + 18688λ5 − 14576λ4 − 22112λ3 + 8275λ2 − 608λ + 20

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)

P
2,2
i

=
6
(
4096λ4 + 33024λ3 − 96320λ2 − 11271λ − 1160

)
λ2(v + w) +

(
−65536λ7 − 194560λ6 + 2362752λ5 − 4183824λ4 + 1165584λ3 − 71505λ2 + 976λ + 100

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

P
2,3
i

=
6λ2

((
74240λ4 − 139104λ3 − 145684λ2 − 8118λ − 7

)
v +

(
58880λ4 − 106224λ3 − 32914λ2 − 2208λ − 127

)
w

)
2(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−942080λ7 + 4816384λ6 − 6465888λ5 + 394032λ4 + 345858λ3 − 33192λ2 + 1313λ − 1

)
p

2(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

P
3,1
i

=
6λ2

((
160λ3 − 314λ2 − 13λ + 2

)
v + 2

(
320λ3 − 919λ2 − 800λ + 7

)
w

)
+

(
−2560λ6 + 15904λ5 − 29348λ4 + 3535λ3 + 928λ2 − 62λ + 2

)
p

(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)

P
3,2
i

=
6λ2

((
58880λ4 − 106224λ3 − 32914λ2 − 2208λ − 127

)
v +

(
74240λ4 − 139104λ3 − 145684λ2 − 8118λ − 7

)
w

)
2(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−942080λ7 + 4816384λ6 − 6465888λ5 + 394032λ4 + 345858λ3 − 33192λ2 + 1313λ − 1

)
p

2(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

P
3,3
i

=
6
(
25600λ4 − 30144λ3 − 61166λ2 − 5685λ − 236

)
λ2(v + w) +

(
−409600λ7 + 1923584λ6 − 1925280λ5 − 1010388λ4 + 470631λ3 − 36036λ2 + 1060λ + 16

)
p

(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
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Figure 18: Isoparametric lines around the valence-6 EP under uniform parameterization. Orange and blue curves are

isoparametric lines corresponding to λ = 0.5 and λ = 0.26, respectively. Blue curves are not visible in most regions

because they are overlaid with orange ones. Black curves indicate element boundaries in the physical domain.

The expressions of all Sj,k2 (0 ≤ j, k ≤ 3) are listed as follows.

S
0,0
2 =

3λ
(
28672λ4 − 44160λ3 − 104888λ2 − 4242λ − 59

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
+

3λ
(
−20480λ4 + 125568λ3 + 2296λ2 − 2886λ − 107

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−589824λ7 + 2557952λ6 − 1417856λ5 − 723088λ4 + 318940λ3 − 25264λ2 + 853λ + 3

)
p

4(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
1,0
2 = −

6λ
(
14336λ4 − 53888λ3 + 58744λ2 + 2009λ + 30

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

12λ
(
5120λ4 − 11808λ3 + 1904λ2 − 234λ + 41

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
81920λ7 − 467968λ6 + 851904λ5 − 540792λ4 + 116238λ3 − 7683λ2 + 211λ + 1

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
2,0
2 = −

(
163840λ5 − 360448λ4 + 20512λ3 + 2732λ2 + 571λ + 47

)
w

4(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
458752λ6 − 1579008λ5 + 1185408λ4 + 775632λ3 − 25056λ2 + 567λ − 4

)
v

8(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
2621440λ8 − 14696448λ7 + 25499648λ6 − 13590144λ5 + 1352256λ4 + 248436λ3 − 23683λ2 + 897λ − 5

)
p

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
0,1
2 =

18λ
(
2048λ4 − 1856λ3 − 7028λ2 − 669λ − 13

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
+

18λ
(
−2048λ4 + 12288λ3 + 1904λ2 − 556λ − 17

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

−
3
(
32768λ7 − 129024λ6 + 47872λ5 + 108496λ4 − 38716λ3 + 3018λ2 − 95λ − 1

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
1,1
2 = −

6λ
(
12288λ4 − 38912λ3 + 43904λ2 + 4127λ + 76

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

12λ
(
6144λ4 − 14080λ3 + 1036λ2 − 299λ + 80

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
98304λ7 − 553984λ6 + 985152λ5 − 637296λ4 + 138348λ3 − 9009λ2 + 216λ + 4

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
2,1
2 = −

3
(
32768λ5 − 93184λ4 + 70336λ3 + 61032λ2 − 210λ + 7

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

3
(
32768λ5 − 70656λ4 − 4768λ3 + 888λ2 + 236λ + 15

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
524288λ8 − 2883584λ7 + 4827136λ6 − 2557248λ5 + 206544λ4 + 64080λ3 − 6056λ2 + 233λ − 1

