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Abstract

We present Lift & Learn, a physics-informed method for learning low-dimensional
models for large-scale dynamical systems. The method exploits knowledge
of a system’s governing equations to identify a coordinate transformation
in which the system dynamics have quadratic structure. This transforma-
tion is called a lifting map because it often adds auxiliary variables to the
system state. The lifting map is applied to data obtained by evaluating a
model for the original nonlinear system. This lifted data is projected onto
its leading principal components, and low-dimensional linear and quadratic
matrix operators are fit to the lifted reduced data using a least-squares op-
erator inference procedure. Analysis of our method shows that the Lift &
Learn models are able to capture the system physics in the lifted coordinates
at least as accurately as traditional intrusive model reduction approaches.
This preservation of system physics makes the Lift & Learn models robust
to changes in inputs. Numerical experiments on the FitzHugh-Nagumo neu-
ron activation model and the compressible Euler equations demonstrate the
generalizability of our model.
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1. Introduction1

The derivation of low-dimensional models for high-dimensional dynamical2

systems from data is an important task that makes feasible many-query com-3

putational analyses like uncertainty propagation, optimization, and control.4

Traditional model reduction methods rely on full knowledge of the system5

governing equations as well as the ability to intrusively manipulate solver6

codes. In contrast, classical machine learning methods fit models to data7

while treating the solver as a black box, ignoring knowledge of the prob-8

lem physics. In this paper, we propose a new hybrid machine learning-model9

reduction method called Lift & Learn, in which knowledge of the system gov-10

erning equations is exploited to identify a set of lifted coordinates in which11

a low-dimensional model can be learned.12

In projection-based model reduction, the system governing equations are13

projected onto a low-dimensional approximation subspace to obtain a re-14

duced model. The basis for the reduced space is computed from data; a15

common choice is the Proper Orthogonal Decomposition (POD) basis, com-16

prised of the leading principal components of the data [1, 2, 3, 4]. However,17

the projection process is intrusive, requiring access to the codes that imple-18

ment the high-dimensional operators of the original equations. One way to19

avoid the intrusive projection is to learn a map from input parameters to co-20

efficients of the reduced basis, e.g., via gappy POD [5, 6], or using radial basis21

functions [7], a neural network [8, 9, 10] or a nearest-neighbors method [10].22

However, these approaches are agnostic to the dynamics of the system in23

that they do not model the evolution of the system state over time.24

To learn models for the dynamics of a system, the work in [11] uses com-25

pressed sensing methods to learn sparse, high-dimensional matrix operators26

from data. Techniques from compressed sensing are also used in [12, 13] to fit27

terms of governing equations from a dictionary of possible nonlinear terms.28

However, these approaches do not reduce the dimension of the system. To29

learn a reduced model, dynamic mode decomposition (DMD) [14, 15] projects30

data onto a reduced basis and then fits to the reduced data a linear operator.31

Similarly, the operator inference approach of [16] fits linear and polynomial32

matrix operators to reduced data. However, if the true underlying dynam-33

ics of the system are non-polynomial, then the DMD and operator inference34

models may be inaccurate.35

Several communities have explored using variable transformations to ex-36

pose structure in a nonlinear system. In particular, Koopman operator the-37

2



ory, which states that every nonlinear dynamical system can be exactly de-38

scribed by an infinite-dimensional linear operator that acts on scalar observ-39

ables of the system [17], has been used to extend DMD to fit linear mod-40

els for nonlinear systems in observable space defined by a dictionary [18],41

kernel [19], or dictionary learning method [20]. In contrast, lifting transfor-42

mations [21] are maps derived for specific governing equations that yield a43

finite-dimensional coordinate representation in which the system dynamics44

are quadratic [22]. Lifting is exploited for model reduction in [22, 23, 24, 25],45

where the quadratic operators of a high-dimensional lifted model are pro-46

jected onto a reduced space to obtain a quadratic reduced model. However,47

in many settings, it is impossible or impractical to explicitly derive a high-48

dimensional lifted model, so the only available model is the original nonlinear49

one.50

In Lift & Learn, we use the available nonlinear model to learn quadratic51

reduced model operators for the lifted system without requiring a high-52

dimensional lifted model to be available. We collect state trajectory data53

by evaluating the original nonlinear model, lift the data, project the lifted54

data onto a low-dimensional basis, and fit reduced quadratic operators to the55

data using the operator inference procedure of [16]. In this way, we learn a56

quadratic model that respects the physics of the original nonlinear system.57

Our contributions are thus:58

1. the use of lifting to explicitly parametrize the reduced model in a form59

that can be learned using the operator inference approach of [16],60

2. the use of learning to non-intrusively obtain lifted reduced models from61

data generated by the original nonlinear model, enabling their use even62

in settings where lifted models are unavailable, and63

3. the exploitation of the preservation of system physics to prove guaran-64

tees about the lifted model fit to data.65

Our approach fits reduced quadratic operators to the data in state space. In66

the situation where frequency-domain data is available, the work in [26] fits67

quadratic operators to data in frequency space.68

Section 2 describes projection-based model reduction for nonlinear sys-69

tems. Section 3 defines the lifting map and its properties and introduces our70

Lift & Learn model learning method. Section 4 derives a bound on the mis-71

match between the data and the Lift & Learn model dynamics. In Section 572

we apply our method to two examples: the FitzHugh-Nagumo prototypi-73

cal neuron activation model and the Euler fluid dynamics equations. Our74
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numerical results demonstrate the learned models’ reliability and ability to75

generalize outside their training sets.76

2. Projection-based model reduction77

Let Ω ∈ Rd denote a physical domain and let [0, Tf ] be a time domain for
some final time Tf > 0. The nonlinear partial differential equation (PDE)

∂~s

∂t
= ~f (~s) (1)

defines a dynamical system for the ds-dimensional vector state field

~s(x, t) =

 s1(x, t)
...

