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Abstract

The Discontinuous Petrov-Galerkin (DPG) method and the exponential integrators are two
well stablished numerical methods for solving Partial Differential Equations (PDEs) and stiff
systems of Ordinary Differential Equations (ODEs), respectively. In this work, we apply
the DPG method in the time variable for linear parabolic problems and we calculate the
optimal test functions analytically. We show that the DPG method in time is equivalent
to exponential integrators for the trace variables, which are decoupled from the interior
variables. We generalize this novel DPG-based time-marching scheme to general first order
linear systems of ODEs. We show the performance of the proposed method for 1D and 2D
+ time linear parabolic PDEs after discretizing in space by the finite element method.

Keywords: DPG method, Ultraweak formulation, Optimal test functions, Exponential
integrators, Linear parabolic problems, ODE systems

1. Introduction

The Discontinuous Petrov-Galerkin (DPG) method with optimal test functions for ap-
proximating the solution of Partial Differential Equations (PDEs) was proposed by Demkow-
icz and Gopalakrishnan in 2010 [8, 10]. Since then, it has been applied to a wide variety
of problems including linear elasticity [4], Maxwell’s equations [6], convection-dominated
diffusion [7, 15, 16], Poisson equation [9], Stokes’ flow [18] and Hemlhotz equation [13, 35],
among many others. For more recent overviews, see [11, 12, 22]. The key idea of the DPG
method is to construct optimal test functions in such a way that the discrete stability is in-
herited from the continuous method. Here, the optimal test functions realize the supremum
of the discrete inf-sup condition guaranteeing the stability of the numerical method.

In this article, we focus on the DPG method in time. There exist previous works on DPG
for time domain problems. In [17, 19], authors apply the DPG method in both space and
time variables at the same time for parabolic problems, in [14] for Schrödinger equation, and
in [23] for the wave equation. The downside of this approach is that in 3D + time problems,
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4D meshes are needed. In [21], authors introduce and analyze a numerical scheme for the
heat equation where they apply the backward Euler method in time and DPG in space.

In contrast to previous works, in here we seek to apply the DPG method in time dimen-
sion in order to have a time-stepping scheme also coming from the DPG theory. The goal
is to achieve an efficient and simple method that fits into the DPG methodology. One of
the advantages of our approach is that optimal test functions are readily available in 1D.
This is not the case in most DPG methods, where an approximation to the optimal test
functions is calculated on the fly employing conforming discontinuous test functions from
broken spaces.

In this work, we start from a single first order ODE and we derive a suitable ultraweak
formulation in time. Then, we calculate the optimal test functions of the DPG method an-
alytically, which leads to exponentials that depend upon the data of the problem. When we
substitute the optimal test functions in the ultraweak formulation, we obtain a representa-
tion called “variation-of-constants formula” for the trace variables and those are completely
decoupled from the system. Then, we generalize the proposed method to a general linear
system of ODEs where the optimal test functions are exponentials of matrices. We prove
that we can either: (a) apply the DPG method for a single interval and employ the re-
sulting trace solution as an initial value for the next interval, or (b) formulate the optimal
testing problem globally. Both approaches yield exactly to the same solution. We show the
performance of this method for single ODEs and linear parabolic problems (1D and 2D +
time) after discretizing in space by the finite element method.

In both cases (a single ODE and a system of ODEs) we show that the resulting trace
variables are calculated by the variation-of-constants formula, which is equivalent to the use
of exponential integrators [25, 27]. The latter are a class of methods for the integration in
time of stiff systems of Ordinary Differential Equations (ODEs) that have many applications
[2, 24, 30, 33, 34]. They are mostly employed to solve semilinear systems of the form
u′(t) = Lu(t) + f(u(t), t) where L is a linear operator a f is nonlinear. In this method, the
exact solution of the system is expressed by the variation-of-constants formula. Different
approximations of such representation lead to different methods like exponential Runge-
Kutta methods [26], Rosenbrock method [29], and exponential multistep methods [28],
among many others. All of them involve the computation of the exponential of a matrix
and related functions (called ϕ−functions). There exist an extensive literature on how to
efficiently compute matrix exponentials and the ϕ−functions [1, 3, 5, 31, 32]. Here, we
consider linear ODE systems (i.e. f does not depend on u) and for the numerical results,
we employ the MATLAB package called EXPINT [3] that employs the scaling and squaring
method defined in [31] and a Padé approximant to calculate the matrix exponentials.

Summarizing, the DPG method leads to trace variables that can be computed using
an exponential integrator. Then, we can solve for the interiors of the elements. For that,
we also relate the optimal test functions from the DPG method with the ϕ−functions of
the exponential integrators. Finally, we obtain a time-marching-scheme where we solve the
interiors of the elements employing both the trace variables and the ϕ−functions. Since the
resulting method is DPG, it is possible to analyze it from the variational point of view and
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apply adaptive strategies previously studied in the DPG community.
This article is organized as follows. Section 2 states the strong and ultraweak formu-

lations of a single linear ODE. Section 3 describes the ideal Petrov-Galerkin method and
we provide the analytical solution of the optimal test functions for this case. In Section 4,
we calculate the optimal test functions when we select a trial space composed of piecewise
polynomials of order p. In Section 5, we present the ideal DPG method as a time-marching
scheme. Section 6 generalizes the ideal DPG method for a linear system of ODEs. Section
7 explains the relation of the ideal DPG method with the exponential integrators on the
trace variables and describes the approximation employed in the element interiors. Section
8 presents the numerical results for a single ODE, the 1D + time heat equation and the
2D + time Eriksson-Johnson problem. Section 9 summarizes the conclusions and possible
extensions of this work. Finally, Appendix A provides the proofs of the theoretical results
stated in this article.

2. Single Ordinary Differential Equation (ODE)

Let I = (0, 1] ⊂ R, we consider the following first order Ordinary Differential Equation
(ODE) {

u′ + λu = f in I,

u(0) = u0,
(1)

where u′ denotes the time derivative of u, λ ∈ R−{0} and f ∈ L2(I). Here, the source term
f(t) and the initial condition u0 ∈ R are given data.

To obtain a variational formulation of problem (1), we multiply the equation by some
suitable test functions v and we integrate over I∫

I
(u′ + λu)v dt =

∫
I
fv dt,

and we integrate by parts in time

−
∫
I
uv′ dt+ u(1)v(1)− u(0)v(0) +

∫
I
λuv dt =

∫
I
fv dt.

Now, we substitute u(0) by u0 in the last equation and we treat the unknown value u(T )
as another variable û. We then obtain the following ultraweak variational formulation of
problem (1) {

Find z = {u, û} ∈ U such that
b(z, v) = l(v), ∀v ∈ V ,

(2)

where the trial and test spaces are

U = L2(I)× R, V = H1(I),
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and we define

b(z, v) :=−
∫
I
uv′ dt+

∫
I
λuv dt+ ûv(1),

l(v) :=

∫
I
fv dt+ u0v(0).

Finally, we define the following norms in U and V

||z||2U :=||u||2 + |û|2,
||v||2V :=|| − v′ + λv||2 + |v(1)|2,

(3)

where || · || denotes the usual norm in L2(I).

