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Construction of DPG Fortin Operators Revisited
Leszek Demkowicz

Oden Institute, The University of Texas at Austin

Abstract

We construct a general family of DPG Fortin operators for the exact energy spaces defined on a
tetrahedral element.

1 Introduction

Petrov-Galerkin method with optimal test functions. Consider a general variational problem,{
u ∈ U
b(u, v) = l(v) v ∈ V

(1.1)

where U, V are Hilbert trial and test spaces, b(u, v) is a continuous bilinear form satisfying the inf-sup
condition,

sup
v∈V

|b(u, v)|
‖v‖V

≥ γ‖u‖U

and l ∈ V ′ satisfies the compatibility condition,

l(v) = 0 v ∈ V0 := {v ∈ V : b(u, v) = 0 ∀u ∈ U} .

By the Babuška-Nečas Theorem [11], Thm. 6.6.1, the problem is well posed.

Petrov-Galerkin discretization of (1.1) introduces discrete trial and test spaces Uh ⊂ U , Vh ⊂ V of
equal dimension, and approximates (1.1) with its discrete counterpart,{

uh ∈ Uh
b(uh, vh) = l(vh) vh ∈ Vh .

(1.2)

If a discrete inf-sup condition is satisfied,

sup
vh∈Vh

|b(uh, vh)|
‖vh‖V

≥ γh‖uh‖U

then, by Babuška Theorem [1], the discrete problem is well-posed as well, and we have the a-priori error
estimate,

‖u− uh‖U︸ ︷︷ ︸
approximation error

≤ ‖b‖
γh

inf
wh∈Uh

‖u− wh‖U︸ ︷︷ ︸
the best approximation error

.
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Unfortunately, the continuous inf-sup condition does not imply the discrete one, and coming up with a stable
pair Uh, Vh of equal dimension for U 6= V may be challenging.

The Petrov-Galerkin Method with Optimal Test Functions [7, 6],starts by replacing problem (1.1) with
an equivalent mixed formulation,

ψ ∈ V, u ∈ U
(ψ, δv)V + b(u, δv) = l(δv) δv ∈ V
b(δu, ψ) = 0 δu ∈ U

(1.3)

where the additional unknown ψ is (the Riesz representation of) the residual and, on the continuous level, is
equal zero. Instead of discretizing the original problem, we discretize now the equivalent mixed problem,

ψh ∈ Vh, uh ∈ Uh
(ψh, δvh)V + b(uh, δvh) = l(δvh) δvh ∈ V
b(δuh, ψh) = 0 δuh ∈ Uh .

(1.4)

The Brezzi theory [3] calls for the satisfaction of two inf-sup conditions. The discrete inf-sup in kernel
condition is trivially satisfied due to the coercivity of the test inner product. The discrete LBB condition
coincides now with the original discrete Babuška condition with one important difference - Vh need not be
of the same dimension as Uh. With a sufficiently large space Vh, the discrete inf-sup condition is easily
satisfied. The classical way of proving the discrete inf-sup condition is to construct the so-called Fortin
operator [2],

Π : V 3 v → Πv ∈ Vh
‖Πv‖V ≤ CF ‖v‖V

b(δuh,Πv − v) = 0 δuh ∈ Uh .
(1.5)

With the existence of the Fortin operator, the continuous inf-sup condition implies its discrete counterpart
with γh = γ/CF . Obviously, we want the continuity constant CF to be small.

Discontinuous Petrov-Galerkin (DPG) method with optimal test functions. In the DPG method, we
enlarge the test space Vh to a broken test space Vh(Th) at the expense of introducing yet additional unknowns
- Lagrange multipliers, the so-called traces ûh ∈ Ûh defined on the mesh skeleton. For localizable test inner
products, the Gram matrix corresponding to (ψh, vh)V becomes block-diagonal, and the residual ψh is
eliminated at the element level. The ultimate global price for stability is the introduction of the additional
unknows - the traces. The broken counterpart of (1.1) looks as follows.{

u ∈ U, û ∈ Û
b(u, v) + 〈û, v〉Γh

= l(v) v ∈ Vh(Th)
(1.6)

where the bracket represents additional terms defined on the mesh skeleton. It has been shown in [4] that the
broken variational formulation is well-posed and it inherits the stability of the original problem with same
order stability constants.
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The abstract conditions for the Fortin operator in context of the DPG method look as follows.