)
p

4(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
0,2
2 =

6λ
(
4096λ4 − 1024λ3 − 19348λ2 − 1877λ − 117

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
+

6λ
(
−4096λ4 + 21888λ3 + 20552λ2 − 3786λ − 97

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
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+

(
−65536λ7 + 215040λ6 + 122880λ5 − 518496λ4 + 160368λ3 − 11706λ2 + 295λ + 9

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
1,2
2 = −

6λ
(
8192λ4 − 28928λ3 + 34888λ2 + 4205λ + 228

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

48λ
(
1024λ4 − 2272λ3 − 868λ2 − 65λ + 39

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
65536λ7 − 393216λ6 + 768768λ5 − 550584λ4 + 120330λ3 − 6531λ2 + 32λ + 12

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
2,2
2 = −

(
32768λ5 − 100352λ4 + 78176λ3 + 82984λ2 + 1862λ + 7

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
32768λ5 − 63488λ4 − 49120λ3 + 2596λ2 + 845λ + 43

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
524288λ8 − 2998272λ7 + 5300224λ6 − 2834112λ5 − 22440λ4 + 158118λ3 − 13784λ2 + 513λ − 1

)
p

6(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
0,3
2 =

(
393216λ7 + 233472λ6 − 2491392λ5 − 285864λ4 − 21918λ3 − 258λ2

)
v

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
+

(
−393216λ7 + 1769472λ6 + 3983616λ5 − 415440λ4 − 81576λ3 + 1449λ2 − 12λ

)
w

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−1048576λ8 + 2555904λ7 + 6412288λ6 − 14197248λ5 + 3735840λ4 − 144900λ3 − 5573λ2 + 717λ − 1

)
p

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
1,3
2 = −

(
65536λ5 − 262144λ4 + 334720λ3 + 52988λ2 + 3718λ + 41

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
65536λ5 − 139264λ4 − 137984λ3 − 23368λ2 + 8098λ − 7

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
1048576λ8 − 6782976λ7 + 14569472λ6 − 11210496λ5 + 2223408λ4 − 32748λ3 − 8632λ2 + 615λ + 1

)
p

12(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

S
2,3
2 = −

(
65536λ5 − 219136λ4 + 173056λ3 + 229220λ2 + 9745λ + 131

)
v

3(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
65536λ5 − 108544λ4 − 208832λ3 − 11944λ2 + 6694λ + 239

)
w

3(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
1048576λ8 − 6291456λ7 + 11761664λ6 − 6099072λ5 − 1021344λ4 + 664680λ3 − 54730λ2 + 1881λ + 7

)
p

18(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

The expressions of all T j,k2 (0 ≤ j, k ≤ 3) are listed as follows.

T
0,0
2 = −

3λ
(
20480λ4 − 125568λ3 − 2296λ2 + 2886λ + 107

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

3λ
(
−28672λ4 + 44160λ3 + 104888λ2 + 4242λ + 59

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−589824λ7 + 2557952λ6 − 1417856λ5 − 723088λ4 + 318940λ3 − 25264λ2 + 853λ + 3

)
p

4(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
1,0
2 = −

18λ
(
2048λ4 − 12288λ3 − 1904λ2 + 556λ + 17

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

18λ
(
−2048λ4 + 1856λ3 + 7028λ2 + 669λ + 13

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

−
3
(
32768λ7 − 129024λ6 + 47872λ5 + 108496λ4 − 38716λ3 + 3018λ2 − 95λ − 1

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
2,0
2 = −

6λ
(
4096λ4 − 21888λ3 − 20552λ2 + 3786λ + 97

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

6λ
(
−4096λ4 + 1024λ3 + 19348λ2 + 1877λ + 117

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−65536λ7 + 215040λ6 + 122880λ5 − 518496λ4 + 160368λ3 − 11706λ2 + 295λ + 9

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
3,0
2 = −

(
−65536λ5 − 38912λ4 + 415232λ3 + 47644λ2 + 3653λ + 43

)
w

4(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
131072λ6 − 589824λ5 − 1327872λ4 + 138480λ3 + 27192λ2 − 483λ + 4

)
v

8(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
−1048576λ8 + 2555904λ7 + 6412288λ6 − 14197248λ5 + 3735840λ4 − 144900λ3 − 5573λ2 + 717λ − 1