3. Petrov-Galerkin (PG) method with optimal test functions

3.1. Overview

Given a discrete subspace Uh ⊂ U and (·, ·)V an inner product in V , we introduce the
trial-to-test operator Φ : Uh −→ V defined by

(Φzh, v)V = b(zh, v), ∀v ∈ V, zh ∈ Uh, (4)

and we define the optimal test space for the continuous bilinear form b(·, ·) as V opt
h := Φ(Uh).

Note that from (4), we have that dim V opt
h = dim Uh. We now introduce the ideal Petrov-

Galerkin (PG) method as{
Find zh = {uh, ûh} ∈ Uh such that

b(zh, vh) = l(vh), ∀vh ∈ V opt
h .

(5)

Theorem 1. Suppose {z ∈ U | b(z, v) = 0, ∀v ∈ V } = {0} and that there exist M,γ > 0
such that

γ||v||V ≤ sup
06=z∈U

|b(z, v)|
||z||U

≤M ||v||V , ∀v ∈ V,

then the solution zh of the ideal PG method (5) is unique and it holds

||z − zh||U ≤
M

γ
inf

wh∈Uh

||z − wh||U ,

where z is the exact solution of (2). It also holds that zh is the best approximation to z in

the energy norm defined by ||z||E := sup
06=v∈V

|b(z, v)|
||v||V

, i.e.,

||z − zh||E = inf
wh∈Uh

||z − wh||E .

Proof. See [11].
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We now prove that Theorem 1 holds with M = γ = 1 for problem (2) with respect to
the norms defined in (3). First, we prove that if b(z, v) = 0, ∀v ∈ V =⇒ z = 0 for problem
(2). We suppose that z = {u, û} satisfies

b(z, v) = −
∫
I
uv′ dt+

∫
I
λuv dt+ ûv(1) = 0,

integrating by parts, we obtain∫
I
(u′ + λu)v dt− u(1)v(1) + u(0)v(0) + ûv(1) = 0,

and selecting v ∈ C[0, 1] such that v(0) = v(1) = 0, by Fourier’s lemma we have that
u′ + λu = 0 and therefore we have

−u(1)v(1) + u(0)v(0) + ûv(1) = 0.

Selecting v(t) = 1 − t, we have that u(0) = 0. So u satisfies problem (1) with f = u0 = 0,
then u = 0. Finally, we have that u(1) = û so u = û = 0.

We now calculate the continuity constant M and the continuous inf-sup constant γ. By
Cauchy-Schwarz inequality we have

sup
z∈U

|b(z, v)|2

||z||2U
= sup
{u,û}∈U

∣∣∣∣∫
I
u(−v′ + λv)dt+ ûv(1)

∣∣∣∣2
||u||2 + |û|2

≤ sup
{u,û}∈U

(||u||2 + |û|2)(|| − v′ + λv||2 + |v(1)|2)
||u||2 + |û|2

= ||v||V ,

and selecting u = −v′ + λv and û = v(1) we obtain

sup
z∈U

|b(z, v)|2

||z||2U
≥

∣∣∣∣∫
I
| − v′ + λv|2dt+ |v(1)|2

∣∣∣∣2
|| − v′ + λv||2 + |v(1)|2

= ||v||V .

Therefore, Theorem 1 holds with M = γ = 1.

3.2. Optimal test functions

We now calculate the optimal test functions by solving (4) analytically. Given a trial
function zh = {uh, ûh} ∈ Uh, we find v ∈ V such that

(v, δv)V = b(zh, δv), ∀δv ∈ V, (6)

which is equivalent to∫
I
(−v′ + λv)(−δv′ + λδv)dt+ v(1)δv(1) =

∫
I
uh(−δv′ + λδv)dt+ ûhδv(1). (7)
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Integrating by parts in time, we obtain∫
I
(−v′′ + λ2v)δvdt+ (v′(1)− λv(1) + v(1))δv(1) + (−v′(0) + λv(0))δv(0)

=

∫
I
(u′h + λuh)δvdt+ (ûh − uh(1))δv(1) + uh(0)δv(0).

From Fourier’s lemma, this is equivalent to the following Boundary Value Problem (BVP)
governed by an ODE 

− v′′ + λ2v = u′h + λuh,

− v′(0) + λv(0) = uh(0),

v′(1)− λv(1) + v(1) = −uh(1) + ûh,

(8)

whose solution is

Φ(uh, ûh) = eλ(t−1)ûh + eλt
∫ 1

t
e−λτuh(τ)dτ. (9)

Remark 1. Note that solution (9) also satisfies the following BVP{
− v′ + λv = uh,

v(1) = ûh.
(10)

For the proof (10)⇐⇒(8), see Appendix A.

Finally, if we solve problem (5) with the optimal test functions defined by the trial-to-
test operator (9), we have that zh is the orthogonal projection of the exact solution z into
Uh with respect to the norm defined in (3).

4. Optimal test functions for piecewise polynomials

We consider a trial space Uh composed of piecewise polynomials of order p. Then, we
can express the solution zh = {uh, ûh} ∈ Uh of problem (5) as in Figure 1, where

uh =

p∑
j=0

uh,jt
j .

We study the optimal test functions for Uh and the resulting schemes employing the
trial-to-test operator defined in (9).

6



0 1

u0

uh(t)

ûh

Figure 1: Solution of problem (5).

4.1. Lowest order case (p=0)

We select for Uh the space of piecewise constant functions in time. We have

v̂(λ, t) := Φ(0, 1) = eλ(t−1), v0(λ, t) := Φ(1, 0) =
1− eλ(t−1)

λ
, (11)

so V opt
h = span {v̂, v0} and we have from Remark 1 that{

−v̂′(λ, t) + λv̂(λ, t) = 0, v̂(λ, 1) = 1,

−v′0(λ, t) + λv0(λ, t) = 1, v0(λ, 1) = 0,

where v′0 denotes the derivative of v0 with respect to time. Then, solving problem (5), we
obtain 

ûh = u0v̂(λ, 0) +

∫ 1

0
f(t)v̂(λ, t)dt,

uh,0 = u0v0(λ, 0) +

∫ 1

0
f(t)v0(λ, t)dt.

(12)

4.2. Piecewise linear functions (p=1)

We select for Uh the space of piecewise linear functions in time and we have

v1(λ, t) := Φ(t, 0) =
1 + λt− (1 + λ)eλ(t−1)

λ2
,

so V opt
h = span{v̂, v0, v1} where v̂ and v0 are the functions defined in (11). From (10), the

optimal test functions satisfy the following identities
−v̂′(λ, t) + λv̂(λ, t) = 0, v̂(λ, 1) = 1,

−v′0(λ, t) + λv0(λ, t) = 1, v0(λ, 1) = 0,

−v′1(λ, t) + λv1(λ, t) = t, v1(λ, 1) = 0,

and in (5) we obtain

ûh = u0v̂(λ, 0) +

∫ 1

0
f(t)v̂(λ, t)dt,∫ 1

0
(uh,0 + uh,1t)dt = u0v0(λ, 0) +

∫ 1

0
f(t)v0(λ, t)dt,∫ 1

0
(uh,0 + uh,1t)tdt = u0v1(λ, 0) +

∫ 1

0
f(t)v1(λ, t)dt.

(13)
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4.3. Piecewise polynomials of order p

We calculate Φ(tp, 0) recursively as

vp(λ, t) := Φ(tp, 0) = eλt
∫ 1

t
e−λττpdτ = eλt

[
τp

−λ
e−λτ

]1
t

+
p

λ
eλt
∫ 1

t
e−λττp−1dτ

=
tp

λ
− 1

λ
eλ(t−T ) +

p

λ
Φ(tp−1, 0).

