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Abstract

Higher order finite element (FE) methods provide significant advantages in a number of applications

such as wave propagation, where high order shape functions help to mitigate pollution (dispersion) error.

However, classical assembly of higher order systems is computationally burdensome, requiring the evalu-

ation of many point quadrature schemes. When the Discontinuous Petrov-Galerkin (DPG) FE method-

ology is employed, the use of an enriched test space further increases the computational burden of system

assembly, increasing the relevance of improved assembly techniques. Sum factorization—a technique that

exploits the tensor-product structure of shape functions to accelerate numerical integration—was pro-

posed in [6] for the assembly of DPG matrices on hexahedral elements that reduced the computational

complexity from order O(p9) to O(p7) (where p denotes polynomial order). In this work we extend the

concept of sum factorization to the construction of DPG matrices on prismatic elements by expressing

prism shape functions as tensor products of 2D simplex and 1D interval shape functions. Unexpectedly,

the resulting sum factorization routines on partially-tensorized prism shape functions achieve the same

O(p7) complexity as sum factorization on fully-tensorized hexahedra shape functions (as products of 1D

interval shape functions) presented in [6]. Throughout this work we adhere to the theory of exact se-

quence energy spaces, proposing sum factorization routines for each of the 3D FE exact sequence energy

spaces—H1, H(curl), H(div), and L2. Computational results for construction of the DPG Gram matrix

on a prismatic element in each exact sequence energy space are presented, corroborating the expected

O(p7) complexity. Additionally, construction of the DPG system for an ultraweak Maxwell problem on

a prismatic element is considered and a partially-tensorized sum factorization for hexahedral elements is

proposed to improve implementational compatibility between hexahedral and prismatic elements.

1 Introduction

Construction of Finite Element (FE) systems relies on the accurate evaluation of integrals. Evaluation

of quadrature schemes to approximate integrals can consume a significant portion of the total computa-

tional expense—especially when high-order elements are employed. In the case of the Discontinuous Petrov-

Galerkin (DPG) methodology, the non-trivial expense of system assembly is further increased by use of an

enriched test space. Thus, algorithms for efficient quadrature evaluation can result in significant computa-

tional savings in the construction of DPG systems. One such algorithm for the assembly of DPG systems
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presented in [6] achieves O(p7) computational complexity for hexahedral-type elements (compared to O(p9)

complexity of standard routines) by decomposing the 3D hexahedron into the tensor product of three 1D line

segments. In this article we extend these results to prismatic elements, achieving a similar O(p7) complexity

through the decomposition of prismatic elements into tensor products of 2D triangle, and 1D interval shape

functions.

This work follows closely the work of its prequel [6] (and earlier work by Kurtz [2]). The reader is directed

there (and the contained references) for a brief review of shape functions, the construction of DPG systems,

and sum factorization.

The present work builds on that of its prequel, presenting only results and details which are sufficiently

different for the prismatic element than for the hexahedral element to merit additional discussion. This paper

is organized as follows: In Section 2, polynomial subspaces with the desired tensor structure are defined and

sum-factorization is outlined for each of the exact-sequence energy spaces. In Section 3, computational results

are presented for both sum-factorized and standard assembly routines and the desired O(p7) complexity is

verified. We conclude in Section 4 with a summary of findings and suggestions for a future work.

2 Sum Factorization

Similar to its predecessor, this work follows the concept of exact sequence energy spaces. Thus, after a

brief review of infinite-dimensional energy spaces, we define finite-dimensional polynomial subspaces with

the desired tensor structure on which we can compute. The Piola transforms (pullback maps) presented in

[6] allow for the transfer of all element domains to the master domain. Since such maps are independent of

element type or tensorized structure, we will forgo their definition and consider only spaces (and integrals)

defined on the master domain K̂ = T ⊗I where T is the 2D simplex {x ∈ R2 : x1 > 0, x2 > 0, x1+x2 < 1} and

I is the 1D interval (0, 1) in R. The remainder of this section is dedicated to the outline of sum-factorization

routines for assembly of the Gram matrix on prismatic elements in each of the considered energy spaces.

2.1 Exact sequences

The infinite-dimensional exact sequences in one, two, and three-dimensions were defined previously in [6]

and are given here for reference:

1D: H1(Ω)
∂−→ L2(Ω)

2D: H1(Ω)
∇−→ H(curl,Ω)

∇vts−−−→ L2(Ω)

H1(Ω)
∇stv−−−→ H(div,Ω)

div−−→ L2(Ω)

3D: H1(Ω)
∇−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω).

(2.1)

where the ∇vts and ∇stv denote the 2D vector-to-scalar and scalar-to-vector curl operators respectively,

defined by ∇vts = ∂1(·)2 − ∂2(·)1 and ∇stv = (∂2,−∂1).
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2.2 Tensor-product prismatic finite element shape functions

For each of the infinite dimensional exact sequences in (2.1), we define polynomial subspaces matching the

tensorized structure of the domain K̂ = T ⊗ I. Beginning with the 1D exact sequence on I, we define

polynomial subspaces:

Ŵ p
T = Pp(I) ( H1(I)y∂
Ŷ p
I = Pp−1(I) ( L2(I)

where Pp(I) is the space of univariate polynomials on I with degree less than or equal to p.

Polynomial subspaces corresponding to each of the 2D exact sequences are then defined on the 2D simplex

domain T as in [3] by:

Ŵ p
T = Pp(T ) ( H1(T ) Ŵ p

T = Pp(T ) ( H1(T )y∇=(∂1,∂2)

y∇stv=(∂2,−∂1)

Q̂p
T = N p(T ) ( H(curl, T ) V̂ p

T = RT p(T ) ( H(div, T )y∇vts=∂1(·)2−∂2(·)1

ydiv=∂1(·)1+∂2(·)2

Ŷ p
T = Pp−1(T ) ( L2(T ) Ŷ p

T = Pp−1(T ) ( L2(T ).

where Pp(T ) is the space of bivariate polynomials polynomials on T of total order less than or equal to p

and N p, RT p denote the Nédélec and Raviart-Thomas spaces (respectively) for simplices with definitions:

N p(T̂ ) = Pp−1 ⊗
{
E ∈

(
P̃p
)N

: x · E(x) = 0 for all x ∈ RN
}
,

RT p(T̂ ) = Pp−1 ⊗
{
V ∈

(
P̃p
)N

: V (x) = ϕ(x)x with ϕ ∈ P̃p−1 for all x ∈ RN
}
,

where P̃p denotes the space of homogeneous polynomials of order p.