Π : V (Th) 3 v → Πv ∈ Vh(Th)

‖Πv‖V (Th) ≤ CF ‖v‖V (Th)

b(uh, v −Πv) + 〈ûh, v −Πv〉Γh
= 0 ∀uh ∈ Uh, ûh ∈ Ûh .

Construction of Fortin operators for conforming test spaces is challenging. Value of the operator – Πv, has to
land in the (conforming) discrete test space which suggests the use of techniques used in the construction of
interpolation operators : taking values at vertices, edge and face averages etc. However, the Fortin operator
has to be defined on the whole energy space, and these operations are illegal for general members of such
spaces.

With broken test spaces, the global conformity is not an issue, and we can settle for a local construction
of the Fortin operator:

Π : V (K) 3 v → Πv ∈ Vh(K)

‖Πv‖V (K) ≤ CF ‖v‖V (K)

bK(uh,Πv − v) + 〈ûh,Πv − v〉∂K = 0 ∀uh ∈ Uh, ûh ∈ Ûh

(1.7)

where V (K) denotes the test space on element K, and Vh(K) denotes its discrete counterpart. Clearly,
satisfaction of the local conditions implies immediately satisfaction of the global conditions as well. The
main point in the construction of the Fortin operator is to use operations that are well-defined on the whole
energy space. The finite-dimensionality of the range and Uniform Boundedness Theorem imply then auto-
matically the continuity of the operator, see Exercise 2. We also want the continuity constant to be at least a)
independent of element size h and, possibly, b) independent of polynomial order p. As the Fortin constant
enters the ultimate stability constant for the DPG method, we also want it to be as small as possible.

Construction of the Fortin operator involves the original bilinear form and the skeleton term resulting
from breaking the test space and, therefore, is problem dependent. However, if we restrict ourselves to
standard test spaces: H1, H(curl), H(div) (with standard norms), and make a simplifying assumption about
the material data to be element-wise constant, one can strive for constructing general Fortin operators that
will serve all problems satisfying the simplifying assumptions. This was done in [8, 4]. In what follows, we
will generalize ideas from [9]. For an example of a non-local Fortin operator, see [5].

We will restrict ourselves to affine tetrahedral elements.

The motivation for the construction comes from the ultraweak (UW) variational formulation for two
model problems. The first one is the classical diffusion-convection-reaction problem:

−divσ + cu = f in Ω

a−1σ −∇u+ a−1bu = 0 in Ω

u = u0 on Γu

σ · n = σ0 on Γσ .
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An element K contribution to the bilinear form in the UW variational formulation is:

bK((σ, u, σ̂ ·n, û), (τ, v)) = (σ,∇v+a−1τ)K + (u, cv+ div τ + (a−1b) · τ)K −〈σ̂ ·n, v〉∂K −〈û, τ ·n〉∂K

where, consistently with the logic of using the first Nèdèlec exact sequence spaces for discretization we
have,

u ∈ Pp−1(K), σ ∈ Pp−1(K)3

û ∈ γ(Pp(K)) =: Ppc (∂K)

σ̂ · n ∈ γn(RT p(K)) =: Pp−1
d (∂K) .

After integration by parts,

bK((σ, u, σ̂·n, û), (τ, v)) = (a−1σ−∇u+a−1bu, τ)K+(−divσ+cu, v)K+〈σ·n−σ̂·n, v〉∂K+〈u−û, τ ·n〉∂K .

This leads to the following orthogonality requirements for the Fortin operators.

(ψ,Πgradv − v) = 0 ψ ∈ Pp−1(K)

〈φ,Πgradv − v〉∂K = 0 φ ∈ Pp−1
d (∂K) .

(1.8)

(ψ,Πdivτ − τ) = 0 ψ ∈ Pp−1(K)3

〈φ, (Πdivτ − τ) · n〉∂K = 0 φ ∈ Ppc (∂K) .
(1.9)

Our second example deals with the UW formulation for three-dimensional Maxwell equations,

E,H ∈ L2(Ω), Êt, Ĥt ∈ H−1/2(curlΓ,Γ)

( 1
µE,∇h × F ) + 〈n× Êt, Ft〉Γh

+ iω(H,F ) = 0 F ∈ H(curl, Th)

(H,∇h ×G) + 〈n× Ĥt, Gt〉Γh
− ((σ + iωε)E,G) = (J imp, G) G ∈ H(curl, Th)

Êt = E0,t on ΓE

Ĥt = H0,t on ΓH .