Equivalently

vp(λ, t) =
1

λ
(tp + pvp−1(λ, t)− v̂(λ, t)) . (14)

Here, V opt
h = span{v̂, vr, ∀r = 0, . . . , p} and (14) can be expressed as (see Appendix A for

details)

vp(λ, t) =
1

λp+1
(Pp(λ, t)− Pp(λ, 1)v̂(λ, t)) , (15)

where Pp(λ, t) is a polynomial of order p defined as

Pp(λ, t) =

p∑
j=0

p!

j!
(λt)j .

Directly from (10), as we select uh = tp, we have the following property

−v′p(λ, t) + λvp(λ, t) = tp. (16)

Finally, as vp(λ, 1) = 0, problem (5) becomes
ûh = u0v̂(λ, 0) +

∫ 1

0
f(t)v̂(λ, t)dt,

∫ 1

0

 p∑
j=0

uh,jt
j

 trdt = u0vr(λ, 0) +

∫ 1

0
f(t)vr(λ, t)dt, ∀r = 0, . . . , p.

(17)

We will see in Section 7 that scheme (17) is equivalent to the so-called exponential
integrator for the trace variables.

5. Ideal Discontinuous Petrov-Galerkin (DPG) method

We now consider a partition of the time interval Ih as

0 = t0 < t1 < . . . < tm−1 < tm = 1, (18)

and we define Ik = (tk−1, tk) and hk = tk− tk−1, ∀k = 1, . . . ,m. We introduce the following
broken test space

V = H1(Ih) = {v ∈ L2(I) | v|Ik ∈ H
1(Ik), ∀Ik ∈ Ih},
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with associated norm

||v||2V =
m∑
k=1

∫
Ik

| − v′ + λv|2dt+ [v]2k.

Here, we define v(t±k ) := lim
ε→0+

v(tk ± ε), [v]k = v(t+k ) − v(t−k ),∀k = 1, . . . ,m − 1, and

[v]m = −v(t−m). We set U = L2(I)× Rm, z = {u, û1, . . . , ûm} and also

||z||2U = ||u||2 +
m∑
k=1

|ûk|2,

b(z, v) =
m∑
k=1

∫
Ik

u(−v′ + λv)dt− ûk[v]k.

Given a discrete subspace Uh ⊂ U and (·, ·)V an inner product in V , the ideal Discon-
tinuous Petrov-Galerkin (DPG) method reads{

Find zh = {uh, û1h, . . . , ûmh } ∈ Uh such that

b(zh, vh) = l(vh), ∀vh ∈ V opt
h ,

(19)

being the trial-to-test operator Φ : Uh −→ V defined by

(Φzh, v)V = b(zh, v), ∀v ∈ V, zh ∈ Uh. (20)

To compute the trial-to-test operator (20) in the presented setting, we solve the following
problem: given a discrete trial function zh = {uh, û1h, . . . , ûmh } ∈ Uh, we solve

m∑
k=1

∫
Ik

(−v′ + λv)(−δv′ + λδv)dt+ [v]k[δv]k

=

m∑
k=1

∫
Ik

uh(−δv′ + λδv)dt− ûkh[δv]k, ∀δv ∈ V.
(21)

Selecting in (21) test functions with local support in Ik, we obtain∫
Ik

(−v′ + λv)(−δv′ + λδv)dt− [v]kδv(t−k ) + [v]k−1δv(t+k−1)

=

∫
Ik

uh(−δv′ + λδv)dt+ ûkhδv(t−k )− ûk−1h δv(t+k−1), ∀k = 1, . . . ,m,

(22)

and solving the corresponding BVPs we have that

Φ(uh, û
1
h, . . . , û

m
h ) = eλtαk + eλt

∫ tk

t
e−λτuh(τ)dτ, ∀t ∈ Ik, ∀k = 1, . . . ,m (23)
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where 
αk = αk+1 + e−λtk ûkh +

∫
Ik+1

e−λtuh(t)dt, ∀k = 1, . . . ,m− 1,

αm = e−λtm ûmh ,

or equivalently
αk =

m∑
j=k

e−λtj ûjh +

m−1∑
j=k

∫
Ij+1

e−λtuh(t)dt, ∀k = 1, . . . ,m− 1,

αm = e−λtm ûmh .

For details of the proof of (23), see Appendix A.

Remark 2. Note that the optimal test function corresponding to each trace variable is

Φ(0, 0, . . . , 1, . . . , 0) = eλ(t−tk),

and for the interiors, if we select a basis of Uh as polynomials with local support over each
element, we have that

Φ(uh, 0, . . . , 0) = eλt
∫ tk

t
e−λτuh(τ)dτ, ∀t ∈ Ik, ∀k = 1, . . . ,m.

Therefore, the optimal test space of problem (19) is the span of the optimal test functions
defined in Section 4 repeated at each element, i.e.,

V opt
h = span{v̂k, vkr , ∀r = 0, . . . , p, ∀k = 1, . . . ,m},

where v̂k(λ, t) = eλ(t−tk), ∀t ∈ Ik and

vkr (λ, t) =
1

λ

((
t− tk−1
hk

)r
+

r

hk
vkr−1(λ, t)− v̂k(λ, t)

)
=

1

λr+1hrk

(
Pkr (λ, t)− Pkr (λ, tk)v̂

k(λ, t)
)
, ∀t ∈ Ik.

(24)

Here, Pkr (λ, t) is a polynomial of order r defined as

Pkr (λ, t) =
r∑
j=0

r!

j!
λj (t− tk−1)j , ∀t ∈ Ik.

In this case, optimal test functions (24) satisfy the following properties ∀k = 1, . . . ,m
−(v̂k(λ, t))′ + λv̂k(λ, t) = 0, v̂k(λ, tk) = 1,

−(vkr (λ, t))′ + λvkr (λ, t) =

(
t− tk−1
hk

)r
, vr(λ, tk) = 0, ∀r = 0, . . . , p,

10



and problem (19) reduces to the following time-marching scheme ∀k = 1, . . . ,m
ûkh = ûk−1h v̂k(λ, tk−1) +

∫
Ik

f(t)v̂k(λ, t)dt,∫
Ik

ukh

(
t− tk−1
hk

)r
dt = ûk−1h vkr (λ, tk−1) +

∫
Ik

f(t)vkr (λ, t)dt, ∀r = 0, . . . , p,

(25)

where u0h = u0 and ukh(t) is the restriction uh(t) to interval Ik.

Remark 3. Note that if we restrict (25) to a single interval we obtain exactly (17). There-
fore, we can: (a) formulate the DPG method for a single element and then use the resulting
trace solution as the initial condition for the subsequent interval or (b) calculate the optimal
test functions globally. With both settings ((a) and (b)) we obtain the same time-marching
scheme and therefore, they deliver the same solution.

6. Linear ODE systems

We now consider the following linear system of ODEs{
u′ +Au = f, in I,

u(0) = u0,
(26)

where A ∈ Rn×n is a matrix that results from a spatial discretization of a linear parabolic
Partial Differential Equation (PDE). Here, the solution and the source are vector functions
u, f : I −→ Rn, i.e.,

u(t) = (u1(t), . . . , un(t))T , f(t) = (f1(t), . . . , fn(t))T ,

and similarly u0 = (u0,1, . . . , u0,n)T ∈ Rn. In this section, we denote as || · || the Euclidean
norm of Rn.