A polynomial subspace can then be constructed for the prism’s exact sequence by employing each of the

1D and 2D exact sequence polynomial subspaces:

Ŵ p = Ŵ p12
T ⊗ Ŵ p3

Iy∇=(∂1,∂2,∂3)

Q̂p = Q̂p12
T ⊗ Ŵ

p3
I × Ŵ p12

T ⊗ Ŷ p3
Iycurl=(∂2(·)3−∂3(·)2,∂3(·)1−∂1(·)3,∂1(·)2−∂2(·)1)

V̂ p = Ŷ p12
T ⊗ Ŵ p3

I × V̂ p12
T ⊗ Ŷ p3

Iydiv=∂1(·)1+∂2(·)2+∂3(·)3

Ŷ p = Ŷ p12
T ⊗ Ŷ p3

I .

(2.2)

The use of superscript p12 to denote the order of 2D simplex spaces and p3 to denote the order of 1D interval

spaces here is used to indicate that p12 is the order in the first and second spatial dimensions, while p3 is the

order in the third spatial dimension of the master domain. Such a use of subscripts will follow throughout
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this document, with its purpose becoming increasingly evident when Gram matrix assembly routines are

introduced. Before moving to the construction of the Gram matrix for DPG systems for the various energy

spaces, we emphasize the importance of the 3D exact sequence polynomial subspaces in (2.2) as they define

the structure of prismatic shape functions used to compute in the various energy spaces.

The Gram matrix considered here for each finite dimensional Hilbert space H is defined identically to

[6], and the construction for each space is presented in the order defined therein—deviating from the exact

sequence order in favor of simplicity.

2.3 Space L2

Let {υ}dimY p−1
I=0 be a basis for Y p, where dimY p = 1

2
(p12 + 1)p12p3. Elements of basis {υI} in Y p are

represented in the tensorized form of (2.2) as υI = vi12νi3 where vi12 ∈ Ŷ
p12
T with i12 = 0, ..., 1

2
(p12 +1)p12−1;

where νi3 ∈ Ŷ
p3
I with i3 = 0, ..., p3 − 1; and where I is some unique integer identifier dependant on i12 and

i3 such that 0 ≤ I < dimY p. The L2 Gram matrix is then constructed for ordered pairs of basis elements

(υI , υJ) as:

GIJ = (υI , υJ)K

=

∫
K̂

υ̂I(ξ)υ̂J(ξ)|J (ξ)|−1d3ξ

=

∫
I

∫
T

υ̂I(ξ1, ξ2, ξ3)υ̂J(ξ1, ξ2, ξ3)|J (ξ1, ξ2, ξ3)|−1d2(ξ1, ξ2)dξ3

=

∫
I

νi3(ξ3)νj3(ξ3)

{∫
T

vi12(ξ1, ξ2)vj12(ξ1, ξ2)|J (ξ1, ξ2, ξ3)|−1d2(ξ1, ξ2)

}
dξ3 (2.3)

where the evaluation of all inner-products and shape functions have been transferred to the master domain

K̂ by means of Piola transforms (see (2.16) in [6]) and the integral in the last line has been factored according

to Fubini’s theorem.

Sum factorization proceeds by computing and storing the inner area integral first for all combinations

of 2D simplicial shape functions in Y p12
T before evaluating any outer integral terms. To accomplish this, we

introduce a sequence of auxiliary functions to compute the final Gram matrix:

GAi12j12(ξ3) :=

∫
T

vi12(ξ1, ξ2)vj12(ξ1, ξ2)|J (ξ1, ξ2, ξ3)|−1d2(ξ1, ξ2)

⇒ GIJ = Gi12j12i3j3 :=

∫
I

νi3(ξ3)νj3(ξ3)GAi12j12(ξ3)dξ3 (2.4)

Discretizing the preceding integrals by means of a quadrature rule leads to corresponding auxiliary

matrices:

GAi12j12(ξ3) ≈
M∑
m=1

vi12(ξm1 , ξ
m
2 )vj12(ξm1 , ξ

m
2 )|J (ξm1 , ξ

m
2 , ξ3)|−1wm12

Gi12j12i3j3 ≈
L∑
l=1

νi3(ξl3)νj3(ξl3)GAi12j12(ξl3)wl3. (2.5)
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We note here that our definition of auxiliary functions and matrices is not unique. Indeed, a reverse

factorization of (2.3) with the area integral on the outside would lead to a definition of GA dependant on ξ1

and ξ2. As will become clear shortly however, this factorization leads to order O(p8) complexity instead of

the desired O(p7).

The evaluation of the auxiliary sequence (2.5) follows similar logic as was presented for the hexahedra:

a quadrature point ξm3 is fixed, GA is evaluated, then G is evaluated. The process is iterated until each

quadrature point ξm3 has been evaluated. The assembly procedure for the L2 Gram matrix is outlined in

Algorithm 1. For subsequent spaces such algorithms will not be outlined explicitly as they follow rather

naturally from the loop structure of Algorithm 1 and from the corresponding sum-factorization algorithms

for the hexahedra presented in [6].

