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Abstract

Analysis-suitable T-splines (ASTS) including both extraordinary points and T-junctions
are used to solve Kirchhoff-Love shell problems. Extraordinary points are required to
represent surfaces with arbitrary topological genus. T-junctions enable local refinement of
regions where increased resolution is needed. The benefits of using ASTS to define shell
geometries are at least two-fold: (1) The manual and time-consuming task of building a
new mesh from scratch using the CAD geometry as an input is avoided and (2) C1 or
higher inter-element continuity enables the discretization of shell formulations in primal
form defined by fourth-order partial differential equations. A complete and state-of-the-art
description of the development of ASTS, including extraordinary points and T-junctions, is
presented. In particular, we improve the construction of C1-continuous non-negative spline
basis functions near extraordinary points to obtain optimal convergence rates with respect
to the square root of the number of degrees of freedom when solving linear elliptic problems.
The applicability of the proposed technology to shell analysis is exemplified by performing
geometrically nonlinear Kirchhoff-Love shell simulations of a pinched hemisphere, an oil
sump of a car, a pipe junction, and a B-pillar of a car with 15 holes. Building ASTS
for these examples involves using T-junctions and extraordinary points with valences 3,
5, and 6, which often suffice for the design of free-form surfaces. Our analysis results are
compared with data from the literature using either Reissner-Mindlin shells or Kirchhoff-
Love shells. We have also imported both finite element meshes and ASTS meshes into
the commercial software LS-DYNA, used Reissner-Mindlin shells, and compared the result
with our Kirchhoff-Love shell results. Excellent agreement is found in all cases. The
complexity of the shell geometries considered in this paper shows that ASTS are applicable
to real-world industrial problems.
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1. Introduction

In engineering applications, shell geometries are often created in computer-aided-design
(CAD) programs using different types of spline functions, such as non-uniform rational
B-splines (NURBS) [1] and T-splines [2]. In order to generate complex geometries, the
tensor-product structure of NURBS requires gluing together many different NURBS sur-
faces called patches. This procedure leads to at least two shortcomings: (1) Superfluous
control points are needed due to the tensor-product structure of each patch [3] and (2)
watertight geometries are difficult to obtain in most all cases [4]. T-splines, through the
use of T-junctions and extraordinary points, overcome the aforementioned shortcomings of
NURBS [3, 4]. T-junctions remove the tensor-product constraint of NURBS patches, thus
enabling the placement of control points only where needed. Extraordinary points enable
the representation of geometries with arbitrary topology using only one T-spline surface.
The unstructured nature of T-splines also provides an alternative to the use of trimmed
NURBS surfaces [5, 6].

When it comes to performing numerical simulations of shell structures in computer-
aided-engineering (CAE) programs, the current spline representations used in CAD pro-
grams are not necessarily suitable for analysis. As a result, a new mesh needs to be built
from scratch using the original CAD geometry as an input. This process is time consuming,
taking up to 80% of the “design to analysis” cycle in certain engineering applications [7, 8].
Moreover, significant geometry modifications are often inevitable, thus jeopardizing the
reliability of the analysis results. C0 Lagrange polynomials, the standard basis functions in
the finite element method [9], are frequently used to create the computational mesh. This
reduces the smoothness of the original spline surface.

Isogeometric analysis (IGA) was introduced with the goal of developing a seamless
integration between CAD and CAE programs when it comes to geometry representation. As
a first step, a NURBS patch was shown to be a suitable basis for analysis in [10, 11, 12, 13].
In contrast with the C0 inter-element continuity of Lagrange polynomials, the higher inter-
element continuity of a NURBS patch brings the following advantages: higher-order partial
differential equations can be solved in primal form [14, 15, 16, 17, 18], enhanced robustness
in solid mechanics is obtained [19], H1-conforming discretizations that are either divergence-
conforming or curl-conforming can be derived in a straightforward manner [20, 21, 22, 23],
and partial differential equations can be collocated in strong form [24, 25]. As opposed
to a NURBS patch, which is directly analysis-suitable, T-junctions are not necessarily
analysis-suitable [26]. To remedy this, a subset of T-splines called analysis-suitable T-
splines (ASTS), including T-junctions but not extraordinary points, was defined which
maintains all the important geometric and mathematical properties of a NURBS patch
[27, 28, 29, 30, 31, 32, 33, 34]. When at least C1 inter-element continuity is imposed, the
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use of multi-patch NURBS or T-splines with extraordinary points does not necessarily lead
to spaces with optimal approximation properties in analysis [35, 36, 37]. A construction
of extraordinary points with at least C1 inter-element continuity that results in optimal
convergence rates with respect to the mesh size h for second- and fourth-order linear elliptic
problems was recently developed in [38], thus enabling the extension of the ASTS definition
to include both T-junctions and extraordinary points.

NURBS-based IGA was applied to Kirchhoff-Love shells in [15, 39, 40, 41, 42, 43, 44, 45],
Reissner-Mindlin shells in [46, 47, 48], a hierarchic family of linear shells [49], and a shell
formulation that blends Kirchhoff-Love theory with Reissner-Mindlin theory in [50]. ASTS-
based IGA, including T-junctions but not extraordinary points, was recently applied to
Kirchhoff-Love shells in [51]. Triangular Loop and quadrilateral Catmull-Clark subdivision
surfaces are another appealing alternative to integrate geometric modeling and shell analysis
[52, 53, 54, 55, 56, 57, 58]. In the neighborhood of extraordinary points, however, the
resulting basis functions obtained with subdivision surfaces are non-polynomial, which (1)
complicates the numerical integration [59, 60] and (2) harms the approximation order of
the spaces [61, 60].

In this work, we describe a detailed blueprint for construction of smooth ASTS on
unstructured meshes. This description is self-contained, complete, and general enough to
handle all cases of interest in practice where one needs to work with meshes containing both
extraordinary points and T-junctions. Extraordinary points enable generation of quadrilat-
eral meshes for geometries with arbitrary topologies, while T-junctions allow us to locally
increase the spline space resolution to one required for the purpose of analysis. Augment-
ing the classical ASTS construction (on locally structured meshes with T-junctions) with
a novel extraordinary point treatment, we are able to achieve optimal convergence rates
with respect to not only the mesh size but also the square root of the number of degrees
of freedom for second- and fourth-order linear elliptic problems. We believe our descrip-
tion of the unstructured T-spline technology with extraordinary points improves upon and
supersedes previous presentations in the literature, such as [62], which was deficient in its
inability to achieve optimal convergence rates in the presence of extraordinary points. The
performance and flexibility of the construction is further exemplified using a test-suite of
geometrically nonlinear Kirchhoff-Love shells. We consider geometries of increasing com-
plexity, including an automotive B-pillar. Although we focus on Kirchhoff-Love shells in
this paper, our C1-continuous ASTS meshes can be used to discretize other shell formula-
tions such as Reissner-Mindlin shells.

The paper is outlined as follows. In Section 2, the construction of ASTS including both
extraordinary points and T-junctions is described. In Section 3, geometrically nonlinear
Kirchhoff-Love shell theory is presented in curvilinear coordinates. Section 4.1 tests the
formulation on the pinched hemisphere benchmark problem. Section 4.2 considers the auto-
motive oil-sump geometry presented in [63]. Section 4.3 deals with a pipe junction and our
results are compared with the commercial software LS-DYNA that uses the isogeometric
Reissner-Mindlin formulation proposed in [46]. An automotive B-pillar geometry is consid-
ered in Section 4.4. The B-pillar geometry is also meshed using Lagrange polynomials for
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comparison with the well-established finite element discretization of Reissner-Mindlin shell
theory proposed in [64]. Conclusions and future research directions are drawn in Section 5.

2. Analysis-suitable T-splines

Building upon theoretical studies of extraordinary points [65, 38], truncation [66, 67],
and T-junctions [27, 68, 30], we explain in this section the construction of bi-cubic ASTS
of arbitrary topology satisfying the following properties:

(1) Linear independence of the blending functions, that is, the blending functions consti-
tute a basis.

(2) Partition of unity of the polynomial basis functions.

(3) Each basis function is pointwise non-negative.

(4) At least C1 continuity everywhere while having a finite representation.

(5) Local support of the basis functions.

(6) Local h-refinement capabilities.

(7) Optimal convergence rates with respect to both the mesh size h and the square root
of the number of degrees of freedom when solving second- and fourth-order linear
elliptic partial differential equations.

Properties (2) and (3) guarantee that ASTS satisfy the convex-hull property. Property
(1) implies that an affine transformation of an ASTS surface is obtained by applying the
transformation to the control points. In this section, we assume that the reader is familiar
with NURBS [1, 69] and Bézier extraction [70, 71].