6.1. PG method with optimal test functions

Now, we formulate the ideal PG method for system (26). We define by (·, ·) the usual
dot product in Rn

(u, v) = uT · v,
and therefore || · ||2 = (·, ·). Integrating by parts in time and employing that (Au, v) =
(u,AT v), we write the variational formulation of (26) as

−
∫
I
(u, v′) dt+

∫
I
(u,AT v) dt+ (û, v(1)) =

∫
I
(f, v) dt+ (u0, v(0)).

Here, the trial and test spaces are U = L2(I,Rn) × Rn and V = H1(I,Rn). We consider
the following norms

||u||2U =

∫
I
||u||2dt+ ||û||2,

||v||2V =

∫
I
|| − v′ +AT v||2dt+ ||v(1)||2,
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so the variational formulation of system (26) reads{
Find z = {u, û} ∈ U such that

b(z, v) = l(v), ∀v ∈ V ,
(27)

where

b(z, v) :=−
∫
I
(u, v′) dt+

∫
I
(u,AT v) dt+ (û, v(1)),

l(v) :=

∫
I
(f, v) dt+ (u0, v(0)).

Now, we calculate the optimal test functions of the ideal PG method. Given a subspace
Uh ⊂ U and a trial function zh = {uh, ûh} ∈ Uh, we find v ∈ V such that

(v, δv)V = b(zh, δv), ∀δv ∈ V, (28)

which is equivalent to∫
I
(−v′ +AT v,−δv′ +AT δv)dt+ (v(1), δv(1)) =

∫
I
(uh,−δv′ +AT δv)dt+ (ûh, δv(1)).

Again, integrating by parts and applying Fourier’s lemma, we obtain the following BVP
− v′′ + (AT −A)v′ +AAT v = u′h +Auh,

− v′(0) +AT v(0) = ûh(0),

v′(1)−AT v(1) + v(1) = −ûh(1) + ûh,

(29)

and following the same argument as in Remark 1, we can see that the solution of (29) is

Φ(u, û) = eA
T (t−1)ûh + eA

T t

∫ 1

t
e−A

T τuh(τ)dτ. (30)

6.2. Optimal test functions for piecewise polynomials

We consider the trial space Uh of piecewise polynomials of order p. Then, we can express
the solution zh = {uh, ûh} ∈ Uh of problem (5) as

uh =

p∑
j=0

uh,jt
j ,

where in this case uh,j ∈ Rn and also ûh ∈ Rn. As is Section 4, we calculate the optimal
test functions.
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6.2.1. Lowest order case (p = 0)

As for the 1D case, we first select Uh as the space of piecewise constant functions in
time and we denote by {ei}ni=1 the canonical basis of Rn, i.e.,

ei = [0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0], ∀i = 1, . . . , n,

and 0 = [0, . . . , 0] the zero vector. In this case, we have

v̂i(A
T , t) := Φ(0, ei) = eA

T (t−1)ei,

v0,i(A
T , t) := Φ(ei,0) = eA

T t

∫ 1

t
e−A

T τeidτ = eA
T t
[
(−AT )−1e−A

T τ
]1
t
ei

= (AT )−1
[
In − eA

T (t−1)
]
ei.

Therefore, the optimal test space is V opt
h = span {v̂i,v0,i, ∀i = 1, . . . , n}. Here, the optimal

test functions satisfy{
−v̂′i(A

T , t) +AT v̂i(A
T , t) = 0, v̂i(A

T , 1) = ei, ∀i = 1, . . . , n,

−v′0,i(A
T , t) +ATv0,i(A

T , t) = ei, v0,i(A
T , 1) = 0, ∀i = 1, . . . , n.

Solving problem (5), we obtain the following method
(ûh, ei) =

(
u0, v̂i(A

T , 0)
)

+

∫ 1

0

(
f(t), v̂i(A

T , t)
)
dt, ∀i = 1, . . . , n,

(uh,0, ei) =
(
u0,v0,i(A

T , 0)
)

+

∫ 1

0

(
f(t),v0,i(A

T , t)
)
dt, ∀i = 1, . . . , n.

(31)

6.2.2. Piecewise linear functions (p=1)

Selecting Uh as the space of piecewise linear functions, we obtain after integration by
parts in time that

v1,i(A
T , t) := Φ(tei,0) = eA

T t

∫ 1

t
e−A

T ττeidτ

= eA
T t

([
−(AT )−1eA

T ττ
]1
t

+

∫ 1

t
(AT )−1e−A

T τdτ

)
ei

= (AT )−2
(
In +AT t− (In +AT )eA

T (t−1)
)

ei.

Therefore, V opt
h = span{v̂,v0,i,v1,i, ∀i = 1, . . . , n} and it is easy to see that the optimal

test functions satisfy
−v̂′i(A

T , t) +AT v̂i(A
T , t) = 0, v̂i(A

T , 1) = ei, ∀i = 1, . . . , n,

−v′0,i(A
T , t) +ATv0,i(A

T , t) = ei, v0,i(A
T , 1) = 0, ∀i = 1, . . . , n,

−v′1,i(A
T , t) +ATv1,i(A

T , t) = tei, v1,i(A
T , 1) = 0, ∀i = 1, . . . , n,

13



and in (5) we obtain the following scheme

(ûh, ei) =
(
u0, v̂i(A

T , 0)
)

+

∫ 1

0

(
f(t), v̂i(A

T , t)
)
dt, ∀i = 1, . . . , n,∫ 1

0
(uh,0 + uh,1t, ei)dt =

(
u0,v0,i(A

T , 0)
)

+

∫ 1

0

(
f(t),v0,i(A

T , t)
)
dt, ∀i = 1, . . . , n,∫ 1

0
(uh,1 + uh,1t, tei)dt =

(
u0,v1,i(A

T , 0)
)

+

∫ 1

0

(
f(t),v1,i(A

T , t)
)
dt, ∀i = 1, . . . , n.

(32)

6.2.3. Piecewise polynomials of order p

We can also calculate Φ(tpei,0) recursively as

vp,i(A
T , t) := Φ(tpei,0) = eA

T t

∫ 1

t
e−A

T ττpeidτ

= eA
T t

([
−(AT )−1eA

T ττp
]1
t

+ p(AT )−1
∫ 1

t
e−A

T ττp−1dτ

)
ei

= (AT )−1
(
tpIn − eA

T (t−1) + peA
T t

∫ 1

t
e−A

T ττp−1dτ

)
ei,

and equivalently

vp,i(A
T , t) = (AT )−1

(
tpei + pvp−1,i(A

T , t)− v̂i(A
T , t)

)
. (33)

Here, V opt
h = span{v̂,vr,i, ∀r = 0, . . . , p, ∀i = 1, . . . , n} and following the same steps as in

Section 4.3, we can express (33) as

vp,i(A
T , t) = (AT )−p−1

(
Pp(AT , t)− Pp(AT , 1)v̂(AT , t)

)
ei, (34)

where v̂(AT , t) = eA
T (t−1) and Pp(AT , t) is a polynomial of order p defined as

Pp(AT , t) =

p∑
j=0

p!

j!
(AT t)j .

