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1 Introduction

These notes represent three one hour lectures on electromagnetics and Maxwell equations that I have de-
livered for the first year graduate students in our Computational Engineering, Science and Mathematics
(CSEM) program, within the class on Mathematical Modeling. Any decent graduate class on electromag-
netics takes two semesters and, obviously, the three lectures cannot replace it. Nevertheless, I have attempted
to accomplish the following goals:

• following the historical development, present the core of the intellectual effort that led to Maxwell
equations;

• illuminate the analogy between electrostatics and magnetostatics concepts;

• emphasize the distributional character of charge and currents leading to the understanding of Maxwell
equations in the distributional sense;

• formulate a couple of boundary-value problems corresponding to high school physics scenarios.

I hope that my attempt will not scare away the newcomers from a systematic study of this fascinating
subject.
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Figure 1: Coulomb’s Law.

2 Electrostatics

Charges and Coulomb’s Law. Almost a hundred years after Sir Isaac Newton published his Law of Uni-
versal Gravitational Attraction in Philosophial Naturalis Principia Mathematica [1687], in 1775, Charles
Coulomb, a French engineer and colonel, came up with its full analogue that set up foundations for elec-
trostatics. Corresponding to the concept of mass in Newton’s mechanics, is the concept of charge. Like
for mass, we can think of point, line, surface and volume charges. A common framework for the differ-
ent charge distributions was provided by the theory of distributions developed almost two centuries later.
Charge is measured in Coulombs [C] 1. The smallest unit of charge is carried by a single electron and it is
worth 1.6 10−19C.

Assume you have two point charges q1, q2 at positions x,y. The Coulomb’s Law provides the formula
for the force exerted on charge q1 by charge q2:

F 12 =
q1q2

4πε0|x− y|2
x− y
|x− y|

=
q1q2

4πε0|x− y|3
(x− y) (2.1)

where ε0 is the permittivity of the free space,

ε0 = 8.854 10−12 ≈ 1

36π
10−9[

C2

Nm2 ] .

The force F 21 exerted by charge q1 on charge q2 is opposite, F 21 = −F 12. Fig. 1 illustrates the law for
two positive charges when the force is repulsive. The formula remains valid for charges of arbitrary sign. If
the point charges are replaced with line, surface or volume charges, we use the superposition to compute the
total force exerted by one group of charges on another one,

F 12 =

∫ ∫
q1q2

4πε0|x− y|3
(x− y) dq1 dq2 . (2.2)

The integral type depends upon the charge kind. For line charges we use line integrals, for surface charges
we use surface integrals, for volume charges we use volume integrals. A unified framework is provided by
the theory of distributions that leads to viewing the charge as a distribution.

1In SI, Coulomb is a derived unit, we will introduce it later.
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Figure 2: Gauss’ Law for Electrostatics.

Assignment 1: Compute the total force exerted on point charge q by a line charge distribution with a
constant charge density ql.

Electric Field. Given a point test charge q, and a charge distributionQ, we define the electric field created
by charge Q as 2:

E =
F

q
[
N

C
=

V

m
] (2.3)

where F represents the total force exerted by chargeQ on the test charge, given by the Coulomb’s Law. The
red color indicates equivalent units (in Volts per meter) that will be derived a posteriori.

Electric Flux is defined by the formula,

D = ε0E [
C

m2
] . (2.4)

Assignment 2: Prove the Gauss Law for Electrostatics. Let S be an arbitrary surface surrounding a
distributed volume charge ρ. Then ∫

S
D · n dS = Q :=

∫
V
ρ dV (2.5)

where n is the outward normal unit vector to surface S, see Fig. 2. Use integration by parts (the Gauss’
Law) to derive the corresponding pointwise form of the law:

divD = ρ .

Note that the law remains valid for all kind of charges. The equation above has to be understood then in the
distributional sense.