sds(x, t)

 , (2)

where sj : Ω× [0, Tf )→ Sj ⊂ R, for j = 1, 2, . . . , ds, and where

~f(~s) =

 f1(~s)
...

fds(~s)

 (3)

is a nonlinear function that maps the state field to its time derivative. We78

assume that any spatial derivatives of ~s appearing in ~f are well-defined.79

Denote by S the ds-dimensional product space S = S1 × · · · × Sds , so that80

~s(x, t) ∈ S.81

We consider a semidiscrete model where the spatially discretized state
vector s(t) ∈ Rnds corresponds to the values of the ds state variables at some
collection of spatial points {xl ∈ Ω}nl=1, e.g., in a finite difference discretiza-
tion or a finite element setting with a nodal basis. Let Sn denote the product
domain Sn = Πn

l=1S. Then, the semi-discrete full model is given by a system
of nds ordinary differential equations:

ds

dt
= f(s), (4)

where f : Sn → Sn is a Lipschitz continuous function that discretizes ~f .82
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Projection-based model reduction seeks a low-dimensional approximation
to eq. (4) to achieve computational speed-ups. Denote by sk the state snap-
shot at time tk, i.e., the solution of eq. (4) at time tk. The state snapshot
matrix, S, collects K snapshots as

S =
[
s1 · · · sK

]
∈ Rnds×K . (5)

Note that S can contain states from multiple full model evaluations, e.g.,
from different initial conditions. The singular value decomposition (SVD) of
S is given by

S = ΦΞΨ> (6)

where Φ ∈ Rnds×nds , Ξ ∈ Rnds×nds , and Ψ ∈ Rnds×K . The Proper Orthogonal
Decomposition (POD) basis of size r is denoted by Φr and defined by the
leading r columns of Φ. The POD state approximation is s ≈ Φrŝ, where
ŝ ∈ Rr is the reduced state. The POD reduced model is defined by Galerkin
projection:

dŝ

dt
= Φ>r f (Φrŝ) . (7)

When f has no particular structure, solving eq. (7) requires evaluating the
nds-dimensional map f , which is expensive. When the PDE contains only
polynomial nonlinearities in the state, however, the POD-Galerkin model
preserves this structure and can be efficiently evaluated without recourse to
high-dimensional quantities. That is, let

∂~s

∂t
= ~a(~s) + ~h(~s) (8)

where ~a(·) and ~h(·) are linear and quadratic operators, respectively. The
discretized full model can then be written using matrix operators as follows:

ds

dt
= As + H(s⊗ s), (9)

where A ∈ Rnds×nds is a linear matrix operator, H ∈ Rnds×n2d2s is a matricized
tensor operator, and ⊗ denotes the Kronecker product. The POD-Galerkin
reduced model is then given by:

dŝ

dt
= Âŝ + Ĥ(ŝ⊗ ŝ), (10)
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where

Â = Φ>r AΦr, Ĥ = Φ>r H(Φr ⊗Φr) (11)

are reduced matrix operators. The cost of evaluating eq. (10) depends only83

on the reduced dimension r. However, in many cases, including in our setting,84

the high-dimensional operators A and H are not available, so the reduced85

matrix operators cannot be computed as in eq. (11) and must be obtained86

through other means.87

3. Lift & Learn: Reliable, generalizable predictive models for non-88

linear PDEs89

Lift & Learn is a method for learning quadratic reduced models for dy-90

namical systems governed by nonlinear PDEs. The method exposes structure91

in nonlinear PDEs by identifying a lifting transformation in which the PDE92

admits a quadratic representation. Non-quadratic state data is obtained by93

evaluating the original nonlinear model (eq. (4)) and the lifting transforma-94

tion is applied to this data. Quadratic reduced model operators are then95

fit to the transformed data. The result is an efficiently evaluable quadratic96

reduced model for the original nonlinear PDE.97

Section 3.1 introduces lifting transformations and describes their proper-98

ties. Section 3.2 describes how lifted reduced state data are obtained from a99

full model simulation in the original non-polynomial system variables. Sec-100

tion 3.3 introduces the operator inference procedure of [16] used to learn the101

reduced model from the lifted data. Section 3.4 summarizes the Lift & Learn102

method.103

3.1. Exposing structure via lifting transformations104

We begin by defining lifting transformations.105

Definition 1. Define the lifting map,

T : S → W ⊂ Rdw , dw ≥ ds, (12)

and let ~w(x, t) = T (~s(x, t)). T is a quadratic lifting of eq. (1) if the following106

conditions are met:107
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1. the map T is differentiable with respect to ~s with bounded derivative,
i.e., if J (~s) is the Jacobian of T with respect to ~s, then

sup
~s∈S
‖J (~s)‖ ≤ c, (13)

for some c > 0, and108

2. the lifted state ~w satisfies

∂ ~w

∂t
=
∂T (~s)

∂t
= J (~s)~f(~s) = ~a(~w) + ~h(~w), (14)

where

~a(~w) =

 a1(~w)
...

adw(~w)

 , ~h(~w) =

 h1(~w)
...

hdw(~w)

 , (15)

for some linear functions aj and quadratic functions hj, j = 1, 2, . . . , dw.109

The dw-dimensional vector field ~w(x, t) is called the lifted state and eq. (14)110

is the lifted PDE.111

Note that this definition may be extended to PDEs that contain constant112

and input-dependent terms — see Section 5.1 for an example. Lifting maps113

that transform non-polynomial dynamics into higher-order polynomial dy-114

namics are also possible, but we focus on the quadratic case in this work.115

We now define a reverse lifting map which embeds the lifted state in the116

original state space.117

Definition 2. Given a lifting map T , a map

T † :W → S (16)

is called a reverse lifting map if it is differentiable with respect to ~w with118

bounded derivative on W and satisfies T †(T (~s)) = ~s for all ~s ∈ S.119

We now present a simple illustrative example of lifting.120

Example 1. Consider the nonlinear PDE,

∂s

∂t
= −es. (17)
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To lift eq. (17), we define the auxiliary variable −es. That is, the lifting map
and its reverse map are given by