Finally, the optimal test functions defined in (34) satisfy

−v′p,i(A
T , t) +ATvp,i(A

T , t) = tpei, vp,i(A
T , 1) = 0, ∀i = 1, . . . , n,

and we obtain the following scheme in problem (5)

(ûh, ei) =
(
u0, v̂i(A

T , 0)
)

+

∫ 1

0

(
f(t), v̂i(A

T , t)
)
dt, ∀i = 1, . . . , n,

∫ 1

0

 p∑
j=0

uh,jt
j , trei

 dt =
(
u0,vr,i(A

T , 0)
)

+

∫ 1

0

(
f(t),vr,i(A

T , t)
)
dt,

∀r = 0, . . . , p, ∀i = 1, . . . , n.

(35)
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In (35), we have (p+1)n+n equations and p+2 unknowns that are vectors in Rn. Therefore,
we have a square system of (p+ 2)n equations and (p+ 2)n unknowns.

We express (35) in matrix form as
ûTh = uT0 · v̂(AT , 0) +

∫ 1

0
fT (t) · v̂(AT , t)dt,

p∑
j=0

uTh,j

∫ 1

0
tj+rdt = uT0 · vr(A, 0) +

∫ 1

0
fT (t) · vr(AT , t)dt, ∀r = 0, . . . , p,

(36)

where v̂(AT , t) = eA
T (t−1) and

vr(A
T , t) = (AT )−1

(
trIn + rvp−1(A

T , t)− v̂(AT , t)
)

= (AT )−r−1
(
Pr(AT , t)− Pr(AT , 1)v̂(AT , t)

)
, ∀r = 0, . . . , p.

7. Relation of ideal DPG method with exponential integrators

7.1. Exponential integrators for linear parabolic problems

The exponential integrators are a class of finite difference methods to discretize in time
system (26) [27]. They are based on the fact that the analytical solution of the system can
be expressed as

u(t) = e−Atu0 + e−At
∫ t

0
eAτf(τ)dτ, (37)

called variation-of-constants formula. Here, eA is an exponential matrix defined as

eA =
∞∑
k=0

Ak

k!
,

and A0 = In is the identity matrix. Considering the partition defined in (18) and the
variation-of-constants formula (37), we express the solution at each time step as

u(tk) = e−hkAu(tk−1) +

∫ tk

tk−1

e(τ−tk)Af(τ)dτ. (38)

In the exponential integrators, the integral in (38) is approximated using exponential
quadrature rules. Selecting s quadrature points ci ∈ [0, 1], ∀i = 1, . . . , s, we approximate
the function f(τ) in (38) as

f(t) ≈
s∑
i=1

f(tk−1 + cihk)l̃i(τ), (39)

where l̃i(τ) are the Lagrange basis polynomials defined at points tk−1 + cihk, i.e.,

l̃i(τ) =
s∏
j=1
j 6=i

τ − (tk−1 + cjhk)

(tk−1 + cihk)− (tk−1 + cjhk)
, ∀i = 1, . . . , s.
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We substitute (39) in (38), we integrate over the master element [0, 1], and we obtain
the following expression

uk = e−hkAuk−1 + hk

s∑
i=1

bi(−hkA)fi, (40)

where uk ≈ u(tk), ∀k = 0, . . . ,m, fi := f(tk−1 + cihk), ∀i = 1, . . . , s and the weights are
defined as

bi(z) =

∫ 1

0
e(1−θ)zli(θ)dθ, ∀i = 1, . . . , s, (41)

where z could be a scalar value or a matrix and li(θ) are the Lagrange polynomials defined
over the master element, i.e.,

li(θ) =
s∏
j=1
j 6=i

θ − cj
ci − cj

, ∀i = 1, . . . , s.

In exponential integrators, the weights defined in (41) are usually given as linear com-
binations of the following functions

ϕ0(z) = ez,

ϕp(z) =

∫ 1

0
e(1−θ)z

θp−1

(p− 1)!
dθ, ∀p ≥ 1,

(42)

which satisfy the following recurrence relation

ϕp+1(z) =
1

z

(
ϕp(z)−

1

p!

)
. (43)

Examples:

• If we select one point c1 ∈ [0, 1], we have that l1(θ) = 1 and b1(z) = ϕ1(z). Employing
from (43) that ez = zϕ1(z) + 1, we obtain the following method

uk = uk−1 + hkϕ1(−hkA)
(
f1 −Auk−1

)
. (44)

If we select c1 = 0, it is called exponential Euler method and when c1 = 1
2 , exponential

midpoint rule.

• If we select two points c1, c2 ∈ [0, 1], we have that

b1(z) =
1

c1 − c2
ϕ2(z)−

c2
c1 − c2

ϕ1(z),

b2(z) =
1

c2 − c1
ϕ2(z)−

c1
c2 − c1

ϕ1(z),
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so we obtain the following scheme

uk = uk−1 − hkAϕ1(−hkA)uk−1

+ hk

(
1

c1 − c2
ϕ2(−hkA)− c2

c1 − c2
ϕ1(−hkA)

)
f1

+ hk

(
1

c2 − c1
ϕ2(−hkA)− c1

c2 − c1
ϕ1(−hkA)

)
f2,

(45)

and selecting c1 = 0 and c2 = 1, we obtain the so-called exponential trapezoidal rule.

7.2. Ideal DPG as an exponential integrator

In the DPG methods defined in (17) and (35), the equations corresponding to the trace
variables are equivalent to the transpose of the exponential integrator defined in (38). This
is because we can express the equation of the trace variables in (36) as

ûh = v̂(A, 0)u0 +

∫ 1

0
v̂(A, t)f(t)dt.

Therefore, we can solve the trace variables employing the classical exponential quadrature
defined in (40).

Now, we can employ the approximation presented in Section 7.1 to calculate the interior
variables in (17) and (35). For simplicity, we focus on approximating the right-hand-side of
(17) in the master element. Employing (39), we have∫ 1

0
vr(z, t)f(t)dt ≈

s∑
i=1

f(ci)

∫ 1

0
vr(z, t)li(t)dt, ∀r = 0, . . . , p, (46)

where z is a scalar value (or a matrix). Clearly, the weights defined in (46) are linear

combinations of

∫ 1

0
vr(z, t)t

qdt, ∀q = 0, . . . , s. In order to present the method in terms of

the functions defined in (42), we prove the following relations between those functions and
the optimal test functions from the DPG method (the proof is given in Appendix A)

vr(z, 0) =
r∑
j=0

r!

j!
(−1)r−jϕr−j+1(−z), (47a)

∫ 1

0
vr(z, t)t

qdt = q!
r∑
j=0

r!

j!
(−1)r−jϕr−j+q+2(−z). (47b)

In (25) we integrate over the master element [0, 1]. Then, we employ the following
relations

v̂k(z, tk−1 + θhk) = v̂(zhk, θ),

vkr (z, tk−1 + θhk) = hkvr(zhk, θ), ∀r = 0, . . . , p,
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being v̂(z, t) and vr(z, t) the optimal test functions defined over [0, 1].