2.1. T-mesh

The T-mesh defines the topological information of a T-spline surface∗ and it plays a
key role in defining the subset of ASTS. An example of a T-mesh is shown in Fig. 1 (a).
The vertices are marked with circles. The edges are closed line segments that connect
two vertices without passing through any other vertex. The faces are the white regions
delimited by edges. The valence of a vertex, denoted by µ, is the number of edges that
emanate from that vertex. T-junctions are vertices playing the same role as hanging nodes
in classical finite elements. Extraordinary points are either interior vertices with µ 6= 4
that are not T-junctions or boundary vertices with µ > 3. The edges emanating from an
extraordinary point are called spoke edges. In Fig. 1 (a), T-junctions and extraordinary
points are marked with blue and red circles, respectively. Important paraphernalia for
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(a) T-mesh (b) Extended T-mesh

Figure 1: (a) T-mesh with two extraordinary points and four T-junctions. The extraordinary points and
T-junctions are marked with red and blue circles, respectively. (b) Extended T-mesh. Face extensions and
edge extensions are represented with dashed black lines and green solid lines, respectively.

dealing with T-junctions and extraordinary points within the subset of ASTS is detailed
below.

A face extension is a closed directed line segment that originates at a T-junction and
moves in the direction of the missing edge until two orthogonal edges are encountered.
A one-bay face extension is the part of a face extension that lies on the face adjacent to
the T-junction. An edge extension is a closed directed line segment that originates at a
T-junction and moves in the opposite direction of the face extension until one orthogonal
edge is encountered. A T-junction extension is composed of a face and an edge extension.
Since T-junction extensions are closed line segments, a T-junction extension can intersect
with other T-junction extension either in its interior or at its endpoints. The extended
T-mesh is obtained adding the T-junctions extensions to the T-mesh. Fig. 1 (b) plots the
extended T-mesh associated with the T-mesh shown in Fig. 1 (a).

The 1-ring faces of an extraordinary point are the faces that are in contact with the
extraordinary point. For m > 1, the m-ring faces of an extraordinary point are all faces
that touch the (m-1)-ring faces and are not a part of the (m-2)-ring faces. The m-disk faces

∗Here “topological information of a T-spline surface” must be understood as the way in which the
different constituent parts of the T-spline technology are interrelated or arranged.
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of an extraordinary point are defined as the set containing all its 1-, 2-, ... , m-ring faces.
In Fig. 1 (b), the 1- and 2-rings faces around extraordinary points are darkly and lightly
shaded, respectively. The set of 0-ring vertices of an extraordinary point contains only
the extraordinary point itself. For m > 0, the m-ring vertices of an extraordinary point
contains all the vertices that lie on the m-ring faces but are not a part of the (m-1)-ring
vertices. The m-disk vertices of an extraordinary point are the union of all its 0-, 1-, 2-, ...
, m-ring vertices.

The set of 1-layer faces around the T-mesh boundary contains the faces that are in
contact with the T-mesh boundary. For m > 1, the set of m-layer faces around the T-mesh
boundary are all faces that touch the (m-1)-layer faces and are not a part of the (m-2)-layer
faces. The set of 0-layer vertices around the T-mesh boundary contains the vertices at the
T-mesh boundary. For m > 0, the m-layer vertices around the T-mesh boundary contains
all the vertices that lie on the m-layer faces but are not a part of the (m-1)-layer vertices.

We consider a T-mesh to be admissible when it satisfies the following topological con-
ditions:

• No extraordinary point belongs to the 3-disk vertices of any other extraordinary point.

• No one-bay face extension subdivides a 3-disk face of an extraordinary point.

• No topologically perpendicular T-junction extensions intersect.

• No T-junction topologically parallel to the boundary belongs to the 0-, 1-layer vertices
around the T-mesh boundary.

• No extraordinary point belongs to the 0-, 1-, 2-layer vertices around the T-mesh
boundary.

ASTS are T-splines defined over an admissible T-mesh. These topological conditions
are not restrictive and complex geometries can be built satisfying these conditions as we
will show in the examples of this paper.

2.2. Knot spans

Knot spans define the parametric information of a T-spline surface. A knot span is
a non-negative real number assigned to a T-mesh edge. A valid knot span configuration
must satisfy two conditions: (1) knot spans on opposite sides of every face are required to
sum to the same value and (2) all the edges that emanate from the T-mesh boundary are
assigned with zero knot spans. Fig. 2 (a) plots a possible knot span configuration for the
T-mesh shown in Fig. 1 (a).

For simplicity of exposition and since it does not pose a restriction on the complexity of
the geometries that can be generated, we will henceforth focus on T-splines with the same
nonzero knot span a assigned to all the edges that delimit faces within the 3-disk faces of
extraordinary points. All the T-splines built in this paper satisfy this condition.

The elemental T-mesh defines regions inside which all basis functions are C∞. These
regions, called elements, are suitable for performing both Bézier extraction and numerical
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=0.0
=0.5
=1.0

(a) Knot spans (b) Elemental T-mesh

Figure 2: (a) A possible knot span configuration for the T-mesh represented in Fig. 1 (a). The pentagons,
squares, and triangles correspond to knot spans with values 1, 1/2, and 0, respectively. (b) Elemental
T-mesh associated with the T-mesh and the knot span configuration represented in Fig. 1 (a) and Fig. 2
(a), respectively. The elements of the elemental T-mesh are the shaded regions delimited by black lines.

integration in engineering analysis. The elements of the elemental T-mesh are obtained by
modifying the T-mesh as follows:

• Adding the face extension to each T-junction, which subdivides faces into two ele-
ments.

• Subdividing each face within the 1-ring faces of an extraordinary point into four
elements.

• Eliminating faces with zero parametric measure.

The number of elements in the elemental T-mesh is denoted by nel. Fig. 2 (b) plots
the elemental T-mesh associated with the T-mesh shown in Fig. 1 (a) and the knot span
configuration shown in Fig. 2 (a).

2.3. Bézier extraction

A convenient way of dealing with splines in CAE software as well as even defining splines
is Bézier extraction. Bézier extraction is built upon the fact that a spline basis function
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within each element of the elemental T-mesh is simply a bi-cubic polynomial. Thus, a spline
basis function NA restricted to an element e can be expressed as a linear combination of
the 16 bi-cubic tensor-product Bernstein polynomial basis functions, viz.,

NA|e= N e
a (ξ) =

16∑
j=1

Ce
ajbj (ξ) , ξ ∈ �, (1)

where � is the parent element domain†, bj is the j-th bi-cubic Bernstein polynomial, A is
a global spline basis function index, and a is a local-to-element spline basis function index.
Following [9], we use the array IEN to establish a correspondence between local and global
numbering of basis functions, namely, A = IEN(a, e). Let us collect all the spline basis
functions with support on element e and the 16 Bernstein polynomials in column vectors
N e = (N e

1 , N
e
2 , ..., N

e
ne)

T , b = (b1, b2, ..., b16)T , respectively. The spline extraction operator
Ce is the linear map from b to N e, viz.,

N e (ξ) = Ceb (ξ) , ξ ∈ �. (2)

Note that Ce is a matrix of dimension ne × 16 where ne is the number of spline basis
functions with support on element e. Within the subset of ASTS, for elements affected by
T-junctions, ne = 16 as for the case of NURBS, but for elements affected by extraordinary
points, ne may be higher than 16. In an analogous way to how Bernstein polynomials can
be related to spline basis functions, spline control points P e = (P e

1,P
e
2, ...,P

e
ne)

T can be
related to Bézier control points Be = (Be

1,B
e
2, ...,B

e
16)T as follows

Be = (Ce)T P e. (3)

Note that P e and Be are matrices of dimension ne × 3 and 16× 3, respectively. Ee =
(Ce)T is the Bézier extraction operator, however, Ce and Ee will both be referred to as
extraction operators.

2.4. Control points

Control points define the geometric information of a T-spline surface. A control point
is a vector that stores the coordinates of a point in the three-dimensional Euclidean space.
Control points play the same role as nodes in classical finite elements, but do not interpolate
the T-spline surface in general. In CAD, a control net with simple connectivity is required
so that moving its constituent control points modifies the associated T-spline surface in
an intuitive manner. This is accomplished by assigning a control point to each T-mesh
vertex‡, thus leading to a control net with the same connectivity as the T-mesh. Using

†The parent element domain is usually chosen to be [0, 1]2 and [−1, 1]2 in CAD and CAE, respectively.
The extraction operators do not depend on this choice, but the particular expressions for the Bernstains
polynomials do.
‡Besides assigning a control point PL ∈ R3 to each T-mesh vertex, a weight wL ∈ R+ can also be

assigned to each vertex in order to define rational splines. For brevity, we focus on polynomial splines in
this paper, that is, no weights are assigned to the vertices.
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(a) Geometric modeling (b) Engineering analysis

Figure 3: (a) The control points of SD are represented with green circles and the control net of SD is
represented by solid black lines. (b) The control points of SA are represented with blue circles. The control
net of SD is also plotted.

control nets and T-meshes with matching connectivity, it is known how to build bi-cubic T-
spline spaces satisfying properties (1)-(6), but how to satisfy property (7) as well remains
an open problem. In order to circumvent this issue, as delineated in [38], two different
T-spline spaces with different sets of control points are defined as follows:

• A T-spline space for CAD (SD), which satisfies properties (1)-(6). This space has
vertex-based control points. From now on, the control points of SD will be denoted
by P L, where L ∈ {1, ..., n} and n is the number of T-mesh vertices. Fig. 3 (a) plots
a possible control net for CAD associated with the T-mesh shown in Fig. 1 (a).