Algorithm 1 Computation of the L2 Gram Matrix - (partial) sum factorization

procedure L2GramTensor(iel,G) . Compute G for element No. iel - Partial sum factorization

N12 = 1/2(p12 + 1)p12 . Calculate DoFs for 2D simplex

N3 = p3 . Calculate DoFs for 2D simplex

call setquadrature1D(iel, p3 − 1;L, {ζ l, wl})
call setquadrature2D(iel, p12 − 1;M, {(ζm1 , ζm2 ), wm})
G ← 0 . Initialize Gram Matrix

for l = 1 to L do

call Shape1L2(ζ l, p3; {νi3(ζ l)}) . Evaluate 1D shape functions at ζ l

GA ← 0

for m = 1 to M do

call Shape2L2(ζm, p12; {vi12(ζm1 , ζ
m
2 )}) . Evaluate 2D shape functions at ζm

ξlm ← (ζm1 , ζ
m
2 , ζ

l)

call geometry( ξlm, iel; x,J (ξlm),J −1(ξlm), |J |) . Compute x and Jacobian

for j12 = 0 to N12 do

for i12 = j12 to N12 do

GAi12j12 ← G
A
i12j12

+ vi12(ζm1 , ζ
m
2 )vj12(ζm1 , ζ

m
2 )|J |−1wm

for j3 = 0 to N3 − 1 do

for i3 = j3 to N3 − 1 do

for j12 = 0 to N12 − 1 do

for i12 = j12 to N12 − 1 do

Gi12j12i3j3 ← Gi12j12i3j3 + νi3(ζ l)νj3(ζ l)GAi12j12(ζ l)wl

return G

To clearly illustrate how the preceding algorithm achieves O(p7) complexity, in Algorithm 1 (Naked)

we identify only the ’naked’ loops with their corresponding complexity. Consideration of the naked loops

immediately reveals the O(p7) scaling both for the computation of the auxiliary matrix GA, and for the

computation of the final Gram matrix G.

A similar analysis of sum-factorization algorithms for the hexahedra in [6] reveals instead a scaling of

O(p5) for computation of auxiliary matrix GA, O(p6) for computation of the additional auxiliary matrix

GB, and O(p7) for the final computation of the Gram matrix. Thus, while the computation of auxiliary
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Algorithm 1 (Naked)

for l = 1 to L do O(p)

for m = 1 to M do O(p2)

for j12 = 0 to N12 − 1 do O(p2)

for i12 = j12 to N12 − 1 do O(p2) . Total: O(p7)

for j3 = 0 to N3 − 1 do O(p)

for i3 = j3 to N3 − 1 do O(p)

for j12 = 0 to N12 − 1 do O(p2)

for i12 = j12 to N12 − 1 do O(p2) . Total: O(p7)

matrices for the full sum-factorization of the hexahedra has an order less computational-complexity than for

the partial sum-factorization of the prism, both achieve a total O(p7) complexity. We reiterate here that if

(2.3) was factored differently (as discussed previously in this section) that the resulting complexity would be

O(p8), as could be seen by inverting the order of loops on l and m in Algorithm 1 (Naked).

2.4 Space H1

To consider theH1 energy space, let {ϕ}dimWp−1
I=0 be a basis forW p, where dimW p = 1

2
(p12+2)(p12+1)(p3+1).

Elements of basis {ϕI} can again be represented in the tensorized form of (2.2) as ϕI = ui12χi3 where

ui12 ∈ Ŵ
p12
T with i12 = 0, ..., 1

2
(p12 + 2)(p12 + 1) − 1; where χi3 ∈ Ŵ

p3
I with i3 = 0, ..., p3; and where I is a

unique integer identifier dependant on i12 and i3 such that 0 ≤ I < dimW p. The H1 Gram matrix is then

constructed for ordered pairs of basis elements (ϕI , ϕJ) as:

Ggrad
IJ = (ϕI , ϕJ)H1(K)

=

∫
K̂

ϕ̂I(ξ)ϕ̂J(ξ)|J (ξ)|d3ξ +

∫
K̂

[
∇̂ϕ̂I(ξ)

]T
D(ξ)

[
∇̂ϕ̂J(ξ)

]
|J (ξ)|d3ξ

=

∫
I

∫
T

ϕ̂I(ξ)ϕ̂J(ξ)|J (ξ)|d(ξ1, ξ2)dξ3 +

∫
I

∫
T

[
∇̂ϕ̂I(ξ)

]T
D(ξ)

[
∇̂ϕ̂J(ξ)

]
|J (ξ)|d2(ξ1, ξ2)dξ3 (2.6)

where D(ξ) := J −1(ξ)J −T(ξ) and

∇̂ϕ̂I =

 ∂ξ1ui12(ξ1, ξ2)χi3(ξ3)

∂ξ2ui12(ξ1, ξ2)χi3(ξ3)

ui12(ξ1, ξ2)χ′i3(ξ3)

 . (2.7)

The first integral in (2.6) closely resembles that in (2.3) for the L2 case (note however the lack of the

inverse on |J (ξ)| in the H1 case) and its factorization will not be repeated here. The sum-factorization of

this integral is approximated by the auxiliary matrix sequence:

GgradA
i12j12

(ξ3) ≈
N∑
n=1

vi12(ξn1 , ξ
n
2 )vj12(ξn1 , ξ

n
2 )|J (ξn1 , ξ

n
2 , ξ3)|wn12

Ggrad
i12j12i3j3

≈
M∑
m=1

νi3(ξm3 )νj3(ξm3 )GgradA
i12j12

(ξm3 )wm3 . (2.8)
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To factor the second integral in (2.6) according to Fubini’s theorem we first write (2.7) as a product of

3× 3 and 3× 1 arrays:

∇̂ϕ̂I = Ui12(ξ1, ξ2)Xi3(ξ3) =

 ∂ξ1ui12(ξ1, ξ2) − −
− ∂ξ2ui12(ξ1, ξ2) −
− − ui12(ξ1, ξ2)


 χi3(ξ3)

χi3(ξ3)

χ′i3(ξ3)

 (2.9)

Such a definition naturally leads to the factorization of (2.6) as:∫
I

∫
T

[
∇̂ϕ̂I(ξ)

]T
D(ξ)

[
∇̂ϕ̂J(ξ)

