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Abstract. In this paper we present an efficient and robust approach to compute a normalized B-
spline-like basis for spline spaces with pieces drawn from extended Tchebycheff spaces. The extended
Tchebycheff spaces and their dimensions are allowed to change from interval to interval. The approach
works by constructing a matrix that maps a generalized Bernstein-like basis to the B-spline-like basis
of interest. The B-spline-like basis shares many characterizing properties with classical univariate
B-splines and may easily be incorporated in existing spline codes. This may contribute to the full
exploitation of Tchebycheffian splines in applications, freeing them from the restricted role of an
elegant theoretical extension of polynomial splines. Numerical examples are provided that illustrate
the procedure described.
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1. Introduction. In the classical polynomial setting, univariate multi-degree
splines are piecewise polynomial functions that are glued together in a certain smooth
way and where the various pieces can have different degrees [2, 34]. This multi-degree
formulation offers significant advantages with respect to the classical uniform-degree
case, allowing for the modeling of complex geometries with fewer control points and
more versatile adaptive schemes in numerical simulation [33, 37].

Polynomial splines, in both the uniform-degree or multi-degree version, can be
seen as a special case of Tchebycheffian splines [9, 26, 29, 30], i.e., smooth piecewise
functions whose pieces are drawn from extended Tchebycheff spaces (ET-spaces). ET-
spaces are natural generalizations of algebraic polynomial spaces [14, 30] because they
satisfy the same bounds on the number of zeros of non-trivial elements. Relevant ex-
amples of ET-spaces are nullspaces of linear differential operators on suitable intervals
[10, 30]. Tchebycheffian splines share many properties with the classical polynomial
splines but also offer a much more flexible framework, due to the wide diversity of
ET-spaces. Multivariate extensions of Tchebycheffian splines can be easily obtained
via (local) tensor-product structures [6, 7, 8].

The rich variety of parameters in Tchebycheffian spline spaces has been explored
in free-form design and constrained interpolation/approximation; see [11, 18, 27, 31,
39] and references therein. In addition, Tchebycheffian splines emerge as a natural
tool in several engineering contexts. Among others, Tchebycheffian splines based on
trigonometric and/or exponential functions allow for an exact representation of conic
sections with (almost) arc-length parameterization, without the need for a rational
form [19]. As a consequence, their elegant behavior with respect to differentiation
and integration makes them an appealing substitute for the rational NURBS model
in the framework of both Galerkin and collocation isogeometric methods [1, 20, 22, 23].
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When the geometry is not an issue, Tchebycheffian splines can still provide an inter-
esting problem-dependent alternative to classical polynomial B-splines/NURBS for
solving differential problems: they allow for an efficient treatment of sharp gradients
and thin layers [21, 22] and are able to outperform classical polynomial B-splines in
the spectral approximation of differential operators [22, 23].

The success of polynomial splines greatly relies on the famous B-spline basis
which can also be defined in the multi-degree setting [2, 29, 34, 35, 37]. Most of
the results known for polynomial splines extend in a natural way to Tchebycheffian
splines. However, the possibility of representing the space in terms of a basis with
similar properties to polynomial B-splines is not always guaranteed, even for pieces
taken from ET-spaces of the same dimension. More precisely, there are two main
categories of Tchebycheffian splines: the various pieces are drawn either from the same
ET-space — see [29] for a proper meaning in case of different local dimensions — or
from different ET-spaces. In the former case, Tchebycheffian splines always admit a
representation in terms of basis functions with similar properties to polynomial B-
splines. The latter offers a much more general framework — sometimes referred to in
the literature as piecewise Tchebycheffian splines [27] — and allows us to optimally
benefit from the great diversity of ET-spaces, but the existence of a B-spline-like basis
requires constraints on the various ET-spaces.

Tchebycheffian splines can be easily incorporated in existing spline codes because
the corresponding B-spline-like basis, whenever it exists, is compatible with classical
B-splines as it enjoys the same structural properties. When all the ET-spaces have
the same dimension, various approaches have been used in the Tchebycheffian setting
to construct such a B-spline-like basis: generalized divided differences [28, 30], Her-
mite interpolation [9, 29], integral recurrence relations [3, 17], de Boor-like recurrence
relations [12, 15], and blossoming [26]. Each of these definitions has advantages ac-
cording to the problem one has to face or to the properties to be proved. All these
constructions lead to the same functions, up to a proper scaling. For non-uniform
local dimensions, the literature is much less developed and B-spline-like bases have
been constructed via Hermite interpolation [9, 29].

Unfortunately, none of the currently available constructions for B-spline-like bases
of Tchebycheffian spline spaces is very well suited for their efficient and robust numer-
ical evaluation and manipulation, due to computational complexity and/or numerical
instabilities. This drawback has seriously penalized Tchebycheffian splines, so far, in
practical applications despite their great potential, and has confined them mostly to
the role of an elegant theoretical extension of the polynomial case.