T : s 7→
(

s
−es

)
≡
(
w1

w2

)
= ~w, T † : ~w 7→ w1, (18)

so that the lifted system is quadratic:

∂

∂t

(
w1

w2

)
=

(
1
−es

)
∂s

∂t
=

(
1
−es

)
(−es) =

(
w2

(w2)
2

)
. (19)

The lifting map must be specifically derived for the problem at hand. One121

strategy for doing so is to introduce auxiliary variables for the non-quadratic122

terms in the governing PDE and augment the system with evolution equa-123

tions for these auxiliary variables [22]. The work in [22] shows that a large124

class of nonlinear terms which appear in engineering systems may be lifted125

to quadratic form in this way with O(dw) = O(ds), including monomial, si-126

nusoidal, and exponential terms. In [23], this strategy is used to lift PDEs127

that govern systems in neuron modeling and combustion to quadratic form.128

Note that T is generally non-unique (consider w2 = es in Equation (19)),129

and for a given T , the reverse lifting map is also non-unique.130

3.2. Lifted training data131

This section presents a method for obtaining data in the lifted variables132

from the available non-lifted model (eq. (4)).133

State data. We first collect original snapshot data by simulating the original
full model eq. (4). Then, for each column of the data matrix (eq. (5)), we
apply the lifting map node-wise to the discrete state to obtain lifted snapshot
data. That is, the lifted data matrix W ∈ Rndw×K is given by

W =
[
w1 · · · wK

]
=
[
T(s1) · · · T(sK)

]
, (20)

where T denotes the discrete lifting map defined by applying T node-wise to134

each spatial node.135

We denote the SVD of the transformed data by W = UΣV>, with U ∈
Rndw×ndw , Σ ∈ Rndw×ndw , V ∈ Rndw×K . The r-dimensional POD basis matrix
is given by the leading r columns of U, denoted Ur ∈ Rndw×r. Projection
onto Ur yields state data in the reduced space:

Ŵ = U>r W =
[
ŵ1 · · · ŵK

]
∈ Rr×K . (21)
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Time derivative data. To learn the matrix operators of a lifted reduced model
of the form in eq. (10), reduced state time derivative data are also required.
To obtain data for dynamics that are Markovian in the reduced state, we
adapt the procedure in [27] to the Lift & Learn setting. For each ŵk,

wproj,k = Urŵk = UrU
>
r wk ∈ Rndw (22)

denotes the projection of the lifted state onto the subspace spanned by the
POD basis. Denote by T† the discrete reverse lifting defined by applying T †
node-wise for each spatial node. We assume that Ur is a sufficiently rich basis
that T† is well-defined for wproj,k, and reverse the lifting for all k to obtain
a discrete non-lifted state that corresponds to the projected lifted state:

sproj,k = T†(wproj,k). (23)

We then evaluate the available nonlinear full model to obtain new time deriva-
tive data, which we denote s′proj,k:

s′proj,k = f
(
T† (wproj,k)

)
. (24)

Let J(s) ∈ Rndw×nds denote the Jacobian of T with respect to s. Applying
the chain rule to eq. (24) yields a time derivative in the discrete lifted state:

w′proj,k = J(sproj,k)s
′
proj,k. (25)

Time derivative data in the reduced space is then obtained by projecting
eq. (25) back onto the POD basis:

ŵ′k = U>r J(sproj,k)s
′
proj,k = U>r

(
J(T†(UrU

>
r wk))f

(
T†(UrU

>
r wk)

))
. (26)

The reduced time derivative data matrix collects this data:

Ŵ′ =
[
ŵ′1 · · · ŵ′K

]
. (27)

3.3. Least-squares operator inference procedure136

Given K reduced state snapshots (eq. (21)) and the corresponding re-
duced time derivative data (eq. (27)) and a postulated model form (eq. (10)),
operator inference [16] formulates the following minimization problem for
learning the matrix operators of eq. (10):

min
Â∈Rr×r,Ĥ∈Rr×r2

1

K

∥∥∥∥Ŵ>Â> +
(
Ŵ⊗̃Ŵ

)>
Ĥ> − Ŵ′>

∥∥∥∥2
F

, (28)

9



where ⊗̃ denotes the column-wise Kronecker product, also known as the137

Khatri-Rao product. Each column of Ŵ>, Ŵ′>, and (Ŵ⊗̃Ŵ)> corresponds138

to a single component of the reduced state ŵ, yielding r independent least-139

squares problems which each define one row of Â and Ĥ. Each least-squares140

problem has r+ r(r+1)
2

degrees of freedom when the structural redundancy of141

the Kronecker product is accounted for.142

In practice, to solve eq. (28), we form a data matrix,

D̂ =
(
Ŵ> Ŵ>

sq

)
∈ RK×(r+ r(r+1)

2 ), (29)

where Ŵsq ∈ R
r(r+1)

2
×r contains quadratic data with the redundant cross

terms of the Kronecker product removed. We then solve the least-squares
equation,

D̂

(
Â>

Ĥ>sq

)
= Ŵ′, (30)

where Ĥsq ∈ Rr× r(r+1)
2 contains coefficients of quadratic terms without re-143

dundancy, and we reconstruct the symmetric tensor Ĥ ∈ Rr×r2 by splitting144

the coefficients for quadratic cross terms in Ĥsq across the redundant terms.145

As long as D̂ has full column rank, eq. (30) has a unique solution [28].146

The Lift & Learn reduced model is then given by

dŵ

dt
= Âŵ + Ĥ(ŵ ⊗ ŵ). (31)

Note that the linear-quadratic case is considered for simplicity and concrete-147

ness, but the operator inference procedure can be flexibly adapted to learn148

reduced models with constant, input-dependent, and higher-order polyno-149

mial terms. Section 5.1 contains an example in which input operators are150

learned.151

3.4. Lift & Learn: Method summary152

The Lift & Learn method is summarized in Algorithm 1. The first step is153

to identify an appropriate lifting transformation as described in Section 3.1.154

The available full model in the original non-lifted variables is then used to155

obtain lifted reduced state data as described in Section 3.2. The operator156

inference framework in Section 3.3 is then employed to learn a quadratic157
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Algorithm 1 Lift & Learn

1: Use knowledge of governing PDE to identify lifting map T as in Sec-
tion 3.1.