• A T-spline space for CAE (SA), which satisfies properties (1)-(7). T-mesh vertices
that are not extraordinary points are assigned a control point. In addition, four face-
based control points are assigned to each 1-ring face of an extraordinary point. From
now on, the vertex-based control points of SA, the face-based control points of SA,
and all the control points of SA will be denoted by Q̂V , Q̃F , and QO, respectively,
where F ∈ {1, ..., n− nep}, V ∈ {1, ...,

∑nep
j=1 4µj}, O ∈ {1, ..., ncp}, nep is the number

of extraordinary points, µj is the valence of the jth extraordinary point, and ncp =
n− nep +

∑nep
j=1 4µj is the number of control points in SA.

The spaces SD and SA are constructed in such a way that SD ⊆ SA. As a result, once
we have obtained a satisfactory geometry by moving control points in SD, it is possible to
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Figure 4: (Color online) The face-based spline control points of SA are obtained as linear combinations of
the vertex-based spline control points of SD using Eqs. (4)-(7).

obtain a set of control points in SA that preserves the same geometry. This is accomplished
by keeping the vertex-based control points not associated with extraordinary points un-
changed, discarding the vertex-based control points associated with extraordinary points,
and computing the face-based control points using the following formulas:

Q̃A =
4

9
PG +

2

9
PH +

2

9
P I +

1

9
P J , (4)

Q̃B =
2

9
PG +

4

9
PH +

1

9
P I +

2

9
P J , (5)

Q̃C =
2

9
PG +

1

9
PH +

4

9
P I +

2

9
P J , (6)

Q̃D =
1

9
PG +

2

9
PH +

2

9
P I +

4

9
P J , (7)

where the labels used correspond to Fig. 4. Fig. 3 (b) plots the control points of SA
associated with the control points of SD shown in Fig. 3 (a). Eqs. (4)-(7) are obtained
by imposing the Bézier control points of SD and SA to be the same in the 1-ring faces of
extraordinary points.

2.5. Spline basis functions

In both SD and SA, a spline basis function is associated with each spline control point.
From now on, the basis functions of SD and SA will be denoted by NL and MO, respectively,
where L ∈ {1, ..., n} and O ∈ {1, ..., ncp}. In order to define these basis functions, we will
classify the faces and vertices of the T-mesh as follows:

• Irregular faces are the 1-ring faces of extraordinary points. Transition faces are the
2-ring faces of extraordinary points. The remaining faces are regular faces. Element
boundaries within regular faces are C2-continuous while element boundaries within
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Figure 5: (a)-(c) For the 2-disk faces of extraordinary points, the Bézier control points can be obtained
from the spline control points using Eqs. (8)-(14).

irregular and transition faces may be only C1-continuous. The four face-based basis
functions associated with each irregular face in SA are globally C1-continuous.

• Irregular vertices are the 0-ring vertices of extraordinary points. Transition vertices
are the 1-ring vertices of extraordinary points. The remaining vertices are regular
vertices. The spline basis functions associated with regular vertices are globally C2-
continuous while the spline basis functions associated with irregular and transition
vertices are globally C1-continuous. The control points and basis functions are also
classified as irregular, transition, and regular according to the vertex with which they
are associated.

The basis functions are defined through the extraction operators in each element of the
elemental T-mesh. The extraction operators of elements that are within regular faces are
the same for geometric modeling (SD) and engineering analysis (SA), but for irregular and
transition faces are different.

2.5.1. Irregular and transition faces in geometric modeling

We start associating just one element to each face and distinguish three types of Bézier
control points, namely, face, edge, and vertex Bézier control points. Following [62, 38], face
Bézier control points are defined in terms of spline control points as

Bi
6 =

4

9
P A +

2

9
PB +

2

9
P C +

1

9
PD, (8)

Bi
7 =

2

9
P A +

4

9
PB +

1

9
P C +

2

9
PD, (9)
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Figure 6: (a) Extraction coefficients and local coordinate system before the 2 × 2 split. (b) Extraction
coefficients and local coordinate system after the 2× 2 split.

Bi
10 =

2

9
P A +

1

9
PB +

4

9
P C +

2

9
PD, (10)

Bi
11 =

1

9
P A +

2

9
PB +

2

9
P C +

4

9
PD, (11)

edge Bézier control points are defined in terms of adjacent face Bézier control points as

Bi
8 = Bi+1

5 =
1

2
Bi

7 +
1

2
Bi+1

6 , (12)

Bi
12 = Bi+1

9 =
1

2
Bi

11 +
1

2
Bi+1

10 , (13)

and vertex Bézier control points are defined in terms of adjacent face Bézier control points
as

B1
1 = B2

1 = ... = Bµ
1 =

1

µ

µ∑
j=1

Bj
6, (14)

where the labels used correspond to Fig. 5. Eqs. (8)-(14) define initial expressions for the
extraction operators of the elements within irregular and transition faces. At this point in
the process, all edges are C2-continuous with the exception of the spoke edges, which are
only C0-continuous. In order to obtain C1 continuity at the spoke edges, we will modify the
extraction operators of the elements within irregular faces using the split-then-smoothen
approach [38, 72, 73]. The main reason why we do the split before the smoothing is to
maintain the linear independence of the spline basis functions. This approach is applied to
each basis function that has support on the irregular faces as follows:
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i, 11

i, 21

i, 12

i, 22

(a) (b)

(c) (d)

Figure 7: (a) 1-ring faces of an extraordinary point with valence 6 after the 2× 2 split using the Casteljau
algorithm. (b) The extraction coefficients that are changed by the smoothing matrix are plotted in blue.
(c) The extraction coefficients that end up having the same value in the D-patch framework are plotted
in red. (d) The edge and vertex extraction coefficients that need to be recomputed after application of
the smoothing matrix are plotted in violet and green, respectively. The face extraction coefficients that
intervene in the aforementioned recomputations are plotted in gray.

(a) The extraction coefficients that define the basis function on each irregular face are
collected in row vectors Ci

a = (Ci
a1, C

i
a2, ..., C

i
a16) with i being cyclic in {1, 2, ..., µ}.

Given a local coordinate system, we arrange these coefficients in a 4×4 grid following
the numbering shown in Fig. 6 (a).

(b) We split each irregular face at parameter lines u = a/2 and v = a/2 using the
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Casteljau algorithm [69]. Thus, each irregular face has four elements now. Each
element has its own local coordinate system and the spline basis function is defined
in each of these elements by 16 extraction coefficients as shown in Fig. 6 (b). The
extraction coefficients that define the basis function on these four elements, denoted
by Ci,pq

a with p, q ∈ {1, 2}, are obtained as follows

Ci,pq
a = Ci

a (Sq ⊗ Sp)T , (15)

with

S1 =


1 0 0 0
1
2

1
2

0 0
1
4

1
2

1
4

0
1
8

3
8

3
8

1
8

 , S2 =


1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1

 . (16)

where ⊗ is defined for two matrices G and H as

G⊗H =

G11H G12H . . .
G21H G22H

...
. . .

 . (17)

This split leaves the basis function unchanged since it is performed using the Casteljau
algorithm and does not change the number of spline control points.

(c) Using the D-patch framework [73] and based on the local axes shown in Fig. 7 (a),
the extraction coefficients Ci,11

a6 , Ci,11
a7 , and Ci,11

a10 with i being cyclic in {1, 2, ..., µ} are
modified using a smoothing matrix Π with dimension 3µ× 3µ as followsa6

a7

a10

 = Π

A6

A7

A10

 , (18)

with

A6 =


C1,11
a6

C2,11
a6
...

Cµ,11
a6

 , A7 =


C1,11
a7

C2,11
a7
...

Cµ,11
a7

 , A10 =


C1,11
a10

C2,11
a10
...