]
|J (ξ)|d2(ξ1, ξ2)dξ3

=

∫
I

XT
i3

(ξ3)

{∫
T

UT
i12

(ξ1, ξ2)D(ξ)Ui12(ξ1, ξ2)|J (ξ)|d2(ξ1, ξ2)

}
Xi3(ξ3)dξ3 (2.10)

To proceed with sum-factorization we introduce an auxiliary function sequence for the computation of

(2.10):

ḠgradA
i12j12

(ξ3) :=

∫
T

UT
i12

(ξ1, ξ2)D(ξ1, ξ2, ξ3)Uj12(ξ1, ξ2)|J (ξ1, ξ2, ξ3)|d2(ξ1, ξ2)

Ḡgrad
i12j12i3j3

:=

∫
I

XT
i3

(ξ3)ḠgradA
i12j12

(ξ3)Xj3(ξ3)dξ3 (2.11)

Note in particular that the integral for ḠgradA in (2.11) evaluates to a 3×3 matrix. In addition to discretizing

integrals through a quadrature rule we introduce indices a, b ∈ {1, 2, 3} to store matrix components of ḠgradA.

The resulting discretized auxiliary function sequence can be represented in terms of arrays as:

ḠgradA
abi12j12

(ξ3) ≈
M∑
m=1

Ui12aa(ξ
m
1 , ξ

m
2 )Dab(ξm1 , ξm2 , ξ3)Uj12bb(ξ

m
1 , ξ

m
2 )|J (ξm1 , ξ

m
2 , ξ3)|wm12

Ḡgrad
i12j12i3j3

≈
L∑
l=1

3∑
a=1

3∑
b=1

Xi3a(ξ
l
3)ḠgradA

abi12j12
(ξl3)Xj3b(ξ

l
3)wl3. (2.12)

were subscripts a, b denote vector indices.

The Gram matrix is finally calculated by the addition of (2.8) and (2.12):

Ggrad
IJ = Ggrad

i12j12i3j3
+ Ḡgrad

i12j12i3j3
. (2.13)

2.5 Space H(div)

In considering the final two energy spaces some additional difficulty is presented by the structure of the

polynomial subspaces in (2.2) from which the shape functions are defined. In particular, in both H(div) and

H(curl) spaces shape functions will come from two families of shape functions (note that the definition of

families here only loosely coincides with the definition in [3]).

The definition of prism shape function families is indicated naturally by the definition of polynomial

subspace V̂ p in (2.2):

V̂ p = V̂ p12
T ⊗ Ŷ p3

I︸ ︷︷ ︸
Family 1

× Ŷ p12
T ⊗ Ŵ p3

I︸ ︷︷ ︸
Family 2

,
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Various implementations are possible for incorporating the two family structure of this space including:

decomposition of Gram matrix into blocks based on family interactions (i.e. [fam 1,fam1], [fam1,fam2],...),

or by sequential treatment of simplicial shape functions and a logical treatment of interval shape functions.

The second approach is outlined here due to its relatively compact representation.

Let {ϑ̂I}dim V̂ p

I=0 be a basis of prismatic shape functions spanning V̂ p that is partitioned into two families

as depicted above. Let N1
12 = dim V̂ p12

T denote the number of 2D simplicial shape functions in V̂ p12
T used in

defining family 1, and N2
12 = dim Ŷ p12

T denote the number of 2D simplicial shape functions in Ŷ p12
T used in

defining family 2. The approach is outlined as follows: we define i12 = 0, ..., N1
12 +N2

12 − 1 to enumerate all

simplicial components of shape functions in V̂ p. The appropriate univariate shape function space (Ŷ p3
I or

Ŵ p3
I ) is then determined by i12, and a Gram index I can be uniquely defined given i12 and i3. Table 1 defines

the shape functions, their divergence, and indices. Note in particular that values i12 < N1
12 correspond to

the first family of shape functions while values i12 ≥ N1
12 correspond to the second family of shape functions.

Table 1: Definition of two families of prismatic shape functions for V̂ p

Family 1 Family 2

ϑ̂I =

 Vi12,1(ξ1, ξ2)νi3(ξ3)

Vi12,2(ξ1, ξ2)νi3(ξ3)

0

 ϑ̂I =

 0

0

vi12(ξ1, ξ2)χi3(ξ3)


d̂ivϑ̂I = (∂xVi12(ξ1, ξ2) + ∂yVi12(ξ1, ξ2)) νi3(ξ3)

= div(Vi12(ξ1, ξ2))νi3(ξ3)
d̂ivϑ̂I = vi12(ξ1, ξ2)χ′i3(ξ3)

where Vi12 ∈ V̂
p12
T , N1

12 = (p12 + 2)p12, where vi12 ∈ Ŷ
p12
T , N2

12 = 1
2
p12(p12 + 1),

0 ≤ i12 < N1
12; N1

12 ≤ i12 < N1
12 +N2

12

and νi3 ∈ Ŷ
p3
I , N1

3 = p3, and χi3 ∈ Ŵ
p3
I , N2

3 = p3 + 1,

0 ≤ i3 < N1
3 ; 0 ≤ i3 < N2

3 ;

The Gram matrix Gdiv
IJ is then calculated for ordered pairs of shape functions (ϑI , ϑJ) as:

Gdiv
IJ = (ϑI , ϑJ)H(div)

=

∫
K̂

ϑ̂I(ξ)TC(ξ)ϑ̂J(ξ)|J (ξ)|−1d3ξ +

∫
K̂

d̂ivϑ̂I(ξ)d̂ivϑ̂J(ξ)|J (ξ)|−1d3ξ

=

∫
I

∫
T

ϑ̂I(ξ)TC(ξ)ϑ̂J(ξ)|J (ξ)|−1d2(ξ2, ξ1)dξ3 +

∫
I

∫
T

d̂ivϑ̂I(ξ)d̂ivϑ̂J(ξ)|J (ξ)|−1d2(ξ2, ξ1)dξ3. (2.14)

where C is the symmetric matrix given by C(ξ) := J T(ξ)J (ξ) = D(ξ)−1.