2Units printed in red color will be introduced later (derived units).
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Electrostatic Potential. Let ρ be a distributed charge. We have,

E(x) =
1

4πε0

∫
ρ
x− y
|x− y|3

dy

=
1

4πε0

∫
ρ

(
−∇x

(
1

|x− y|

))
dy

= −∇x
1

4πε0

∫
ρ

|x− y|
dy︸ ︷︷ ︸

electrostatic potential V

= −∇xV .
(2.6)

The concept of the electrostatic potential is in line with the concept of a conservative (potential) force in
mechanics. Let AB denote an arbitrary curve from point A to point B, parametrized with

r = r(ξ), ξ ∈ (a, b) .

The work done by electric field E on (a particle with) a unit charge is equal to the difference of potentials,
and it is independent of the path.∫

AB
E · dr =

∫ b

a

(
E · dr

dξ

)
dξ

= −
∫ b

a

(
∂V

∂x

dx

dξ
+
∂V

∂y

dy

dξ
+
∂V

∂z

dz

dξ

)
dξ

= −
∫ b

a

d

dξ
[V (x(ξ), y(ξ), z(ξ))] dξ

= V (r(a))− V (r(b)) = V (A)− V (B) .

The value of potential at A, called the voltage at A, represents the work done against the field E to bring a
unit charge from infinity to point A, and it is measured in Volts,

V =
N

C
m .

which implies the alternative, derived unit V/m for the electric field.

Free and Bound Charge. Conservation of Free Charge. So far we have talked just about charge. In
practice we distinguish between the free charge representing a cloud of free, moving electrons, and the
bound charge that represents electrons that cannot change their location. From now on, we shall use symbol
ρ for the density of the free charge only, and denote the density of bound charge by ρb. The motion of free
charge is subjected to a standard conservation law. Let V denote an arbitrary (control) volume. We have,

d

dt

∫
V
ρ dV +

∫
∂V
Jn dS = 0 (2.7)

where Jn stands for a flux of free charge across boundary ∂V . Cauchy’s argument (see the corresponding
derivation of stress tensor from the postulated existence of stress vector) leads to the conclusion that there
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exists a vector field J such that Jn = J ·n where n denotes the outward normal unit to ∂V . Vector field J
is called the current density vector, and it is measured in another unit - the Ampere.

J [
C

s︸︷︷︸
A

1

m2
=

A

m2
]

In the SI system, the Ampere is selected to be the fundamental unit, and both Coulomb and Volt are repre-
sented in terms of it. Integration by parts leads to the conservation of charge in a differential form - the so
called continuity equation:

∂ρ

∂t
+ divJ = 0 (2.8)

The equation is again to be understood in the distributional sense.

Ohm’s Law. This is our first constitutive law. For a large class of conductors, the current density vector
is proportional to the electric field,

J = σE, σ

 A

m2

m

V
=

A

V︸︷︷︸
S

1

m
=

S

m

 (2.9)

The conductivity σ is measured in another derived unit - the siemen [S]. For non-homogeneous materials,
σ = σ(x), for more complicated, anisotropic materials, it is replaced with a tensor.

Electric Dipole. Imagine a negative unit charge −q located at the origin of a Cartesian system and a posi-
tive unit charge q located at a point de where e is a unit vector. Compute the scalar potential corresponding
to the two charges and pass to a limit with d → 0 keeping the product p = qd fixed (then, obviously,
q →∞).

V (r) = lim
d→0

(
q

4πε0|r − de|
− q

4πε0|r|

)
=

p

4πε0
lim
d→0

1

d

(
1

|r − de|
− 1

|r|

)
= − 1

4πε0
p · ∇

(
1

r

)
=

1

4πε0

p · r
|r|3

where p = pe is identified as the dipole moment.

Polarization. Dielectrics. Electrons and protons form miniature dipoles that, without any electric field
present, are directed randomly. Under the action of an electric field E, the dipoles get “organized” (see
cartoon 3) forming a polarization vector field with density

P =
dipole moment

unit volume
.
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Figure 3: Electric polarization.

The process is known as polarization, and it characterizes dielectrics. The constitutive law for dielectrics
states that the polarization vector is proportional to the electric field,

P = χeε0E (2.10)

where χe is the electric susceptibility. Note that

∇x
1

|x− y|
= −∇y

1

|x− y|
.