)
p

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
0,1
2 = −

12λ
(
5120λ4 − 11808λ3 + 1904λ2 − 234λ + 41

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

6λ
(
14336λ4 − 53888λ3 + 58744λ2 + 2009λ + 30

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
81920λ7 − 467968λ6 + 851904λ5 − 540792λ4 + 116238λ3 − 7683λ2 + 211λ + 1

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
1,1
2 = −

12λ
(
6144λ4 − 14080λ3 + 1036λ2 − 299λ + 80

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

6λ
(
12288λ4 − 38912λ3 + 43904λ2 + 4127λ + 76

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
98304λ7 − 553984λ6 + 985152λ5 − 637296λ4 + 138348λ3 − 9009λ2 + 216λ + 4

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
2,1
2 = −

48λ
(
1024λ4 − 2272λ3 − 868λ2 − 65λ + 39

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

6λ
(
8192λ4 − 28928λ3 + 34888λ2 + 4205λ + 228

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+
2
(
65536λ7 − 393216λ6 + 768768λ5 − 550584λ4 + 120330λ3 − 6531λ2 + 32λ + 12

)
p

(λ − 4)λ(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
3,1
2 = −

(
65536λ5 − 139264λ4 − 137984λ3 − 23368λ2 + 8098λ − 7

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
65536λ5 − 262144λ4 + 334720λ3 + 52988λ2 + 3718λ + 41

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
1048576λ8 − 6782976λ7 + 14569472λ6 − 11210496λ5 + 2223408λ4 − 32748λ3 − 8632λ2 + 615λ + 1

)
p

12(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
0,2
2 =

(
−983040λ7 + 2162688λ6 − 123072λ5 − 16392λ4 − 3426λ3 − 282λ2

)
v

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
+

(
−1376256λ7 + 4737024λ6 − 3556224λ5 − 2326896λ4 + 75168λ3 − 1701λ2 + 12λ

)
w

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
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+

(
2621440λ8 − 14696448λ7 + 25499648λ6 − 13590144λ5 + 1352256λ4 + 248436λ3 − 23683λ2 + 897λ − 5

)
p

24(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
1,2
2 = −

3
(
32768λ5 − 70656λ4 − 4768λ3 + 888λ2 + 236λ + 15

)
v

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

3
(
32768λ5 − 93184λ4 + 70336λ3 + 61032λ2 − 210λ + 7

)
w

2(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
524288λ8 − 2883584λ7 + 4827136λ6 − 2557248λ5 + 206544λ4 + 64080λ3 − 6056λ2 + 233λ − 1

)
p

4(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
2,2
2 = −

(
32768λ5 − 63488λ4 − 49120λ3 + 2596λ2 + 845λ + 43

)
v

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
32768λ5 − 100352λ4 + 78176λ3 + 82984λ2 + 1862λ + 7

)
w

(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
524288λ8 − 2998272λ7 + 5300224λ6 − 2834112λ5 − 22440λ4 + 158118λ3 − 13784λ2 + 513λ − 1

)
p

6(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

T
3,2
2 = −

(
65536λ5 − 108544λ4 − 208832λ3 − 11944λ2 + 6694λ + 239

)
v

3(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)
−

(
65536λ5 − 219136λ4 + 173056λ3 + 229220λ2 + 9745λ + 131

)
w

3(λ − 4)(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

+

(
1048576λ8 − 6291456λ7 + 11761664λ6 − 6099072λ5 − 1021344λ4 + 664680λ3 − 54730λ2 + 1881λ + 7

)
p

18(λ − 4)λ2(4λ − 1)(8λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

The following mathematica code has been used to compute the above control points.

1 clear;

2 a1 = 2*(1 - la)/la;

3 a2 = 6*(2 - la)*(1 - la)/(8*la - 1)/la;

4 a3 = 2*(2 - la)*(1 - la)*(1 + la)/(8*la - 1)/la/la;

5 b2 = 6*(1 - 2*la)/(16*la - 1);

6 b3 = (1 - 2*la)*(1 + 2*la)/la/(16*la - 1);

7 p1 = p + a1*v; p2 = (1 + b2)*p + (a1 + a2 - b2) * v;

8 p3 = (1 + b2 + b3)*p + (a1 + a2 + a3 - b2 - b3) * v;

9 p4 = p + a1*w; p5 = (1 + b2)*p + (a1 + a2 - b2) * w;

10 p6 = (1 + b2 + b3)*p + (a1 + a2 + a3 - b2 - b3) * w;

11 T = Solve[a*la == a*la*la/4 + p1 * la*(2 - la)/4 + p4 * la*(2 - la)/4 +

12 p * (2 - la)*(2 - la)/4 && (b - a)*la == ( a + p1*3)/8 + (p1*3 + p2*3 + a + b)/32 -