Cµ,11
a10

 . (19)

The extraction coefficients Ci,11
a6 , Ci,11

a7 , and Ci,11
a10 with i ∈ {1, 2, ..., µ} are replaced by

their modified values obtained from the column vectors a6, a7, and a10, respectively.
Fig. 7 (b) plots in blue the extraction coefficients that are changed by Π. A choice
needs to be made between picking a smoothing matrix Π+ with non-negative entries
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(a) SD (b) SA

Figure 8: (a)-(b) Continuity of the basis at element boundaries in the 2-disk faces of an extraordinary point
for SD and SA, respectively. Black and orange lines represent C2 and C1 continuity lines, respectively.

that leads to non-negative basis functions and an idempotent matrix Π◦ that leads
to nested spaces [73]. After running all the examples in this paper with both Π+

and Π◦, we have found either indistinguishable results with both smoothing matrices
or increased accuracy with Π+ as we refine. Therefore, we favor the use of Π+

since having non-negative basis functions is a necessary requirement in CAD and an
appealing additional property in CAE. Π+ is defined as follows

Π+ =

Π+
1 Π+

2 Π+
3

Π+
4 Π+

5 Π+
6

Π+
7 Π+

8 Π+
9

 , (20)

(Π+
i )jk = (pi)mod(j−k,µ), (21)

(p1)j = (p4)j = (p7)j = 0,

(p2)j = (p3)j =
1

2µ
,

(p5)j = (p9)j =
1

2µ
(1 + cos(jφµ)) ,

(p6)j =
1

2µ
(1 + cos(2ψ + jφµ)) ,

(p8)j =
1

2µ
(1 + cos(2ψ − jφµ)) ,

(22)

where i ∈ {1, 2, ..., 9}, j, k ∈ {0, 1, ..., µ−1}, Π+
i is a circulant matrix with dimension

µ×µ, pi is the vector of length µ that defines the circulant matrix Π+
i , mod(a, b) re-

turns the remainder after division of a by b, φµ = 2π/µ, ψ = arg
(
(1 + ιβ sin(φµ))e−ιφµ/2

)
,

ι =
√
−1, and we choose β = 0.4.
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(d) As a consequence of the face extraction coefficients that have been changed by the
smoothing matrix, certain edge and vertex extraction coefficients need to be updated.
First, the extraction coefficients Ci,11

a1 , Ci,11
a2 , and Ci,11

a5 with i being cyclic in {1, 2, ..., µ}
are made equal to Ci,11

a6 , which stores the same value for any i ∈ {1, 2, ..., µ} after
application of the smoothing matrix. Ci,11

a1 , Ci,11
a2 , Ci,11

a5 , and Ci,11
a6 with i ∈ {1, 2, ..., µ}

are plotted in red in Fig. 7 (c). Second, edge extraction coefficients Ci,11
a3 , Ci,11

a8 ,
Ci,11
a9 , and Ci,11

a14 with i ∈ {1, 2, ..., µ} and vertex extraction coefficients Ci,11
a4 and

Ci,11
a13 with i ∈ {1, 2, ..., µ} need to be updated following Eqs. (12)-(13) and Eq.

(14), respectively. In Fig. 7 (d), the aforementioned edge extraction coefficients, the
aforementioned vertex extraction coefficients, and the face extraction coefficients that
intervene in their recomputation are plotted in violet, green, and gray, respectively.

The final continuity of each element in SD is indicated in Fig. 8 (a). Note that spline
basis functions associated with 2-ring vertices of an extraordinary point satisfy that Ci,11

a6 =
Ci,11
a7 = Ci,11

a10 = 0 with i being cyclic in {1, 2, ..., µ} and, therefore, steps (c) and (d) are not
needed for these basis functions.

2.5.2. Irregular and transition faces in engineering analysis

Since spline basis functions associated with both vertex-based and face-based control
points are included in the basis of SA, it is needed to perform certain modifications to the
basis functions in order to maintain partition of unity. In [38], the face-based basis functions
are scaled and certain extraction coefficients of the transition basis functions are discarded
to maintain partition of unity. This leads to elements with up to 8+5µ basis functions with
support on them. In order to decrease that number, we propose here an alternative. It
consists on keeping the face-based basis functions unchanged and truncating the transition
basis functions. This leads to elements with only up to 13+3µ basis functions. These lower
values of ne near extraordinary points decrease the time spent in reading the extraction
operators in the CAE program as well as assemblying and solving systems of equations due
to the increased sparsity of the obtained matrices.

Truncation was first introduced in the context of hierarchical B-splines in order to re-
cover partition of unity [66]. After that, truncation was generalized to hierarchical Catmull-
Clark subdivision surfaces [74, 75], handling of T-junctions [34], hierarchical tricubic un-
structured splines [76], and blended B-spines [67]. Truncation consists on discarding the
contributions of basis functions that are already included in other basis functions. Here,
we use the fact that a transition basis function M can be expressed as a linear combination
of 16 C1-continuous splines mi

M =
16∑
i=1

cimi. (23)

The functions mi are called the children of M and the values of the coefficients ci are
indicated in Fig. 9 (a). The children mi associated with irregular faces are already basis
functions of SA. These children are called active children and the others are called pasive
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Figure 9: (a) The children mi of a transition function M are indicated with triangles along with the
coefficients ci needed to obtain the transition function M as a linear combination of mi. (b) The four
nonzero extraction coefficients associated with each face-based spline basis function are indicated. When
the vertex extraction coefficient is not an extraordinary point, µ equals 4. (c)-(d) For the two cases of
transition functions, the children that are kept after truncation are plotted in gray. The crossed out children
are discarded to maintain partition of unity.

children. The truncated basis function M t is obtained by discarding its active children

M t =
∑
i∈Fp

cimi, (24)

where Fp represents the index set of pasive children.
The extraction operators are obtained following the next steps:

• Initial extraction operators for vertex-based spline functions are obtained through
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Eqs. (8)-(14), but discarding the contributions from irregular and transition control
points.

• Face-based spline basis functions are C1-continuous and have only four nonzero ex-
traction coefficients as shown in Fig. 9 (b). When, the vertex extraction coefficient
of one of the face-based spline basis functions is not an extraordinary point, that
function is just a C1-continuous bi-cubic B-spline.

• Irregular and transition functions are truncated, that is, their active children, which
are the face-based basis functions, are discarded. All the children of irregular func-
tions are active and this is the reason why irregular functions are not included in the
basis of SA. Two cases need to be distinguished for truncated transition functions,
namely, transition basis functions associated with vertices shared by three transition
faces and one irregular face and transition basis functions associated with vertices
shared by two transition faces and two irregular faces. The children that need to be
discarded for the two aforementioned cases are crossed out in Figs. 9 (c) and (d), re-
spectively. The extraction coefficients of truncated transition functions are obtained
multiplying the coefficients ci with i ∈ Fp (see Eqs. (23)-(24) and Fig. 9 (a)) by the
coefficients in Fig. 9 (b).

• The split-then-smoothen approach explained in steps (a)-(d) is applied to each vertex-
based and face-based spline basis function with support on the 1-ring faces of the
extraordinary point.

The final continuity of each element in SA is indicated in Fig. 8 (b).

2.5.3. Regular faces

Face-based basis functions and vertex-based basis functions associated with irregular
vertices do not have support on any element within regular faces. All other vertex-based
basis functions have support on certain elements within regular faces. Within regular faces,
each basis function is just a C2-continuous bi-cubic B-spline defined using two local knot
vectors. The support and the two local knot vectors of each basis function are obtained
by shooting rays from the vertex associated with the basis function [2]. Rays are shot
from each T-mesh vertex with the exception of irregular vertices. First, a local coordinate
system (u, v) is assigned to the basis function, which has its origin at the vertex associated
with that basis function. Then, rays are shot in the positive and negative directions defined
by u and v (±u and ±v) until

• the ray hits two T-mesh edges (Case 1).

• the ray reaches the T-mesh boundary (Case 2).

• the ray reaches an extraordinary point (Case 3).
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B
A

C

(a) Ray shooting (b) Bézier mesh

Figure 10: (a) The local axes assigned to basis functions A, B, and C are plotted. The rays associated with
these three basis functions are represented by thick, semi-transparent red lines. Black lines orthogonal to
the rays are plotted when a ray reaches the T-mesh boundary or an extraordinary point to indicate that
additional knot spans need to be added in those cases. The shaded regions indicate the elements within
regular faces in which the basis functions A, B, and C have support. Taking into account the knot span
configuration shown in Fig. 2 (a), the local knot span vectors associated with the basis functions A, B,
and C are ∆ΞA = {0, 1, 1, 0.5}, ∆ΘA = {1, 0.5, 0.5, 1}, ∆ΞB = {1, 1, 0, 0}, ∆ΘB = {1, 1, 1, 1}, and ∆ΞC =
{1, 1, 1, 1}, ∆ΘC = {1, 1, 1, 1}. The local knot vectors associated with the basis functions A, B, and C
are ΞA = {−1,−1, 0, 1, 1.5}, ΘA = {−1.5,−0.5, 0, 0.5, 1.5}, ΞB = {−2,−1, 0, 0, 0}, ΘB = {−2,−1, 0, 1, 2},
ΞC = {−2,−1, 0, 1, 2}, and ΘC = {−2,−1, 0, 1, 2}. (b) Bézier mesh associated with the T-mesh and the
knot span configuration shown in Fig. 1 (a) and Fig. 2 (a), respectively.