This paper focuses on the construction, properties, and evaluation of a basis with
similar properties to polynomial B-splines for Tchebycheffian splines with pieces drawn
from different ET-spaces of possibly different dimension, whenever it exists. Following
[29], we refer to these spaces as generalized Tchebycheffian splines (GT-splines) and
to the corresponding basis as generalized Tchebycheffian B-splines (GTB-splines).

The main goal of the paper is to present an efficient and robust algorithm for
evaluation of GTB-splines. The algorithm proceeds by incrementally increasing the
smoothness at the breakpoints starting from the space of piecewise discontinuous
functions obtained by collecting the various ET-spaces which are represented in terms
of a Bernstein-like basis. At each step, the smoothness constraints are represented
in the form of a matrix whose nullspace identifies the basis elements. The algorithm
explicitly constructs this nullspace without solving any linear systems. In other words,
at each step, the algorithm explicitly constructs a matrix that specifies how GTB-
splines that are Cr at some breakpoint can be linearly combined to form GTB-splines
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that are Cr+1. The product of all such matrices is called an extraction operator and
it maps the Bernstein-like basis to GTB-splines. In fact, we prove that the output
of the algorithm is exactly the entire set of GTB-splines that span the considered
GT-spline space. The algorithm can be seen as a Tchebycheffian extension of the
one proposed in [36, 37, 38] for multi-degree polynomial splines. In order to ensure
existence of a GTB-spline basis, we consider the sufficient conditions proposed in [9]
which can be easily checked and are satisfied for a wide class of GT-splines of interest
in applications. However, this is not a limitation of the algorithm we are proposing;
the algorithm produces the required GTB-spline basis whenever it exists.

The main goal is complemented by additional results: we provide a knot insertion
formula and a global integral recurrence relation for GTB-splines. While the former is
in complete analogy with the one known for the multi-degree polynomial case [2, 38],
the latter is a new contribution also for the multi-degree polynomial case, where only
local integral recurrence relations have been proposed so far in the literature [2, 34].
The provided global integral recurrence relation completely mimics the one known for
polynomial/Tchebycheffian splines of uniform degree/local dimension and is expressed
in an elegant way by using an extension of the concept of weights.

The remainder of the paper is organized as follows. Section 2 recalls several
properties of ET-spaces, introduces notation, and defines the space of GT-splines. The
existence, under proper assumptions, of GTB-splines is summarized in Section 3; it
basically collects in a homogeneous and self-contained presentation results from [9, 29].
Section 4 presents local and global integral recurrence relations for GTB-splines, while
Section 5 is devoted to the knot insertion formula which is the main ingredient for the
evaluation algorithm described and analyzed in Section 6. An interesting case study
is detailed in Section 7, and some numerical examples are collected in Section 8. We
end with some concluding remarks in Section 9.

2. Preliminaries. We are interested in piecewise functions, whose pieces belong
to ET-spaces and are glued together in a certain smooth way. We first define ET-
spaces on a real interval J (see, e.g., [30]).

Definition 2.1 (Extended Tchebycheff space). Given an interval J , a space
Tp(J) ⊂ Cp(J) of dimension p + 1 is an extended Tchebycheff (ET-) space on J
if any Hermite interpolation problem with p + 1 data on J has a unique solution in
Tp(J). In other words, for any integer m ≥ 1, let x̄1, . . . , x̄m be distinct points in J
and let d1, . . . , dm be nonnegative integers such that p+ 1 =

∑m
i=1(di + 1). Then, for

any set {fi,j ∈ R}i=1,...,m, j=0,...,di there exists a unique q ∈ Tp(J) such that

Djq(x̄i) = fi,j , i = 1, . . . ,m, j = 0, . . . , di.

If J is a bounded closed interval, then any ET-space of dimension p+1 on J is an
extended complete Tchebycheff (ECT-) space on J , i.e., it is spanned by the following
functions (see [24, 30]):

u0(x) := w0(x),

u1(x) := w0(x)
∫ x
z
w1(y1)dy1,

...

up(x) := w0(x)
∫ x
z
w1(y1)

∫ y1
z
· · ·
∫ yp
z
wp(yp)dyp · · · dy1,

(2.1)

where z is any point in J and wj ∈ Cp−j(J), j = 0, 1, . . . , p are positive functions
called weights. The functions u0, . . . , up are called generalized powers.
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Remark 2.2. A given ECT-space can be identified by different sets of weights; see
[17] for details and examples. In particular, it is clear that the two weight systems

w0, . . . , wp and K0w0, . . . ,Kpwp,

where K0, . . . ,Kp are positive constants, identify the same ECT-space.

Remark 2.3. A very important case for applications is w0 = 1 with p ≥ 1. Under
such assumptions, it can be directly checked that

Du0(x) = 0,

Du1(x) = w1(x),
...