Recalling that approximate E,H ∈ Pp−1(K)3, and approximate Êt, Ĥt belong to the tangential trace of
Nèdèlec space N p(K), we arrive at the orthogonality conditions for the Fortin operator,

(ψ,ΠcurlF − F )K = 0 ψ ∈ Pp−1(K)3

〈n× φ,ΠcurlF − F 〉∂K = 0 φ ∈ γtN p
(1.10)

where γtN p(K) denotes the image of tangential trace operator of N p(K).

2 Auxiliary Results

We will need a few fundamental results on polynomial spaces defined on a tetrahedron. The first four
lemmas deal with bubble spaces.

4



Lemma 1
Let Pp+3

0 (K) denote the subspace of Pp+3(K) of H1 bubbles on element K. Let u ∈ Pp+3
0 (K), and

(ψ, u)K = 0 ∀ψ ∈ Pp−1(K) .

Then u = 0 and, consequently,

inf
u∈Pp+3

0 (K)
sup

ψ∈Pp−1(K)

|(ψ, u)K |
‖ψ‖ ‖u‖

≥ β > 0 .

As spaces Pp+3
0 (K) and Pp−1(K) are of equal dimension, the order of spaces in the inf-sup condition can

be reversed,

inf
ψ∈Pp−1(K)

sup
u∈Pp+3

0 (K)

|(ψ, u)K |
‖u‖ ‖ψ‖

≥ β > 0 .

Proof: Function u must be of the form:

u = λ0 . . . λ3 v

where λi, i = 0, . . . , 3 are affine coordinates, and v ∈ Pp−1(K). Choosing ψ = v gives

(ψ, u)K =

∫
K
λ0 . . . λ3v

2 = 0 ⇒ v = 0 ⇒ u = 0 .

The result implies that the supremum

sup
ψ∈Pp−1(K)

|(ψ, u)K |
‖ψ‖

defines a norm on u, and the inf-sup condition follows then from the equivalence of norms in a finite
dimensional space.

The following result can be found in [10].

Lemma 2
LetRT p+1

0 (K) denote the subspace ofRT p+1(K) of H(div) bubbles on element K. Let τ ∈ RT p+1
0 (K),

and
(ψ, τ)K = 0 ∀ψ ∈ Pp−1(K)d .

Then τ = 0 and, consequently,

inf
τ∈RT p+1

0 (K)
sup

ψ∈Pp−1(K)d

|(ψ, τ)K |
‖ψ‖ ‖τ‖

≥ β > 0 .
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As spaces RT p+1
0 (K) and Pp−1(K)d are of equal dimension, the order of spaces in the inf-sup condition

can be reversed,

inf
ψ∈Pp−1(K)d

sup
τ∈RT p+1

0 (K)

|(ψ, τ)K |
‖τ‖ ‖ψ‖

≥ β > 0 .

Proof: It is sufficient to prove the result for the master tetrahedron. Choosing ψ = ∇u, u ∈ Pp(K) and
integrating by parts, we obatin,

0 = (∇u, τ)K = −(u,div τ)K .

As u and div τ are both of order p, this implies that divτ = 0. This implies that τ is a curl of an element of
Nèdèlec spaceN p(K) and, in particular, it must be a polynomial of order p, i.e. τ ∈ Pp(K)d. As τ satisfies
the homogeneous normal BC, there must exist ψi ∈ Pp−1(K) such that

τi = ξiψi .

Testing with such a ψ gives,∫
K
τψ =

∫
K

∑
i

ξi|ψi|2 = 0 ⇒ ψ = 0 ⇒ τ = 0 .

The result implies that the supremum

sup
ψ∈Pp−1(K)d

|(ψ, τ)K |
‖ψ‖

defines a norm on τ , and the inf-sup condition follows then from the equivalence of norms in a finite
dimensional space.

Lemma 3
Let N p+2

0 (K) denote the subspace of N p+2(K) of H(curl) bubbles defined on tetrahedron K. Let F ∈
N p+2

0 (K) ,and
(ψ,F )K = 0 ∀ψ ∈ Pp−1(K)3 .