Examples:

• For p = 0 and one integration point c1 ∈ [0, 1], we obtain (44) for the trace variables. For
the interior, we have v0(z, 0) = ϕ1(−z) and

∫ 1
0 v0(z, t)dt = ϕ2(−z). Therefore, the DPG

method with piecewise constant trial functions becomes

ûkh = ûk−1h + hkϕ1(−hkA)
(
f1 −Aûk−1h

)
,

ukh,0 = ϕ1(−hkA)ûk−1h + hkϕ2(−hkA)f1.
(48)

• For p = 1 and two integration points c1, c2 ∈ [0, 1], we obtain (45) for the trace variables.
The DPG method with piecewise linear trial functions becomes

ûkh = ûk−1h − hkAϕ1(−hkA)ûk−1h

+ hk

(
1

c1 − c2
ϕ2(−hkA)− c2

c1 − c2
ϕ1(−hkA)

)
f1

+ hk

(
1

c2 − c1
ϕ2(−hkA)− c1

c2 − c1
ϕ1(−hkA)

)
f2,

ukh,0 +
1

2
ukh,1 = ϕ1(−hkA)ûk−1h

+ hk

(
1

c1 − c2
ϕ3(−hkA)− c2

c1 − c2
ϕ2(−hkA)

)
f1

+ hk

(
1

c2 − c1
ϕ3(−hkA)− c1

c2 − c1
ϕ2(−hkA)

)
f2,

1

2
ukh,0 +

1

3
ukh,1 = ϕ1(−hkA)ûk−1h − ϕ2(−hkA)ûk−1h

+ hk

(
1

c1 − c2
(ϕ3(−hkA)− ϕ4(−hkA))

− c2
c1 − c2

(ϕ2(−hkA)− ϕ3(−hkA)

)
f1

+ hk

(
1

c2 − c1
(ϕ3(−hkA)− ϕ4(−hkA))

− c1
c2 − c1

(ϕ2(−hkA)− ϕ3(−hkA))

)
f2.

(49)

8. Numerical results

In this section, we present the performance of the method presented in (25) for a sin-
gle ODE and a system of ODEs coming from parabolic PDEs. For the discretization in
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space, we employ the FEM with piecewise linear functions. For the computation of the
ϕ-functions defined in (42), we employ the MATLAB package called EXPINT presented in
[3] that employs Padé approximations.

Example 1: We consider the first order ODE (1) where the exact solution is

u(t) =
eM(t−1) − e−M

1− e−M
.

In this case, the source term is constant f(t) =
M

eM − 1
and we set M = 15, λ = −M and

I = [0, 1]. Figure 2 shows the exact and the DPG solutions solving (25) for p = 0, p = 1
and p = 2. Figure 3 illustrates the convergence of the error and Table 1 shows that the
convergence rates are p+ 1.

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

Figure 2: Approximated solution of Example 1 for p = 0 (first row), p = 1 (second row) and p = 2 (third
row).
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Figure 3: Convergence of the error for p = 0, p = 1 and p = 2 of Example 1.

p = 0 p = 1 p = 2

0.1202 0.4520 0.9448
0.2894 0.9026 1.6675
0.5893 1.4415 2.3655
0.8441 1.8013 2.7808
0.9550 1.9438 2.9386
0.9883 1.9855 2.9841
0.9970 1.9963 2.9960
0.9993 1.9991 3.0020
0.9998 1.9998
1.0000 1.9999
1.0000
1.0000

Table 1: Convergence rates for p = 0, p = 1 and p = 2 of Example 1.
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Example 2: We now consider the same solution as in Example 1 but with λ = −1. In this
case, the source term depends on time

f(t) =
eMt(M + λ)− λ

eM − 1
.

Figures 4 and 5 show the approximated solutions and the convergence of the error for p
up to 2, respectively. We observe that the convergence rates are 0.5, 1.5, and 3 for p = 0,
p = 1, and p = 2, respectively. The reason is that the approximation of the source term for
p = 0 and p = 1 is not sufficient to obtain a convergence rate of p+ 1.

Figure 4: Approximated solution of Example 2 for p = 0 (first row), p = 1 (second row) and p = 2 (third
row).
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Figure 5: Convergence of the error for p = 0, p = 1 and p = 2 of Example 2.

p = 0 p = 1 p = 2

0.0072 1.5600 1.9889
0.1382 1.6731 2.8341
0.4485 1.8525 3.2378
0.6310 1.8635 3.2102
0.6386 1.7586 3.0909
0.5936 1.6535 3.0328
0.5539 1.5836 3.0124
0.5289 1.5437 3.0051
0.5150 1.5223
0.5076 1.5113
0.5038 1.5057
0.5019

Table 2: Convergence rates for p = 0, p = 1 and p = 2 of Example 2.
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Example 3: We consider the following 1D + time heat equation
∂u

∂t
− α2∂

2u

∂x2
= f(x, t), ∀(x, t) ∈ Ω× I,

u(x, t) = u(x, t) = 0, ∀(x, t) ∈ ∂Ω× I,
u(x, 0) = u0(x), ∀x ∈ Ω,

(50)

and we select Ω = (0, 1), I = (0, 0.5], α = 1, f = 0 and u0(x) = sin(πx). The exact solution
of problem (50) is

u(x, t) = e−π
2tsin(πx).

We discretize the space variable using a FEM with piecewise linear basis functions to
obtain a system of the form (26). In this case, A = M−1K being M and K the mass
and stiffness matrices from the FEM discretization, respectively. Figures 6 and 7 illustrate
the approximated solutions with a mesh in space of 103 elements. Figure 8 shows the
convergence of the error for uniform time refinements. We observe in Table 3 convergence
rates of p+ 1.

Figure 6: Approximated solution of Example 3 for p = 0.
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Figure 7: Approximated solution of Example 3 for p = 1 (first row) and p = 2 (second row).
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Figure 8: Convergence of the error for p = 0, p = 1 and p = 2 of Example 3.

p = 0 p = 1 p = 2

0.4628 1.2366 2.1138
0.7609 1.6895 2.6546
0.9249 1.9058 2.8967
0.9799 1.9750 2.9655
0.9949 1.9935
0.9987 1.9936
0.9997

Table 3: Convergence rates for p = 0, p = 1 and p = 2 of Example 3.
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Example 4: Transient Eriksson-Johnson problem.
We consider the following 2D + time advection-diffusion problem that is similar to the one
introduced in [17]

∂u

∂t
+
∂u

∂x
− ε
(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t),

over Ω = [−1, 0] × [−0.5, 0.5] and I = (0, 1]. We select the data of the problem in such a
way that the exact solution is

u(x, y, t) = Ce−ltx
(
y2 − 0.25

)
+
er1x − er2x

e−r1 − e−r2
cos(πy),

where r1,2 =
1±
√

4π2ε2

2ε
. Therefore, we have

f(x, y, t) = Ce−lt
(
(y2 − 0.25)(1− lx)− 2εx

)
,

and the following boundary and initial conditions
∂

∂x
u(−1, y, t) = Ce−lt

(
y2 − 0.25

)
+
r1e
−r1 − r2e−r2
e−r1 − e−r2

cos(πy),

u(0, y, t) = u(x,−0.5, t) = u(x, 0.5, t) = 0,

u(x, y, 0) = Cx
(
y2 − 0.25

)
+
er1x − er2x

e−r1 − e−r2
cos(πy).

The solution has a boundary layer at x = 0 and it decays to the solution of the stationary
Eriksson-Johnson problem [20]. We set C = 10, l = 4 and ε = 10−2. For the space
discretization, we select a non-uniform mesh with 26 elements per space dimension. Figure
9 shows some colormaps of the approximated solution for different time steps. Finally,
Figure 10 presents the following relative error in percentage

||u− zh||U
||u||U

· 100,

We observe that the error remains constant after some refinements in time due to the
discretization error in space.
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 9: Approximated solution of Example 4 for p = 2.
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Figure 10: Relative error in percentaje for p = 0, p = 1 and p = 2 of Example 4.