Dup(x) = w1(x)
∫ x
z
· · ·
∫ yp
z
wp(yp)dyp · · · dy2,

(2.2)

i.e., the space spanned by the derivatives of the functions in (2.1) is an ECT-space of
dimension p on J and it is identified by the weights w1, . . . , wp.

Remark 2.4. The polynomial space of degree p fits in this framework by taking
w0 = · · · = wp = 1. In this case, the functions in (2.1) become uj = (x− z)j/(j!),
which are the standard (polynomial) power functions.

Pieces of our splines shall be drawn from arbitrary ECT-spaces of possibly differ-
ent dimensions. Consider a partitioning, ∆, of the interval [a, b] ⊂ R into a sequence
of breakpoints,

∆ := { a =: x0 < x1 < · · · < xm−1 < xm := b } .

Furthermore, we set Ji := [xi−1, xi), i = 1, . . . ,m−1, and Jm := [xm−1, xm]. We also
define an ECT-space of dimension pi+1 on each closed interval [xi−1, xi], i = 1, . . . ,m:

T(i)
pi := span

{
u
(i)
0 , . . . , u(i)pi

}
, u

(i)
j ∈ C

pi([xi−1, xi]), j = 0, . . . , pi,

where u
(i)
0 , . . . , u

(i)
pi are generalized powers defined in terms of positive weights w

(i)
j ∈

Cpi−j([xi−1, xi]), j = 0 . . . , pi as in (2.1). Collectively, these functions span the
following space:

Sp(∆) :=
{

[a, b]
s−→ R : s|Ji ∈ T(i)

pi , i = 1, . . . ,m
}
.

In order to measure smoothness at the breakpoints we define the following jump
operator for a given s ∈ Sp(∆),

Jumpxi,k(s) := Dk
−s(xi)−Dk

+s(xi).

Then, we can define the space of generalized Tchebycheffian splines as follows.

Definition 2.5 (Generalized Tchebycheffian splines). Given the sets of integers
p := {p1, . . . , pm} and

(2.3) r := {ri ∈ Z : −1 ≤ ri ≤ min{pi, pi+1}, i = 1, . . . ,m− 1, r0 = rm = −1},

we define

(2.4) Spr(∆) :=
{
s ∈ Sp(∆) : Jumpxi,j(s) = 0, j = 0, . . . , ri and i = 1, . . . ,m− 1

}
.
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The value ri represents the smoothness at breakpoint xi, i = 1, . . . ,m − 1.
The set of linear constraints, encoded in Jumpxi,j(s) = 0, enforce the prescribed
smoothness in between adjoining elements of the partition. This leads to a system of
φ :=

∑m−1
i=1 (ri + 1) equations in θ :=

∑m
i=1(pi + 1) unknowns. All smoothness con-

ditions are linearly independent because the functions {u(i)0 (x), . . . , u
(i)
pi (x)} on each

interval Ji form an ECT-system [9, 29]. This leads to the following dimension result;
see also [9, Theorem 1.1].

Corollary 2.6. The dimension of Spr(∆) is

n := θ − φ = p1 + 1 +

m−1∑
i=1

(pi+1 − ri) = pm + 1 +

m−1∑
i=1

(pi − ri).

Whenever we deal with a single weight system w0, . . . , wp, p := max1≤i≤m pi,
defined on the entire interval [a, b], all the pieces of the spline functions are basically
taken from the “same” ECT-space, possibly allowing different local dimensions. In
this case, the spline space in (2.4) is quite well understood and it enjoys all the
nice properties of standard polynomial splines; see [16, 26, 30] and references therein
for the case where all the local spaces have the same dimension, and [29] for non-
uniform dimensions. On the other hand, in order to fully exploit the richness and the
variety of ECT-spaces, it is of interest to consider different ECT-spaces on different
intervals. In this much more general framework, obtaining spline spaces equipped
with the same properties as standard polynomial splines, including a B-spline-like
basis, entails constraints on the various ECT-spaces which can be described in terms
of reciprocal smoothness of the associated weight systems. From this perspective,
we consider the following definition, which is equivalent to the requirement on the
weights in [9, Lemma 2.7] taking into account Remark 2.2.

Definition 2.7 (Admissible weights). The weight systems {w(i)
j , j = 0, . . . , pi}

generating the ECT-spaces T(i)
pi , i = 1, . . . ,m, are admissible for the space Spr(∆) if

for i = 1, . . . ,m− 1 and j = 0, . . . , ri we have

Dl
−w

(i)
j (xi) = Dl

+w
(i+1)
j (xi), l = 0, . . . , ri − j.

