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Computational Cardiovascular Analysis with
the Variational Multiscale Methods and
Isogeometric Discretization

Thomas J.R. Hughes, Kenji Takizawa, Yuri Bazilevs, Tayfun E. Tezduyar and
Ming-Chen Hsu

Abstract Computational cardiovascular analysis can provide valuable information
to cardiologists and cardiovascular surgeons on a patient-specific basis. There are
many computational challenges that need to be faced in this class of flow analyses.
They include highly unsteady flows, complex cardiovascular geometries, moving
boundaries and interfaces, such as the motion of the heart valve leaflets, contact be-
tween moving solid surfaces, such as the contact between the leaflets, and the fluid–
structure interaction between blood and cardiovascular structure. Many of these
challenges have been or are being addressed by the Space–Time Variational Mul-
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tiscale (ST-VMS) method, the Arbitrary Lagrangian–Eulerian VMS (ALE-VMS)
method, and VMS-based Immersogeometric Analysis (IMGA-VMS), which serve
as the core computational methods, and other special methods used in combination
with them. We provide an overview of these methods and present examples of chal-
lenging computations carried out with them, including aortic and heart valve flow
analyses. We also point out that these methods are general computational fluid dy-
namics techniques and have broad applicability to a wide range of other areas of
science and engineering.

1 Introduction

In this article we review general Computational Fluid Dynamics (CFD) methods
that we have developed and used over an almost five-decade period on a variety of
applications in science, engineering and medicine. However, our focal application
area herein is Computational Medicine and in particular Computational Cardiovas-
cular Analysis. This area has a long history, in fact the senior author (TJRH) did
his PhD thesis in it in 1974, and there was even earlier work than this, but the area
took on a new direction in the mid-1990s when the first patient-specific calculations
were performed with models created from medical imaging data, such as MRI and
CT. The archival journal paper that began this trend was [1]. Up to that time Com-
putational Cardiovascular Analysis was focused on very simple two-dimensional
geometries such as straight and circular channels, and thus had almost no clinical
significance. After [1], the subject began dramatically transform to where it is to-
day, in which detailed analyses of a wide variety of patient-specific configurations
are routinely analyzed to diagnose disease, plan surgeries and interventions, such as
stenting and bypass grafting, and to virtually evaluate medical devices, such as left
ventricular assist devices (LVADs), implanted in individual patients. Our purpose
here is not to describe the array of medical applications of Computational Cardio-
vascular Analysis (for these we would refer in particular to the works of Charles
A. Taylor, Alison Marsden, and Alberto Figueroa, among others), but rather to de-
scribe the main technologies that support these applications. This started with the
seminal work of the senior author [2] and the algorithm which has become known
by the acronym SUPG, which was extracted from the name given by the authors, the
“Streamline-Upwind Petrov-Galerkin” method. Reference [2] was the first archival
journal publication of the basic ideas, but earlier, starting in 1979, there were sev-
eral now obscure, conference proceedings papers that preceded it. We have to ac-
knowledge that the name is not great. However, the ideas embodied therein were
important and have had significant subsequent impact. The basic problem of Com-
putational Fluid Dynamics (CFD) at the time was achieving a combination of good
stability and high accuracy in one algorithm. Many investigators viewed stability
and accuracy as competing attributes. Reference [2] proved otherwise computation-
ally, and mathematical analyses justified what was observed subsequently, the first
being [3]. The fundamental concept employed was “residual-based stabilization,”
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which added weighted residuals of the numerical solution to basic Galerkin formu-
lations. Residual-based methods are a priori consistent and thus capable of preserve
the underlying accuracy of Galerkin methods, while at the same time appropriate
weighting enhanced their stability. Numerous “Stabilized Methods,” as they have
been commonly referred to subsequently, were then developed over the years based
on this paradigm. The success of Stabilized Methods, another somewhat unfortu-
nate name in our opinion, cannot be over-estimated. The number of citations these
works have garnered is staggering, e.g., [2] alone has received approximately 6,000
citations. Although the mathematical analysis of Stabilized Methods developed as
a field in its own right shortly after the initial publications, the creation of new
Stabilized Methods technologies, such as for example residual-based discontinuity
capturing operators, was essentially based largely on intuition. The breakthrough
concept that derived Stabilized Methods from the fundamental governing equations
was the Variational Multiscale Method [4, 5, 6, 7]. This provided an approach to de-
rive consistent Stabilized Methods directly from any system of linear or nonlinear
equations in fluid dynamics, or any scientific discipline, and it has been perhaps the
most powerful development tool in the arsenal of CFD technologies.

Stabilized Methods and the Variational Multiscale Method are fundamental to all
our works in Computational Cardiovascular Analysis. Many other technologies have
been developed that further extend these basic building blocks to specific classes of
problems and phenomena. This article describes the use of these methods in Com-
putational Cardiovascular Analysis, with a focus on two specific areas, namely, aor-
tic flow phenomena [8]) and patient-specific and bioprosthetic heart-valve fluid-
structure interaction [9, 10]. We wish to also emphasize that these applications
are only a small sample of activity in this rapidly growing field. There are many
formidable challenges posed by problems of these types, including highly unsteady
flows, complex diseased geometries, moving boundaries and interfaces (e.g. motion
of heart valve leaflets), contact between moving solid surfaces within a flow (e.g.
contact between heart valve leaflets), and the fluid-structure interaction of blood
flow with cardiovascular structures, such as arteries, heart valves, etc. Many of these
challenges have been or are being addressed by the Space–Time Variational Mul-
tiscale (ST-VMS) method [11], Arbitrary Lagrangian–Eulerian VMS (ALE-VMS)
method [12], and the VMS-based Immersogeometric Analysis (IMGA-VMS) [9],
which serve as the core computational methods. The special methods used in com-
bination with the ST-VMS include the Space–Time Slip Interface (ST-SI) method
[13], Space–Time Topology Change (ST-TC) [14] method, Space–Time Isogeomet-
ric Analysis (ST-IGA) [15, 16], integration of these methods, and a general-purpose
NURBS mesh generation method for complex geometries [17]. The special methods
used in combination with ALE-VMS include weak enforcement of no-slip bound-
ary conditions [18], “sliding interfaces” [19] (the acronym “SI” will also indicate
that) and backflow stabilization [20].

Despite the focus of this article on problems of Computational Cardiovascular
Analysis, the methods described herein are general CFD and fluid-structure interac-
tion technologies that have wide applicability to diverse scientific and engineering



4 Authors Suppressed Due to Excessive Length

applications, and therefore we also take the opportunity to draw attention to many
such applications that the authors of this chapter have been actively involved with.

1.1 Space–Time Stabilized and VMS Methods

The Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method [21]
was introduced for computation of flows with moving boundaries and inter-
faces (MBI), including fluid–structure interaction (FSI). In MBI computations
the DSD/SST functions as a moving-mesh method. Moving the fluid mechan-
ics mesh to follow an interface enables mesh-resolution control near the inter-
face and, consequently, high-resolution boundary-layer representation near fluid–
solid interfaces. The stabilization components of the original DSD/SST are the
Streamline-Upwind/Petrov-Galerkin (SUPG) [2] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [21] stabilizations, which are used widely. Because of the SUPG
and PSPG components, the original DSD/SST is now called “ST-SUPS.” The ST-
VMS is the VMS version of the DSD/SST. The VMS components of the ST-VMS
are from the residual-based VMS (RBVMS) method [4, 7]. The ST-VMS has two
more stabilization terms beyond those in the ST-SUPS, and the additional terms
give the method better turbulence modeling features. The ST-SUPS and ST-VMS,
because of the higher-order accuracy of the Space–Time (ST) framework (see [11]),
are desirable also in computations without MBI.