Once the rays have been shot, the local knot span vectors ∆Ξ = {∆u−2,∆u−1,∆u1,∆u2}
and ∆Θ = {∆v−2,∆v−1,∆v1,∆v2} are filled by using the knot span configuration associ-
ated with the T-mesh. Let us assume that we are filling the knot spans associated with the
ray shot in the direction −u, namely, ∆u−1 and ∆u−2. In Case 1, ∆u−1 and ∆u−2 are the
first and second knot spans associated with the two edges traversed by the ray. In Case 2,
∆u−2 is zero when the ray only traverses one edge and both ∆u−1 and ∆u−2 are zero when
the ray does not traverse any edge. The zero knot spans are added to obtain an analogous
boundary to the one obtained using NURBS and open knot vectors, which eases the impo-
sition of Dirichlet boundary conditions. In Case 3, both ∆u−1 and ∆u−2 are equal to the
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knot span associated with the spoke edge traversed by the ray§. The knot spans associated
with the rays shot in the directions +u, −v, and +v are filled in an analogous manner.
Examples of Cases 1, 2, and 3 are drawn in Fig. 10 (a). Fig. 10 (a) also shades the ele-
ments within regular faces where each basis function has support. Once the local knot span
vectors are filled, the local knot vectors Ξ and Θ are defined as Ξ = {u−2, u−1, u0, u1, u2}
and Θ = {v−2, v−1, v0, v1, v2}, where u0 = v0 = 0, uk − uk−1 = ∆uk and vk − vk−1 = ∆vk
for k ∈ {1, 2}, and uk+1 − uk = ∆uk and vk+1 − vk = ∆vk for k ∈ {−1,−2}. For each
element e where the basis function has support and that is within regular faces, the extrac-
tion coefficients (Ce

a1, C
e
a2, ..., C

e
a16) that define the basis function in terms of the Bernstein

polynomials can be obtained by applying the knot insertion algorithm to the local knot
vectors [71].

2.6. Geometry and displacement representation

The same T-spline surface (both geometrically and parametrically) is obtained using
either the control points and the basis functions of SD or the control points and the basis
functions of SA. This surface is obtained by mapping each element of the elemental T-mesh
into the Eucledian space as follows

xe (ξ) =

neD∑
a=1

P e
aN

e
a (ξ) =

neA∑
a=1

Qe
aM

e
a (ξ) ∀e ∈ {1, 2, ..., nel}, ξ ∈ �, (25)

where neD and neA are the number of basis functions with support on element e in SD and
SA, respectively. The Bézier mesh is obtained by plotting the element boundaries over the
T-spline surface. Fig. 10 (b) plots the Bézier mesh associated with the T-mesh and the
knot span configuration shown in Fig. 1 (a) and Fig. 2 (a), respectively.

The displacement field is represented as follows

ue (ξ) =

neA∑
a=1

U e
aM

e
a (ξ) ∀e ∈ {1, 2, ..., nel}, ξ ∈ �, (26)

where ue is the displacement vector on the element e and U e
a are the control variables of

the displacement field that contribute to the element e. Therefore, the number of degrees
of freedom (ndof ) is equal to three times the number of control points in SA.

2.7. Refinement

Refinement begins with adding vertices and edges to the T-mesh and assigning knot
spans to the new edges. In order to stay within the subset of ASTS, the refinement must be
done in such a way that the final T-mesh is admissible and the final knot span configuration

§Since we are only using the local knot vectors to obtain the extraction operators of elements within
regular faces, the particular value of ∆u−2 has no impact on the basis function inside of regular faces. In
other words, any value could be assigned to ∆u−2 and the basis function restricted to regular faces would
not change.
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is valid. After that, refinement involves defining the basis functions and control points on
the refined T-mesh. Global uniform refinement is obtained when each face is bisected along
its directions of nonzero parametric measure and the nonzero knot spans are divided in half.
We will use global uniform refinement in the examples of this paper to show that we reach
converged results.

The refinement within regular faces is the same for geometric modeling (SD) and en-
gineering analysis (SA), but for irregular and transition faces is different. Note that when
either an irregular face or a transition face of an extraordinary point is refined, all the other
irregular and transition faces of that extraordinary point need to be refined as well in order
to stay within the subset of ASTS. As a result, this will be the only kind of refinement
considered for irregular and transition faces in this section.

2.7.1. Irregular and transition faces in geometric modeling

In SD, the classification of faces and vertices in irregular and transition that is per-
formed around an extraordinary point does not depend on the refinement level k around
the extraordinary point (with k = 0, 1, 2, ...) and it is done as explained in the beginning
of Section 2.5.

For the refinement level k + 1, the basis functions with support on irregular and/or
transition faces are obtained as explained in Section 2.5.1. The control points that are not
extraordinary points are obtained applying tensor products of univariate knot-insertion
rules [77, 78]. When the smoothing matrix Π+ is used, an extraordinary point P k+1

ep is
obtained as follows

P k+1
ep =

51

112
P k
ep +

3

7µ

∑
l∈T̃ v,ep

P k
l +

13

112µ

∑
l∈T̂ v,ep

P k
l , (27)

where T̃ v,ep is the index set corresponding to transition control points that share an edge
with P k

ep and T̂ v,ep is the index set corresponding to transition control points that do not

share an edge with P k
ep. As shown in [38], when the control points are obtained as above,

the surface stays invariant both geometrically and parametrically in transition faces and
the geometric changes in irregular faces are kept to a minimum. For any refinement level
k, properties (1)-(5) have been proven in [38].

2.7.2. Irregular and transition faces in engineering analysis

In SA, the classification of faces and vertices in irregular and transition around an
extraordinary point depends on the refinement level k that is performed around the ex-
traordinary point, namely,

• Irregular faces are the 2k-disk faces of the extraordinary point. Transition faces are
the (2k + 1)-ring faces of the extraordinary point. Four face-based spline control
points are assigned to each irregular face.

• Irregular vertices are the (2k− 1)-disk vertices of the extraordinary point. Transition
vertices are the (2k)-ring vertices of the extraordinary point. Irregular vertices are
not assigned a spline control point in SA.
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(a) Level 0 (b) Level 1 (c) Level 1 in [38]

Figure 11: Refinement of irregular and transition faces in engineering analysis. Irregular and transition
faces are shaded dark and light gray, respectively. Irregular and transition vertices are marked in red and
black, respectively. Face-based control points are marked with blue squares.

Here, we add 2k rings of irregular faces and 2k−1 rings of irregular vertices so that as we
refine, the surface stays invariant both geometrically and parametrically in the transition
faces of the unrefined mesh. In [38], one more ring of irregular faces and vertices was added
so that as the mesh is refined, nestedness could be obtained. These two alternatives are
plotted in Fig. 11. In Section 2.8, we will show how the labeling of irregular faces and
vertices proposed in this work and the labeling proposed in [38] results in the same accuracy
for any refinement level k while the former leads to fewer degrees of freedom.

For refinement level k+1, the basis functions with support on irregular and/or transition
faces are obtained as explained in Section 2.5.2. The vertex-based control points that have
influence on transition and/or irregular faces are obtained applying tensor products of
univariate knot-insertion rules on the transition faces, where the spline control points used
as input are only the vertex-based control points with influence on the transition faces of
refinement level k. The face-based control points are obtained applying the Casteljau’s
algorithm on the irregular faces, where the Bézier control points used as input are the
Bézier control points before the split-then-smoothen approach is applied. On each refined
irregular face, the face-based control points are equal to the face Bézier control points. For
any refinement level k, properties (1)-(5) can be proved using the same reasoning as in [38].

2.7.3. Regular faces

Within the subset of ASTS, adding T-junctions within regular faces leads to nested
spaces and the surface is not changed either geometrically or parametrically [29, 32]. Algo-
rithms to add T-junctions within regular faces are based on knot insertion and described
in detail in [28]. Properties (1)-(7) have been proven in [68, 30].

2.8. Convergence rates

When defining C1-continuous basis functions in the neighborhood of extraordinary
points, one of the main challenges is to do it in such a way that the resulting spaces
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Figure 12: (a) The Bézier mesh for level 0 and Case1. (b)-(d) Convergence rates in L2, L∞, and H1 norms
for the Poisson equation. In (b)-(d), for a given smoothing matrix and a given refinement level k, the data
point for truncation together with 2k rings of irregular faces and the data point for scaling together with
2k+1− 1 rings of irregular faces essentially lie on the same horizontal line. Therefore, Case1 and Case3 (as
well as Case2 and Case4) would lead to overlapping convergence curves with respect to the mesh size h.

have optimal approximation properties [35, 79]. In this section, we numerically compute
the convergence rates for the following cases:

• Truncation to maintain partition of unity, 2k rings of irregular faces in refinement
level k, and Π+ as smoothing matrix. Henceforth referred to as Case1.

• Truncation to maintain partition of unity, 2k rings of irregular faces in refinement
level k, and Π◦ as smoothing matrix. Henceforth referred to as Case2.

• Scaling to maintain partition of unity, 2k+1 − 1 rings of irregular faces in refinement
level k, and Π+ as smoothing matrix. Henceforth referred to as Case3.
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• Scaling to maintain partition of unity, 2k+1 − 1 rings of irregular faces in refinement
level k, and Π◦ as smoothing matrix. Henceforth referred to as Case4.

Case1 and Case2 are proposed in this work while Case3 and Case4 were proposed in
[38].

We consider a unit square (Ω = [0, 1]2) in which two extraordinary points with valances
3 and 5 are introduced. The Bézier mesh for level 0 and Case1 is plotted in Fig. 12
(a). After that, five levels of global uniform refinement are performed. We solve both
the Poisson equation (second-order linear elliptic problem) and the biharmonic equation
(fourth-order linear elliptic problem) using the approach of manufactured solutions.

The benchmark problem for the Poisson equation is defined as

∆v = g in Ω, (28)

v = 0 in ∂Ω, (29)

g = −2π2sin(πx)sin(πy) in Ω, (30)

for which the exact solution is v = sin(πx)sin(πy). The convergence rates in L2, L∞,
and H1 norms for the four cases considered here are plotted in Figs. 12 (b),(c), and (d),
respectively.