13 a*la*3/4 && (d - a)*la == ( a + p4*3)/8 + (p4*3 + p5*3 + a + d)/32 -

14 a*la*3/4 && (c - b)*la == (p1*3 + p2*3 + a + b)*3/32 - a*la/4 - ( a + p1*3)/8 &&

15 (g - d)*la == (p4*3 + p5*3 + a + d)*3/32 - a*la/4 - ( a + p4*3)/8 &&

16 (e - a)*la == (p1*30 + p2 * 6 + p4 * 30 + a * 120 + b * 22 + p5 * 6 +

17 d * 22 + e * 4)/256 - (a*la*la + p1 * la*(2 - la) + p4 * la*(2 - la) +

18 p * (2 - la)*(2 - la))*15/64 && (f - c)*la == (a + b)/4 + (a + b + d + e)/16 -

19 (p1 * 3 + p2 * 3 + a + b)*3/32 && (h - g)*la == (a + d)/4 + (a + b + d + e)/16 -

20 (p4 * 3 + p5 * 3 + a + d)*3/32 && (k - f)*la == (a + b + d + e)*3/16 - (a + b)/4 -

21 (p1 * 3 + p2 * 3 + a + b)/32, {a, b, c, d, e, f, g, h, k}];

22 a = T[[1, 1, 2]]; b = T[[1, 2, 2]]; c = T[[1, 3, 2]];

23 d = T[[1, 4, 2]]; e = T[[1, 5, 2]]; f = T[[1, 6, 2]];

24 g = T[[1, 7, 2]]; h = T[[1, 8, 2]]; k = T[[1, 9, 2]];

25 b11 = (a * 4 + b * 2 + d * 2 + e * 1 )/9;

26 b21 = (a * 2 + b * 4 + d * 1 + e * 2 )/9;

27 b12 = (a * 2 + b * 1 + d * 4 + e * 2 )/9;

28 b22 = (a * 1 + b * 2 + d * 2 + e * 4 )/9;

29 b00 = (p + p1 + p4 + a )/4;

30 b10 = (p1 * 2 + p2 * 1 + a * 2 + b * 1)/6;

31 b20 = (p1 * 1 + p2 * 2 + a * 1 + b * 2)/6;

32 b30 = (p2 * 2 + p3 * 1 + b * 2 + c * 1)/6;

33 b01 = (p4 * 2 + p5 * 1 + a * 2 + d * 1)/6;

34 b02 = (p4 * 1 + p5 * 2 + a * 1 + d * 2)/6;

35 b03 = (p5 * 2 + p6 * 1 + d * 2 + g * 1)/6;

36 b31 = (b* 4 + c * 2 + e * 2 + f * 1 )/9;

37 b32 = (b* 2 + c * 1 + e * 4 + f * 2 )/9;

38 b33 = (e* 4 + f * 2 + h * 2 + k * 1 )/9;

39 b13 = (d* 4 + e * 2 + g * 2 + h * 1 )/9;

40 b23 = (d* 2 + e * 4 + g * 1 + h * 2 )/9;
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41 b00 = (b00 + b10 + b01 + b11)/4;

42 b30 = (b30 + b20 + b21 + b31)/4;

43 b03 = (b03 + b13 + b02 + b12)/4;

44 b33 = (b33 + b32 + b23 + b22)/4;

45 b10 = (b11 + b10)/2;b20 = (b21 + b20)/2;

46 b13 = (b12 + b13)/2;b23 = (b22 + b23)/2;

47 b01 = (b11 + b01)/2;b02 = (b12 + b02)/2;

48 b31 = (b31 + b21)/2;b32 = (b32 + b22)/2;

49 Collect[Simplify[{{b00, b10, b20, b30}, {b01, b11, b21, b31}, {b02, b12, b22, b32}, {b03, b13

, b23, b33}}], {p, v, w}]

50 Collect[Simplify[{{b01 - b00, b11 - b10, b21 - b20, b31 - b30}, {b02 - b01, b12 - b11, b22 -

b21,

51 b32 - b31}, {b03 - b02, b13 - b12, b23 - b22, b33 - b32}}], {p, v,w}]

52 Collect[Simplify[{{b10 - b00, b20 - b10, b30 - b20}, {b11 - b01, b21 - b11, b31 - b21}, {b12

- b02, b22 - b12,

53 b32 - b22}, {b13 - b03, b23 - b13, b33 - b23}}], {p, v, w}]
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