Integration by parts,

V (x) =
1

4πε0

∫
V
P (y) · (−∇x

1

|x− y|
) dy

=
1

4πε0

∫
V
P (y) · (∇y

1

|x− y|
) dy

=
1

4πε0

∫
V

(−divP (y))
1

|x− y|
dy +

1

4πε0

∫
∂V

(P · n)
1

|x− y|
dS ,

leads to the observation that the field corresponding to a dipole field is equivalent to a field created by the
bound charge ρb = −divP . The boundary term with the surface charge distribution is “absorbed” in ρb
understood in the distributional sense.

Gauss Law for Dielectrics. Utilizing the relation between the polarization vector P and bound charge ρb,
and the Gauss Law (for the free space) we obtain,

div(ε0E) = ρ+ ρb = ρ− divP .

This leads to an update of the Gauss Law for general dielectric materials,

div(ε0E + P ) = div(ε0(1 + χe)E) = div(εE) = ρ . (2.11)

Coefficient εr = 1 + χe is known as the relative permittivity, ε = εrε0 is the permittivity, and D = εE is
the electric fluxD.
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Figure 4: Example of an electrostatics BVP.

Example of a Boundary-Value Problem (BVP). A free charge Q has been put into a conductor occupy-
ing a bounded domain Ω (see Fig. 4) surrounded by the free space. Determine potential V , electric field E,
and the resulting distribution of free charge ρ and bound charge ρb. Assume that all fields have reached a
steady state, i.e. they are independent of time.

Continuity equation (conservation of charge) understood in the distributional sense provides a BVP for
the potential inside of the domain Ω.

∇ · J = ∇ · (σE) = −∇ · (σ∇V ) = 0 in Ω

and
J · n = −σ∇V · n = −σ∂V

∂n
= 0 on Γ .

The solution is a constant potential V = V0 and a zero electric field E = 0 inside of the conductor. The
Gauss’ Law implies that the free charge inside of the conductor is zero.

Energy considerations lead to a regularity assumption on potential V that is assumed to be continuous.
Consider an exterior BVP for the potential V in the free space implied by the Gauss’ Law.

−∇ · (ε0∇V ) = 0 in IR3 − Ω̄

V = 1 on Γ

V = 0 at∞ .

The problem is well posed and it has a unique solution. Linearity of the problem implies that the actual
potential is equal to the product of the unknown constant potential V0 inside of the conductor and solution
V . The distributional understanding of the Gauss’ law provides a formula for the surface free charge,

(ρS =)ρ = ε0E
out · n− εEin · n︸ ︷︷ ︸

=0

= ε0E
out · n = −ε0V0

∂V

∂n
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Figure 5: An electrostatics BVP.

where V denotes the solution of the exterior BVP. The total free surface charge must equal the impressed
charge brought to the conductor from outside,

−ε0V0

∫
Γ

∂V

∂n
= Q

which provides the closing equation for the unknown potential V0. The bound charge can be computed from
the Gauss’ Law for the free space understood in the distributional sense. Equation

ρ+ ρb = div(ε0E)

must be satisfied in both interior and exterior domains and it implies that ρb = 0 is zero there. On boundary
Γ we must have,

ρ+ ρb = ε0(Eout −Ein) · n = 0

which implies that there is no surface bound charge, too.

Assignment 3: Discuss a slightly more complicated scenario shown in Fig. 5. Determine the distribution
of free and bound charge. Use the example to explain why a charged amber rod attracts pieces of paper even
though there is no (impressed) charge brought to the paper.

Relaxation Time for Conductors. The conservation of charge and Gauss’ Electric Law remain valid
for general Maxwell equations in a dynamic regime. Combining equations (2.8) and (2.11), we obtain an
ordinary differential equation for free charge density ρ,

∂ρ

∂t
+
σ

ε
ρ = 0 .

Given an initial condition ρ0, we obtain,
ρ = ρ0e

− t
τ

where τ = ε/σ is the relaxation time needed for the charge density to decrease by a factor of e−1 ≈ 0.37.
For copper, τ = 1.510−19 s, but for quartz τ ≈ 10 days.
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Figure 6: Ampère’s Force Law

3 Magnetostatics

In electrostatics charges are stationary and there are no currents. In magnetostatics currents are steady, i.e.
constant in time. Essential in understanding the magnetostatics is the concept of current element Idl that
corresponds to the concept of charge in electrostatics. Contrary to charge though, the current element must
be part of a line, surface or volume current and cannot be understood pointwise.