9. Conclusions

In this work, we apply the DPG method for the time integrations of linear systems
of first order ODEs. We prove that applying the DPG method for a single interval and
using the resulting trace variable as initial condition for the next interval is equivalent to
the scheme obtained after applying the DPG method globally. For parabolic problems, the
DPG method in time is equivalent to the exponential integrators for the trace variables. In
addition, the DPG method provides the element interiors, which can be locally computed
employing the ϕ−functions. For piecewise polynomials of order p in time for the trial space,
we need ϕp+1 functions to calculate the traces and ϕ2p+2 functions to compute the interiors.
This DPG based time-marching scheme can be combined with any other discretization in
space for linear parabolic PDEs.
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Possible extensions of this work include: (a) the fast computation of element interiors;
(b) application of the proposed DPG method to linear hyperbolic problems and nonlinear
parabolic equations; (c) to consider an space discretization obtained with DPG; and (d) the
use of adaptive strategies and a posterior error estimation.

Appendix A. Proofs

Proof of (10)⇐⇒(8):

• (10)=⇒(8): We differentiate the first equation of (10) and we add it to the first equation
of (10) multiplied by λ to we obtain the first equation of (8). We obtain the second
equation of (8) by evaluating the first equation (10) at 0. Finally, evaluating the first
equation (10) at T and adding it to the second equation of (10), we obtain the third
equation of (8).

• (8)=⇒(10): We employ function y = eλt that satisfies y′ = λy and y′′ = λ2y. If we
multiply the first equation of (8) by y, we obtain

−v′′y + vy′′ = u′hy + uhy
′,

or equivalently (vy′ − v′y)′ = (uhy)′. Integrating over (0, t) we obtain

v(t)y′(t)− v′(t)y(t)− v(0)y′(0) + v′(0)y(0) = uh(t)y(t)− uh(0)y(0),

and equivalently

(−v′(t) + λv(t))y(t) + (v′(0)− λv(0))y(0) = uh(t)y(t)− uh(0)y(0).

From the second equation of (8), the terms at 0 vanish and therefore −v′(t)+λv(t) = uh(t)
which is the first equation of (10). Finally, we have that −v′(1)+λv(1) = uh(1) and from
the third equation of (8) we obtain v(1) = ûh.

Proof of equation (15):
We employ an induction argument ∀p ≥ 0.

• We first prove equality (15) for p = 0 and p = 1.

– For p = 0, P0(λ, t) = 1, v̂(λ, t) = eλ(t−1) and v0(λ, t) =
1

λ
(1− eλ(t−1)).

– For p = 1, P1(λ, t) = λt+ 1 and v1(λ, t) =
1

λ2
(1 + λt− (1 + λ)eλ(t−1)).
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• We suppose that (15) holds for p− 1, i.e.,

vp−1(λ, t) =
1

λp
(Pp−1(λ, t)− Pp−1(λ, 1)v̂(λ, t)) , (A.1)

where Pp−1(λ, t) =

p−1∑
j=0

(p− 1)!

j!
(λt)j and we prove (15) for vp(λ, t). Note that

pPp−1(λ, t) + (λt)p =

p−1∑
j=0

p(p− 1)!

j!
(λt)j + (λt)p =

p∑
j=0

p!

j!
(λt)j = Pp(λ, t). (A.2)

We express (A.1) as

pvp−1(λ, t) =
1

λp
(pPp−1(λ, t) + (λt)p − (λt)p − pPp−1(λ, 1)v̂(λ, t)

+λpv̂(λ, t)− λpv̂(λ, t)) ,

from (A.2) we obtain

pvp−1(λ, t) =
1

λp
(Pp(λ, t)− (λt)p − Pp(λ, 1)v̂(λ, t) + λpv̂(λ, t)),

and equivalently

tp + pvp−1(λ, t)− v̂(λ, t) =
1

λp
(Pp(λ, t)− Pp(λ, 1)v̂(λ, t)).

Finally, from (14) we obtain

vp(λ, t) =
1

λp+1
(Pp(λ, t)− Pp(λ, 1)v̂(λ, t)).

Proof of equation (23):
Following an analogue argument to the one employed in Remark 1, we conclude that problem
(22) is equivalent to the following BVPs

− v′k + λvk = uh, ∀t ∈ Ik,
vk(t

+
k−1)− vk−1(t

−
k−1) = −ûk−1h ,

− vk+1(t
−
k ) + vk(t

−
k ) = ûkh.

(A.3)

where we denote vk(t) the restriction of v(t) to Ik. In (A.3), we have m overlapped BVPs.
From the first equation of (A.3), we have that

vk(t) = αke
λt + eλt

∫ tk

t
e−λτuh(τ)dτ, ∀t ∈ Ik, ∀k = 1, . . . ,m.
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From the second and third equations of (A.3), we obtain

αke
λtk = ûkh + αk+1e

λtk + eλtk
∫ tk+1

tk

e−λsuh(s)ds, ∀k = 1, . . . ,m− 1. (A.4)

For k = m, the third equation of (A.3) reduces to vm(t−m) = ûmh , i.e.,

αme
λtm = ûmh . (A.5)

Finally, from equations (A.4) and (A.5) we obtain (23).

Proof of equation (47a):
We employ and induction argument for r ≥ 0.

• We first prove (47a) for r = 0: From (11) and (43), we have that

v0(z, 0) =
1

z

(
1− e−z

)
=

1

−z
(
e−z − 1

)
= ϕ1(−z).

• We suppose (47a) is true for r − 1:

vr−1(z, 0) =
r−1∑
j=0

(r − 1)!

j!
(−1)r−j−1ϕr−j(−z) (A.6)

• We prove (47a) for r: We employ recursive relations (14) and (43), the induction hypoth-
esis (A.6) and, definitions (11) and (42). Therefore, we obtain

vr(z, 0) =
1

z
(rvr−1(z, 0)− v̂(z, 0))

=
r

z

r−1∑
j=0

(r − 1)!

j!
(−1)r−j−1ϕr−j(−z)−

1

z
e−z

=
1

z

r∑
j=0

r!

j!
(−1)r−j−1ϕr−j(−z)

=
1

z

r−1∑
j=0

r!

j!
(−1)r−j−1

(
1

(r − j)!
− zϕr−j+1(−z)

)

=
1

z

 r∑
j=0

r!

j!(r − j)!
(−1)r−j−1

+

r∑
j=0

r!

j!
(−1)r−jϕr−j+1(−z).
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We just need to prove that the first term of the previous equation vanishes

r∑
j=0

(
r

j

)
(−1)r−j−1 = (−1)r−1 − 1 +

r−1∑
j=1

[(
r − 1

j

)
+

(
r − 1

j − 1

)]
(−1)r−j−1

= (−1)r−1 − 1−
r−1∑
j=1

(
r − 1

j

)
(−1)r−j +

r−2∑
j=0

(
r − 1

j

)
(−1)r−j

= (−1)r−1 − 1 + 1−
r−2∑
j=1

(
r − 1

j

)
(−1)r−j +

r−2∑
j=1

(
r − 1

j

)
(−1)r−j + (−1)r = 0.