The benchmark problem for the biharmonic equation is defined as

∆2v = g in Ω, (31)

v = 0 in ∂Ω, (32)

∇v · n = 0 in ∂Ω, (33)

g = −16π4(cos(2πx)− 4cos(2πx)cos(2πy) + cos(2πy)) in Ω, (34)

for which the exact solution is v = (1− cos(2πx))(1− cos(2πx)). The convergence rates in
L2, L∞, H1, and H2 norms for the four cases considered here are plotted in Figs. 13 (a),
(b),(c), and (d), respectively.

The main conclusions that can be taken from the convergence rates in Figs. 12 and 13
are

• For level 0, truncation and scaling lead to the same errors up to machine precision,
which suggests that the spaces spanned by both sets of basis functions are the same.
However, truncation leads to lower values of ne near the extraordinary points which
speeds up reading the extraction operators in a CAE program as well as assembling
and solving systems of equations.

• For any refinement level k, truncation together with 2k rings of irregular faces and
scaling together with 2k+1 − 1 rings of irregular faces lead to indistinguishable levels
of accuracy at the scale of the plots, but truncation together with 2k rings of irregular
faces has fewer degrees of freedom. Namely, for level 5, truncation leads to 80.76%
fewer degrees of freedom. As a result, the convergence rates with respect to the mesh
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Figure 13: (a)-(d) Convergence rates in L2, L∞, H1, and H2 norms for the biharmonic equation. In
(a)-(d), for a given smoothing matrix and a given refinement level k, the data point for truncation together
with 2k rings of irregular faces and the data point for scaling together with 2k+1−1 rings of irregular faces
essentially lie on the same horizontal line. Therefore, Case1 and Case3 (as well as Case2 and Case4) would
lead to overlapping convergence curves with respect to the mesh size h.

size h of truncation together with 2k rings of irregular faces and scaling together with
2k+1 − 1 rings of irregular faces are the same, but the convergence rates with respect
to the square root of the number of degrees of freedom of truncation together with
2k rings of irregular faces are higher.

• The nonnegative smoothing matrix leads to lower errors than the idempotent smooth-
ing matrix.

• Case1 performs the best in all convergence rates for both second- and fourth-order
linear elliptic problems.

As a result, we favor the use of Case1 in simulations. The same conclusion will be
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reached in Section 4.2 when comparing the four cases in geometrically nonlinear Kirchhoff-
Love shells.

Remark 2.1. As in [38], the results in Figs. 12 and 13 have been created picking
β = 0.4 for all refinement levels when using Π+ and starting with β = 0.4 and dividing β
by two in each refinement level when using Π◦. Nevertheless, we have tried β = 0.4 for all
refinement levels when using Π◦ and starting with β = 0.4 and dividing β by two in each
refinement level when using Π+ and the differences were completely negligible.

3. Kirchhoff-Love shells

Kirchhoff-Love shells rely on the following assumptions:

• Transverse normal stresses are neglected.

• Cross sections stay straight throughout deformation.

• A linear strain field is considered through the thickness.

• Cross sections remain normal to the midsurface during deformation. In other words,
transverse shear strains are neglected. This assumption is considered to be acceptable
for shells satisfying that their radii of curvature are greater than twenty times their
thickness [80]. The majority of shell structures used in engineering applications satisfy
this condition.

As a result of these assumptions, the kinematics of the shell can be entirely represented
by its midsurface and its thickness.

In this section, we consider Kirchhoff-Love shells with large displacements and small
strains, that is, we consider geometric nonlinearities, but not material nonlinearities. We
derive the Kirchhoff-Love shell formulation using a Lagrangian description and curvilinear
coordinates.

3.1. Kinematics

The geometry of the midsurface is expressed in the curvilinear coordinate system defined
by θ1 and θ2. In the reference and deformed configurations, the position vector of a material
point in the midsurface is denoted by r̊(θ1, θ2) and r(θ1, θ2), respectively. Therefore, the
displacement vector of a material point in the midsurface is defined as

u(θ1, θ2) = r(θ1, θ2)− r̊(θ1, θ2). (35)

In the following, indices in Greek letters take the values {1, 2}, indices in Latin letters
take the values {1, 2, 3}, and repeated indices are summed. When needed, we distinguish

quantities in the reference and the deformed configurations by adding (̊·) to the quantity
in the reference configuration. (·) · (·) and (·) × (·) denote the dot and cross products of
vectors, respectively. ||·|| denotes the length of a vector. The determinant of a tensor is
denoted by det(·), whereas the determinant of a matrix is denoted by |·|.
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Non-unit tangent vectors to the midsurface in the reference and deformed configurations
are obtained by

åα =
∂r̊

∂θα
, aα =

∂r

∂θα
, (36)

respectively. Unit normal vectors to the midsurface in the reference and deformed config-
urations are obtained by

å3 =
å1 × å2

||̊a1 × å2||
, a3 =

a1 × a2

||a1 × a2||
, (37)

respectively. Local covariant bases in the reference and deformed configuration are defined
as (å1, å2, å3) and (a1,a2,a3), respectively.

The covariant metric coefficients of the midsurface in the reference and deformed con-
figuration are defined as

åαβ = åα · åβ, aαβ = aα · aβ, (38)

respectively. The contravariant metric coefficients can be computed as the inverse matrix
of the covariant coefficients, i.e.,

[̊
aαβ
]

= [̊aαβ]−1 and
[
aαβ
]

= [aαβ]−1.
The covariant curvature coefficients of the midsurface in the reference and deformed

configuration are defined as

b̊αβ =
∂åα
∂θβ
· å3, bαβ =

∂aα
∂θβ
· a3, (39)

respectively.
The covariant Green-Lagrange strain coefficients are obtained as follows

Eαβ = εαβ + θ3καβ =
1

2
(aαβ − åαβ) + θ3(̊bαβ − bαβ), (40)

where εαβ are the covariant membrane strain coefficients, καβ are the covariant change-of-
curvature coefficients, and θ3 is the coordinate in the thickness direction (−0.5 t̊(θ1, θ2) ≤
θ3 ≤ 0.5 t̊(θ1, θ2) with t̊(θ1, θ2) being a function that defines the shell thickness at each
material point of the midsurface in the reference configuration.

3.2. St. Venant-Kirchhoff material

The St. Venant-Kirchhoff material model is an isotropic and linear elastic material that
may be used when large displacements and small strains are assumed. The contravariant
coefficients of the second Piola-Kirchhoff stress tensor for this material are defined as

Sαβ =
E

1− ν2

[
(1− ν )̊aαλ åµβ (ελµ + θ3κλµ) + νåαβ åµλ (ελµ + θ3κλµ)

]
. (41)

where E is the Young’s modulus and ν is the Poisson’s ratio.
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The contravariant coefficients of the membrane forces in the reference configuration are
computed as follows

n̊αβ =

∫ t̊/2

−t̊/2
Sαβdθ3 =

Et̊

1− ν2

[
(1− ν )̊aαλ åµβ ελµ + νåαβ åµλ ελµ

]
. (42)

The contravariant coefficients of the shell moments in the reference configuration are com-
puted as follows

m̊αβ =

∫ t̊/2

−t̊/2
Sαβθ3dθ3 =

Et̊3

12(1− ν2)

[
(1− ν )̊aαλåµβκλµ + νåαβåµλκλµ

]
. (43)

3.3. Variational form
The variational form can be obtained from the principle of virtual work which states

that the internal virtual work (δW int) must be equal to the external virtual work (δW ext)
for any virtual displacement (δu), i.e.,

δW int = δW ext ∀δu, (44)

with

δW int =

∫
Å

(
n̊ : δε+ m̊ : δκ+ ρ̊̊t

∂2u

∂t2
· δu

)
dÅ, (45)

δW ext =

∫
Å

f · δu dÅ, (46)

where : represents the classical double contraction, δε and δκ are the virtual membrane
strain and the virtual curvature change, respectively, f is the external load applied to the
shell, ρ̊ is the mass density in the reference configuration, and ∂2u

∂t2
is the acceleration, Å and

dÅ =
√
|̊aαβ|dθ1dθ2 denote the midsurface and the differential area in the reference config-

uration, respectively. In this section, we focus on static analysis in which the acceleration
term vanishes.