2: Evaluate non-quadratic full model (eq. (4)) to obtain state data in the
original, non-lifted variables, S.

3: Use T (defined by T ) to transform nonlinear state data S to lifted data
W.

4: Compute POD basis Ur for the lifted state data.
5: Project to obtain reduced lifted state data (eq. (21)) and reduced lifted

time derivative data (eq. (27)) as in Section 3.2.
6: Solve least-squares minimization (eq. (28)) using lifted data to infer op-

erators Â and Ĥ.

reduced model. Note that although this paper has primarily considered the158

case where the governing physics are described by nonlinear PDEs, the ap-159

proach applies equally to systems where the governing equations are high-160

dimensional nonlinear ODEs.161

4. Finite difference analysis162

This section presents analysis of the Lift & Learn method in the setting163

where the full model arises from a consistent finite difference discretization164

of the original nonlinear PDE. Section 4.1 presents the setting of our analysis165

and Section 4.2 proves an upper bound on the residual of the Lift & Learn166

minimization.167

4.1. Consistent finite difference models168

We now provide a local error analysis for the setting where eq. (4) arises
from a consistent finite-difference discretization of the state. Let s̄ denote
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the vector of original state values at the grid points {xl}nl=1:

s̄(t) =



s1(x1, t)
...

s1(xn, t)
...

sds(x1, t)
...

sds(xn, t)


. (32)

Note that s̄(t) differs from s(t) in that s̄(t) is the exact continuous (strong)
solution of the original PDE (eq. (1)) evaluated at the grid points, and s(t)
is the semi-discrete solution of the spatially discrete set of ODEs (eq. (4)).
If eq. (4) is a consistent order-p discretization of eq. (1), then for any given
n there exists a constant cs > 0 such that∣∣∣f(j−1)n+l(s̄(t))− fj(~s(x, t))

∣∣
x=xl

∣∣∣ ≤ csn
−p, ∀t, (33)

for j = 1, 2, . . . , ds and l = 1, 2, . . . , n, where fj is defined as in eq. (3) and169

f(j−1)n+l denotes the ((j − 1)n + l)-th entry of the vector-valued nonlinear170

function f , which corresponds to the time derivative of sj(xl, t).171

Now, let w̄ denote the discretization of the exact continuous lifted state
on the same spatial grid:

w̄(t) = T(s̄(t)) =



T1(~s(x1, t))
...

T1(~s(xn, t))
...

Tdw(~s(x1, t))
...

Tdw(~s(xn, t))


. (34)

Then,

dw

dt
= Aw + H(w ⊗w), A ∈ Rndw×ndw , H ∈ Rndw×n2d2w (35)
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is a consistent order-p discretization of eq. (14) if for any given n there exists
a constant cw > 0 such that, for all t,∣∣∣∣A(j−1)n+l,:w̄ + H(j−1)n+l,:(w̄ ⊗ w̄)−

(
~aj(~w) + ~hj(~w)

∣∣∣
x=xl

∣∣∣∣ ≤ cwn
−p, (36)

for j = 1, 2, . . . , dw and l = 1, 2, . . . , n, where A(j−1)n+l,: and H(j−1)n+l,:172

denote the ((j− 1)n+ l)-th rows of A and H, respectively, which correspond173

to the time derivative of the j-th lifted state at the l-th spatial node.174

We note that in Lift & Learn, we assume that the discretized nonlinear175

model (eq. (4)) is available, and that it is stable. In contrast, for the lifted176

system, we assume only that the discrete operators A and H for a consistent177

discretization exist — they are used for analysis only, and availability is not178

required.179

4.2. Theoretical results180

We now prove that the minimum achieved by the Lift & Learn model in181

eq. (28) is bounded above by the objective value achieved by the intrusive182

lifted reduced model. This demonstrates two advantages of our method:183

1. our non-intrusively obtained model is able to model the data at least184

as well as an intrusive reduced model, and185

2. unlike many other learning methods, the quadratic form of the model186

we learn respects the model physics, enabling us to put an upper bound187

on the residual of the Lift & Learn model on the training data.188

We begin with a consistency result.189

Lemma 1. If w̄(t) is defined as in eq. (34), and if eq. (4) and eq. (35) are
consistent discretizations of eq. (1) and eq. (14), respectively, then∥∥Aw̄ + H(w̄ ⊗ w̄)− J(T†(w̄))f(T†(w̄))

∥∥
2
. n

1
2
−p, ∀t, (37)

where . denotes a bound up to a constant independent of n.190

Proof. Because T is defined by applying T node-wise, the ((j − 1)n + l)-th
row of J contains partial derivatives of the j-th lifted state at the l-th spatial
node with respect to s. This corresponds to the j-th row of J evaluated at
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l-th spatial node. That is, for all t,

J(j−1)n+l,:(s̄)f(s̄) =
dw∑
i=1

J(j−1)n+l , (i−1)n+lf(i−1)n+l(s̄) (38)

=
dw∑
i=1

Jj,i(~s(xl))f(i−1)n+l(s̄), (39)

for all j = 1, 2, . . . , dw, l = 1, 2, . . . , n. Then, for all t,∣∣∣∣J(j−1)n+l,:(s̄)f(s̄)− Jj(~s(xl))~f(~s)
)∣∣
x=xl