The first integral in (2.14) resembles that of (2.10) and can be factored similarly by writing ϑ̂I as a

product of a 3× 3 array Wi12(ξ1, ξ2) and 3× 1 array Xi3(ξ3, i12) as:

ϑ̂I = Wi12(ξ1, ξ2)Xi3(ξ3, i12)
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where

Wi12(ξ1, ξ2) =



 Vi12,1(ξ1, ξ2) − −
− Vi12,2(ξ1, ξ2) −
− − 0

 if 0 ≤ i12 < N1
12,

 0 − −
− 0 −
− − vi12(ξ1, ξ2)

 if N1
12 ≤ i12 < N1

12 +N2
12,

(2.15)

and

Xi3(ξ3, i12) =



 νi3(ξ3)

νi3(ξ3)

0

 if 0 ≤ i12 < N1
12,

 0

0

χi3(ξ3)

 if N1
12 ≤ i12 < N1

12 +N2
12.

(2.16)

Sum factorization then proceeds by introducing the auxiliary function sequence for computation of the

first integral term in (2.14) as:

GdivA
i12j12

(ξ3) :=

∫
T

W T
i12

(ξ1, ξ2)C(ξ1, ξ2, ξ3)Wj12(ξ1, ξ2)|J (ξ1, ξ2, ξ3)|−1d2(ξ1, ξ2)

Gdiv
i12j12i3j3

:=

∫
I

XT
i3

(ξ3, i12)GdivA
i12j12

(ξ3)Xj3(ξ3, j12)dξ3 (2.17)

Discretization of this auxiliary sequence is accomplished similar to (2.12) by introducing indices a, b ∈ {1, 2, 3}
and will not be repeated here.

Computation of the second integral term in (2.14) can be simplified by introducing functions wi12(ξ1, ξ2)

and xi3(ξ3, i12) to treat both families of shape functions simultaneously:

wi12(ξ1, ξ2) =

div(Vi12(ξ1, ξ2)) if 0 ≤ i12 < N1
12,

vi12(ξ1, ξ2) if N1
12 ≤ i12 < N1

12 +N2
12,

and

xi3(ξ3, i12) =

νi3(ξ3) if 0 ≤ i12 < N1
12,

χ′i3(ξ3) if N1
12 ≤ i12 < N1

12 +N2
12.

An auxiliary function sequence (similar to that in (2.4) for the L2 case) can be introduced for the

computation of this term.

ḠdivA
i12j12

(ξ3) :=

∫
T

wi12(ξ1, ξ2)wj12(ξ1, ξ2)|J (ξ1, ξ2, ξ3)|−1d2(ξ1, ξ2)

Ḡdiv
i12j12i3j3

:=

∫
I

xi3(ξ3, i12)ḠdivA
i12j12

(ξ3)xj3(ξ3, j12)dξ3 (2.18)

The H(div) Gram matrix can finally be computed by summing the contribution from each term as:

Ggrad
IJ = Gdiv

i12j12i3j3
+ Ḡdiv

i12j12i3j3
. (2.19)
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2.6 Space H(curl)

We conclude this section by presenting a sum factorization for H(curl). However, due to the similarities

between this and other spaces we forgo explicit definitions of the auxiliary sequences. The definition of prism

shape function families for polynomial subspace Q̂p again follows from (2.2):

Q̂p = Q̂p12
T ⊗ Ŵ

p3
I︸ ︷︷ ︸

Family 1

× Ŵ p12
T ⊗ Ŷ p3

I︸ ︷︷ ︸
Family 2

.

This two family structure closely resembles that of V̂ p, thus we use the same indexing structure as before.

Let the basis {ψ̂I}dim Q̂p

I=0 of prismatic shape functions spanning Q̂p be partitioned into two families.

As before, we allow i12 to take non-negative values up to dimQp12
T + dimW p12

T , uniquely enumerating 2D

simplicial components of the basis {ψ̂I}. The index i12 can then be used to identify the appropriate space

for univariate shape functions (W p3
I or Y p3

I ) and the corresponding range of index i3. Gram index I can

again be uniquely defined given values of i12, i3. Table 2 defines each families prism shape functions as well

as their indexing.

Table 2: Definition of two families of prismatic shape functions for Q̂p

Family 1 Family 2

ψ̂I =

 Ei12,1(ξ1, ξ2)χi3(ξ3)

Ei12,2(ξ1, ξ2)χi3(ξ3)

0

 ψ̂I =

 0

0

ui12(ξ1, ξ2)νi3(ξ3)



ĉurlψ̂I =

 −Ei12,2(ξ1, ξ2)χ′i3(ξ3)

Ei12,1(ξ1, ξ2)χ′i3(ξ3)

curl(Ei12(ξ1, ξ2))χi3(ξ3)

 ĉurlψ̂I =

 ∂yui12(ξ1, ξ2)νi3(ξ3)

−∂xui12(ξ1, ξ2)νi3(ξ3)

0


where Ei12 ∈ Q̂

p12
T , N1

12 = (p12 + 2)p12, where ui12 ∈ Ŵ
p12
T , N2

12 = 1
2
(p12 + 2)(p12 + 1),

0 ≤ i12 < N1
12; N1

12 ≤ i12 < N1
12 +N2

12

and χi3 ∈ Ŵ
p3
I , N1

3 = p3 + 1, and νi3 ∈ Ŷ
p3
I , N2

3 = p3,

0 ≤ i3 < N1
3 ; 0 ≤ i3 < N2

3 ;

The H(curl) Gram matrix can then be calculated for each ordered pair (ψI , ψJ) as:

Gcurl
IJ = (ψI , ψJ)H(curl)

=

∫
K̂

ψ̂I(ξ)TD(ξ)ψ̂J(ξ)|J (ξ)|d3ξ +

∫
K̂

[
ĉurlψ̂I(ξ)

]T
C(ξ)

[
ĉurlψ̂J(ξ)

]
|J (ξ)|−1d3ξ

=

∫
I

∫
T

ψ̂I(ξ)TD(ξ)ψ̂J(ξ)|J (ξ)|d2(ξ2, ξ1)dξ3

+

∫
I

∫
T

[
ĉurlψ̂I(ξ)

]T
C(ξ)

[
ĉurlψ̂J(ξ)

]
|J (ξ)|−1d2(ξ2, ξ1)dξ3 (2.20)
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As can be seen in Table 2, both ψ̂I and ĉurlψ̂I are vector quantities. Thus, both integrals in (2.20) can be

factored through Fubini’s theorem by introducing array factors similar to (2.15) and (2.16). The auxiliary

function sequences for the sum factorization of both integrals are then sufficiently similar to (2.17) to neglect

explicit definition here.