The ST-SUPS and ST-VMS have been applied to many classes of FSI, MBI and
fluid mechanics problems (see [22] for a comprehensive summary). The classes
of problems include spacecraft parachute analysis for the landing-stage parachutes
[23], cover-separation parachutes [24] and drogue parachutes [25], wind-turbine
aerodynamics for horizontal-axis wind-turbine rotors [26], full horizontal-axis
wind-turbines [27] and vertical-axis wind-turbines [13], flapping-wing aerodynam-
ics for an actual locust [28], bioinspired MAVs [29] and wing-clapping [30], blood
flow analysis of cerebral aneurysms [31], stent-treated aneurysms [32], aortas [8]
and heart valves [10], spacecraft aerodynamics [24], thermo-fluid analysis of ground
vehicles and their tires [33], thermo-fluid analysis of disk brakes [34], flow-driven
filament dynamics in turbomachinery [35], flow analysis of turbocharger turbines
[36], flow around tires with road contact and deformation [37], fluid films [38],
ram-air parachutes [39], and compressible-flow spacecraft parachute aerodynamics
[40].

The space–time computational methods have a relatively long track record in
arterial FSI analysis, starting with computations reported in [41, 42]. These were
among the earliest arterial FSI computations, and the core method was the ST-SUPS.
Many space–time computations were also reported in the last 15 years. In the first
8 years of that period the space–time computations were performed for FSI of the
abdominal aorta [43], carotid artery [43] and cerebral aneurysms [44]. In the last
7 years, the space–time computations focused on even more challenging aspects of
cardiovascular fluid mechanics and FSI, including comparative studies of cerebral
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aneurysms [31], stent treatment of cerebral aneurysms [45], heart valve flow com-
putation [10], aortic flow analysis [8], and coronary arterial dynamics [46].

In the flow analyses presented here, the space–time framework provides higher-
order accuracy. The VMS feature of the ST-VMS addresses the computational chal-
lenges associated with the multiscale nature of the unsteady flow. The moving-mesh
feature of the space–time framework enables high-resolution computation near the
moving heart valve leaflets.

1.2 ALE Stabilized and VMS Methods

The ALE-VMS method [12] is the VMS version of ALE [47]. It succeeded the ST-
SUPS [21] and ALE-SUPS [48] and preceded the ST-VMS. The VMS components
are from the RBVMS [4, 7]. The ALE-VMS originated from the RBVMS formula-
tion of incompressible turbulent flows proposed in [7] for nonmoving meshes, and
may be thought of as an extension of the RBVMS to moving meshes. As such,
it was presented for the first time in [12] in the context of FSI. To increase their
scope and accuracy, the ALE-VMS and RBVMS are often supplemented with spe-
cial methods, such as those for weakly-enforced no-slip boundary conditions [18],
“sliding interfaces” [19] and backflow stabilization [20]. The ALE-SUPS, RBVMS
and ALE-VMS have been applied to many classes of FSI, MBI and fluid mechanics
problems including ram-air parachute FSI [48], wind-turbine aerodynamics and FSI
[49, 50], vertical-axis wind turbines [50], floating wind turbines [51], wind turbines
in atmospheric boundary layers [50], fatigue damage in wind-turbine blades [52],
patient-specific cardiovascular fluid mechanics and FSI [53, 54], biomedical-device
FSI [55, 56], ship hydrodynamics with free-surface flow and fluid–object interaction
[57], hydrodynamics and FSI of hydraulic arresting gear [58], hydrodynamics of
tidal-stream turbines with free-surface flow [59], passive-morphing FSI in turboma-
chinery [60], bioinspired FSI for marine propulsion [61], and bridge aerodynamics
and fluid–object interaction [62]. Recent advances in stabilized and multiscale meth-
ods may be found for stratified incompressible flows [63], divergence-conforming
discretizations of incompressible flows [64], and compressible flows with emphasis
on gas-turbine modeling [65].

In the flow analyses presented here, the VMS feature of ALE-VMS addresses the
computational challenges associated with the multiscale nature of the unsteady flow.
The moving-mesh feature of the ALE framework enables high-resolution computa-
tion near the moving wall of a thoracic aorta.

1.3 Slip Interface Space–Time Method

The Space–Time version of the Slip Interface (ST-SI) method was introduced in
[13] in the context of incompressible-flow equations to retain the desirable moving-
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mesh features of the ST-VMS and ST-SUPS when there are spinning solid sur-
faces, such as for a turbine rotor. The mesh covering the spinning surface spins
with it, retaining the high-resolution representation of boundary layers. The start-
ing point in the development of ST-SI was the version of ALE-VMS for computa-
tions with sliding interfaces [19]. Interface terms similar to those in the ALE-VMS
version are added to ST-VMS to account for the compatibility conditions for ve-
locity and stress at the slip interface. That accurately connects the two sides of the
solution. An ST-SI version where the slip interface is between fluid and solid do-
mains was also presented in [13]. The slip interface in this case is a “fluid–solid”
interface rather than a standard “fluid–fluid” interface, and enables weak enforce-
ment of the Dirichlet boundary conditions for the fluid. The ST-SI introduced in
[34] for the coupled incompressible-flow and thermal-transport equations retains
the high-resolution representation of the thermo-fluid boundary layers near spinning
solid surfaces. These ST-SI methods have been applied to aerodynamic analysis of
vertical-axis wind turbines [13], thermo-fluid analysis of disk brakes [34], flow-
driven filament dynamics in turbomachinery [35], flow analysis of turbocharger tur-
bines [36], flow around tires with road contact and deformation [37], fluid films
[38], aerodynamic analysis of ram-air parachutes [39], and flow analysis of heart
valves [10].

In the ST-SI version presented in [13] the slip interface is between a thin porous
structure and the fluid on its two sides. This enables dealing with the porosity in
a fashion consistent with how the standard fluid–fluid slip interfaces are dealt with
and how the Dirichlet conditions are enforced weakly with fluid–solid slip inter-
faces. This version also enables handling thin structures that have T-junctions. This
method has been applied to incompressible-flow aerodynamic analysis of ram-air
parachutes with fabric porosity [39]. The compressible-flow ST-SI methods were
introduced in [40], including the version where the slip interface is between a thin
porous structure and the fluid on both its sides. Compressible-flow porosity models
were also introduced in [40]. These, together with the compressible-flow space–
time SUPG method [66], extended the space–time computational analysis range to
compressible-flow aerodynamics of parachutes with fabric and geometric porosi-
ties. That enabled space–time computational flow analysis of the Orion spacecraft
drogue parachute in the compressible-flow regime [67].

1.4 Immersogeometric VMS Analysis

The Immersogeometric Analysis (IMGA) was introduced in [56] as a geometrically
flexible technique for solving FSI problems involving large, complex structural de-
formations and change of fluid-domain topology (e.g., structural contact). The mo-
tivating application is the simulation of heart valve function over a complete cardiac
cycle. The method directly analyzes a spline representation of a thin structure by im-
mersing it into a non-body-fitted discretization of the background fluid domain, and
focuses on accurately capturing the immersed design geometry within non-body-
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fitted analysis meshes. A new semi-implicit numerical method, which we now refer
to as the Dynamic Augmented Lagrangian (DAL) approach [68], was introduced
in [56] for weakly enforcing constraints in time-dependent immersogeometric FSI
problems. A mixed ALE-VMS/IMGA-VMS (ALE-IMGA-VMS) method was de-
veloped in [9] in the framework of the Fluid–Solid Interface-Tracking/Interface-
Capturing Technique [69]; a single computation combines a body-fitted, moving-
mesh treatment of some fluid–structure interfaces, with a non-body-fitted treatment
of others. This approach enables us to simulate the FSI of a bioprosthetic heart
valve (BHV) in a deforming artery over the entire cardiac cycle under physiolog-
ical conditions, and study the effect of arterial-wall elasticity on valve dynamics
[9]. The DAL-based ALE-IMGA-VMS was integrated with Computer-Aided De-
sign (CAD) for heart-valve analysis in [55] with a thorough comparison between
pressure-driven only and full FSI computations. An anisotropic constitutive mod-
eling of BHV leaflets for immersogeometric FSI, based on the Kirchhoff–Love
shell formulation for general hyperelastic materials [70], is proposed in [71]. A
divergence-conforming formulation of incompressible flow, which gives a point-
wise divergence-free velocity field everywhere in the domain, completely elimi-
nates mass loss error across the valve interface in [72]. Stable coupling strategies
and suitable definition of Lagrange multipliers for the DAL numerical approach
were proposed and analyzed in [73]. The FSI framework of ALE-IMGA-VMS was
employed in patient-specific valve design in [74]. The DAL-based IMGA has also
been combined with surrogate modeling in [58] for an efficient and effective use of
FSI to optimize the design of a hydraulic arresting gear.