Remark 2.8. How to construct the weights is well known for a single ECT-space
[13, 26] but it can be an issue whenever different ECT-spaces are considered [27].
However, there are cases where admissible weights, according to Definition 2.7, can be
easily constructed. For example, they can be obviously extracted from a single weight
system such that all the pieces are drawn from the same ECT-space. Furthermore,
they can be easily deduced for an interesting class of Tchebycheffian splines which
allows for the use of different ECT-spaces, the so-called generalized polynomial splines;
see section 7. For handling more general settings, one could apply the constructive
procedure for finding all weight systems associated with a given ECT-space in a
bounded closed interval presented in [25].

Remark 2.9. Dealing with admissible weights gives only a sufficient condition for
obtaining Tchebycheffian splines equipped with a B-spline-like basis; see [9] and also
the next section. The simplicity of this condition and the fact that it embraces relevant
classes of Tchebycheffian splines motivate our choice. We refer the reader to [27] for
explicit necessary and sufficient conditions for smoothly gluing together ECT-spaces
of dimension 5.
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In the next section we summarize from the literature some properties of GT-spline
spaces. In particular, we show that, under certain assumptions on the weights, a GT-
spline space admits a B-spline-like basis and we present some properties of these basis
functions.

3. Generalized Tchebycheffian B-splines. In this section we introduce basis
functions for the GT-spline space Spr(∆) that possess all the characterizing properties
of standard polynomial B-splines. B-spline-like bases can be defined under different
normalizations. Here, in this paper, we mainly focus on the partition-of-unity normal-
ization, and we call the corresponding functions Generalized Tchebycheffian B-splines
(GTB-splines). The material we are going to present in the current section is greatly
inspired by the results in [9, 29]. We provide a concise summary, aiming for a self-
contained presentation and a unified notation tailored for the subsequent sections.
Furthermore, we detail the proofs of results which are not explicitly presented in the
literature in the form we need.

We begin by introducing some notation and several results that assist in charac-
terizing GTB-splines. Similar to polynomial B-splines, GTB-splines can be defined
using certain knot vectors. To allow for ECT-spaces of varying dimension, it is con-
venient to consider two knot vectors,

u := (uk)nk=1 := ( x0, . . . , x0︸ ︷︷ ︸
p1−r0 times

, . . . , xi, . . . , xi︸ ︷︷ ︸
pi+1−ri times

, . . . , xm−1, . . . , xm−1︸ ︷︷ ︸
pm−rm−1 times

),(3.1a)

v := (vk)nk=1 := ( x1, . . . , x1︸ ︷︷ ︸
p1−r1 times

, . . . , xi, . . . , xi︸ ︷︷ ︸
pi−ri times

, . . . , xm, . . . , xm︸ ︷︷ ︸
pm−rm times

).(3.1b)

Remark 3.1. With respect to standard polynomial splines of uniform degree p, the
above vectors are related to the standard B-spline knot vector, {ξk, k = 1, . . . , n+p},
via the relationship, uk = ξk and vk = ξk+p+1, k = 1, . . . , n.

Remark 3.2. The use of the two knot vectors (3.1a) and (3.1b) greatly simplifies
the presentation of the properties of GTB-splines. These two knot vectors have been
introduced in [9] to characterize properly posed Hermite interpolation problems in
GT-spline spaces and have been recently exploited to describe B-spline-like bases for
multi-degree polynomial splines in [2, 38].

Mimicking the polynomial spline setting, each of the intervals

[uk, vk], k = 1, . . . , n,

corresponds to the support of a B-spline-like basis function in Spr(∆). Lemma 3.3 im-
plies that these intervals are non-empty and satisfy [uk, vk]∪ [uk+1, vk+1] = [uk, vk+1]
and [uk, vk] ∩ [uk+1, vk+1] = [uk+1, vk]. Lemma 3.4 shows that there are pi + 1 of
such intervals that intersect with element [xi−1, xi). Before proving these lemmas, we
define two types of quantities,

µu(i) :=

i−1∑
j=0

(pj+1 − rj), µv(i) :=

i∑
j=1

(pj − rj), i = 0, . . . ,m,

where an empty sum is assumed to be zero.

Lemma 3.3. Let k ∈ {1, . . . , n} be arbitrary. It holds that uk ≤ vk−1 and uk < vk.
Additionally, if ri ≥ 0 for all i ∈ {1, . . . ,m− 1}, then uk < vk−1 ≤ vk.
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Proof. Let k = µu(i) + l, where 1 ≤ l ≤ pi+1 − ri. By inspection, uk = xi. On
the other hand,

k = µu(i) + l =

i−1∑
j=0

(pj+1 − rj) + l =

i∑
j=1

(pj − rj) +

i−1∑
j=0

(rj+1 − rj) + l

= µv(i) + ri − r0 + l ≥

{
µv(i) + 2, ri ≥ 0,

µv(i) + 1, ri ≥ −1,

since r0 = −1 and l ≥ 1. By inspection, vk ≥ xi+1. Similarly,

vk−1 ≥

{
xi+1, ri ≥ 0,

xi, ri ≥ −1.

The above proves the lemma since xi+1 > xi.

Lemma 3.4.