3 Results

We begin our exposition of numerical results by reporting computational times both for conventional and

sum-factorized Gram matrix assembly in each of the previously presented energy spaces. Next, the construc-

tion of DPG matrices G (Gram), B (stiffness), and l (load) for an ultraweak formulation of a Maxwell problem

employing a scaled adjoint graph norm is considered. In all cases order O(p7) complexity is observed.

We conclude this section by considering a partial tensorization of hexahedral-type elements (as the tensor

product of a 2D square and 1D interval), showing that the corresponding sum-factorization routine achieves

order O(p7) complexity however with a slightly higher computational expense compared to full tensorization.

Such a partially tensorized formulation may be desirable for a number of reasons including improved ease

and brevity of implementation, as well as increased implementational compatibility in applications where

both hexahedral and prismatic elements are used.

In each of the following examples, both sum-factorized and conventional element assembly routines were

implemented. Sum factorization routines were then verified by direct comparison of matrices with those

produced by standard construction routines. In every case, the resulting matrices were verified to be identical

within machine precision. All experiments were performed 50 times to reduce statistical variation; only

averages are reported here.

3.1 Gram matrix assembly in various energy spaces

Assembly of the Gram Matrix was performed for each of the exact sequence energy spaces (in the associated

norm). Computational times for assembly on a prismatic element of various enriched orders (pr) are presented

in Table 3—revealing a roughly 10× computational advantage of sum factorization in the case of enriched

order pr = 8 in each energy space. The observed order reported in Table 3 for each energy space was

calculated using regression on the three highest order elements pr = 6, 7, 8. Note in particular that the

observed orders both for conventional and for sum factorized assembly appear slightly less than theory

would suggest; the reason behind this aberration will become apparent in further discussion.

Figure 3.1 provides a graphical representation of the computational data in Table 3 with additional

reference lines corresponding to the expected O(p9) and O(p7) rates. Consideration of Fig. 3.1 reveals that

a pre-asymptotic regime for low-orders pr is to blame for the seemingly deficient observed orders reported

in Table 3. Especially in the case of L2 and H1 energy spaces, the pre-asymptotic region is observed

to persist well into the high-order regime. Note however that for experiments in which pre-asymptotic

behavior is especially apparent, computational times are small, typically on the order of milliseconds. The

relatively small computational times as well as presence of pre-asymptotic behavior in both conventional

and sum-factorized routines, suggest that this pre-asymptotic behavior is due to computational and memory

overhead and could be implementation dependant. To minimize computational overhead, arrays for Gram

matrix G and auxiliary matrices GA were dynamically allocated in contiguous memory; however only minor
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Table 3: Computational times (seconds) for conventional and sum factorized Gram matrix G assembly for a prismatic

element in each exact sequence energy space. The observed order was calculated using only the three highest order

elements pr = 6, 7, 8 to better capture asymptotic behavior.

L2 H1

pr Conventional Sum Factorized Conventional Sum Factorized

2 4.1×10−5 3.8×10−5 7.7×10−5 5.1×10−5

3 1.4×10−4 1.3×10−4 3.4×10−4 1.8×10−4

4 3.8×10−4 3.2×10−4 1.3×10−3 5.4×10−4

5 1.1×10−3 7.8×10−4 5.2×10−3 1.5×10−3

6 3.1×10−3 1.6×10−3 2.1×10−2 3.2×10−3

7 1.2×10−2 3.1×10−3 6.0×10−2 9.0×10−3

8 3.5×10−2 6.5×10−3 2.2×10−1 1.9×10−2

Observed Order 8.3 4.9 8.1 6.1

H div H curl

pr Conventional Sum Factorized Conventional Sum Factorized

2 9.9×10−5 6.3×10−5 2.2×10−4 1.7×10−4

3 5.7×10−4 2.7×10−4 1.9×10−3 9.3×10−4

4 3.6×10−3 1.1×10−3 1.3×10−2 5.1×10−3

5 2.5×10−2 4.4×10−3 6.8×10−2 1.9×10−2

6 1.0×10−1 1.3×10−2 2.7×10−1 5.5×10−2

7 3.7×10−1 3.2×10−2 8.3×10−1 1.4×10−1

8 1.3×100 7.3×10−2 2.8×100 3.2×10−1

Observed Order 8.6 6.3 8.1 6.1

improvements in pre-asymptotic behavior were observed.

Despite the presence of a pre-asymptotic region, sum factorization was observed to reduce over-all com-

putational cost in each energy space—demonstrating improved assembly cost for all order elements.

3.2 Assembly of DPG matrices for ultraweak Maxwell problem

To further illustrate the utility of sum factorization for the construction of DPG systems, we consider as a

model problem the ultraweak variational form of Maxwell’s equation. This problem and its DPG setting are

outlined in depth in [1, 7], but will be outlined here for completeness.
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Figure 3.1: Computational times for conventional and sum factorized Gram matrix G assembly for a prismatic element

in each exact sequence energy space

3.2.1 Problem definition

Consider the time-harmonic Maxwell system (of positive frequency ω > 0) defined on an open bounded and

connected domain Ω ⊂ R3 given by:
curlE + iωµH = 0 in Ω

curlH − iωεE = J imp in Ω

n× E = n× E0 on ΓE

n×H = n×H0 on ΓH

(3.1)

where the functions E,H,J imp : Ω → C represent electric field, magnetic field, and imposed current re-

spectively, and ΓE, ΓH coincide with the disjoint portions of boundary ∂Ω on which electric and magnetic

boundary conditions are imposed. Parameters µ, ε represent the electromagnetic properties of the domain

and are assumed to be positive and element-wise constant on a mesh Ωh. We denote by Γh the skeleton of

mesh Ωh.