3.4. Galerkin form
Invoking the isoparametric concept, we discretize and linearize Eq. (44) using the space

SA for both the shell geometry and the displacement field. Taking into account that the
same basis functions are used for the test and trial spaces, the following contributions of
element e to the residual vector R = Rint−Rext and the stiffness matrix K = Kint−Kext

are obtained

Rint
r =

∫
Å

(
n̊αβ

∂εαβ
∂Ur

+ m̊αβ ∂καβ
∂Ur

)
dÅ, (47)

Rext
r =

∫
Å

f i
∂ui
∂Ur

dÅ, (48)

Kint
rs =

∫
Å

(
∂n̊αβ

∂Us

∂εαβ
∂Ur

+ n̊αβ
∂2εαβ
∂Ur∂Us

+
∂m̊αβ

∂Us

∂καβ
∂Ur

+ m̊αβ ∂2καβ
∂Ur∂Us

)
dÅ, (49)

Kext
rs =

∫
Å

∂f i

∂Us

∂ui
∂Ur

dÅ, (50)
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Figure 14: (Color online) Geometry, boundary conditions, and point loads applied for the pinched hemi-
sphere. The mesh ASTS2 with 613 elements and 730 control points is also shown.

where the vector U collects the control variables of the displacement field by changing first
the index of the spatial dimension and then the basis function number, r and s are global
degree-of-freedom numbers given by r = 3(IENA(a, e) − 1) + i and s = 3(IENA(b, e) −
1) + j with i, j = 1, 2, 3 referring to the global x, y, and z components, respectively, IENA

establishes a correspondence between local and global numbering of basis functions in SA.
Full Gauss integration rule is employed for all the integrals in Eqs. (47)-(50). Note that
Kext
rs vanishes in the case of displacement-independent loads.

Using Eqs. (47)-(50), we solve for the linearized equation system

K∆U = −R. (51)

The vector ∆U is used for the nonlinear updates of the displacement field until convergence
is achieved.

4. Numerical examples

The in-house code used to perform our simulations has been developed on top of the
scientific library PETSc [81, 82]. Regarding the nonlinear and linear solvers used in our
simulations, we have used the Newton-Raphson method with a critical point line search
[83] and a direct solver based on LU factorization, respectively.

We solved all the examples considered in this Section using the four cases described in
Section 2.8 to handle the extraordinary points. For brevity and since the conclusions are
the same for the four examples considered in this Section, we only include the comparisons
among the four cases in one of the four examples. For the other three examples, the results
using Case1 are shown.
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Figure 15: (Color online) Load-deflection curves at points A and B of the pinched hemisphere. The meshes
ASTS1, ASTS2, and ASTS3 have 714, 2,190, and 7,626 degrees of freedom, respectively. [84] uses a mesh
with 2,268 degrees of freedom and degree 8.
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(b) Bottom view

Figure 16: (Color online) Deformed hemisphere colored by the displacement magnitude.

4.1. Pinched hemisphere

This benchmark problem consists in a hemisphere under two inward and two outward
opposite point loads of magnitude P . The bottom circumferential edge of the hemisphere
is free while it is fixed at the pole. Taking advantage of the two planes of symmetry, only
a quarter of the geometry is considered for the numerical simulation. Considering one
quarter of the geometry also removes rigid-body motions from this problem. This example
has been solved in [84] using a seven parameter shell formulation that takes into account
both transverse shear deformation and thickness stretching. The parameters that define
this problem are

R = 10, t̊ = 0.04, E = 6.825× 107, ν = 0.3, P = 400, (52)

where R is the radius of the hemisphere. The point loads are applied in 50 equal load steps.
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Figure 17: (Color online) Geometry, boundary conditions, and distributed load applied for the oil sump.

In order to avoid having a singular point at the pole of the hemisphere, we introduce
an extraordinary point with valence 3 in the ASTS used in this problem. Through the
use of T-junctions, we introduce two levels of local refinement to increase the resolution
near the point loads. Following that meshing procedure, we create three ASTS with 714,
2,190, and 7,626 degrees of freedom, denoted by ASTS1, ASTS2, and ASTS3, respectively.
ASTS2 is plotted in Fig. 14. We monitor the radial displacement under the two point
loads for each load step. In Fig. 15 a), we plot the load-deflection curves obtained with
each of our three meshes. The results with ASTS2 and ASTS3 are nearly indistinguishable
at the scale of the plot, which suggests that we have reached a converged result. Fig. 15
b) shows that the load-deflection curve obtained with ASTS2 matches the one obtained in
[84]. This result shows that for a slenderness R/t = 250 the effects of both the transverse
shear deformation and the thickness stretching, which are not considered in our Kirchhoff-
Love shell formulation, are negligible. Note that ASTS2 has 2,190 degrees of freedom and
polynomial degree 3 and the mesh used in [84] has 2,268 degrees of freedom and polynomial
degree 8. Figs. 16 (a)-(b) plot the displacement magnitude from top and bottom views,
respectively.

4.2. Oil sump

This example was defined in [63]. It considers the geometry from an oil sump of a car.
Then, it clamps the external boundary and applies a distributed load on the top surface as
indicated in Fig. 17. The parameters that define this problem are

t̊ = 5.0, E = 2.1× 105, ν = 0.2, p = 10. (53)

In [63], this example is solved using geometrically nonlinear Kirchhoff-Love shells and
isogeometric B-Rep analysis (IBRA). IBRA is an immersed method that performs analysis
on trimmed and non-watertight multipatch NURBS geometries. By introducing 9 extraor-
dinary points with valence 3 and another 9 extraordinary points with valence 5, we build
watertight and untrimmed ASTS from the original CAD geometry composed of 50 trimmed
and non-watertight NURBS patches. Namely, we build one ASTS and perform global uni-
form refinement three times afterwards. This leads to four ASTS with 2,091, 7,716, 30,216,
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Table 1: Number of degrees of freedom (ndof = 3ncp) for the four refinement levels using the four cases
described in Section 2.8 to handle extraordinary points.

Level 0 Level 1 Level 2 Level 3
Case1 6,993 26,586 103,410 407,610
Case2 6,993 26,586 103,410 407,610
Case3 6,993 30,042 125,442 513,450
Case4 6,993 30,042 125,442 513,450

Table 2: Maximum displacement magnitude obtained with the four refinement levels using the four cases
described in Section 2.8 to handle extraordinary points. Case1 and Case2 lead to the same accuracy as
Case3 and Case4, respectively, but with fewer degrees of freedom. Case1 has pointwise non-negative basis
functions while Case2 leads to slightly negative basis functions near extraordinary points. In conclusion,
we favor the use of Case1 to deal with extraordinary points.

Level 0 Level 1 Level 2 Level 3
Case1 15.101686 15.761504 15.847792 15.858248
Case2 15.056899 15.770749 15.849768 15.857084
Case3 15.101686 15.762917 15.847913 15.858225
Case4 15.056899 15.769962 15.850033 15.857087

and 120,216 elements. The Bézier mesh for the coarsest level is plotted in Fig. 18 (a).
Table 1 and 2 contain the number of degrees of freedom and the maximum displacement
magnitude obtained for each refinement level with the four cases described in Section 2.8
to handle extraordinary points, respectively. Out of all the examples considered in Section
4, the largest relative difference in maximum displacement magnitude between using either
Π+ or Πo is obtained for the coarsest level of this example. This relative difference is just
0.396%, which is completely negligible. Therefore, we favor the use of Π+ since it leads to
pointwise non-negative basis functions. For any refinement level, Case1 and Case3 lead to
the same accuracy, but Case1 has fewer degrees of freedom. Namely, for level 3, Case1 has
25.96% fewer degrees of freedom than Case3. As a result, we favor the use of truncation
together with 2k rings of irregular faces in refinement level k instead of scaling together
with 2k+1− 1 rings of irregular faces in refinement level k. In [63], only one simulation was
considered and the maximum displacement obtained was 15.1, which is within the range
of values that we obtain for the different mesh resolutions considered here.

Fig. 18 (b) plots the displacement magnitude. In Figs. 18 (c)-(d), we plot the principal
membrane forces (nmax and nmin). The principal membrane forces are computed as follows

nmax =
n̂11 + n̂22

2
+

√
(n̂11 − n̂22)2

4
+ n̂12n̂21, (54)

nmin =
n̂11 + n̂22

2
−
√

(n̂11 − n̂22)2

4
+ n̂12n̂21, (55)
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(a) The coarsest Bézier mesh
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Figure 18: (Color online) Oil sump. (a) The Bézier mesh for the coarsest level and Case1 is plotted on
top of the undeformed geometry. (b) Deformed geometry colored by the displacement magnitude. (c)-(d)
Deformed geometry colored by the maximum and minimum principal membrane forces, respectively.

with

n̂αβ = n̂αβ = nγµ(eα · aγ)(aµ · eβ), (56)

nαβ =
n̊αβ

J0

, (57)

Jo =
√
|aαβ|/|̊aαβ|, (58)
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Figure 19: (Color online) Geometry, boundary conditions, and distributed load applied for the pipe junc-
tion. The mesh ASTS-1 with 1,100 elements and 1,259 control points is also shown.

e1 = e1 =
a1

||a1||
, (59)

e2 = e2 =
a2 − (a2 · e1)e1

||a2 − (a2 · e1)e1||
, (60)

where Jo is the in-plane Jacobian determinant of the mapping from the reference to the
deformed configuration, eα is the α-th base vector of a local in-plane Cartesian basis, nαβ

are the contravariant coefficients of the membrane forces in the deformed configuration,
n̂αβ = n̂αβ are the membrane force coefficients with respect to the local in-plane Cartesian
basis eα.