(uk, vk) ∩ (xi−1, xi) =

{
(xi−1, xi), k = µu(i)− pi, . . . , µu(i),

∅, otherwise.

Proof. It follows from the previous lemma that the intervals (uk, vk), k = 1, . . . , n,
are non-empty and satisfy

k2⋂
k=k1

(uk, vk) = (uk2 , vk1).

The minimum k1 and maximum k2 at which (uk2 , vk1) = (xi−1, xi) can be found
by inspecting the knot vectors (3.1a) and (3.1b). It follows that k2 = µu(i) and
k1 = µv(i− 1) + 1 = µu(i)− pi.

In order to measure the local continuity of B-spline-like basis functions at break
points, we define the following quantities. For k = 1, . . . , n, let uk = xi and vk = xj ,
and set

(3.2)
ru(k) := pi+1 − 1−max{l ≥ 0 : uk = uk+l},
rv(k) := pj − 1−max{l ≥ 0 : vk = vk−l}.

Note that from the knot vector definitions (3.1a) and (3.1b) it can be deduced that

(3.3)
ru(k) = ri + max{l ≥ 0 : uk = uk−l} ≥ ri,
rv(k) = rj + max{l ≥ 0 : vk = vk+l} ≥ rj .

With this notation in place, we can give a local dimension formula.

Lemma 3.5. The restriction of the spline space Spr(∆) to the interval [uk, vk] has
dimension ru(k) + rv(k) + 3.

Proof. Let uk = xi and vk = xj , j > i. The restriction of the spline space Spr(∆)
to the interval [uk, vk] has dimension

j∑
l=i+1

(pl + 1)−
j−1∑
l=i+1

(rl + 1) = pj + 1 +

j−1∑
l=i+1

(pl − rl).
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On the other hand, from (3.1a), (3.1b), and (3.2) we get

k + pi+1 − 1− ru(k) = k + max{l ≥ 0 : uk = uk+l} =

i∑
l=0

(pl+1 − rl),

k − pj + 1 + rv(k) = k −max{l ≥ 0 : vk = vk−l} = 1 +

j−1∑
l=1

(pl − rl),

thus

k − ru(k) = 2 +

i∑
l=1

(pl − rl), k + rv(k) =

i∑
l=1

(pl − rl) +

j−1∑
l=i+1

(pl − rl) + pj .

Subtracting the above expressions gives the result.

We now show the existence of a basis of the space Spr(∆) with several nice prop-
erties.

Theorem 3.6 (Unit-integral B-splines). Assume there exist admissible weights
for the space Spr(∆). Then, there exists a basis of the space Spr(∆) consisting of the
functions {Mk, k = 1, . . . , n}, with the following properties:

Mk(x) > 0, for all x ∈ (uk, vk), (Non-negativity)(3.4)

Mk(x) = 0, for all x /∈ [uk, vk], (Local support)(3.5) ∫ vk

uk

Mk(x)dx = 1, (Unit integral)(3.6)

Mk is exactly Cru(k) at x = uk, (Start-point smoothness)(3.7)

Mk is exactly Crv(k) at x = vk, (End-point smoothness)(3.8)

span
{
Mk|Ji

}µu(i)

k=µu(i)−pi
≡ T(i)

pi . (Local linear independence)(3.9)

Proof. Consider the restriction of the spline space Spr(∆) to the interval [uk, vk].
Since there exist admissible weights for Spr(∆), we know that [9, Theorem 3.1] ensures
the existence of a unique function sk in such space satisfying the following Hermite
interpolation problem:

Dj
+sk(uk) = 0, j = 0, . . . , ru(k),

D
ru(k)+1
+ sk(uk) = 1,

Dj
−sk(vk) = 0, j = 0, . . . , rv(k).

Moreover, from Lemma 3.5 and [9, Theorem 2.5] it follows that the function sk has
no additional zeros (counting multiplicity) in [uk, vk]; see also [29, Theorem 4.2].
Therefore, taking

Mk(x) :=


sk(x)∫ vk

uk
sk(y)dy

, uk ≤ x < vk,

0, otherwise,

it can be easily checked that Mk satisfies (3.4)–(3.8). Note that (3.3) implies that
Mk can have a higher smoothness at the end points of its support (uk and vk) than
required by the space Spr(∆).
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With the same line of arguments of [29, Theorem 4.4] we can show that the
functions in the setM := {Mk, k = 1, . . . , n} are linearly independent and thus span
the space Spr(∆). Finally, Lemma 3.4 shows that {Mk, k = µu(i) − pi, . . . , µu(i)}
are the only functions in M which are non-zero functions on the interval [xi−1, xi).

Consequently, these pi + 1 functions span T(i)
pi and thus they are locally linearly

independent.

Under a proper assumption on the weights related to the local ECT-spaces, one
can also define a basis that forms a partition of unity, so mimicking all properties
of the standard polynomial B-spline basis obtained by the Cox–de Boor recursion
formula [4].