∣∣∣∣
=

∣∣∣∣∣
dw∑
i=1

(
Jj,i(~s(xl))f(i−1)n+l(s̄)− Jj,i(~s(xl))~fi(~s)|x=xl

)∣∣∣∣∣ (40)

≤
dw∑
i=1

∣∣Jj,i(~s(xl))∣∣ · ∣∣f(i−1)n+l(s̄)− ~fi(~s)|x=xl
∣∣. (41)

Since T is has bounded derivative, J is bounded. Then, because f is consis-
tent, we have, for all t,∣∣∣∣J(j−1)n+l,:(s̄)f(s̄)− Jj(~s(xl))

(
~f(~s)

)∣∣
x=xl

∣∣∣∣ . n−p. (42)

By definition, the lifted dynamics are exact for ~w = T (~s), so for all j, k, and
t,

Jj(~s(xl))
(
~f(~s)

)∣∣
x=xl

=
(
~aj(~w) + ~hj(~w)

)∣∣∣
x=xl

. (43)

Since s̄ = T†(w̄), we can use the triangle inequality to combine eqs. (36),
(42) and (43) as follows:∣∣A(j−1)n+l,:w̄ + H(j−1)n+l,:(w̄ ⊗ w̄)− J(j−1)n+l,:(T

†(w̄))f(T†(w̄))
∣∣ . n−p

(44)

for all j = 1, 2, . . . , dw, l = 1, 2, . . . , n, and t. Since there are ndw discrete
lifted states, we have for all t the following bound (up to a constant):∥∥Aw̄ + H(w̄ ⊗ w̄)− J(T†(w̄))f(T†(w̄))

∥∥
2
. n−(p−

1
2
). (45)

191

14



Lemma 1 holds for any state w̄ = T(s̄) for which the quadratic lifted192

dynamics of the corresponding ~w are exactly equivalent to the non-lifted193

dynamics (eq. (43)). Let {w̄k}Kk=1 be a collection of snapshots of these exact194

lifted states and suppose that Ur is an r-dimensional POD basis for the w̄k.195

We now prove an analogous bound for the projected snapshots UrU
>
r w̄k:196

Lemma 2. Assume J is also Lipschitz and define Pr = UrU
>
r . Then, there

exist constants C0, C1, and C2 such that for all k∥∥APrw̄k + H(Prw̄k ⊗Prw̄k)− J(T†(Prw̄k))f(T†(Prw̄k))
∥∥
2

≤ C0n
1
2
−p + (C1 + C2)‖(Pr − Indw)w̄k‖, (46)

where Indw is the identity matrix of dimension ndw.197

Proof. We begin by breaking the left side of eq. (46) into the following terms
using the triangle inequality∥∥APrw̄k+H(Prw̄k ⊗Prw̄k)− J(T†(Prw̄k))f(T†(Prw̄k))

∥∥
≤
∥∥APrw̄k + H(Prw̄k ⊗Prw̄k)−

(
Aw̄k + H(w̄k ⊗ w̄k)

)∥∥
+
∥∥Aw̄k + H(w̄k ⊗ w̄k)− J(T†(w̄k))f(T†(w̄k))

∥∥
+
∥∥J(T†(w̄k))f(T†(w̄k))− J(T†(Prw̄k))f(T†(Prw̄k))

∥∥ .
(47)

The middle term can be bounded by Lemma 1. For the first term, define
Q(w) = Aw + H(w ⊗w). Note that since Q is polynomial, it is Lipschitz
over the finite set of snapshots, so there exists a constant C1 such that∥∥APrw̄k + H(Prw̄k ⊗Prw̄k)−

(
Aw̄k+H(w̄k ⊗ w̄k)

)∥∥ ≤ C1‖(Pr − Indw)w̄k‖.
(48)

For the third term on the right side of eq. (47), since J and f are Lipschitz,
the function J(T†(·))f(T†(·)) is also Lipschitz over the finite set of snapshots.
Then, for some constant C2,∥∥J(T†(w̄k))f(T†(w̄k))− J(T†(Prw̄k))f(T†(Prw̄k))

∥∥ ≤ C2‖(Pr − Indw)w̄k‖.
(49)

Combining eqs. (48) and (49) with Lemma 1 yields the result.198

This result lets us upper-bound the residual of the Lift & Learn mini-199

mization (eq. (28)).200
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Theorem 1. Let σi be the singular values of the snapshot data matrix W.
Then, the residual of the Lift & Learn operator inference is bounded as fol-
lows:

min
Â∈Rr×r,Ĥ∈Rr×r2

1

K

∥∥∥∥Ŵ>Â> +
(
Ŵ ⊗ Ŵ

)>
Ĥ> − Ŵ′>

∥∥∥∥2
F(

C0n
1
2
−p + (C1 + C2)ε

)2
, (50)

where ε2 =
∑ndw

i=r+1 σ
2
i .201

Proof. Apply Lemma 2 to each projected state snapshot Prw̄k:∥∥APrw̄k + H(Prw̄k ⊗Prw̄k)− J(T†(Prw̄k))f(T†(Prw̄k))
∥∥
2

< C0n
1
2
−p + (C1 + C2)‖(Pr − Indw)w̄k‖. (51)

Then, for each snapshot,∥∥U>r (APrw̄k + H(Prw̄k ⊗Prw̄k)− J(T†(Prw̄k))f(T†(Prw̄k))
)∥∥

2

≤ C0n
1
2
−p + (C1 + C2)‖(Pr − Indw)w̄k‖ (52)

since ‖Ur‖2 = 1 because its columns are orthonormal vectors. Since the
snapshots in the Lift & Learn data are used to compute the POD basis,