4.3. Pipe junction

This example considers a pipe junction. The external boundary is simply supported
and a symmetric distributed load is applied as indicated in Fig. 19. The parameters that
define this problem are

t̊ = 2.0, E = 2.1× 105, ν = 0.25, p = 0.3. (61)

The distributed load is applied in 50 equal load steps. Two extraordinary points with
valence 6 are used to mesh this geometry. By using T-junctions, we introduce one level
of local refinement to increase the resolution in the region where the largest deformations
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(c) ASTS-2
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Figure 20: (Color online) Load-deflection curves at point A for the pipe junction. (a) As we refine our ASTS
meshes, a converged result is obtained for Kirchhoff-Love shells. (b)-(d) We compare IGA discretizations
of Kirchhoff-Love and Reissner-Mindlin shells for meshes ASTS-1, ASTS-2, and ASTS-3, respectively. The
IGA Reissner-Mindlin simulations are performed in the commercial software LS-DYNA giving the Bézier
extraction information of our ASTS meshes as an input. ASTS-1, ASTS-2, and ASTS-3 have 1,259, 4,610,
and 17,612 control points, respectively. Even though, for IGA Kirchoff-Love shells, ndof = 3ncp, but for
IGA Reissner-Mindlin shells, ndof = 6ncp, both shell theories lead to similar accuracy for a given ASTS
mesh.

are going to take place. The ASTS that we obtained has 1,100 elements. This ASTS,
denoted by ASTS-1, is plotted in Fig. 19. After that, we performed two levels of global
uniform refinement obtaining ASTS with 4,190, and 16,454 elements, denoted by ASTS-2,
and ASTS-3, respectively. We monitor the displacement magnitude at point A for each
load step. In Fig. 20 (a), we plot the load-deflection curves obtained with each of our three
meshes. ASTS-2 and ASTS-3 give indistinguishable load-deflection curves at the scale of the
plot, indicating that a converged result has been reached. Besides of solving this problem
with our code for Kirchhoff-Love shells, we also solved it using the commercial software
LS-DYNA [85]. We imported our three ASTS meshes into LS-DYNA and compute the
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Figure 21: (Color online) Pipe junction. (a)-(b) Displacement magnitude from front and top views, re-
spectively. (c)-(d) Maximum and minimum principal bending moments, respectively.

load-deflection curves using the IGA-based Reissner-Mindlin formulation defined in [46].
As can be seen in Fig. 20 b)-d), good agreement is obtained with our Kirchhoff-Love
code. These results show that for shells that are thin enough, Kirchhoff-Love and Reissner-
Mindlin IGA discretizations results in similar levels of accuracy for a given ASTS mesh,
but the Kirchhoff-Love discretization cuts the number of degrees of freedom in half. As
shown in Fig. 20 b), for ASTS-1 and a given load step, IGA Kirchhoff-Love shells result in
slightly higher displacement than IGA Reissner-Mindlin shells, that is, the load-deflection
curve obtained with IGA Kirchhoff-Love shells is closer to the converged load-deflection
curve.

Figs. 21 (a)-(b) plot the displacement magnitude from front and top views, respectively.
In Figs. 21 (c)-(d), we plot the principal bending moments (mmax and mmin). The principal
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bending moments are computed as follows

mmax =
m̂11 + m̂22

2
+

√
(m̂11 − m̂22)2

4
+ m̂12m̂21, (62)

mmin =
m̂11 + m̂22

2
−
√

(m̂11 − m̂22)2

4
+ m̂12m̂21, (63)

with

m̂αβ = m̂αβ = mγµ(eα · aγ)(aµ · eβ), (64)

mαβ =
m̊αβ

J0

, (65)

where mαβ are the contravariant coefficients of the shell moments in the deformed config-
uration, m̂αβ = m̂αβ are the shell moment coefficients with respect to the local in-plane
Cartesian basis eα.

4.4. B-pillar

This example considers the B-pillar geometry of a car. The boundary conditions and
the distributed load applied are indicated in Fig. 22. The parameters that define this
problem are

t̊ = 1.6, E = 2.1× 105, ν = 0.25, p = 18. (66)

The distributed load is applied in 50 equal load steps. We build both ASTS and piece-
wise linear quadrilateral meshes in order to compare our Kirchhoff-Love shell discretization
with the finite element discretization for Reissner-Mindlin shells proposed in [64], which
is a workhorse shell discretization in commercial software. The original CAD geometry
that we used as a reference to build our meshes was composed by 848 trimmed NURBS
patches. In order to represent the 15 holes of this geometry, 31 extraordinary points with
valence 5 and 16 extraordinary points with valence 6 are used in our ASTS. We also intro-
duce T-junctions to locally refine the region near the load. The ASTS that we obtained
has 26,805 degrees of freedom. This ASTS, denoted by ASTS-A, is plotted in Fig. 22.
After that, we performed two levels of global uniform refinement obtaining ASTS with
99,315 and 381,063 degrees of freedom, denoted by ASTS-B and ASTS-C, respectively.
As shown in Fig. 23 (a), the load-deflection curve obtained with ASTS-B and ASTS-C
overlap completely, which indicates that a converged result has been reached. We also cre-
ated a piecewise linear quadrilateral mesh with 186,876 degrees of freedom. We imported
this finite-element mesh into LS-DYNA and computed the load-deflection curve using the
Reissner-Mindlin discretization defined in [64]. As can be seen in Fig. 23 (b), good agree-
ment is obtained between our ASTS-based discretization of Kirchhoff-Love shells and the
well-established finite element discretization of Reissner-Mindlin shells developed in [64].
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Figure 22: (Color online) Geometry, boundary conditions, and distributed load applied for the B-pillar.
The coarsest Bézier mesh with 7,672 elements and 8,935 control points is shown as well.
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Figure 23: (Color online) Load-deflection curves under the center of the distributed load for the B-pillar.
The meshes ASTS-A, ASTS-B, and ASTS-C have 26,805, 99,315, and 381,063 degrees of freedom, respec-
tively. The FEM mesh has 186,876 degrees of freedom.

In Figs. 24 (a)-(c), we plot front views of the underformed geometry, the deformed
geometry colored by the displacement magnitude using Kirchhoff-Love shells and ASTS
discretization, and the deformed geometry colored by the displacement magnitude using
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Figure 24: (Color online) B-pillar. (a) Undeformed geometry front view. (b) Deformed geometry front
view using ASTS-based IGA discretization of Kirchhoff-Love shells. (c) Deformed geometry front view
using the finite-element discretization of Reissner-Mindlin shells proposed in [64]. Both the IGA and FEM
results are plotted without using any kind of smoothing in the post-processing.

Reissner-Mindlin shells and the finite element discretization detailed in [64], respectively.

5. Conclusions and future work

We presented a complete description of the construction of C1-continuous bi-cubic, non-
negative, T-splines on unstructured quadrilateral meshes, including extraordinary points,
that delivers optimal convergence rates with respect to both mesh size and the square root
of the number of degrees of freedom. This is the primary technical contribution of this work.
These were applied to several doubly curved shell configurations, including geometries from
real world engineering applications. For the hemisphere and the oil sump, ASTS-based IGA
simulations of Kirchhoff-Love shells are compared with the literature. For the pipe junction
and the B-pillar, we used LS-DYNA to perform simulations of Reissner-Mindlin shells
to compare with our ASTS-based IGA simulations of Kirchhoff-Love shells. The results
coincided in all cases, which shows that the transverse shear deformation is negligible in thin
shells. These examples show the potential of ASTS including both extraordinary points and
T-junctions to define shell geometries with arbitrary topology. The philosophy behind our
work is to build spline spaces that possess all the important mathematical and geometric
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properties needed in either design or analysis in such a way that transferring geometric
information from one space to the other is an automatic process for which explicit formulas
are available [38]. This vision would conduce to a much more efficient and reliable “design
to analysis” cycle in complex engineering applications.

Three interesting directions of future research are:

• Developing a construction of extraordinary points in which non-negativity and nest-
edness can be achieved at the same time while maintaining all the other geometric
and mathematical properties obtained by the construction proposed in this paper.

• Developing a construction of extraordinary points based on geometric smoothness
(G1) [86] instead of parametric smoothness (C1) that satisfies all the geometric and
mathematical properties obtained by the construction proposed in this paper.

• The primal formulation based on the minimum potential energy theorem and the
Galerkin method detailed in Eqs. (44)-(50) is not intrinsically free from locking.
As a result, this Kirchhoff-Love shell formulation may undergo membrane locking
when very coarse discretizations are used for highly slender shells [49]. In [87], the
mixed displacement (MD) method, a mixed formulation that is intrinsically free from
locking, was recently proposed. Coming up with constraint conditions that enable
the application of the MD method to unstructured ASTS meshes so as to compare its
performance with the primal formulation used in this paper is an appealing direction
of future research.
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in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures,
Computer Methods in Applied Mechanics and Engineering 284 (2015) 401–457.

45



[64] T. Belytschko, J. I. Lin, T. Chen-Shyh, Explicit algorithms for the nonlinear dynamics
of shells, Computer methods in applied mechanics and engineering 42 (2) (1984) 225–
251.

[65] X. Li, Some properties for analysis-suitable T-splines, Journal of Computational Math-
ematics 33 (2015) 428–442.
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