Then F = 0 and, consequently,

inf
F∈N p+2

0 (K)
sup

ψ∈Pp−1(K)3

|(ψ, F )K |
‖ψ‖ ‖F‖

= β > 0 .

As spacesN p+2
0 (K) and Pp−1(K)3 are of equal dimension, the order of space in the inf-sup condition can

be reversed,

inf
ψ∈Pp−1(K)3

sup
F∈N p+2

0 (K)

|(ψ, F )K |
‖ψ‖ ‖F‖

= β > 0 .
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Proof: Again, it is sufficient to consider the master tetrahedron. Let F ∈ N p+2
0 (K). Let ψ ∈ Pp(K)3.

Then
(ψ,∇× F )K = (∇× ψ, F )K = 0 .

As the curl operator sets H(curl) bubbles into H(div) bubbles, Lemma 2 proves that ∇ × F = 0 and, in
particular, F ∈ Pp+1(K)3. Any H(curl) bubble on the master tetrahedron must be of the form:

F = (φ1ξ2ξ3, φ2ξ1ξ3, φ3ξ1ξ2)

with some scalar factors φi. As F is of order p+ 1, φi must be of order p− 1. Selecting ψ = (φ1, φ2, φ3),
we conclude that F = 0. The rest of the reasoning is the same as in the proof of Lemma 2.

In order to cope with boundary terms, we will also need a 2D equivalent of Lemma 3.

Lemma 4
Let N p+1

0 (K) denote the subspace of N p+1(K) of H(curl) bubbles on the master triangle K. Let F ∈
N p+1

0 (K), and
(ψ, F )K = 0 ∀ψ ∈ Pp(K)2 .

Then F = 0 and , consequently

inf
F∈N p+1

0 (K)
sup

ψ∈Pp−1(K)2

|(ψ, F )K |
‖ψ‖ ‖F‖

= β > 0 .

As spacesN p+1
0 (K) and Pp−1(K)2 are of equal dimension, the order of space in the inf-sup condition can

be reversed,

inf
ψ∈Pp−1(K)2

sup
F∈N p+2

0 (K)

|(ψ, F )K |
‖ψ‖ ‖F‖

= β > 0 .

Proof: The result follows directly from the 2D version of Lemma 2 and the relation between the two 2D
exact sequences. See also Exercise 4.

The next three lemmas deal with polynomial spaces satisfying the orthogonality constraints necessary
for Fortin operators. We will upgrade slightly the orthogonality assumptions (1.10)2 replacing them with:

(ψ,ΠcurlF − F )K = 0 ψ ∈ Pp−1(K)3

〈n× φ,ΠcurlF − F 〉∂K = 0 φ ∈ γt(Pp(K)3)
(2.11)
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Lemma 5
Let F ∈ H(curl,K) satisfy the constraints:

(ψ, F )K = 0 ∀ψ ∈ Pp−1(K)3

〈n× φ, F 〉∂K = 0 ∀φ ∈ Pp(K)3 .
(2.12)

Then curlF satisfies the constraint:

(χ, curlF )K = 0 ∀χ ∈ Pp(K)3 (2.13)

which, in turn, implies,
〈η, curlF · n〉∂K = 0 ∀η ∈ Pp+1(K) . (2.14)

Conversely, let F ∈ H(curl,K) satisfy (2.13). Then, there exists u ∈ Pp+2(K) such that

(ψ, F +∇u)K = 0 ∀ψ ∈ Pp−1(K)3 and,

〈n× φ, F +∇u〉∂K = 0 ∀φ ∈ Pp(K)3 .
(2.15)

Proof: Taking ψ = curlF in (2.12)1, and utilizing (2.12)2 gives (2.13). Use χ = ∇η in (2.13) to
obtain (2.14).

Let F ∈ H(curl,K) now satisfy (2.13). It is sufficient to show (2.15)1. The second property follows
from the first one with ψ = ∇φ and (2.13). We view (2.13) as an overdetermined variational problem for
∇u and, in the spirit of the DPG method, we consider the mixed problem:

ψ ∈ Pp−1(K)3, u ∈ Pp+2(K)

(ψ, δψ)K + (∇u, δψ)K = −(F, δψ) δψ ∈ Pp−1(K)3

(∇δu, ψ)K = 0 δu ∈ Pp+2(K) .