Proof of equation (47b):
We employ double induction argument for r ≥ 0 and q ≥ 0.

• Induction over r, ∀q ≥ 0:

– We first prove (47b) for r = 0, ∀q ≥ 0: We employ the definitions (11) and (42) and
the recurrence formula (43)∫ 1

0
v0(z, t)t

qdt =
1

z

∫ 1

0
(1− e(t−1)z)tqdt =

1

z

(
1

q + 1
− q!ϕq+1(−z)

)
=

1

z

(
1

q + 1
− q!

(
1

(q + 1)!
− zϕq+2(−z)

))
= q!ϕq+2(−z).

– We suppose (47b) is true for r − 1, ∀q ≥ 0:∫ 1

0
vr−1(z, t)t

qdt = q!

r−1∑
j=0

(r − 1)!

j!
(−1)r−j−1ϕr−j+q+1(−z). (A.7)

– We prove (47b) for r, ∀q ≥ 0: Here we employ definition (42), the recurrence formulas
(14) and (43) and the induction hypothesis (A.7)∫ 1

0
vr(z, t)t

qdt =
1

z

∫ 1

0
tr+qdt+

r

z

∫ 1

0
vr−1(z, t)t

qdt− 1

z

∫ 1

0
ez(t−1)tqdt

=
1

z

1

r + q + 1
+
q!

z

r∑
j=0

r!

j!
(−1)r−j−1ϕr−j+q+1(−z)

=
1

z

 1

r + q + 1
+ q!

r∑
j=0

r!(−1)r−j−1

j!(r − j + q + 1)!

+ q!

r∑
j=0

r!

j!
(−1)r−jϕr−j+q+2(−z).
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We just need to prove that the first term in the previous equation vanishes

1

r + q + 1
+ q!

r∑
j=0

r!

j!(r − j + q + 1)!
(−1)r−j−1

=
1

r + q + 1
+

q!r!

(r + q + 1)!

r∑
j=1

(
q + r + 1

j

)
(−1)r−j−1 + (−1)r−1

q!r!

(r + q + 1)

=
1

r + q + 1
+ (−1)r−1

q!r!

(r + q + 1)

+
q!r!

(r + q + 1)!

 r∑
j=1

(
q + r

j

)
(−1)r−j−1 +

r∑
j=1

(
q + r

j − 1

)
(−1)r−j−1


=

1

r + q + 1
+ (−1)r−1

q!r!

(r + q + 1)

+
q!r!

(r + q + 1)!

−(q + r)!

q!r!
−

r−1∑
j=1

(
q + r

j

)
(−1)r−j +

r−1∑
j=1

(
q + r

j

)
(−1)r−j + (−1)r


=

1

r + q + 1
− (−1)r

q!r!

(r + q + 1)
− 1

r + q + 1
+ (−1)r

q!r!

(r + q + 1)
= 0.

(A.8)

• Induction over q, ∀r ≥ 0:

– To prove that (47b) is true for q = 0, ∀r ≥ 0, we can repeat the previous induction
argument with q = 0.

– We suppose (47b) is true for q − 1, ∀r ≥ 0:∫ 1

0
vr(z, t)t

q−1dt = (q − 1)!
r∑
j=0

r!

j!
(−1)r−jϕr−j+q+1(−z). (A.9)

– We prove (47b) for q, ∀r ≥ 0: We employ property (16) and also vr(z, 1) = 0, ∀r ≥ 0.
Integrating by parts we obtain∫ 1

0
vk(z, t)t

qdt =
1

z

(∫ 1

0
v′r(z, t)t

qdt+

∫ 1

0
tr+qdt

)
=

1

z

1

r + q + 1
− q

z

∫ 1

0
vr(z, t)t

q+1dt.
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Fom the the induction hypothesis (A.9) and the recurrence formula (43), we have∫ 1

0
vk(z, t)t

qdt =
1

z

1

r + q + 1
− q!

z

r∑
j=0

(−1)r−jϕr−j+q+1(−z)

=
1

z

 1

r + q + 1
− q!

r∑
j=0

r!

j!
(−1)r−j

1

(r − j + q + 1)!


+ q!

r∑
j=0

r!

j!
(−1)r−jϕj−r+q+2(−z).

Finally, we know from (A.8) that the first term in the previous equation vanishes
and we obtain ∫ 1

0
vk(z, t)t

qdt = q!
r∑
j=0

r!

j!
(−1)r−jϕj−r+q+2(−z).
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Judit Muñoz-Matute has also received founding from the Basque Government through
the postdoctoral program for the improvement of doctor research staff (POS 2019 1 0001).

David Pardo has also received funding from the European POCTEFA 2014-2020 Project
PIXIL (EFA362/19) by the European Regional Development Fund (ERDF) through the
Interreg V-A Spain-France-Andorra programme, the two Elkartek projects ArgIA (KK-
2019-00068) and MATHEO (KK-2019-00085) and, the Project “Artificial Intelligence in
BCAM number EXP. 2019/00432”.

Leszek Demkowicz was partially supported with NSF grant No. 1819101.

References

[1] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM Journal on Scientific Computing,
33(2):488–511, 2011.

32



[2] H. Berland and B. Skaflestad. Solving the nonlinear Schrödinger equation using expo-
nential integrators. Technical report, 2005.

[3] H. Berland, B. Skaflestad, and W. M. Wright. EXPINT—A MATLAB package for ex-
ponential integrators. ACM Transactions on Mathematical Software (TOMS), 33(1):4–
es, 2007.

[4] J. Bramwell, L. Demkowicz, J. Gopalakrishnan, and W. Qiu. A locking-free hp
DPG method for linear elasticity with symmetric stresses. Numerische Mathematik,
122(4):671–707, 2012.

[5] M. Caliari and A. Ostermann. Implementation of exponential Rosenbrock-type inte-
grators. Applied Numerical Mathematics, 59(3-4):568–581, 2009.

[6] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. Breaking spaces and forms
for the DPG method and applications including Maxwell equations. Computers &
Mathematics with Applications, 72(3):494–522, 2016.

[7] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz. A robust DPG method for
convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-
dependent test norms. Computers & Mathematics with Applications, 67(4):771–795,
2014.

[8] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov–Galerkin meth-
ods. Part I: The transport equation. Computer Methods in Applied Mechanics and
Engineering, 199(23-24):1558–1572, 2010.

[9] L. Demkowicz and J. Gopalakrishnan. Analysis of the DPG method for the Poisson
equation. SIAM Journal on Numerical Analysis, 49(5):1788–1809, 2011.

[10] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov–Galerkin meth-
ods. Part II: Optimal test functions. Numerical Methods for Partial Differential Equa-
tions, 27(1):70–105, 2011.

[11] L. Demkowicz and J. Gopalakrishnan. An overview of the discontinuous Petrov–
Galerkin method. In Recent developments in discontinuous Galerkin finite element
methods for partial differential equations, pages 149–180. Springer, 2014.

[12] L. Demkowicz and J. Gopalakrishnan. Discontinuous Petrov–Galerkin (DPG) method.
Encyclopedia of Computational Mechanics Second Edition, pages 1–15, 2017.

[13] L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. Wavenumber explicit analysis
of a DPG method for the multidimensional Helmholtz equation. Computer Methods in
Applied Mechanics and Engineering, 213:126–138, 2012.

[14] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj, and P. Sepúlveda. A spacetime
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