1.5 Stabilization Parameters

The methods discussed in this chapter all have some embedded stabilization param-
eters that play a significant role (see [75, 13]). There are many ways of defining
these stabilization parameters (for examples, see [76, 77, 78, 79, 33, 80, 37]). The
stabilization-parameter definitions used in the computations reported in this article
can be found from the references cited in the sections where those computations are
described.

1.6 Topology Change Space–Time Method

The Topology Change Space–Time method (ST-TC) [14] was introduced for
moving-mesh computation of flow problems with topology change, such as con-
tact between solid surfaces. Even before the ST-TC, the ST-SUPS and ST-VMS,
when used with robust mesh update methods, have proven effective in flow com-
putations where the solid surfaces are in near contact or create other near topology
change. Many classes of problems can be solved that way with sufficient accuracy
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by approximating actual contact with a small gap between the solid surfaces. For
examples of such computations, see the references mentioned in [14]. The ST-TC
made moving-mesh computations possible even when there is an actual contact be-
tween solid surfaces or other topology change. By collapsing elements as needed,
without changing the connectivity of the “parent” mesh, the ST-TC can handle an
actual topology cgange while maintaining high-resolution boundary layer represen-
tation near solid surfaces. This enabled successful moving-mesh computation of
heart valve flows [10], wing clapping [30], and flow around a rotating tire with road
contact and prescribed deformation [37].

For more on the ST-TC, see [14]. In the computational analyses here, the ST-TC
enables moving-mesh computation even with the topology change created by the
actual contact between the valve leaflets. It deals with the contact while maintaining
high-resolution flow representation near the leaflet.

1.7 Topology Change Slip Interface Space–Time Method

The Topology Change Slip Interface Space–Time Method (ST-SI-TC) is the integra-
tion of the ST-SI and ST-TC. A fluid–fluid slip interface requires elements on both
sides of the interface. When part of a slip interface needs to coincide with a solid
surface, which happens for example when the solid surfaces on two sides of the in-
terface come into contact or when the inteface reaches a solid surface, the elements
between the coinciding slip interface part and the solid surface need to collapse with
the ST-TC mechanism. The collapse switches the slip interface from the fluid–fluid
type to the fluid–solid type. With that, a slip interface can be a mixture of the fluid–
fluid and fluid–solid types. With the ST-SI-TC, the elements collapse and are reborn
independent of the nodes representing a solid surface. The ST-SI-TC enables high-
resolution flow representation even when parts of the slip interface are coinciding
with a solid surface. It also enables dealing with contact location change and con-
tact sliding. This was applied to heart valve flow analysis [10] and tire aerodynamics
with road contact and deformation [37].

For more on the ST-SI-TC, see [81]. In the computational analyses presented
here, the ST-SI-TC enables high-resolution representation of the boundary layers
even when the contact is between leaflets that are in mesh sectors connected by
slip interfaces. It enables contact location change and contact sliding between the
leaflets.

1.8 Space–Time IGA

The ST-IGA, introduced in [11], is the integration of the space–time framework with
isogeometric discretization, motivated by the success of NURBS meshes in spatial
discretization [82, 53, 12, 19]. Computations with the ST-VMS and ST-IGA were
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first reported in [11] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. Using higher-order
basis functions in time enables getting full benefit out of using higher-order basis
functions in space. This was demonstrated with the stability and accuracy analysis
given in [11] for the advection equation.

The ST-IGA with IGA basis functions in time enables a more accurate represen-
tation of the motion of the solid surfaces and a mesh motion consistent with that.
This was pointed out in [11] and demonstrated in [15]. It also enables more effi-
cient temporal representation of the motion and deformation of the volume meshes,
and more efficient remeshing. These motivated the development of the ST/NURBS
Mesh Update Method (STNMUM) [15, 79]. The STNMUM has a wide scope that
includes spinning solid surfaces. With the spinning motion represented by quadratic
NURBS in time, and with sufficient number of temporal patches for a full rota-
tion, the circular paths are represented exactly. A “secondary mapping” [11] enables
also specifying a constant angular velocity for invariant speeds along the circular
paths. The space–time framework and NURBS in time also enable, with the “ST-
C” method, extracting a continuous representation from the computed data and, in
large-scale computations, efficient data compression [83]. The STNMUM and the
ST-IGA with IGA basis functions in time have been used in many 3D computations.
The classes of problems solved are flapping-wing aerodynamics for an actual locust
[28], bioinspired MAVs [29] and wing-clapping [30], separation aerodynamics of
spacecraft [24], aerodynamics of horizontal-axis [31] and vertical-axis [13] wind
turbines, thermo-fluid analysis of ground vehicles and their tires [33], thermo-fluid
analysis of disk brakes [34], flow-driven string dynamics in turbomachinery [35],
and flow analysis of turbocharger turbines [36].

The ST-IGA with IGA basis functions in space enables more accurate represen-
tation of the geometry and increased accuracy in the flow solution. It accomplishes
that with fewer control points, and consequently with larger effective element sizes.
That in turn enables using larger time-step sizes while keeping the Courant number
at a desirable level for good accuracy. It has been used in space–time computational
flow analysis of turbocharger turbines [36], flow-driven string dynamics in turboma-
chinery [35], ram-air parachutes [39], spacecraft parachutes [67], aortas [8], heart
valves [10], tires with road contact and deformation [37], and fluid films [38]. Using
IGA basis functions in space is now a key part of some of the newest Zero Stress
State (ZSS) estimation methods [84] and related shell analysis [85].

For more on the ST-IGA, see [16]. In the computational flow analyses presented
here, the ST-IGA enables more accurate representation of the cardiovascular geome-
tries, increased accuracy in the flow solution, and using larger time-step sizes.

1.9 Space–Time IGA with Slip Interface and Topology Change

The turbocharger turbine analysis [36] and flow-driven string dynamics in turbo-
machinery [35] were based on the integration of the ST-SI and ST-IGA. The IGA
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basis functions were used in the spatial discretization of the fluid mechanics equa-
tions and also in the temporal representation of the rotor and spinning-mesh motion.
That enabled accurate representation of the turbine geometry and rotor motion and
increased accuracy in the flow solution. The IGA basis functions were used also in
the spatial discretization of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as well as smoothness in the
string shape and fluid dynamics forces computed on the string.

The ram-air parachute analysis [39] and spacecraft parachute compressible-flow
analysis [67] were based on the integration of the ST-IGA, the ST-SI version that
weakly enforces the Dirichlet conditions, and the ST-SI version that accounts for the
porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled,
with relatively few number of unknowns, accurate representation of the parafoil and
parachute geometries and increased accuracy in the flow solution. The volume mesh
needed to be generated both inside and outside the parafoil. Mesh generation inside
was challenging near the trailing edge because of the narrowing space. The space-
craft parachute has a very complex geometry, including gores and gaps. Using IGA
basis functions addressed those challenges and still kept the element density near
the trailing edge of the parafoil and around the spacecraft parachute at a reasonable
level.

The heart valve analysis [10] was based on the integration of the ST-SI, ST-
TC and ST-IGA, which we refer to as ST-SI-TC-IGA. The ST-SI-TC-IGA, beyond
enabling a more accurate representation of the geometry and increased accuracy in
the flow solution, kept the element density in the narrow spaces near the contact
areas at a reasonable level. When solid surfaces come into contact, the elements
between the surface and the slip interface collapse. Before the elements collapse,
the boundaries could be curved and rather complex, and the narrow spaces might
have high-aspect-ratio elements. With NURBS elements, it was possible to deal
with such adverse conditions rather effectively.