We claim that the constraint for ψ is equivalent to ψ = curlF0 where F0 ∈ Pp(K))3 with a zero tangential
trace. Sufficiency follows from integration by parts. To show necessity, we test first with δu ∈ Pp+2

0 to
obtain,

( divψ︸ ︷︷ ︸
∈Pp−2(K)

, δu) = 0 .

Taking δu = divψ λ0 . . . λ3 where λi, i = 0, . . . , 3 are affine coordinates, we conclude that divψ = 0 .
Testing next with a general δu, we obtain,

0 = (∇δu, ψ)K = 〈u, ψ · n〉∂K .

Taking u = (ψ ·n)λiλjλk on each [ijk] face, we conclude that ψ ·n = 0 on ∂K. Consequently, there exists
a vector potential F0 ∈ Pp(K)2 with zero tangential trace such that ψ = curlF0.
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We test now the first equation in the mixed problem with δψ = ψ. The assumption on F implies that

‖ψ‖2K = 0 ⇒ ψ = 0 .

Consequently, equation (2.15)1 is satisfied. Note that the LBB condition is easily satisfied so the mixed
problem is well-posed.

Lemma 6
Let τ ∈ H(div,K) satisfy the constraints:

(ψ, τ)K = 0 ∀ψ ∈ Pp−1(K)3

〈φ, τ · n〉∂K = 0 ∀φ ∈ Pp(K) .
(2.16)

Then div τ satisfies the constraint:

(χ,div τ)K = 0 ∀χ ∈ Pp(K) . (2.17)

Conversely, let τ ∈ H(div,K) satisfy (2.17). Then, there exists F ∈ N p+1(K) such that

(ψ, τ + curlF )K = 0 ∀ψ ∈ Pp−1(K)3 and,

〈φ, (τ + curlF ) · n〉∂K = 0 ∀φ ∈ Pp(K) .
(2.18)

Proof: Taking ψ = ∇φ in (2.16)1 and utilizing (2.16)2 gives (2.17).

Let τ satisfy (2.17). In the same way as in the proof of. Lemma 5, consider the mixed problem:
ψ ∈ Pp−1(K)3, F ∈ N p+1(K)
(ψ, δψ)K + (curlF, δψ)K = −(τ, δψ)K δψ ∈ Pp−1(K)3

(curl δF, ψ) = 0 δF ∈ N p+1(K)

We claim that ψ satisfies the constraint iff ψ = ∇u, u ∈ Pp0 (K). The sufficiency follows from integration
by parts. In order to prove necessity, we first test with δF0 ∈ N p+2(K) with zero tangential trace. We
obtain,

(δF0, curlψ︸ ︷︷ ︸
∈Pp−2(K)3

)K = 0

and, by Lemma 3, curlψ = 0. Testing next with a general F and using Lemma 4, we conclude that γtψ = 0

on ∂K. Consequently, there exists a u ∈ Pp0 (K) such that ψ = ∇u. Testing with ψ in the first equation and
utilizing assumption on F , we obtain ψ = 0. By Lemma 3, the problem is well posed and with ψ = 0 we
obtain the desired orthogonality property.
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Lemma 7
Let u ∈ H1(K) satisfy the constraints:

(ψ, u)K = 0 ∀ψ ∈ Pp−1(K)

〈φ · n, u〉∂K = 0 ∀φ ∈ Pp(K)3 .
(2.19)

Then∇u satisfies the constraint:

(χ,∇u)K = 0 ∀χ ∈ Pp(K)3 (2.20)

which, in turn, implies,
〈n× η,∇u〉∂K = 0 ∀η ∈ Pp+1(K)3 . (2.21)

Conversely, let u ∈ H1(K) satisfy (2.20). Then, there exists a constant c such that

(ψ, u+ c)K = 0 ∀ψ ∈ Pp−1(K) and,

〈φ · n, u+ c〉∂K = 0 ∀φ ∈ Pp(K)3 .
(2.22)

Proof: See Exercise 1.

3 Construction of Fortin Operators for DPG Problems

3.1 Πdiv Fortin Operator.