Ultraweak variational forms (as defined in [1]) are obtained by expressing a system in first order form,

then weakening each first-order equation by introducing a test function and integrating by parts. Such a

formulation passes all differential operators—and corresponding regularity—to the test space. In the case

of the first order Maxwell system (3.1), the ultraweak formulation is obtained by multiplying the first and
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second lines by test functions F,G ∈ H(curl,Ω) respectively, integrating by parts, identifying the new

unknowns—traces defined on mesh skeleton Γh, and incorporating boundary conditions on ΓE and ΓH . The

following system is obtained:

E,H ∈ (L2(Ω))3, Êt, Ĥt ∈ H−1/2(curl,Γh),

(E, curlF )− 〈n× Êt, F 〉Γh
+ iω(µH,F ) = 0 F ∈ H(curl,Ωh),

(H, curlG)− 〈n× Ĥt, G〉Γh
− iω(εE,G) = (J imp, G) G ∈ H(curl,Ωh),

Êt = E0,t on ΓE,

Ĥt = H0,t on ΓH ,

(3.2)

where (·, ·) denotes the standard L2 product, and 〈·, ·〉Γh
denotes the duality pairing between trace spaces

H−1/2(div,Γh) and H−1/2(curl,Γh). The additional unknown functions Êt, Ĥt denote tangential traces de-

fined on the mesh skeleton Γh that arise through the use of the discontinuous test space H(curl,Ωh) with no

additional assumptions (i.e. electing to test on the boundary). System (3.2) can be expressed in abstract

variational form by introducing bilinear functional

b
(
(E,H, Êt, Ĥt), (F,G)

)
= b
(
(E,H), (F,G)

)
+ b̃
(
(Êt, Ĥt), (F,G)

)
(3.3)

where,

b
(
(E,H), (F,G)

)
= (E, curlF ) + (H, curlG) + iω(µH,F )− iω(εE,G),

b̃
(
(Êt, Ĥt), (F,G)

)
= −〈n× Êt, F 〉Γh

− 〈n× Ĥt, G〉Γh
,

and linear functional

`
(
(F,G)

)
= (J imp, G). (3.4)

To simplify notation, we define group variables u = (E,H); û = (Êt, Ĥt); and v = (G,F ) with corre-

sponding spaces U =
(
L2(Ω)

)6
; Û =

(
H−1/2(curl,Γh)

)2
; and V =

(
H(curl,Ωh)

)2
.

Finally, variational problem (3.2) can be cast as a mixed problem by introducing the error representation

function ψ (detailed in [1, 7]) as follows: find ψ ∈ Vr, uh ∈ Uh, ũh ∈ Ûh such that
(ψ, v)Vr(Ωh) − b(uh, v)− b̃(ũh, v) = −`(v) ∀v ∈ Vr(Ωh)

b(δu, ψ) = 0 ∀δu ∈ Uh

b̃(δũ, ψ) = 0 ∀δũ ∈ Ûh(Γh)

(3.5)

where (·, ·)Vr(Ωh) denotes the test inner product which, in the context of DPG, is assumed to be defined a

priori—with a particular choice of test norm defining a particular DPG method. Here we employ the scaled

adjoint test norm as prescribed in [1]. Finally, defining a discrete trial subspace allows problem (3.5) to be

formulated in discrete matrix form as 
Gs− Bu− B̃w = −l
BTs = 0

B̃Ts = 0,

(3.6)

where s, u, and w represent degrees-of-freedom corresponding to ψ, uh, and ûh respectively. Matrix B̃ in

(3.6) is composed of only trace terms and its assembly requires integration only over 2D faces—evaluation

of which are computationally insignificant compared to the overall cost of assembly—and can be handled by

conventional assembly methods. The remaining Gram matrix G, stiffness matrix B, and load vector l in (3.6)

involve only volume integrals and are amenable to the sum factorization techniques outlined previously.
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3.2.2 Computational results

Table 4 reports assembly times for the Gram matrix G, and for the full DPG system G, B, and l. Comparing

assembly times for G to those for G, B, and l, it can be verified that the assembly of the Gram matrix G

incurs the greatest computational expense in the construction of DPG systems—a result that reiterates the

need for specialized Gram matrix assembly routines considered in this work. Indeed, in the case of enriched

order pr = 9 notice that the conventional assembly time of 110 seconds is reduced to a mere 2.4 seconds for

sum factorized assembly. Additionally, it can be observed that in the case of a highly enriched test space

(∆p = 3) the additional cost for assembling B and l becomes relatively negligible, requiring roughly 4% of

overall cost for both conventional and sum factorized routines.

The observed order reported in Table 4 was calculated using regression on the three highest enriched

order elements pr = 7, 8, 9 and verifies the respective O(p9) and O(p7) complexity for conventional and sum

factorized assembly. Graphical representation of the data as depicted in Fig. 3.2 reveals that expected

asymptotic rates are reached for relatively low polynomial orders pr.