Ampère’s Force Law (1820). Consider two current elements illustrated in Fig. 6. The force exerted on
current element I1dx by current element I2dy is given by the famous law discovered by André-Marie
Ampère,

dF 12 =
µ0

4π

I1dx×
(
I2dy × x−y

|x−y|

)
|x− y|2

(3.12)

where µ0 is the free space permeability,

µ0 = 4π10−7 [
N

A2
=

h

m
] .

Notice the full analogy with the Coulomb’s Law. The total force exerted on current loop 1 by current loop 2
is:

F 12 =

∫
I1dx× µ0

∫
I2dy × (x− y)

4π|x− y|3︸ ︷︷ ︸
magnetic fluxB

.

The justification of defining the magnetic flux in this way comes from experiments that confirm an identical
behavior of a current loop being placed in a field created by a permanent magnet. In other words, the effect
of a current loop 2 on current loop 1 is the same as the effect of the magnet.

Assignment 4: Check that the total force F 12 = −F 21 but demonstrate by means of a counterexample
that, in general, dF 12 6= −dF 21. Follow the steps:
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1. Recall (or prove) the fundamental vector identity,

A× (B ×A) = (A ·C)B − (A ·B)C . (3.13)

2. Use the identity to split the Ampère’s force into two parts,

(I1dx ·
x− y
|x− y|3

)I2dy − (I1dx · I2dy)
x− y
|x− y|3

.

3. Use the fact that
x− y
|x− y|3

= −∇x
1

|x− y|
and the Stokes’ Theorem to show that the integral of the first term vanishes.

Assignment 5: Consider two infinitely long straight conductors (cables) shown in Fig. 7. Use the Ampère’s
force law

• to show that dF 12, the force exerted by current I2 on current I1 is horizontal (the only non-zero
component is the y2 component, and it is positive),

• to compute the force per unit length of conductor carrying I1,

µ0

2πb
I1I2 . (3.14)

Hint: Integrate first in y2 and then switch to θ shown in the figure. Notice that the force is attractive. What
will happen if one (both) of the currents changes direction? Notice that the force exterted by cable one on
cable two matches that exterted by cable two on cable one even though the two cables do not form close
loops.

Biot-Savart Law (Superposition of Steady Currents). Very soon after the discovery of Ampère, French
mathematicians, Jean-Baptiste Biot and Félix Savart generalized the Ampère Law to arbitrary steady cur-
rents. In the following formula, J(y) may be a line, surface or volume current with the corresponding line,
surface or volume integral. In other words, similarly to charges, currents are assumed to be distributions.
The general formula for the magnetic flux reads as follows.

B(x) = µ0

∫
J(y)× (x− y)

4π|x− y|3
dy

= −µ0

∫
J(y)×∇x

(
1

4π|x− y|

)
dy

= −∇x × µ0

∫
J(y)

4π|x− y|
dy︸ ︷︷ ︸

vector potentialA

.

(3.15)
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Figure 7: Parallel conductors

Integration by parts,

−
∫
V
J(y)×∇x

(
1

4π|x− y|

)
dy =

∫
V
J(y)×∇y

(
1

4π|x− y|

)
dy

=

∫
V

(∇× J)(y)
1

4π|x− y|
dy +

∫
∂V

(n× J)
1

4π|x− y|
dS ,

leads to the observation that only currents with curlE 6= 0 (in the distributional sense) produce a magnetic
flux.

Finally, another integration by parts establishes that the divergence of vector potential is zero.

(∇x ·A)(x) = µ0

∫
V
J(y) · ∇x

(
1

4π|x− y|

)
dy = −µ0

∫
V
J(y) · ∇y

(
1

4π|x− y|

)
dy

= µ0

∫
V

(∇y · J)
1

4π|x− y|
dV + µ0

∫
∂V

(J · n)
1

4π|x− y|
dS = 0

(3.16)

since, for steady currents, ∂ρ∂t = 0.
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Ampère’s Law for Magnetostatics. We are ready now to derive a differential relation between the mag-
netic flux and currents.