In computational analysis of flow around tires with road contact and deformation
[37], the ST-SI-TC-IGA enables a more accurate representation of the geometry
and motion of the tire surfaces, a mesh motion consistent with that, and increased
accuracy in the flow solution. It also keeps the element density in the tire grooves
and in the narrow spaces near the contact areas at a reasonable level. In addition, we
benefit from the mesh generation flexibility provided by using SIs.

An SI provides mesh generation flexibility in a general context by accurately
connecting the two sides of the solution computed over nonmatching meshes. This
type of mesh generation flexibility is especially valuable in complex-geometry flow
computations with isogeometric discretization, removing the matching requirement
between the NURBS patches without loss of accuracy. This feature was used in
the flow analysis of heart valves [10], turbocharger turbines [36], and spacecraft
parachute compressible-flow analysis [67].

For more on the ST-SI-TC-IGA, see [10]. In the computations presented here,
the ST-SI-TC-IGA is used in the heart valve flow analysis, for the reasons given and
as described in an earlier paragraph of this section.



Title Suppressed Due to Excessive Length 11

1.10 General-Purpose NURBS Mesh Generation Method

To make the ST-IGA use, and in a wider context the IGA use, even more practi-
cal in computational flow analysis with complex geometries, NURBS volume mesh
generation needs to be easier and more automated. To that end, a general-purpose
NURBS mesh generation method was introduced in [17]. The method is based on
multi-block-structured mesh generation with existing techniques, projection of that
mesh to a NURBS mesh made of patches that correspond to the blocks, and recovery
of the original model surfaces. The method is expected to retain the refinement dis-
tribution and element quality of the multi-block-structured mesh that we start with.
Because there are ample good techniques and software for generating multi-block-
structured meshes, the method makes general-purpose mesh generation relatively
easy.

Mesh-quality performance studies for 2D and 3D meshes, including those for
complex models, were presented in [86]. A test computation for a turbocharger tur-
bine and exhaust manifold was also presented in [86], with a more detailed compu-
tation in [36]. The mesh generation method was used also in the pump-flow analysis
part of the flow-driven string dynamics presented in [35] and in the aorta flow anal-
ysis presented in [8]. The performance studies, test computations and actual com-
putations demonstrated that the general-purpose NURBS mesh generation method
makes the IGA use in fluid mechanics computations even more practical.

For more on the general-purpose NURBS mesh generation method, see [17, 86].
In the computations presented here, the method used in the aorta flow analysis.

1.11 Outline of the Remaining Sections

We provide the governing equations in Section 2. The ST-VMS and ST-SI are de-
scribed in Section 3, and the ALE-VMS and IMGA-VMS in Section 4. In Section 5
we provide some brief comments on the parallel computations. In Sections 6 and
7, as examples of space–time computations, we present an aortic-valve flow analy-
sis and a patient-specific aorta flow analysis. In Section 8, as an example of IMGA
computations, we present a patient-specific heart valve design and analysis. The
concluding remarks are given in Section 9.

2 Governing Equations

2.1 Incompressible Flow

Let Ωt ⊂ R
nsd be the spatial domain with boundary Γt at time t ∈ (0,T ), where nsd is

the number of space dimensions. The subscript t indicates the time-dependence of
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the domain. The Navier–Stokes equations of incompressible flows are written on Ωt
and ∀t ∈ (0,T ) as

ρ

Å
∂u
∂t

+ u ·∇∇∇u− f
ã
−∇∇∇ ·σσσ = 0, (1)

∇∇∇ ·u = 0, (2)

where ρ, u and f are the density, velocity and body force. The stress tensorσσσ(u, p) =

−pI+2µεεε(u), where p is the pressure, I is the identity tensor, µ = ρν is the viscosity,
ν is the kinematic viscosity, and the strain rate εεε(u) =

(
∇∇∇u + (∇∇∇u)T)/2. The essential

and natural boundary conditions for Eq. (1) are represented as u = g on (Γt)g and
n ·σσσ = h on (Γt)h, where n is the unit normal vector and g and h are given functions.
A divergence-free velocity field u0(x) is specified as the initial condition.

2.2 Structural Mechanics

In this article we will not provide any of our formulations requiring fluid and struc-
ture definitions simultaneously; we will instead give reference to earlier journal ar-
ticles where the formulations were presented. Therefore, for notation simplicity, we
will reuse many of the symbols used in the fluid mechanics equations to represent
their counterparts in the structural mechanics equations. To begin with, Ωt ⊂ R

nsd

and Γt will represent the structure domain and its boundary. The structural mechan-
ics equations are then written, on Ωt and ∀t ∈ (0,T ), as

ρ

Ç
d2y
dt2 − f

å
−∇∇∇ ·σσσ = 0, (3)

where y and σσσ are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (3) are represented as y = g on (Γt)g and n ·σσσ= h
on (Γt)h. The Cauchy stress tensor can be obtained from

σσσ = J−1FSFT , (4)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola–Kirchhoff stress tensor. It is obtained from the strain-energy density
function ϕ as follows:

S ≡
∂ϕ

∂E
, (5)

where E is the Green–Lagrange strain tensor:

E =
1
2

(C− I) , (6)
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and C is the Cauchy–Green deformation tensor:

C ≡ FT ·F. (7)

From Eqs. (5) and (6),

S = 2
∂ϕ

∂C
. (8)

2.3 Fluid–Structure Interface

In an FSI problem, at the fluid–structure interface, we will have the velocity and
stress compatibility conditions between the fluid and structure parts. The details on
those conditions can be found in Section 5.1 of [75].

3 ST-VMS and ST-SI

We include from [13, 81] the ST-VMS and ST-SI methods.
The ST-VMS is given as∫

Qn

wh ·ρ

Ç
∂uh

∂t
+ uh ·∇∇∇uh− fh

å
dQ +

∫
Qn

εεε(wh) :σσσ(uh, ph)dQ

−

∫
(Pn)h

wh ·hhdP +

∫
Qn

qh∇∇∇ ·uhdQ +

∫
Ωn

(wh)+
n ·ρ
Ä

(uh)+
n − (uh)−n

ä
dΩ

+

(nel)n∑
e=1

∫
Qe

n

τSUPS

ρ

ñ
ρ

Ç
∂wh

∂t
+ uh ·∇∇∇wh

å
+∇∇∇qh

ô
· rM(uh, ph)dQ

+

(nel)n∑
e=1

∫
Qe

n

νLSIC∇∇∇ ·whρrC(uh)dQ

−

(nel)n∑
e=1

∫
Qe

n

τSUPSwh ·
Ä

rM(uh, ph) ·∇∇∇uh
ä

dQ

−

(nel)n∑
e=1

∫
Qe

n

τ2
SUPS
ρ

rM(uh, ph) ·
Ä
∇∇∇wh
ä
· rM(uh, ph)dQ = 0, (9)

where

rM(uh, ph) = ρ

Ç
∂uh

∂t
+ uh ·∇∇∇uh− fh

å
−∇∇∇ ·σσσ(uh, ph), (10)
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rC(uh) =∇∇∇ ·uh (11)

are the residuals of the momentum equation and incompressibility constraint. The
test functions associated with the velocity and pressure are w and q. A superscript
“h” indicates that the function is coming from a finite-dimensional space. The sym-
bol Qn represents the ST slice between time levels n and n + 1, (Pn)h is the part of
the lateral boundary of that slice associated with the traction boundary condition
h, and Ωn is the spatial domain at time level n. The superscript “e” is the ST ele-
ment counter, and nel is the number of ST elements. The functions are discontinuous
in time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [76, 77, 79, 33, 13] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [78, 80, 37]).

Remark 1 The ST-SUPS method can be obtained from the ST-VMS method by drop-
ping the eighth and ninth integrations.