‖(Pr − Indw)w̄k‖ ≤ ε, (53)

for all snapshots w̄k. Thus, taking the mean of the square over all snapshots,

1

K

K∑
k=1

∥∥U>r (AUrU
>
r w̄k + H(UrU

>
r w̄k ⊗UrU

>
r w̄k)

− J(T†(Prw̄k))f(T†(Prw̄k))
)∥∥2

2
≤
(
C0n

1
2
−p + (C1 + C2)ε

)2
. (54)

Note that this sum is exactly the objective function in eq. (28). Thus, choos-202

ing Â = U>r AUr and Ĥ = U>r H(Ur ⊗ Ur) in eq. (28) would yield an203

objective value less than
(
C0n

1
2
−p + (C1 + C2)ε

)2
, so the minimizer must be204

bounded by this value as well.205

The least-squares residual is a measure of the mismatch between the206

postulated quadratic model form and the true dynamics of the system. The-207

orem 1 shows that this mismatch has an upper bound dependent on two208

factors: the truncation error of the full model and the projection error of the209

POD basis.210

16



5. Results211

In this section, the Lift & Learn method is applied to two different dy-212

namical systems. Section 5.1 considers the FitzHugh-Nagumo prototypical213

neuron activation model and Section 5.2 considers the Euler equations for214

inviscid fluid flow.215

5.1. Application to the FitzHugh-Nagumo system216

The FitzHugh-Nagumo system was first proposed in 1961 [29] and then217

realized as a circuit for electronic pulse transmission in [30]. The system has218

been used to study exciteable oscillatory dynamics such as those found in219

cardiac [31] and neuron modeling [32], and has become a benchmark problem220

in nonlinear model reduction [33]. Section 5.1.1 introduces the FitzHugh-221

Nagumo equations and lifts the system to quadratic form. Section 5.1.2222

describes the data used for learning and the performance of the model on223

training and test sets.224

5.1.1. FitzHugh-Nagumo problem statement and lifting transformation225

The FitzHugh-Nagumo equations are a simplified neuron activation model
with two states: s1 represents voltage and s2 represents voltage recovery. We
consider the equations using the same parameters as in [33]:

γ
∂s1
∂t

= γ2
∂2s1
∂x2
− s31 + 1.1s21 − 0.1s1 + s2 + 0.05, (55a)

∂s2
∂t

= 0.5s1 − 2s2 + 0.05, (55b)

where γ = 0.015. The full model solves the system eq. (55) on the spatial
domain x ∈ [0, 1] for the timeframe t ∈ [0, 4]. At t = 0, the states s1 and s2
are both zero everywhere, and the boundary conditions are given by

∂s1
∂x

∣∣∣∣
x=0

= g(t),
∂s1
∂x

∣∣∣∣
x=1

= 0, (56)

where g(t) is a time-dependent input which represents a neuron stimulus.226

Because eq. (55a) contains a cubic nonlinear term, the model is lifted to227

quadratic form. Although the operator inference framework developed in [16]228

can, in principle, learn cubic and higher-order tensor terms, the number of229

unknowns in the learning problem can increase exponentially as the polyno-230

mial order of the model is increased, if the higher-order operators are dense.231
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The following lifting map T is used in [24, 23] to lift the system to
quadratic form:

T :

(
s1
s2

)
7−→

 s1
s2

(s1)
2

 ≡
w1

w2

w3

 . (57)

The lifted system is then given by

γ
∂w1

∂t
= γ2

∂2w1

∂x2
− w1w3 + 1.1(w1)

2 − 0.1w1 + w2 + 0.05, (58a)

∂w2

∂t
= 0.5w1 − 2w2 + 0.05, (58b)

∂w3

∂t
= 2w1

∂w1

∂t

=
2

γ

(
γ2w1

∂2w1

∂x2
− w2

3 + 1.1w1w3 − 0.1w3 + w1w2 + 0.05w1

)
. (58c)

To be consistent with the prescribed initial and boundary conditions for
the original state, w3 must be zero everywhere at t = 0 and its boundary
conditions are given by

∂w3

∂x

∣∣∣∣
x=0

= 2w1
∂w1

∂x

∣∣∣∣
x=0

= 2w1g(t),
∂w3

∂x

∣∣∣∣
x=1

= 2w1
∂w1

∂x

∣∣∣∣
x=L

= 0. (59)

The lifted system in eq. (58) contains only quadratic nonlinear dependencies232

on the state. Note that no approximation has been introduced in lifting233

eq. (55) to eq. (58).234

We now postulate the form of the lifted reduced model based on the
lifted PDE (eq. (58)). In addition to linear and quadratic terms, eq. (58)
also contains constant, input, and bilinear terms, so the postulated model
form is given by

dŵ

dt
= Âŵ + Ĥ(ŵ ⊗ ŵ) + N̂ŵg(t) + B̂g(t) + Ĉ, (60)

where Â, N̂ ∈ Rr×r, Ĥ ∈ Rr×r2 , and B̂, Ĉ ∈ Rr.235

5.1.2. Numerical experiments236

We wish to model the response of the FitzHugh-Nagumo system to inputs
of the form

g(t) = αt3e−βt (61)
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where the parameter α varies log-uniformly between 500 and 50000, and the
parameter β varies uniformly on the range [10, 15]. To train our Lift & Learn
model of the form eq. (60), snapshot data from nine simulations of the original
equations (eq. (55)) corresponding to the parameters α = [500, 5000, 50000]
and β = [10, 12.5, 15] are generated. The simulation outputs the system
state s1 and s2 on a uniform spatial grid with n = 512 nodes. The data are
recorded every 0.01 seconds, yielding 400 state snapshots for each simulation,
with a total of 3600 snapshots used for learning. The lifting map is applied to
the state data to obtain lifted data for w1, w2, and w3. Separate POD bases
are computed for each lifted state variable. That is, if W(1),W(2),W(3) ∈
R512×3600 denote the snapshot data in w1, w2, and w3, respectively, then