Theorem 3.7 (GTB-splines). Assume there exist admissible weights for the

space Spr(∆) and for all the T(i)
pi we have

(3.10) w
(i)
0 = 1, i = 1, . . . ,m.

Then, there exists a basis of the space Spr(∆) consisting of the functions {Nk, k =
1, . . . , n}, with the following properties:

Nk(x) > 0, for all x ∈ (uk, vk), (Non-negativity)(3.11)

Nk(x) = 0, for all x /∈ [uk, vk], (Local support)(3.12)
n∑
k=1

Nk(x) = 1, for all x ∈ [a, b], (Partition of unity)(3.13)

Nk is exactly Cru(k) at x = uk, (Start-point smoothness)(3.14)

Nk is exactly Crv(k) at x = vk, (End-point smoothness)(3.15)

span
{
Nk|Ji

}µu(i)

k=µu(i)−pi
≡ T(i)

pi . (Local linear independence)(3.16)

Proof. Without loss of generality, we can assume ri ≥ 0, i = 1, . . . ,m−1. Indeed,
if rl = −1 for some 1 ≤ l ≤ m − 1 then the spline space Spr(∆) can be decomposed
into two disconnected spaces defined on [x0, xl) and [xl, xm], respectively. Recall that
ri ≥ 0, i = 1, . . . ,m − 1, implies that uk < vk−1, k = 1, . . . , n (see Lemma 3.3).
Furthermore, if pi = 0 then Nk(x) = 1 for x ∈ [xi−1, xi) ⊆ [uk, vk). For i = 1, . . . ,m,

let T̂(i)
pi denote the space of the derivatives of the functions belonging to T(i)

pi . For

pi > 0, from (2.2) and (3.10) it follows that T̂(i)
pi is an ECT-space of dimension pi on

Ji identified by the weights

(3.17) ŵ
(i)
j := w

(i)
j+1 ∈ C

pi−1−j , j = 0 . . . , pi − 1.

Consider now the spline space

(3.18)
Ŝpr(∆) :=

{
[a, b]

s−→ R : s|Ji ∈ T̂(i)
pi , i = 1, . . . ,m and

Jumpxi,j(s) = 0, j = 0, . . . , ri − 1, i = 1, . . . ,m− 1
}
,

which has dimension n − 1. Since the weights defined in (3.17) are admissible for

Ŝpr(∆), we can apply Theorem 3.6 to all (non-trivial) disconnected parts of Ŝpr(∆),
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and so the space admits a basis of functions {M̂k, k = 2, . . . , n} such that

M̂k(x) > 0, for all x ∈ (uk, vk−1),(3.19)

M̂k(x) = 0, for all x /∈ [uk, vk−1],(3.20) ∫ vk−1

uk

M̂k(x)dx = 1,(3.21)

M̂k is exactly Cru(k)−1 at x = uk,(3.22)

M̂k is exactly Crv(k−1)−1 at x = vk−1.(3.23)

We then define the following functions belonging to Spr(∆):

N1(x) := 1−
∫ x

a

M̂2(y)dy,

Nk(x) :=

∫ x

a

M̂k(y)dy −
∫ x

a

M̂k+1(y)dy, k = 2, . . . , n− 1,

Nn(x) :=

∫ x

a

M̂n(y)dy.

A direct inspection shows that the above functions satisfy (3.13). From (3.20), (3.22),
and (3.23), we deduce (3.14) and (3.15). Moreover, (3.20) and (3.22) imply

(3.24) D
ru(k)+1
+ Nk(uk) > 0.

For k = 1, . . . , n, from [9, Theorem 2.5] it follows that the function Nk has no ad-
ditional zeros (counting multiplicity) in [uk, vk]. Then, (3.24) gives (3.11). Linear
independence of the functions {Nk, k = 1, . . . , n} follows by applying the same line
of arguments as in the proof of Theorem 3.6.

Remark 3.8. The assumption in (3.10) is equivalent to the fact that each T(i)
pi

contains the constants for i = 1, . . . ,m.

Remark 3.9. Each of the splines Mk and Nk, k = 1, . . . n, in the space Spr(∆)
are uniquely defined, up to a constant multiple, by a triple ([uk, vk], ru(k), rv(k)).
Indeed, from Lemma 3.5 it follows that the end-point smoothness conditions (see
(3.7)–(3.8) and (3.14)–(3.15)) uniquely determine the spline function, up to a constant
multiple. The additional constraint of unit integral (3.6) or partition of unity (3.13),
respectively, specifies this constant.