In the ST-SI, labels “Side A” and “Side B” represent the two sides of the SI. We
add boundary terms to Eq. (9). The boundary terms are first added separately for the
two sides, using test functions wh

A and qh
A and wh

B and qh
B. Putting them together, the

complete set of terms added becomes

−

∫
(Pn)SI

Ä
qh

BnB−qh
AnA

ä
·

1
2

Ä
uh

B−uh
A

ä
dP

−

∫
(Pn)SI

ρwh
B ·

1
2

((
F h

B −

∣∣∣F h
B

∣∣∣)uh
B−

(
F h

B −

∣∣∣F h
B

∣∣∣)uh
A

)
dP

−

∫
(Pn)SI

ρwh
A ·

1
2

((
F h

A −

∣∣∣F h
A

∣∣∣)uh
A−

(
F h

A −

∣∣∣F h
A

∣∣∣)uh
B

)
dP

+

∫
(Pn)SI

Ä
nB ·wh

B + nA ·wh
A

ä 1
2

Ä
ph

B + ph
A

ä
dP

−

∫
(Pn)SI

Ä
wh

B−wh
A

ä
·
Ä

n̂B ·µ
Ä
εεε(uh

B) +εεε(uh
A)
ää

dP

−γACI

∫
(Pn)SI

n̂B ·µ
Ä
εεε
Ä

wh
B

ä
+εεε
Ä

wh
A

ää
·
Ä

uh
B−uh

A

ä
dP

+

∫
(Pn)SI

µC
h

Ä
wh

B−wh
A

ä
·
Ä

uh
B−uh

A

ä
dP, (12)

where

F h
B = nB ·

Ä
uh

B−vh
B

ä
, (13)

F h
A = nA ·

Ä
uh

A−vh
A

ä
, (14)

h =
hB + hA

2
, (15)
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hB = 2

( nent∑
α=1

nens∑
a=1

∣∣nB ·∇∇∇Nα
a
∣∣)−1

(for Side B), (16)

hA = 2

( nent∑
α=1

nens∑
a=1

∣∣nA ·∇∇∇Nα
a
∣∣)−1

(for Side A), (17)

n̂B =
nB−nA

‖nB−nA‖
. (18)

Here, (Pn)SI is the SI in the ST domain, v is the mesh velocity, nens and nent are
the number of spatial and temporal element nodes, Nα

a is the basis function associ-
ated with spatial and temporal nodes a and α, γACI = 1, and C is a nondimensional
constant. For our element length definition, we typically set C = 1.

A number of remarks were provided in [13] to explain the added terms and to
comment on related interpretations. We refer the reader interested in those details to
[13].

Remark 2 A coefficient γACI was added in [81] to the sixth integration so that
we have the option of using γACI = −1. This option was added, in [40], also in
the context of compressible flows. Using γACI = 1 in a discontinuous Galerkin
method was introduced in the symmetric interior penalty Galerkin method [87],
and using γACI = −1 was introduced in the nonsymmetric interior penalty Galerkin
method [88]. Stabilized methods based on both γACI = 1 and −1 were reported
in [18] in the context of the advection–diffusion equation. In the computations re-
ported in this article, we set γACI = 1.

4 ALE-VMS and ALE-IMGA-VMS

The ALE-VMS formulation is posed on a spatial domain Ω that is discretized into
elements Ωe. While {Ωe}, Ω, and its boundary Γ are time-dependent, when there is
no risk of confusion, we drop the subscript t to simplify notation. The superscript
h indicates association with discrete function spaces defined over Ω, which moves
with the velocity ûh, which is the same as the mesh velocity vh in Section 3. The
semi-discrete formulation is given as∫

Ω

wh ·ρ

Ç
∂uh

∂t

∣∣∣∣
x̂

+ (uh− ûh) · ∇uh− fh

å
dΩ+

∫
Ω

εεε(wh) :σσσ(uh, ph)dΩ

−

∫
Γ

wh ·hhdΓ+

∫
Ω

qh∇ ·uh dΩ

−β

∫
Γ

wh ·ρ
¶Ä

uh− ûh
ä
·n
©
−

uhdΓ

+
∑

e

∫
Ωe
τSUPS

Å
(uh− ûh) · ∇wh +

1
ρ
∇qh
ã
· rM(uh, ph)dΩ
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+
∑

e

∫
Ωe
νLSIC∇∇∇ ·whρrC(uh)dΩ

−
∑

e

∫
Ωe
τSUPSwh ·

Ä
rM(uh, ph) ·∇∇∇uh

ä
dΩ

−
∑

e

∫
Ωe

τ2
SUPS
ρ

rM(uh, ph) ·
Ä
∇∇∇wh
ä
· rM(uh, ph)dΩ

+
∑

e

∫
Ωe

Ä
τSUPSrM(uh, ph) · ∇wh

ä
τ ·
Ä
τSUPSrM(uh, ph) · ∇uh

ä
dΩ = 0 , (19)

where ∂(·)
∂t

∣∣∣
x̂

is the time derivative taken with respect to the fixed reference coor-
dinates x̂ of the spatial configuration, β (≥ 0) is associated with the backflow sta-
bilization (see Remark 4), and {·} isolates the negative part of its argument. The
additional stabilization parameter τ is defined as

τ =
Ä
τSUPSrM(uh, ph) · (G) ·τSUPSrM(uh, ph)

ä−1/2
, (20)

where G generalizes element size to physical elements mapped through x(ξξξ) from a
parametric parent element: Gi j = ξk,iξk, j.

The ALE-VMS formulation can be combined with the immersogeometric analysis
(IMGA) [56], which we refer to as the ALE-IMGA-VMS method [9, 55, 74].
In the IMGA problem, the kinematic and traction compatibility conditions at the
immersed fluid–structure interface are imposed weakly using the DAL. The details
of this method can be found in [56, 68].

Remark 3 To improve mass conservation of the ALE-IMGA-VMS technique near
immersed boundaries, the following modification to τSUPS is introduced in [56]:

τSUPS =

Ç
s

Ç
4
∆t2 + (uh− ûh) ·G(uh− ûh) +CI

Å
µ

ρ

ã2

G : G
åå−1/2

. (21)

Almost everywhere in Ω we set s = 1, which yields a traditional definition of τSUPS.
However, in an O(h) neighborhood of the immersed fluid–structure interface we
set s ≥ 1, which effectively reduces the size of τSUPS in that region. A theoretical
motivation for this scaling is given in [72], and a numerical investigation of its
effect is given in [73].

Remark 4 Unsteady flow computations may sometimes diverge due to significant
inflow through the Neumann boundary Γh

f ; this is known as backflow divergence
and is frequently encountered in cardiovascular simulations. In order to preclude
backflow divergence, a backflow stabilization method (the β term in Eq. (19)) origi-
nally proposed in [89] and further studied in [90] is employed in our ALE-VMS and
ALE-IMGA-VMS formulations.
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Remark 5 The τ term of Eq. (19) is not derived from VMS analysis; it is an addi-
tional residual-based stabilization term that is included to provided extra stabilizing
dissipation near steep solution gradients while maintaining consistency with the ex-
act solution. It was introduced in [1] and bears resemblance to the DCDD [76] and
YZβ [91, 92] discontinuity-capturing methods.

5 Parallel Computations

Parallel computations with space–time methods go as far back as 1992 [93], with the
3D computations reported as early as 1993 [94]. All computations reported in this
chapter were carried out on parallel computing platforms. The number of cores used
in a typical computation ranges from 96 to 576. Because the computations were
mostly for the purpose of testing a new computational method, parallel efficiency
was not a high priority. Still the efficiencies we see are high enough to justify the
use of the maximum number of cores available in the computer resources we have.

6 ST Computation: Aortic-Valve Flow Analysis

This section is from [10].

6.1 Geometry and Leafleat Motion

We have a typical aortic-valve model, such as the one in [30]. The model, shown in
Figure 1, has three leaflets and one main outlet, corresponding to the beginning of
the aorta. The leaflet motion is prescribed. They move in an asymmetric fashion. We
identify the individual leaflets as shown in Figure 2. The leaflet positions are defined
by means of a pseudo-time parameter θ, with the values 0 and 1 corresponding to
the fully open and fully closed positions. The prescribed motion is given through θ
as shown in Figure 3.