We begin with the construction of the Πdiv Fortin operator. The idea is to construct first operator Π̂div on
master tetrahedron K̂, and then use the H(div) pullback map T to extend it to an arbitrary affine element
K,

Π̂divτ := F−1Π̂divFτ .

Similarly to the interpolation error estimates, the scaling properties of pullback maps imply that we should
have the commuting diagram:

H(div,K)
div−→ L2(K)

Πdiv ↓ P ↓

V p+1 div−→ Y p

(3.23)

where V p+1 is the enriched test H(div)-space, Y p = div V p+1, and P is a Fortin operator for the L2

space. In other words, divergence of Πdivτ should depend only upon the divergence of function τ . Given
that yp := P divτ must satisfy constraints (2.17), we are naturally led to the definition of yp through the
constrained minimization problem:

‖yp − div τ︸ ︷︷ ︸
=:y

‖ → min
yp∈Y p

subject to constraint (2.17) . (3.24)
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The constraint leads also to the minimum assumption on the enriched L2 test space:

Pp ⊂ Y p .

Note that, for the minimal space, Y p = Pp(K), operator P reduces to the L2-projection.

Once we have defined Y p = div τp+1, τp+1 := Πdivτ , we proceed with a second minimization problem
to define τp+1 itself.{

‖τp+1 − τ‖ → min
τp+1∈V p+1

subject to constraints (2.16), and the constraint on divergence,

div τp+1 = yp .
(3.25)

It follows from Lemma 6 that the problem is well-posed, provided we satisfy the minimum assumption on
the enriched H(div) test space:

RT p+1(T ) ⊂ V p+1

and the divergence maps V p+1 onto space Y p. The assumptions and Lemma 6 guarantee that there exists a
function τp+1 ∈ V p+1 satisfying the constraints, i.e., the set over which we set up the minimization problem
is non-empty.

We can offer an alternate argument based on mixed problems theory. The constrained minimization
problem leads to the equivalent mixed problem:

τp+1 ∈ V p+1, ψ ∈ Pp−1(K)3, φ ∈ Ppc (∂K), χ ∈ Y p
0

(τp+1, δτ) + (ψ, δτ)K + 〈φ, δτ〉∂K + (χ,div δτ) = (τ, δτ) δτ ∈ V p+1

(δψ, τp+1)K = (δψ, τ)K δψ ∈ Pp−1(K)3

〈δφ, τp+1 · n〉∂K = 〈δφ, τ · n〉∂K δφ ∈ Ppc (∂K)

(δχ,div τp+1) = (δχ,div τ) δχ ∈ Y p
0

(3.26)

where Y p
0 is the subspace of Y p satisfying constraints (2.17) . We need to check the two Brezzi inf-sup

conditions. The inf-sup in kernel condition is satisfies trivially since the form is coercive. The proof of LBB
condition follows the logic of Exercise 3. The inf-sup condition for b3(χ, δv) := (χ,div δv) follows from
Lemma 6 and coercivity of the form. The inf-sup condition for b2(ψ, δv) := (ψ, δv) follows from Lemma 2,
and the inf-sup condition for b1(φ, δv) = 〈φ, δv · n〉 follows from the choice

δv · n = φ

on each face of the tetrahedron. Consequently, the mixed problem is well-posed. According to the result
from Exercise 2, master element operator Π̂div is well-defined and continuous. Finally, commuting prop-
erty (3.23) implies the continuity of operator Πdiv defined on an arbitrary affine tetrahedron K.

THEOREM 1
The operator defined by the constrained minimization problem (3.25) is well-defined and continuous,

Πdiv : H(div,K)→ V p+1, ‖Πdivτ‖H(div,K) ≤ CΠdiv‖v‖H(div,K) .
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The continuity constant CΠdiv is independent of element size but it may depend upon the polynomial order
p.

We conclude this section by observing the action of operator Πdiv on a curl, i.e. for τ = curlF .
It follows from the construction that div(ΠdivcurlF ) = 0, so the constrained minimization problem to
determine τp+1 simplifies to:

‖τp+1 − curlF‖ → min
τp+1∈V p+1(div0)

subject to constraints (2.16)1 (3.27)

where V p+1(div0) denotes the subspace of V p+1 of divergence-free functions.