Properties (3.11)–(3.16) are very important in both geometric modeling and iso-
geometric analysis; they make the set of GTB-splines {Nk, k = 1, . . . , n} the basis of
choice for the space Spr(∆) in those applications. Although the theory of GTB-splines
has been established for many years [9, 29], a stable and efficient way for computing
the GTB-spline basis functions, and performing fundamental operations such as knot
insertion, has been lacking. The next sections, containing the original contribution of
the paper, focus on these issues. We start by describing some integral recurrence rela-
tions that are suited for symbolic computation, and afterwards we develop a procedure
based on knot insertion that is suited for numerical evaluation.

4. Integral recurrence relations. In this section we present some integral
recurrence relations which could be used for symbolic computation of the GTB-spline
basis {Nk, k = 1, . . . , n}. From the proof of Theorem 3.7 we know that they can be
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obtained by integrating certain unit-integral B-splines of lower degree and smoothness
{M̂k, k = 2, . . . , n}. We also note that any set {N̂k, k = 2, . . . , n} of functions in the
same space satisfying (3.19), (3.20), (3.22), and (3.23) can be easily converted into
the unit-integral B-splines by

M̂k(x) =
N̂k(x)∫ b

a
N̂k(y) dy

.

These form the ingredients for the considered integral recurrence relations. With
p := max1≤i≤m pi, we will discuss in the following how to recursively construct the
GTB-splines Nk = Nk,p, k = 1, . . . , n, under the same assumptions as in Theorem 3.7.
We will consider a local and a global recursive construction.

We start with a pointwise recurrence. It is a direct extension of the integral
relation presented in [2, 38] for polynomial splines of non-uniform degree. For q =
0, . . . , p and k = p−q+1, . . . , n, the splineNk,q is supported on the interval [uk, vk−p+q]
and defined at x ∈ [xi−1, xi) ⊂ [uk, vk−p+q] as follows:

(4.1) Nk,q(x) :=


w(i)
pi (x), q = p− pi,

w
(i)
p−q(x)

∫ x

a

[
Nk,q−1(y)

dk,q−1
− Nk+1,q−1(y)

dk+1,q−1

]
dy, q > p− pi,

0, otherwise,

where

(4.2) dj,q−1 :=

∫ b

a

Nj,q−1(y) dy.

In the above we assumed that any undefined Nj,q−1 with j < p− q+ 2 or j > n must
be regarded as the zero function, and we used the convention that if dj,q−1 = 0 then

(4.3)

∫ x

a

Nj,q−1(y)

dj,q−1
dy :=

{
1, x ≥ uj and j ≤ n,
0, otherwise.

The relation in (4.1) builds up the GTB-splines on each of the intervals [xi−1, xi)
separately; hence, it is a local recurrence. When all the degrees pi are uniform, GTB-
splines are usually defined by means of a global recurrence formula; see, e.g., [17]. In
order to produce a global recurrence, we first define a global set of weight functions
{wj , j = 0, . . . , p} by

(4.4) wj(x) :=

{
w

(i)
j (x), j ≤ pi,

0, otherwise,
x ∈ [xi−1, xi), i = 1, . . . ,m.

This allows us to redefine Nk,q globally. For q = 0, . . . , p and k = p− q+ 1, . . . , n, the
spline Nk,q can be evaluated at x ∈ [a, b) as follows:

(4.5) Nk,0(x) :=

{
wp(x), x ∈ [xi−1, xi),

0, otherwise,

and

(4.6) Nk,q(x) := wp−q(x)

∫ x

a

[
Nk,q−1(y)

dk,q−1
− Nk+1,q−1(y)

dk+1,q−1

]
dy, q > 0,
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where dj,q−1 is defined in (4.2). Again, we assumed that any undefined Nj,q−1 with
j < p − q + 2 or j > n must be regarded as the zero function, and we used the
convention that if dj,q−1 = 0 then (4.3) is taken. At the right end point b, the spline
Nk,q is defined by taking the limit from the left, i.e., Nk,q(b) := limx→b,x<bNk,q(x).

Remark 4.1. The global recurrence (4.5)–(4.6) is exactly the same as the defini-
tion known for Tchebycheffian B-splines of uniform local dimensions; see [17, Defi-
nition 7]. This was possible thanks to the enrichment of the local weights with zero
functions so that we have p+1 functions associated with each local interval [xi−1, xi),
and we can glue them together into the global weights in (4.4).

Remark 4.2. The above recurrence relations are stated for the GTB-splines Nk
but they do not require partition of unity. Actually, they can be used to construct
locally supported functions enjoying properties (3.11), (3.12), and (3.14)–(3.16) that
sum up to w0; see [17] for Tchebycheffian B-splines of uniform local dimensions.

We note that for m = 1 the space Spr(∆) reduces to a single ECT-space and
the GTB-spline basis always exists, provided that (3.10) holds. In analogy with
the polynomial case, this basis is called the Bernstein basis corresponding to the
considered ECT-space. We end this section by considering the special spline space
Spr(∆) = Sp(∆) of discontinuous GT-splines. In this case, under assumptions (3.10),
the GTB-spline basis always exists because all weight systems identifying the various

ECT-spaces T(i)
pi are admissible for Sp(∆). This basis is nothing else than the global

Bernstein basis.