W(1) = U(1)Σ(1)V(1)> , W(2) = U(2)Σ(2)V(2)> , W(3) = U(3)Σ(3)V(3)> .
(62)

The number of modes to retain in our low-dimensional model is determined
by examining the quantity

1−
ndw∑
i=r+1

σ2
i

/ ndw∑
i=1

σ2
i , (63)

where σi are the singular values of the data. The quantity in eq. (63) is the237

relative energy of the unretained modes of the training data, or the energy238

lost in truncation. The energy spectrum of the training data in each separate239

lifted state variable is shown in Figure 1. The required numbers of modes240

needed to capture 99.9%, 99.99%, 99.999%, and 99.9999% of the energy in241

the data are tabulated in Table 1, along with the corresponding Lift & Learn242

model dimensions.243

# modes required
Retained energy w1 w2 w3 Total
99.9 % 1 1 1 3
99.99 % 2 1 3 6
99.999 % 3 3 4 10
99.9999 % 5 4 5 14

Table 1: Number of modes required to retain different amounts of energy in training data.
The total number of modes corresponds to the Lift & Learn model dimension.
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Figure 1: Energy spectrum of FitzHugh-Nagumo training data.

For each of the model sizes in Table 1, the data are generated by evalu-244

ating the original non-quadratic model and lifting the data, as described in245

Section 3.2. The corresponding input data G and bilinear state-input data246

ŴG are also collected. The state, time derivative, input, and bilinear state-247

input data are then used to learn a model of the form eq. (60). Additionally,248

we exploit knowledge of the governing equations to enforce block-sparsity249

in the least-squares solution; for example, there are only linear and constant250

terms in the evolution of w2, so for the reduced state components correspond-251

ing to w2, only the linear and constant terms are inferred.252

The training set consists of the nine training trajectories described above.
Two test sets are considered: one in which 100 trajectories are generated
with α and β realizations randomly drawn from their distributions above,
in the same regime as the training set, and a second test set in which 100
trajectories are generated from a different parameter regime, with α varying
log-uniformly on [50000, 5e6] and β ∼ U([15, 20]). Training and test errors
are shown in Figure 2. For each training and test input, the error relative
to the solution of the original full model, Sorig, is calculated by solving the
reduced model to generate predictions, then reconstructing the full lifted
state from the Lift & Learn reduced trajectory, and finally reversing the
lifting to obtain SL&L, the Lift & Learn prediction of the trajectory in the
original full state space. The relative error is given by

‖SL&L − Sorig‖F
‖Sorig‖F

. (64)

The relative error of the intrusive lifted POD reduced model (obtained by253
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discretizing the lifted PDE and then reducing, as in [23]) is shown for refer-254

ence.255

Error over training trajectories
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Figure 2: Lift & Learn model prediction error for FitzHugh-Nagumo system. Comparison
to intrusive lifted POD reduced model performance for (left) the nine training trajectories
and (right) two test sets of 100 new trajectories: one set drawn from the same param-
eter regime as the training trajectories and the other set drawn from a completely new
parameter regime. Median and first/third quartile errors are shown.

For both test sets and the training set, the Lift & Learn model error is256

nearly the same as the lifted POD reduced model error for r ≤ 10. The test257

errors for the first test set are of similar magnitude to the training errors,258

demonstrating the ability of the model to generalize to new inputs. For the259

second test set, the Lift & Learn model errors are higher than for the training260

set, but similar to the errors obtained by the intrusive lifted POD reduced261

model. In this case, the accuracy of the reduced model is limited by the262

ability of the POD basis computed from trajectories in one parameter regime263

to represent trajectories in a new parameter regime. The ability of the Lift264

& Learn model to recover the accuracy of the lifted POD reduced model is a265

key contribution of this work because it allows analyzable quadratic reduced266

models to be derived for nonlinear systems where the lifted full model is not267

available.268

5.2. Application to the Euler equations269

The fluid dynamics community has long recognized the utility of alterna-270

tive variable representations. While the Euler and Navier-Stokes equations271

are most commonly derived in conservative variables, where each state is272

a conserved quantity (mass, momentum, energy), symmetric variables have273
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been exploited to guarantee stable models [34], and the quadratic structure274

of the specific volume variable representation has been exploited in [35] to275

allow a model stabilization procedure to be applied. In Section 5.2.1 the276

Euler equations are presented in the typical conservative formulation as well277

as in the quadratic specific volume formulation. Section 5.2.2 describes the278

test problem and presents Lift & Learn results when applied to this problem.279

5.2.1. Euler equations and specific volume transformation280

The one-dimensional Euler equations in the conservative variables are
given by

∂

∂t

 ρ
ρu
ρe

 = − ∂

∂x

 ρu
ρu2 + p

(ρe+ p)u

 , (65)

where the state ~s =
(
ρ ρu ρe

)>
is comprised of the density ρ, specific

momentum ρu, and total energy ρe. The equation of state ρe = p
γ−1 + 1

2
ρu2

relates energy and pressure via the heat capacity ratio γ. Equation (65)
contains non-polynomial nonlinearities in the conservative state. However,
the Euler equations can be alternatively formulated in the specific volume
state representation:

∂u

∂t
= −u∂u

∂x
− ζ ∂p

∂x
, (66a)

∂p

∂t
= −γp∂u

∂x
− ∂p

∂x
, (66b)

∂ζ

∂t
= −u∂ζ

∂x
+ ζ

∂u

∂x
, (66c)

where ζ = 1
ρ

is the specific volume, u the velocity, and p pressure. That is,
the map T is given by

T :

 ρ
ρu
ρe

 7−→
 u

p
1/ρ

 ≡ ~w. (67)

For constant γ, eq. (66) contains only quadratic nonlinear dependencies on281

the state and its spatial derivatives. This is a special case where a quadratic282

representation can be achieved via nonlinear state transformations without283

the addition of auxiliary variables, so ds = dw and the map T is invertible.284

Note that eq. (66) can be extended to the three-dimensional Euler setting by285

adding the y- and z-velocity equations.286
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5.2.2. Numerical experiments287