(∇×B)(x) = −∇×∇×A

= −∆A+∇ (∇ ·A)︸ ︷︷ ︸
=0

= −∆x

(
µ0

∫
J(y)

4π|x− y|
dy

)
= µ0

∫
J(y)

(
−∆x

1

4π|x− y|

)
︸ ︷︷ ︸

δ(y−x)

dy

= µ0J(x) .

The resulting Ampère’s equation for magnetostatics,

∇×B = µ0J , (3.17)

is to be understood again in the distributional sense.

Assignment 6: Consider scenario depicted in Fig. 8. A horizontal circular loop of radius a with center at
the origin is carrying current I . Use the spherical coordinates to show that the magnetic vector potential at
a point x is given by the formula:

A =
µ0Ia

2 sinψ

4|x|2
eθ + higher order terms in a (3.18)

where er, eθ, eψ denote the unit vectors of spherical system of coordinates.

Magnetic Dipole. Introducing a vector M = πa2Iez and passing to the limit with a → 0 keeping
M = πa2I constant, we obtain a magnetic dipole. Consistently with (3.18), the magnetic vector potential
of the magnetic dipole is given by the formula,

A = µ0M ×∇x
(

1

4π|x− y|

)
. (3.19)

Magnetic Polarization. Analogously to electric polarization vector P , we introduce now a magnetic po-
larization vectorM , representing a density of magnetic dipoles per unit volume. Integration by parts,

A = µ0

∫
V
M(y)×∇x

(
1

4π|x− y|

)
dV

= −µ0

∫
V
M(y)×∇y

(
1

4π|x− y|

)
dV

= −µ0

∫
V

(∇×M)
1

4π|x− y|
dV − µ0

∫
∂V

(n×M)
1

4π|x− y|
dS ,
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Figure 8: A current loop.

leads to the observation that an equivalent magnetic potential is generated by the so-called bound current
J b = ∇ ×M . The equivalent bound currents are again understood in the distributional sense, as they
include surface currents as well.

Magnetic Field. Separating currents into free currents J and bound currents J b, and recalling the Ampère’s
Law,

1

µ0
∇×B = J + J b ,

we introduce the notion of magnetic field,

∇× (
B

µ0
−M︸ ︷︷ ︸

magnetic fieldH

) = J . (3.20)

Consequently,
B = µ0H +M

= µ0H + µ0χmH

= µ0(1 + χ0)H = µH

where χm denotes the magnetic susceptibility, µr = 1 + χm is the relative permeability and µ = µ0µr is
the permeability of a specific material.

With the newly introduced constitutive laws and the concept of magnetic field, the Ampère’s Law for
magnetostatics takes the form,

∇×H = J . (3.21)
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Figure 9: An electromagnet.

Example 3: Consider scenario shown in Fig. 9. Given an impressed free surface current J imp representing
the coil, determine magnetic fieldH , vector potentialA, magnetic fluxB, and bound currents J b.

The magnetostatics problem has to be solved in the whole space. The starting point is provided by the
Ampère’s Law (3.21). The equation has to be understood in the sense of distributions. With the free current
reduced to the impressed current only3 , J = J imp, this implies that ∇ ×H = 0 in both Ω,Ωe and the
jump condition,

[n×H] = J imp on Γ . (3.22)

Notice that the prescribed impressed current must be tangent to the surface. Similarly as electrostatics
problems are naturally formulated in terms of the scalar potential (voltage), it is natural to formulate the
magnetostatics problems in terms of the vector potentialA. We have,

H =
1

µ
B = − 1

µ
∇×A .

Equation (3.16) provides a gauge condition on A making it unique. In the end, we obtain the following
3OK, this is tricky. The impressed current, representing a stationary movement of charges in a coil, according to the Coloumb

law, does produce an electric field E. In the free space however, σ = 0, so J = σE = 0. In the electromagnet, σ > 0 and,
according to our discussion in Example 1, the electric field inside of the conductor vanishes, so J = 0 there as well. Can you
explain why there is no free surface current on Γ as well?
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Boundary-Value Problem for the magnetic potentialA.