Table 4: Computational times for assembly of the Gram matrix G alone and with additional DPG stiffness matrix B

and load l for the ultraweak Maxwell problem on a prismatic element

G Assembly Time (s) G, B, l Assembly Time (s)

p0 ∆p pr Conventional Sum Factorized Conventional Sum Factorized

2 0 2 1.0×10−3 5.7×10−4 1.1×10−3 6.6×10−4

2 1 3 1.3×10−2 4.6×10−3 1.4×10−2 4.7×10−3

3 1 4 7.4×10−2 1.3×10−2 8.2×10−2 1.4×10−2

4 1 5 4.1×10−1 4.8×10−2 4.4×10−1 5.2×10−2

5 1 6 1.8×100 1.4×10−1 2.0×100 1.5×10−1

6 1 7 8.3×100 3.9×10−1 1.2×101 4.7×10−1

6 2 8 3.8×101 1.1×100 4.5×101 1.3×100

6 3 9 1.1×102 2.4×100 1.1×102 2.5×100

Observed Order 9.2 6.9 9.1 7.0

3.3 Partial tensorization of hexahedral elements

To conclude our exposition of results we briefly consider a partial tensorization of the hexahedral elements,

based on the representation of the hexahedra as a tensor product of a 2D square domain and 1D interval.

Such a construction produces auxiliary function sequences, shape function families, and computational loops

with structures similar to those for the prism. Indeed, the primary benefit of this partially tensorized

representation is that it allows for a symmetric implementation of prismatic and hexahedral elements. In

the case of the authors’ code base, this allowed a single sum factorization routine to handle assembly of both

element types. As an added benefit, the partially tensorized representation reduces both the length and

complexity of element assembly routines by eliminating the assembly of second auxiliary matrices (denoted

GB in [6]). Note however that this representation allows for polynomial anisotropy in only a single direction
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Figure 3.2: Computational results for assembly of (a) Gram matrix G and (b) DPG system (neglecting trace terms)

consisting of Gram matrix G, stiffness matrix B, and load l for the ultraweak Maxwell problem on a prismatic element

(the 2D square is assumed to be of uniform polynomial order) and therefore may not be suitable for routines

in which fully anisotropic polynomial refinements are required.

To provide a direct comparison of partially and fully tensorized sum factorization on hexahedral elements,

both Gram matrix assembly routines were implemented for the ultraweak Maxwell problem considered

previously. The results of this experiment are reported in Table 5 and depicted graphically in Fig. 3.3.

Table 5: Computational times for construction of the ultraweak Maxwell Gram matrix using conventional, partial

sum factorization, and full sum factorization techniques

G Assembly Time (s)

pr Conventional Partial Sum Factorization Full Sum Factorization

2 2.9×10−3 1.5×10−3 6.1×10−4

3 4.0×10−2 8.9×10−3 2.5×10−3

4 3.0×10−1 4.1×10−2 1.0×10−2

5 1.7×100 1.6×10−1 3.4×10−2

6 7.9×100 5.5×10−1 1.0×10−1

7 3.5×101 1.6×100 2.7×10−1

8 1.2×102 4.0×100 6.4×10−1

Observed Order 9.2 6.9 6.7

Consideration of Table 5 reveals that both partial sum factorization and full sum factorization routines

achieve the expected O(p7) complexity. However, it can be seen both in Table 5 and in Fig. 3.3 that the

partial sum factorization requires a roughly constant multiple of four to six times greater computational cost

compared to full sum factorization. Despite the increased cost, the partial sum factorization significantly

reduced assembly time compared to the conventional procedure—achieving a 10× speed-up in the case of

modest enriched order pr = 5 and a 30× speed-up in the case of enriched order pr = 8. While the increased

expense of the partially tensorized representation is certainly non-negligible, in applications where both

prismatic and hexahedral elements are used sum factorization routines for prismatic elements can be rather
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trivially extended to support hexahedral elements. Additionally, the reduced length and complexity of a

unified routine for treatment of hexahedral and prismatic elements may further justify the computational

premium incurred by partial sum factorization.
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Figure 3.3: Computational times for construction of the ultraweak Maxwell Gram matrix using conventional, partial

sum factorization, and full sum factorization techniques

4 Conclusions

Sum factorization routines for fast assembly of Gram matrices in the exact sequence energy spaces H1,

H(curl), H(div), and L2 were proposed based on the construction of prismatic shape functions as tensor-

products of 2D simplex and 1D interval shape functions. The proposed algorithms for the partial tensorization

of prismatic elements achieve the same O(p7) complexity as the full tensorization of the hexahedra (as a

product of three 1D intervals) proposed in [6]. This somewhat unexpected result is achieved since the final

compilation of the Gram matrix maintains the same O(p7) complexity but the complexity of auxiliary matrix

assembly is increased from O(p6) in the case of the fully tensorized hexahedra to O(p7) in the case of the

prism. The proposed algorithms were verified to achieve the expected O(p7) complexity in each energy

space—a significant reduction over conventional O(p9) assembly routines.

To further illustrate the efficiency of sum factorization routines, the ultraweak formulation of a Maxwell

problem was considered. The sum factorized construction of DPG matrices on a prismatic element signif-

icantly reduced computational cost in the case of both low-order and high-order elements. Additionally, a

partial factorization for hexahedral elements (as a product of 2D square and 1D interval) was proposed to

mirror the structure of prismatic elements. Such a formulation allows for a symmetric treatment of prismatic

and hexahedral elements—enabling the unification of element assembly routines for prismatic and hexahe-

dral elements—but was observed to incur a roughly constant four to six times penalty in computational

performance. Despite this significant penalty, the expected O(p7) complexity was observed and significant

computational savings were observed for all polynomial orders compared to conventional assembly routines—

achieving a 30× reduced computational expense in the case of enriched order pr = 8 elements.

Sum factorization routines for the construction of DPG systems have thus far been presented only for
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hexahedral and prismatic element types since their structure is amenable to a tensor product representation.

While shape functions on the remaining tetrahedral and pyramid element types do not possess a natural

tensor structure, a tensor structure may be imparted through use of Duffy transformations as noted in [4]

and outlined in [5, 8]. Sum factorized construction of DPG systems on the remaining element types may then

be achieved by exploiting the resulting tensor structure. Such an extension of sum factorization to include all

finite element types would enable considerable computational savings on more general geometries—especially

in parallel element assembly routines where use of conventional assembly on a subset of elements produces

a significant load imbalance. The extension of sum factorization to include all element types in each exact

sequence energy space is left to future work.
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