6.2 Mesh, Flow Conditions and Computational Conditions

We create the mesh with five SIs, with three of them connecting the mesh sectors
containing the leaflets in the valve region of the aorta (see Figure 4). The other two
SIs, which are the top and bottom circular planes in Figure 4, connect the meshes
in the inlet and outlet regions to the valve region. They are for independent mesh-
ing in the inlet and outlet regions. The volume mesh is made of quadratic NURBS
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Fig. 1 Aortic-valve flow analysis. Model geometry. Aorta, leaflets, and sinuses. The left picture
shows the entire computational domain, and the right picture is the zoomed view of the valve.

Fig. 2 Aortic-valve flow analysis. Leaflet identification. Leaflet 1 (red), 2 (green) and 3 (blue).

elements. The number of control points is 84,534, and the number of elements is
54,000. We prescribe the motion of the interior control points, and specify in each
domain the master–slave mapping for all leaflet positions. Figure 5 shows a set of
selected NURBS elements to illustrate how elements collapse.

The density and kinematic viscosity of the blood are 1,050 kg/m3 and
4.2×10−6 m2/s. The boundary conditions are no-slip on the arterial walls and the
leaflets, traction-free at the outflow boundary, and uniform velocity at the inflow
boundary, with a temporal profile as shown in Figure 6. The cycle period is 0.712 s.
The no-slip condition on the arterial walls is enforced weakly.

We use the ST-SUPS method. The time-step size is 4.00×10−3 s. There are three
nonlinear iterations at each time step. The number of GMRES iterations per nonlin-
ear iteration is 300.
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Fig. 3 Aortic-valve flow analysis. Leaflet motion. Pseudo-time parameter θ as a function of time
for each of the three leaflets.

Fig. 4 Aortic-valve flow analysis. Aortic valve and the five SIs.

6.3 Results

Figure 7 shows the isosurfaces corresponding to a positive value of the second in-
variant of the velocity gradient tensor, colored by the velocity magnitude. The view-
ing angle is as we see the leaflets in Figure 2. We have a biased flow jet due to the
asymmetric leaflet closing. This can be seen from the third, fourth and fifth pair of
pictures in Figure 7. We also report the the wall shear stress (WSS) on the leaflet
surfaces. The viewing angle is as we see the leaflets in Figure 8. Figure 9 shows the
magnitude of the WSS on the upper and lower surfaces of the leaflets.
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Fig. 5 Aortic-valve flow analysis. A set of selected NURBS elements, from when the valve is fully
open (top-left) to when it is fully closed (bottom-right). The corresponding θ values are 0.0, 0.42,
0.97, and 1.0. The right pictures are the zoomed views around the leaflet.
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Fig. 6 Aortic-valve flow analysis. Inflow velocity (two cycles).
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0.5 1.0 2.5 3.0

Fig. 7 Aortic-valve flow analysis. Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity magnitude (m/s). The frames are
for t = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s.

Fig. 8 Aortic-valve flow analysis. Viewing angle for reporting the WSS. The leaflet identification
is same as in Figure 2.
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0.0 10.0 20.0

Fig. 9 Aortic-valve flow analysis. Magnitude of the WSS (Pa). Upper surface (left) and lower
surface (right). The frames are for t = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s.
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7 ST Computation: Patient-Specific Aorta Flow Analysis

This section is from [8].
We start with a geometry obtained from medical images and then use cubic T-

splines to represent the surface. The density and kinematic viscosity of the blood
are 1,050 kg/m3 and 4.2×10−6 m2/s.

7.1 Conditions

The computational domain and boundary conditions are shown in Figure 10. The

Inflow

Outflow

Prescribed Velocity

No-Slip

Fig. 10 Patient-specific aorta flow analysis. Geometry and boundary conditions.

diameters are given in Table 1. The inflow flow rate, plug flow, is in Figure 11. The

Table 1 Patient-specific aorta flow analysis. Diameter (mm) of the inlet and outlets. The outlets
are listed in the order of closeness to the inlet.

Inlet Outlet 1 Outlet 2 Outlet 3 Outlet 4 Outlet 5
Diameter 25.6 5.81 3.90 4.41 6.43 19.9

peak value of the average inflow velocity is 0.709 m/s. We estimate the outflows as
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Fig. 11 Patient-specific aorta flow analysis. Volumetric flow rate at the inlet.

distributed by Murray’s law [95]:

Qo ∝ D3
o, (22)

where Qo is the volumetric outflow rate, and the outlet diameter Do is defined based
on the outlet area Ao:

Do = 2

…
Ao

π
. (23)

We form a plug flow profile at the smaller outlets, and the main outlet is set to
traction free.

7.2 Mesh

We create a quadratic NURBS mesh from the T-spline surface, using the technique
introduced in [17, 86]. Figure 12 shows one of the NURBS patches and five of the
patches together to illustrate the block-structured nature of the NURBS mesh. The
function space has only C0 continuity between the patches. Figure 13 shows the base
mesh. Figure 14 shows the base and refined meshes at the inlet. The meshes are re-
fined by knot insertion, therefore the geometry is unchanged, and the basis functions
for the coarser meshes are subsets of the basis functions for the finer meshes. The
refinement is in the normal direction, and at each refinement, the element thickness
is halved in half of the most refined layers. For the base mesh, the element thickness
in the normal direction is approximately 1 % of the local diameter. There is no re-
finement in the tangential directions. During the refinement, the original plug flow
profiles of the base mesh are retained. Table 2 shows the number of elements and
control points.
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Fig. 12 Patient-specific aorta flow analysis. NURBS control mesh. One of the patches (top) and
five of the patches together (bottom).

Table 2 Patient-specific aorta flow analysis. Number of control points (nc) and element (ne) for
the quadratic NURBS meshes used in the computations.

nc ne
Base Mesh 202,497 151,513
Refinement Mesh 1 266,437 205,733
Refinement Mesh 2 330,377 259,953
Refinement Mesh 3 394,317 314,173
Refinement Mesh 4 458,257 368,393

7.3 Mesh Refinement Study

We compute with the 5 meshes in Table 2. The time-step sizes are ∆t = 0.0025 s
for Base Mesh and Refinement Mesh 1 and 2, and ∆t = 0.00125 s for Refinement
Mesh 3 and 4. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 800 for Base Mesh and Refinement
Mesh 1, and 1,200, 1,400, and 1,600 for Refinement Mesh 2, 3, and 4, respectively.
The ST-SUPS method is used and the stabilization parameters are those given by
Eqs. (2.4)–(2.6), (2.8) and (2.10) in [13].

We first compute 9 cycles with Base Mesh, and the initial condition for the refined
meshes is obtained by knot insertion. The solution reported here is for the 10th cycle.
Figure 15 shows the solution computed with Refinement Mesh 4. At the peak flow
rate a complex flow pattern is formed, and the vortex structure breaks down into
smaller structures during the deceleration. The magnitude of the WSS (hv) at the
peak flow rate is shown for each mesh in Figure 16. Qualitatively, all results are in
good agreement, and the convergence can be seen with refinement. To quantify the
mesh refinement level, we calculate the y+ value for the first-element thickness h as
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Fig. 13 Patient-specific aorta flow analysis. Base Mesh. Control mesh and surface (green). Red
points are control points.

y+ =
u∗h
ν
, (24)

where the friction velocity u∗ is based on the computed value of the WSS as follows:

u∗ =

 ∥∥hh
v
∥∥

ρ
. (25)
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Fig. 14 Patient-specific aorta flow analysis. Control mesh at the inlet. Base Mesh, Refinement
Mesh 1, Refinement Mesh 2, Refinement Mesh 3, and Refinement Mesh 4.

Figure 17 shows the spatial distribution of y+ at the peak flow rate. It shows that for
the meshes used here, y+ range is from approximate maximum 10 to less than 1.
Comparing Figures 16 and 17, we see that the WSS values computed over different
meshes are in agreement where y+ ≤ 1.