∇× (
1

µ
∇×Ain) = 0 in Ω

∇× (
1

µ0
∇×Aout) = 0 in Ωc

n× (Aout −Ain) = 0 on Γ

n× ( 1
µ0
∇×Aout − 1

µ∇×A
in) = −J imp on Γ

divA = 0 in Ω ∪ Ωc

n · (Aout −Ain) = 0 on Γ

A = 0 at∞

(3.23)

Condition (3.23)3 reflects the assumption that magnetic field is a function (a regular distribution). Condi-
tions (3.23)5,(3.23)6 reflect the fact that gauge condition is understood in the distributional sense. Notice
that conditions (3.23)3 and (3.23)6 imply that the vector potential is globally continuous, consistently with
its physical interpretation.

The curl-curl problem is typical for magnetostatics and Maxwell’s equations in general. One can prove
that the problem above has a unique solution. Once the magnetic vector potential is known, we can compute
the corresponding magnetic flux B = ∇ × A, magnetic field H = B/µ, and the bound currents J b =

(∇×B)/µ0 − J imp.

4 Maxwell Equations

Faraday’s Law (1831). A decade after the discovery of Ampère, English physicist - Michael Faraday,
discovered that a time varying magnetic flux will induce a current in a loop placed in the field. The discovery
led to a new relation between the magnetic flux vector and electric field, see Fig. 10,∫

c
E · dl = − d

dt

∫
S
B · n dS . (4.24)

Application of Stoke’s Theorem leads to the differential form of the Faraday’s law,

∇×E = −∂B
∂t

.
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Figure 10: Faraday’s Law.

Maxwell’s Equations (1856). Another quarter of century later, James Clerk Maxwell, a Scottish mathe-
matician and theoretical physicist, upgraded the Ampère’s equation 4 to its transient version:

∇×H = J +
∂D

∂t︸︷︷︸
missing term

and formulated the final system of what we call today Maxwell Equations.

∇×E = − ∂

∂t
(µH) Faraday’s Law

∇×H = J imp + σE︸︷︷︸
J

+
∂

∂t
(εE) Ampère’s Law

∇ · (µH) = 0 Gauss’ Magnetic Law

∇ · (εE) = ρimp + ρ Gauss’ Electric Law

∂ρ

∂t
+∇ · J = 0 Continuity Equation

(4.25)

The system is accompanied by appropriate boundary and initial conditions, and it is solved for the electric
field E, magnetic field H , and density of free charge ρ. The impressed current and charge are given, and
must satisfy the continuity equation as well. The equations are non independent. In order to see it, consider

4More precisely, Ampère- Maxwell Equation.

16



the time-harmonic version of the equations,

∇×E = −iω(µH) Faraday’s Law

∇×H = J imp + σE︸︷︷︸
J

+iω(εE) Ampère’s Law

∇ · (µH) = 0 Gauss’ Magnetic Law

∇ · (εE) = ρimp + ρ Gauss’ Electric Law

iωρ+∇ · J = 0 Continuity Equation.

(4.26)

Taking divergence of both sides in the Faraday’s Law, we obtain the the Gauss’ Magnetic Law (premultiplied
by iω factor). Similarly, taking divergence of both sides of the Ampère’s Law, and utilizing the continuity
equation, we obtain the Gauss’ Electric Law (again premultiplied by iω factor). Obeying this dependence is
critical in establishing stable discretization schemes, see [1]. Notice that this interdependence disappears in
the static case, where the Faraday and Ampère equations decouple from each other. The Gauss’ Laws and
the conservation of charge provide then the necessary closing equations. Understanding the degeneration of
Maxwell equations when ω → 0, is critical in modeling electromagnetics problems.

Assignment 7 (Plane wave): Consider the time-harmonic Maxwell equations in the free space and assume
that the electric field depends only upon a single coordinate, say x1. Use the Maxwell equations to derive
the closed form solution (a plane wave) of the Maxwell equations. Observe that, at any point in the space,
E ·H = 0. Note that, contrary to what you might have learned in high school, this property is not true in
general, e.g. for spherical waves (waves that depend only upon spherical coordinate r).