3.2 Πcurl Fortin Operator

We follow the same logic as for the H(div) operator starting by defining the divergence of ΠcurlF . The
obvious choice is to use operator (3.27) but we have to make a small correction accounting for the orthog-
onality property (2.13) involving polynomials of order p, one order higher than in (3.27). Thus we seek
τp+2 := curl ΠcurlF in the subspace of divergence-free functions from a larger space V p+2 ⊃ RT p+2(K).
In other words, we require that curlQp+2 ⊃ Pp+1(K)3. We have,

‖τp+2 − curlF‖ → min
τp+2∈curlQp+2

subject to constraints (2.13) . (3.28)

We can formulate now a constrained minimization problem defining ΠcurlF ,

Πcurl : H(curl,K)→ Qp+2, ΠcurlF := F p+2 ∈ Qp+2

‖F p+2 − F‖ → min
F p+2∈Qp+2

subject to constraints: (2.12) and the constraint on curl :

curlF p+2 = τp+2 .

(3.29)

It follows from Lemma 5 that the problem is well-posed, provided we satisfy the minimum assumption on
the enriched H(curl) test space:

N p+2(K) ⊂ Qp+2 .

The constrained minimization problem above is equivalent to the mixed problem:

F p+2 ∈ Qp+2, ψ ∈ Pp−1(K)3, φ ∈ γt(Pp(K)3), τ ∈ V p+1
0

(F p+2, δF )K + (ψ, δF )K + 〈n× φ, δF 〉∂K + (τ, curlδF )K = (F, δF )K δF ∈ Qp+2

(δψ, F p+2)K = (δψ, F )K δψ ∈ Pp−1(K)3

〈n× δφ, F p+2〉∂K = 〈n× δφ, F 〉∂K δφ ∈ γt(Pp(K)3)

(δτ, curlF p+2)K = (δτ, curlF )K δτ ∈ V p+1
0

(3.30)
where V p+1

0 is the subspace of curlQp+2 satisfying constraints (2.13). We use the same arguments as for
the Πdiv operator to prove the LBB inf-sup condition, utilizing Lemma 5, Lemma 3, and Lemma 4.
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THEOREM 2
The operator defined by the constrained minimization problem (3.29) is well-defined and continuous,

Πcurl : H(curl,K)→ Qp+2, ‖ΠcurlF‖H(curl,K) ≤ CΠcurl‖F‖H(curl,K) .

The continuity constant CΠcurl is independent of element size but it may depend upon the polynomial order
p.

We conclude this section by observing the action of operator Πcurl on a gradient, i.e. for F = ∇u. It fol-
lows from the construction that curl(Πcurl∇u) = 0, so the constrained minimization problem to determine
F p+2 simplifies to:

‖F p+2 −∇u‖ → min
F p+2∈Qp+2(curl0)

subject to constraints (2.12)1 (3.31)

where Qp+2(curl0) denotes the subspace of Qp+2 of curl-free functions.

3.3 Πgrad Fortin Operator

By now, the reader should anticipate the construction and should be able to fill in all necessary details. We
seek F p+3 := ∇Πgradu in the subspace of curl-free functions from a larger space Qp+3 ⊃ N p+3(K). In
other words, we require that∇W p+3 ⊃ Pp+2(K)3.

‖F p+3 −∇u‖ → min
F p+3∈∇W p+3

subject to constraints (2.20) . (3.32)

We formulate now a constrained minimization problem defining Πgradu,

Πgrad : H1(K)→W p+3, Πgradu := up+3 ∈W p+3

‖up+3 − u‖ → min
up+3∈W p+3

subject to constraints: (2.19) and the constraint on gradient :

∇up+3 = F p+3 .

(3.33)

It follows from Lemma 7 that the problem is well-posed, provided we satisfy the minimum assumption on
the enriched H1 test space:

Pp+3(K) ⊂W p+3 .

The constrained minimization problem above is equivalent to the mixed problem:

up+3 ∈W p+3, ψ ∈ Pp−1(K)3, φ ∈ γn(Pp(K)3), τ ∈ Qp+2
0

(up+3, δu)K + (ψ, δu)K + 〈φ, δu〉∂K + (F,∇δu)K = (u, δu)K δu ∈W p+3

(δψ, up+3)K = (δψ, u)K δψ ∈ Pp−1(K)3

〈δφ, up+3〉∂K = 〈δφ, u〉∂K δφ ∈ γn(Pp(K)3)

(δF,∇up+3)K = (δτ,∇u)K δF ∈ Qp+2
0

(3.34)

13



where Qp+2
0 is the subspace of ∇W p+3 satisfying constraints (2.20). We use the same arguments as for the

Πdiv and Πcurl operators to prove the LBB inf-sup condition, utilizing Lemma 7, Lemma 1, and Lemma 2.