The time-averaged WSS magnitude (TAWSS) is shown in Figure 18, and Fig-
ure 19 shows the spatially-averaged WSS magnitude in a cycle. Figure 20 shows
the oscillatory shear index (OSI), defined as

OSI =
1
2

Ñ
1−

∥∥∥∫ T
0 hh

vdt
∥∥∥∫ T

0

∥∥hh
v
∥∥dt

é
. (26)

Overall for OSI, even Base Mesh is in a good agreement with others. However, if
we compare details such as branches, we see some difference even where y+ value
is small. To see the flow differences, using the solution from Refinement Mesh 4
as the reference solution, we inspect the velocity difference

∥∥uh
k −uh

4

∥∥, where the
subscripts indicate Base Mesh and Refinement Mesh k.

Remark 6 To calculate the velocity difference, all meshes and corresponding so-
lutions are refined by using the knot-insertion technique, and the control variables
are obtained based on Refinement Mesh 4. The visualization is done after taking
the difference between the control variables, interpolating the vector, and taking its
magnitude.

The spatial average of the difference is maximum at around 0.5 s. This indicates
that the vortex breakdown, due to the small-scale flow behavior that needs to be
dealt with, would not be easy to resolve. Figure 21 shows the velocity difference at
0.5 s.
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Fig. 15 Patient-specific aorta flow analysis. Mesh refinement study. Computed with Refinement
Mesh 4. Isosurfaces corresponding to a positive value of the second invariant of the velocity gradi-
ent tensor, colored by the velocity magnitude (m/s) (top). The time instants are shown with circles
(bottom).

In summary, good accuracy in the WSS magnitude can be obtained with locally
good representation, and the OSI requires a good flow representation overall, in-
cluding the vortex breakdown.
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Fig. 16 Patient-specific aorta flow analysis. Mesh refinement study. WSS (dyn/cm2) at the peak
flow rate.
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Fig. 17 Patient-specific aorta flow analysis. Mesh refinement study. y+ value for the first-element
thickness, based on the WSS computed at the peak flow rate.
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Fig. 18 Patient-specific aorta flow analysis. Mesh refinement study. TAWSS (dyn/cm2).
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Fig. 19 Patient-specific aorta flow analysis. Mesh refinement study. Spatially-averaged WSS dur-
ing a cycle.
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Fig. 20 Patient-specific aorta flow analysis. Mesh refinement study. OSI.
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Fig. 21 Patient-specific aorta flow analysis. Mesh refinement study. Velocity difference
∥∥uh

k −uh
4

∥∥
(m/s) at 0.5 s, where the subscripts indicate Base Mesh and Refinement Mesh k.
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8 IMGA Computation: Patient-Specific Heart Valve Design and
Analysis

This section is from [74], where more details can be found.
Here we present a novel framework for designing personalized prosthetic heart

valves using IMGA-VMS. We parameterize the leaflet geometry using several key
design parameters. This allows for generating various perturbations of the leaflet de-
sign for the patient-specific aortic root reconstructed from the medical image data.
Each design is analyzed using the IMGA-VMS FSI methodology, which allows us
to efficiently simulate the coupling of the deforming aortic root, the parametrically
designed prosthetic valves, and the surrounding blood flow under physiological con-
ditions. A parametric study is carried out to investigate the influence of the geome-
try on heart valve performance, indicated by the effective orifice area (EOA) and the
coaptation area (CA). Finally, the FSI simulation results of a design that reasonably
well balances the EOA and CA are presented.

8.1 Trivariate NURBS Parameterization of the Ascending Aorta

To obtain a volumetric parameterization of the artery and lumen, we first construct a
trivariate multi-patch NURBS in a regular shape, e.g. a tubular domain, then solve a
linear elastostatic, mesh moving problem [94] for the displacement from this regular
domain to a deformed configuration that represents the artery and lumen. However,
solving a linear elastostatic problem to obtain the deformed interior mesh is only
effective for relatively mild, translation-dominant deformations. For scenarios that
involve large deformations, such as the deformation of a straight tubular domain
into a curved shape of a patient-specific ascending aorta, the interior elements can
become severely distorted. To avoid this, we first obtain a centerline along the axial
direction of a patient-specific artery wall surface. Along this centerline, we define a
number of cross sections corresponding to the control points of the NURBS artery
wall surface in the axial direction. (These cross sections are shown as blue curves
in Figure 22a.) At each cross section, we calculate its unit normal vector nc and
the effective radius rc, which is determined such that the area of a circle calculated
using this radius matches the area of the cross section. (A circle corresponding to
one of the cross sections is shown in the red curve in Figure 22a.) Finally, using
this information, we construct a tubular NURBS surface that has the same control-
point and knot-vector topology as the target patient-specific artery wall surface, as
shown in Figures 22b and 22c. Another tubular surface corresponding to the lumenal
surface is also constructed, using the same cross sections but smaller effective radii
coming from the lumenal NURBS surface.

These two tubular NURBS surfaces are used to construct a primitive trivariate
multi-patch NURBS that includes the solid and fluid subdomains, shown in gray
and red, respectively, in Figure 22d. Basis functions are made C0-continuous at the
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Fig. 22 The construction of the volumetric NURBS discretization of the blood and the artery
wall domains. (a) Cross sections of the artery wall surface. (b) Circular cross sections. (c) NURBS
tubular surface and corresponding control points. (d) Primitive volume mesh. (e) Deformed volume
mesh. (f) h-refined volume mesh.

fluid–solid interface, so that velocity functions defined using the resulting spline
space conform to standard fluid–structure kinematic constraints while retaining the
ability to represent non-smooth behavior across the material interface. The result-
ing volumetric NURBS can then be morphed to match the patient-specific geom-
etry with minimal rotation, so an elastostatic problem can provide an analysis-
suitable parameterization. Displacements at the ends of the tube are constrained to
remain within their respective cross sections. Finally, we refine the deformed trivari-
ate NURBS for analysis purposes, by inserting knots at desired locations, such as
around the sinuses and the flow boundary layers. The final volumetric NURBS dis-
cretization of the patient-specific ascending aorta is shown in Figure 22f.

8.2 Parametric BHV Design

To design effective prosthetic valves for specific patients, we focus specifically on
the leaflet geometry and assume that non-leaflet components of stentless valves
move with the aortic root and do not affect aortic deformation or flow. Starting
from the NURBS surface of a patient-specific root, valve leaflets are parametrically
designed as follows. We first pick nine “key points” located on the ends of commis-
sure lines and the bottom of the sinuses. The positions of these points are indicated
by blue spheres in Figure 23. These define how the leaflets attach to the sinuses.
The key points solely depend on the geometry of the patient-specific aortic root and
will remain unchanged for different valve designs. We then parameterize families of
univariate B-splines defining the free edges and radial “belly curves” of the leaflets.
These curves are shown in red and green in Figure 23. The attachment edges, free
edges, and belly curves are then interpolated to obtain smooth bivariate B-spline
representations of the leaflets.

Figure 24 shows the details of parameterizing the free-edge curve (red) and the
belly-region curve (green). In Figure 24, p1, p2 and p3 are the key points on the top
of the commissure lines and p4 is the key point on the sinus bottom, as labeled in
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p1
p2

p3

p4

Fig. 23 The key geometric features used to parametrically control the valve designs. The blue key
points define the attachment of the valve to the root. The red and green curves are parametrically
controlled for valve design.
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Fig. 24 The parametric control of the valve designs. The key points (blue spheres) are identical to
those in the right plot of Figure 23. x1, x2, and x3 control the location of Pf and Pb and thus control
the curvature and height of the red free edge, and the curvature of the green belly curve.

Figure 23. Points p1-p3 define a triangle ∆p1–3, with pc being its geometric center.
The unit vector pointing from pc to pn is denoted by tp, and the unit normal vec-
tor of ∆p1–3 pointing downwards is np. We first construct the free edge curve as a
univariate quadratic B-spline curve determined by three control points, p1, pf, and
p2. The location of pf is defined by pf = pc + x1tp + x2np. By changing x1 and x2 to
control the location of pf, the curvature and the height of the free edge can be para-
metrically changed. We then take pm as the midpoint of the free edge, the point pb,
and the key point p4 to construct a univariate quadratic B-spline curve (green). The
point pb is defined by pb = po + x3np, where po is the projection of pm onto ∆p1–3
along the direction of np. Finally, the fixed attachment edges and the parametrically
controlled free edge and belly curve are used to construct a cubic B-spline surface
with desired parameterization. By choosing x1, x2 and x3 as design variables, we
can parametrically change the free edge and belly curve, and therefore change the
valve design. This procedure is implemented in an interactive geometry modeling
and parametric design platform [96].