5 Summary

A quote from Wikepedia: “ In 1931, on the centennial of Maxwell’s birthday, Einstein himself described
Maxwell’s work as the ‘most profound and the most fruitful that physics has experienced since the time of
Newton.’ Einstein kept a photograph of Maxwell on his study wall, alongside pictures of Michael Faraday
and Isaac Newton.”

Understanding the development of electromagnetics that took time from Coulomb, through Ampère and
Faraday to Maxwell, is critical for understanding of science in general. The subject is not easy, it requires
a combination of strong math skills and sound foundations in physics. The discussed, concise from of
the Maxwell equations is due to Oliver Heaviside who published it in 1884, recasting original Maxwell’s
mathematical analysis form of twenty equations with twenty unknowns. One might say that it took 28 years
for the contemporary scientists to understand the Maxwell’s work.

I have not provided in this note any examples of BVPs for the full set of Maxwell equations. If you are
interested, see e.g. [6, 4, 5, 2, 3].
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6 Appendix: Distributions

Distributions are functionals that act on test functions. Given a domain Ω ⊂ IR3, we introduce the space of
test fumctions,

C∞0 (Ω) := {φ ∈ C∞(Ω) : suppφ is bounded and contained in Ω} (6.27)

where supp φ, denoting the support of function φ, is obtained by closing the set over which function φ does
not vanish,

supp φ = {x ∈ Ω : φ(x) 6= 0}

The test functions satisfy thus two important properties, ther are different from zero only in a bounded set
and they vanish along with all derivatives as we approach boundary ∂Ω. The second assertion follows from
the fact that the support, being a closed set is contained in open set Ω.

Assignment A1: Explain more precisely why a test function and all its derivatives vanish on ∂Ω.

Functionals operating on test functions are called distributions. The are classified into two groups:
regular and irregular distributions. Regular distributions are generated by L1

loc(Ω) (locally integrable) func-
tions. A Lebesgue measurable (complex-valued) function defined on Ω is locally integrable, if for any point
x ∈ Ω, there exists a ball B centered at x with a radius ε contained in Ω, B = B(x, ε) ⊂ Ω, such that
u ∈ L1(B), i.e.

∫
B |u| <∞.

Assignment A2: Show that u ∈ L1
loc(Ω) if an only if,

∫
K |u| < ∞ for any compact (closed and

bounded) subset K of Ω.

Any distribution that is not regular is called irregular. Using language of electrostatics, volume charges:

φ→
∫
V
ρV φ dV

define regular charges, but surface, line and point charges:

φ→
∫
S
ρSφ dS, φ→

∫
l
ρlφ dl, φ→ ρPφ(xP )

define irregular distribution. The distribution prescribing for a test function φ its value at point x0 is known
as Dirac’s delta and denote by δx0 ,

δx0 : C∞0 (Ω) 3 φ→ φ(x0) ∈ IC

Dirac’s delta corresponds thus to a point charge. To simplify the notation we drop indices V, S, l, P indi-
cating the type of charge. We shall use also the bracket (duality pairing) notation to indicate the action of a
general distribution L on test function φ,

φ→< L, φ >

A regular distribution generated by an L1
loc-function u, will be denoted by Ru,

< Ru, φ >=

∫
Ω
uφ
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If function u generating a regualar distribution is differentiable in the classical sense, the integration by parts
implies that ∫

Ω

∂u

∂xi
φ = −

∫
Ω
u
∂φ

∂xi
= − < Ru,

∂φ

∂xi
>

This prompts defining the derivative of an arbitrary distribution by passing the differentiation to the test
function,

<
∂L

∂xi
, φ >:= − < L,

∂φ

∂xi
>

The following simple example is crucial in understanding the concept of differentiating distributions.

Example of a ditributional derivative. In order to understand the difference between the classical and
the distributional derivative, partition interval (0, l) into two subintervals (0, x0) and (x0, l), and consider a
function u(x) specified by two different branches,

u(x) =

{
u1(x), x ∈ (0, x0),
u2(x), x ∈ (x0, l) .