THEOREM 3
The operator defined by the constrained minimization problem (3.33) is well-defined and continuous,

Πgrad : H1(K)→W p+3, ‖Πgradu‖H1(K) ≤ CΠgrad‖u‖H1(K) .

The continuity constant CΠgrad is independent of element size but it may depend upon the polynomial order
p.

4 Conclusions

The main contribution of this note lies in the proofs of Lemmas 5,6 and 7. The results presented in these
lemmas can be concisely stated by claiming the exact sequence:

W p−1
0

∇−→ Qp0
∇×−→ V p+1

0
∇·−→ Y p+2

0

where the involved spaces are subspaces of exact sequence spaces W,Q, V, Y defined on element K and
satisfying the constraints:

W p−1
0 :=

{
u ∈W :

(ψ, u)K = 0 ψ ∈ Pp−1(K)

〈φ, u〉∂K = 0 φ ∈ γn(Pp(K)3)

}

Qp0 :=

{
F ∈ Q :

(ψ,F )K = 0 ψ ∈ Pp(K)3

〈n× φ, F 〉∂K = 0 φ ∈ γt(Pp+1(K)3)

}

V p+1
0 :=

{
τ ∈ Q :

(ψ, τ)K = 0 ψ ∈ Pp+1(K)3

〈φ, τ · n〉∂K = 0 φ ∈ γ(Pp+2(K))

}

Y p+2
0 := {y ∈ Y : (ψ, y)K = 0 ψ ∈ Pp+2(K)3}

under the assumptions:

Pp+3(K) ⊂W, N p+3(K) ⊂ Q, RT p+3(K) ⊂ V, Pp+3(K) ⊂ Y

comp. [4]. The exact sequence enables the definition of the Fortin operators using the double minimization
paradigm. I have every reason to believe that the construction extends to differential forms. I am also hoping
that it is general enough to be extended to elements of differents shapes.
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Exercises

Exercise 1

Prove Lemma 7. Hint: Recall that if ψ ∈ Pp−1(K) with zero average then there exists a polynomial
v ∈ Pp(K)3 such that div v = ψ.

Exercise 2

Let A : U → V be a well-defined linear operator from a Banach space U into a Banach space V .

• Argue that, for every u ∈ U , there exists a constant Cu such that

‖Au‖V ≤ Cu .

• Use the Uniform Boundedness Theorem to conclude that A is uniformly bounded on the unit ball, i.e.
there exists a constant C such that

‖Au‖V ≤ C ‖u‖U ≤ 1 .

• Conclude that A is continuous.

Exercise 3

Let u = (u1, u2, u3) ∈ U1×U2×U3 be a group variable where U1, U2, U3 are Hilbert spaces. Consider
a composite bilinear form,

b(u, v) := b1(u1, v) + b2(u2, v) + b3(u3, v)

where v ∈ V , a Hilbert test space. Define the kernel spaces

V12 := {v ∈ V : b1(u1, v) + b2(u2, v) = 0 u1 ∈ U1, u2 ∈ U2}
V1 := {v ∈ V : b1(u1, v) = 0 u1 ∈ U1}

and assume three inf-sup conditions:

sup
v12∈V12

|b3(u3, v12)|
‖v12‖V

≥ γ3‖u3‖U3

sup
v1∈V1

|b2(u2, v1)|
‖v1‖V

≥ γ2‖u2‖U2

sup
v∈V

|b1(u1, v)|
‖v‖V

≥ γ1‖u1‖U1 .
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Show that there exists a constant γ = γ(γ1, γ2, γ3, ‖b1‖, ‖b2‖) such that,

sup
v∈V

|b(u, v)|
‖v‖V

≥ γ
(
‖u1‖2U1

+ ‖u2‖2U2
+ ‖u3‖2U3

)1/2
.

Exercise 4

Prove Lemma 4.
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