8.3 Application to BHV Design

To determine an effective BHV design, we first need to identify quantitative mea-
sures of its performance. We focus on two quantities of clinical interest: to measure
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the systolic performance, we evaluate the EOA, which indicates how well the valve
permits flow in the forward direction. For a quantitative evaluation of the diastolic
performance, we measure the CA, which indicates how well the valve seals and pre-
vents flow in the reverse direction. In this section, we study the impact of the design
variables x1, x2, and x3 on our two quantities of interest.

Constitutive parameters in the governing equations are held constant over the
design space. Fluid, solid, and shell structure mass densities are set to 1.0 g/cm3. The
parameters of the Fung-type material model for the shell structure are c0 = 2.0×106

dyn/cm2, c1 = 2.0×105 dyn/cm2, and c2 = 100. The thickness of the leaflet is set to
0.0386 cm. The bulk and shear modulii for the arterial wall are selected to give a
Young’s modulus of 107 dyn/cm2 and Poisson’s ratio of 0.45 in the small strain limit.
The inlet and outlet cross sections are free to slide in their tangential planes and
deform radially, but constrained not to move in the orthogonal directions [97]. Mass-
proportional damping with constant Cdamp = 104 Hz is used to model the interaction
of the artery with the surrounding tissue. The dynamic viscosity of the blood is set
to µf = 3×10−2 g/(cm s).

We apply a physiologically-realistic left ventricular pressure time history as a
traction boundary condition at the inflow. The applied pressure signal is periodic,
with a period of 0.86 s for one cardiac cycle. The traction −(p0 +RQ)nf is applied at
the outflow for the resistance boundary condition, where p0 is a constant physiolog-
ical pressure level, R > 0 is a resistance coefficient, and Q is the volumetric flow rate
through the outflow. In the present computation, we set p0 = 80 mmHg and R = 200
(dyn s)/cm5. These values ensure a realistic transvalvular pressure difference of 80
mmHg across a closed valve when Q = 0, while permitting a flow rate within the
normal physiological range and consistent with the flow rate estimated from the
medical data (about 310 ml/s) during systole. A time step size of ∆t = 10−4 s is used
in all simulations. To obtain the artery wall tissue prestress, we apply the highest
left ventricular pressure during systole (127 mmHg at t = 0.25 s) on the inlet and
a resistance boundary condition (p0 = 80 mmHg and R = 200 (dyn s)/cm5) on the
outlet for the calculation of h̃f in the prestress problem [54].

We perform FSI simulations of each of (x1, x2, x3) ∈ ({0.05,0.25,0.45} cm,
{0.1,0.3,0.5} cm, {0.5,0.8,1.1,1.4} cm), then calculate the EOA at peak systole and
the maximum CA occurring during ventricular diastole. The simulation results and
quantities of interest for each case are reported in [74]. An ideal valve would have
both a large EOA and a large CA. However, these two quantities tend to compete
with each other: valves that close easily can be more difficult to open and vice versa.
In general, the results show that increasing x1, which corresponds to decreasing the
length of the free edge, decreases EOA and CA at the same time. Increasing x2,
which decreases the height of the free edge, may increase EOA slightly but reduces
CA significantly. The reduction of CA due to Increasing x2 reduces CA and causes
many designs cannot seal completely. Increasing x3, which increases the surface
curvature in the leaflet belly region, improves CA but decreases EOA. Finally, the
combination of x1 = 0.05 cm, x2 = 0.1 or 0.3 cm, and x3 = 0.5 or 0.8 cm reliably
yields a high EOA between 3.92 and 4.05 cm2, near the upper end of the physiolog-
ical range of 3.0–4.0 cm2 in healthy adults, and a CA between 3.49 and 4.54 cm2.
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Fig. 25 The best-performing prosthetic valve design and its EOA and CA from the FSI simulation.

Among these four cases, x∗ = (x1, x2, x3) = (0.05 cm,0.1 cm,0.8 cm), which has a
CA of 4.54 cm2 and EOA of 3.92 cm2, strikes the best compromise between EOA
and CA. The valve geometry of this best-performing design and its EOA and CA
from the FSI simulation are shown in Figure 25.

Figure 26 shows several snapshots of the valve deformation and the details of the
flow field at several points during the cardiac cycle. The color indicates the fluid ve-
locity magnitude. The visualizations clearly show the instantaneous valve response
to the left ventricular pressure. The valve opens with the rising left ventricular pres-
sure in early systole (0.0–0.20 s), and then stays fully open near peak systole (0.25–
0.27 s), allowing sufficient blood flow to enter the ascending aorta. A quick valve
closure is then observed in early diastole (0.32–0.38 s). This quick closure of the
valve minimizes the reverse flow into the left ventricle, as the left ventricular pres-
sure drops rapidly in this period. After that, the valve properly seals, and the flow
reaches a near-hydrostatic state (0.65 s). These features observed during the cardiac
cycle characterize a well functioning valve within the objectives considered in this
study: a large EOA during systole and a proper CA during diastole. In Figure 27,
the models are superposed in the configurations corresponding to the fully-open
and fully-closed phases for better visualization of the leaflet–wall coupling results.
The deformation of the attachment edges can be clearly seen. The expansion and
contraction of the arterial wall, as well as its sliding motion between systole and
diastole can also be observed. The maximum in-plane principal Green–Lagrange
strain (MIPE) evaluated on the aortic side of the leaflet is shown in Figure 28. The
figure shows that during opening the strain is concentrated in the belly region of the
leaflet, while during closing the highest strain happens near the valve commissure.
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Fig. 26 Volume rendering visualization of the velocity field from our FSI simulation at several
points during a cardiac cycle.

Fig. 27 Relative displacement between fully-open (red) and fully-closed (blue) configurations,
showing the effect of leaflet–wall coupling. The deformation of the attachment edges can be clearly
seen. The expansion and contraction of the arterial wall as well as its sliding motion between
systole (red) and diastole (blue) can also be observed.
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Fig. 28 Deformed valve configuration, colored by the maximum in-plane principal Green–
Lagrange strain (MIPE) evaluated on the aortic side of the leaflet. Note the different scale for
each time instant.



Title Suppressed Due to Excessive Length 39

9 Concluding Remarks

In this chapter we have reviewed various technologies that have been developed
by us and our colleagues and used to solve general classes of problems in Com-
putational Cardiovascular Analysis, with focus herein on aortic flows and patient-
specific and bioprosthetic heart-valve FSI. Our work on these problems, and in other
more general areas of engineering, science and medicine, is based on Stabilized
Methods and the Variational Multiscale Method (VMS), which have enjoyed enor-
mous attention in the research literature and are used widely in industry and national
laboratories. Stabilized Methods and the Variational Multiscale Method are at the
center of development of core technologies such as Space–Time VMS, Arbitrary
Lagrangian–Eulerian VMS, and Immersogeometric VMS, which we emphasized
herein. They are in turn enhanced by many other special technologies that are used
to deal with specific features of the applications, many of which we also described.

Computational Cardiovascular Analysis is now used routinely in medical device
design, diagnosis of cardiovascular disease, surgical planning, virtual stent place-
ment, and numerous other areas. It is only part of the more general field of Compu-
tational Medicine, which is rapidly growing. Just as the capacity of the underlying
computational methods described in this article depend on the growing power of
computers, Computational Medicine depends upon the increasing fidelity of med-
ical imaging technologies and devices. Like computers, these are also advancing
rapidly, which portends a bright future for the further development of Computational
Medicine and its enormous potential impact on health and the human condition.
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