We assume that u1 ∈ C1(0, x0], and u2 ∈ C1[x0, l). Let now φ ∈ C∞0 (0, l) be an arbitrary test function.
We have, ∫ l

0
uφ′ dx =

∫ x0

0
u1φ

′ dx+

∫ l

x0

u2φ
′ dx

= −
∫ x0

0
u′1φ dx+ u1(x0)φ(x0)−

∫ l

x0

u′2φ dx− u2(x0)φ(x0) .

If we introduce a function w(x),

w(x) =

{
u′1(x), x ∈ (0, x0)
u′2(x), x ∈ (x0, l)

,

we can rewrite our result in the single integral form,

−
∫ l

0
uφ′ dx =

∫ l

0
wφ dx+ [u(x0)]φ(x0) . (6.28)

Here [u(x0)] denotes the (possible) jump of function u at interface x0, [u(x0)] = u2(x0) − u1(x0). If
function u is continuous at x0, the second term is gone, and function w is the distributional derivative of u.
The fact that function w has not been defined at interface x0, does not matter since the Lebesgue integral
is insensitive to changes of the integrand on subsets of measure zero, and any countable set of points is of
measure zero. In other words, it is sufficient to define the distributional derivative only up to a subset of
measure zero. Thus a function that consists even of an infinite (but countable) number of C1 branches may
not be differentiable at the interface points but, as long as it is globally continuous, it will be differentiable
in the distributional sense.
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If function u is discontinuous at x0, the second has to be interpreted in terms of Dirac’s delta. A
mathematically precise statement is,

d

dx
Ru = Rw + [u(x0)]δx0 ,

For the Heaviside function,

u(x) =

{
0 x ∈ (0, x0)
1 x ∈ (x0, l) ,

the distributional derivative is equal to the Dirac delta.

The notion of distributional derivative is generalized to higher order derivatives and arbitrary differential
operators. We have

< ∇ ·E, φ > := − < E,∇φ >

< ∇×E,φ > :=< E,∇× φ >

< ∇u,φ > := − < u,∇ · φ >

Here E, u denote arbitrary distributions. In a particular case, when E, u are L1
loc functions, a precise state-

ment should use RE , Ru (regualr distributions corresponding to functions E, u) on the left-hand side. No-
tice that, for the second and third operator, we are using vector-valued test functions. The “missing” minus
sign in the second case is not a misprint. Use the elementary integration by parts formula to justify the
definitions above.

Assignment A3: Consider scenario depicted in Fig. 11. Domain Ω has been split into subdomains Ω1,Ω2

with an interface Γ. Assume E, u are L1
loc functions consisting of two regular (C1) branches defined over

the two subdomains with a possible jump across the interface Γ. Derive the following formulas for the
distributional derivatives:

< ∇Ru, φ > =< R∇u,φ > +

∫
Γ
[u]φ · n︸ ︷︷ ︸

=:φn

< ∇×RE ,φ > =< R∇×E , φ > +

∫
Γ
[n×E]φ

< ∇ ·RE , φ > =< R∇·E , φ > +

∫
Γ
[E · n]φ

Note the following practical implications of these formulas:

• If distributional grad of a function u is itself a function then umust be globally continuous. Otherwise,
∇u (understood in the distributional sense) includes a (surface) Dirac’s contribution.

• Similarly, if distributional curl of a functionE is a function then the tangential component ofE must
be continuous across the interface but the normal need not.

• Finally, if distributional div of a function E is a function then the normal component of E must be
continuous across the interface but the tangential need not.
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Figure 11: Calculation of distributional derivatives.

• Equation
∇ ·E = ρ

understood in the distributional sense includes not only the information that the equation holds in
the subdomains where E is differentiable in the classical sense (function ρ equals then the classical
divergence of E) but also that the jump of the normal component of E across a possible interface
matches a possible surface contribution,

[E · n] = ρΓ

In other words, distribution ρ may include both regular and irregular contributions,

< ρ, φ >=
∑
i=1,2

∫
Ωi

uiφ dx+

∫
Γ
ρΓφ dS

Similar interpretation holds for the other differential operators.
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