Equation (65) is solved on the periodic domain x ∈ [0, 2) with mesh size288

∆x = 0.01 from t = 0 to t = 0.01 with timestep ∆t = 10−5. The initial289

pressure is 1 bar everywhere. The initial density is a periodic cubic spline290

interpolation at the points x = 0, 2
3
, 4
3
, where the interpolation values are291

drawn from a uniform distribution on the interval [20, 24] kg/m3. The initial292

velocity is also a periodic cubic spline interpolation of values at the same293

x-locations with interpolation values drawn from a uniform distribution on294

the interval [95, 105] m/s. The initial condition is therefore parametrized by295

six degrees of freedom: three for density and three for velocity.296

A training data set of 64 trajectories is constructed using initial con-297

ditions corresponding to the 64 corners of the parameter domain. This298

data set is then transformed to the specific volume representation and non-299

dimensionalized. For this test problem, we use a single POD basis to repre-300

sent the entire state. The energy spectrum of the non-dimensional training301

data is plotted in Figure 3. The numbers of modes required to retain different302

levels of energy are tabulated in Table 2.303

0 20 40 60 80 100

10 -15

10 -10

10 -5

100

Figure 3: POD energy spectrum of Euler training
data set (all state variables)

Retained energy # modes required
1− 10−3 2
1− 10−5 9
1− 10−7 15
1− 10−9 25

Table 2: Number of modes required
to retain energy of training data. The
total number of modes corresponds to
the Lift & Learn model dimension.

Note that the transformed system in eq. (66) contains no linear depen-
dencies on the state, so only a quadratic operator Ĥ is inferred. The inferred
reduced model thus has the form

dŵ

dt
= Ĥ(ŵ ⊗ ŵ). (68)
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The Lift & Learn reduced model is then used to predict the state evolution304

for the training data set as well as a test data set. The test set consists305

of 100 trajectories based on initial conditions drawn randomly from their306

distributions. Median and first and third quartile relative errors over the307

training and test sets are shown in Figure 4. The performance of a lifted308

POD reduced model is shown for reference.309

Error over training trajectories
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Figure 4: Lift & Learn model prediction error for Euler equations and comparison to
intrusive lifted POD reduced model performance. Errors over the 64 training trajectories
are plotted on the left and test error over 100 new test trajectories are plotted on the
right. Median, first and third quartile errors are shown.

The Lift & Learn models are stable, accurate, and generalizable, achieving310

an error under 0.1% on both the training and test sets, which is similar to311

that of the lifted POD reduced model. Again, we emphasize that the lifted312

POD reduced model approach is usually not viable because the lifted full313

model is generally not available. The non-intrusive ability to recover the314

generalizability of the intrusive reduced model is a key contribution of our315

method.316

6. Conclusions317

For machine learning tools to achieve their full potential in scientific com-318

puting, they must be reliable, robust, and generalizable. Approaches which319

incorporate domain knowledge into the learning problem can help achieve320

these goals. We have presented Lift & Learn, a new domain-aware learn-321

ing method which uses lifting transformations to expose quadratic structure322
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in a nonlinear dynamical system. This structure is then exploited to learn323

low-dimensional models which generalize well to conditions outside of their324

training data. Our method differs from previous works that use lifting to325

obtain reduced models in that our approach learns the quadratic reduced326

model from data generated by a model in the original nonlinear variables; we327

do not require the availability of a lifted full model. In contrast to learning328

approaches that fit models with arbitrary architectures to data, our physics-329

informed approach fits a quadratic model that respects the physics in the330

lifted variables, so that the learned model residual can be upper bounded by331

the truncation error of the full model and the projection error of the reduced332

basis. Numerical experiments on two different test problems demonstrate333

the ability of our learned models to recover the robustness and accuracy of334

the intrusive reduced models.335

Acknowledgments336

This work was supported in part by the US Air Force Center of Excellence337

on Multi-Fidelity Modeling of Rocket Combustor Dynamics award FA9550-338

17-1-0195, the Air Force Office of Scientific Research MURI on managing mul-339

tiple information sources of multi-physics systems awards FA9550-15-1-0038340

and FA9550-18-1-0023, the US Department of Energy Applied Mathematics341

MMICC Program award DESC0019334, and the SUTD-MIT International342

Design Centre. The first author also acknowledges support from the National343

Science Foundation Graduate Research Fellowship Program and the Fannie344

and John Hertz Foundation. The third author was partially supported by345

the US Department of Energy, Office of Advanced Scientific Computing Re-346

search, Applied Mathematics Program (Program Manager Dr. Steven Lee),347

DOE Award DESC0019334.348

References349

[1] J. L. Lumley, The structure of inhomogeneous turbulent flows, Atmo-350

spheric Turbulence and Radio Wave Propagation (1967).351

[2] L. Sirovich, Turbulence and the dynamics of coherent structures. i-352

coherent structures. ii-symmetries and transformations. iii-dynamics and353

scaling, Quarterly of Applied Mathematics 45 (1987) 561–571.354

25



[3] G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decom-355

position in the analysis of turbulent flows, Annual Review of Fluid356

Mechanics 25 (1993) 539–575.357

[4] P. Holmes, J. L. Lumley, G. Berkooz, C. Rowley, Turbulence, Coherent358

Structures, Dynamical Systems and Symmetry, Cambridge University359

Press, 2012.360

[5] T. Bui-Thanh, M. Damodaran, K. Willcox, Aerodynamic data recon-361

struction and inverse design using proper orthogonal decomposition,362

AIAA Journal 42 (2004) 1505–1516.363

[6] M. Mifsud, A. Vendl, L.-U. Hansen, S. Görtz, Fusing wind-tunnel mea-364
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