Definition 4.3 (Global Bernstein basis). Let {B(i)
j , j = 0, . . . , pi} be the Bern-

stein basis corresponding to the ECT-space T(i)
pi , i = 1, . . . ,m. Let l := l(i, j) :=∑i−1

k=1(pk + 1) + j and define

Bl(x) :=

{
B

(i)
j (x), x ∈ Ji,

0, otherwise.

We recall from [17, Example 16] that the local Bernstein functions B
(i)
j := Bj,pi ,

j = 0, . . . , pi are defined recursively as follows. For q = 0, . . . , pi and j = 0, . . . , q, the
function Bj,q is defined at x ∈ [xi−1, xi] as

(4.7) B0,0(x) := w(i)
pi (x),

and
(4.8)

Bj,q(x) := w
(i)
pi−q(x)



1−
∫ x

xi−1

B0,q−1(y)

b0,q−1
dy, j = 0,∫ x

xi−1

[
Bj−1,q−1(y)

bj−1,q−1
− Bj,q−1(y)

bj,q−1

]
dy, 0 < j < q,∫ x

xi−1

Bq−1,q−1(y)

bq−1,q−1
dy, j = q,

q > 0,

where

(4.9) bj,q−1 :=

∫ xi

xi−1

Bj,q−1(y) dy.
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Remark 4.4. Instead of using the recurrence relation (4.7)–(4.8), each Bernstein

function B
(i)
j can also be computed by solving the following Hermite interpolation

problem in the space T(i)
pi : for j = 0,

B
(i)
0 (xi−1) = 1, DlB

(i)
0 (xi) = 0, l = 0, . . . , pi − 1,

and for j = 1, . . . , pi,

DlB
(i)
j (xi−1) = 0, l = 0, . . . , j − 1, DlB

(i)
j (xi) = 0, l = 0, . . . , pi − j − 1,

DjB
(i)
j (xi−1) = −

j−1∑
l=0

DjB
(i)
l (xi−1).

Since T(i)
pi is an ECT-space, this interpolation problem has a unique solution; see

Definition 2.1. Any convenient basis in T(i)
pi can be used to represent the Bernstein

functions.

The presented integral recurrence relations, in particular the global one in (4.5)–
(4.6), are suited for symbolic computation. However, they might lack stability in
numerical computation. In the next section we provide a knot insertion procedure
which is an important ingredient to produce an efficient and stable numerical evalu-
ation algorithm for the basis functions we are interested in.

5. Knot insertion. Knot insertion is the fundamental operation of inserting a
new knot into an existing knot vector while maintaining the shape of a spline curve.
If the new knot is already present in the initial knot vector, then the continuity is
reduced at the corresponding breakpoint. Otherwise, a new breakpoint is inserted in
the partition.

Lemma 5.1. If ri < min{pi, pi+1}, then there are exactly ri + 3 successive GTB-
splines that have a jump in their (ri + 1)-th order derivative at x = xi:

Jumpxi,ri+1(Nk) = 0, for k = 1, . . . , µv(i)− 1,

Jumpxi,ri+1(Nk) 6= 0, for k = µv(i), . . . , µu(i) + 1,

Jumpxi,ri+1(Nk) = 0, for k = µu(i) + 2, . . . , n.

Proof. The local support (3.12) implies that all GTB-splines vanish in a neighbor-
hood of xi except forNk, k = µv(i−1)+1, . . . , µu(i+1). From (3.15) it follows that the
GTB-splines Nµv(i)−l(x), with l > 0, are at least Cri+1-smooth at x = xi. Similarly,
from (3.14) it follows that the GTB-splines Nµu(i)+1+l(x), with l > 0, are at least
Cri+1-smooth at x = xi. The remaining GTB-splines Nk(x), k = µv(i), . . . , µu(i) + 1
are Cri-smooth at x = xi. From [9, Theorem 4.2] and [29, Theorem 4.3] it follows
that these functions have minimal support, thus they cannot be smoother at x = xi.
Since µu(i) + 1− (µv(i)− 1) = ri + 2− r0 = ri + 3 the result follows.

Suppose we remove a knot u = v = xi ∈ (a, b) from u and v, respectively,
resulting in a new spline space Spr̃(∆) with corresponding knot vectors,

ũ := (ũk)n−1k=1 := ( x0, . . . , x0︸ ︷︷ ︸
p1−r0 times

, . . . , xi−1, . . . , xi−1︸ ︷︷ ︸
pi−ri−1 times

, xi, . . . , xi︸ ︷︷ ︸
pi+1−ri−1 times

,

xi+1, . . . , xi+1︸ ︷︷ ︸
pi+2−ri+1 times

, . . . , xm−1, . . . , xm−1︸ ︷︷ ︸
pm−rm−1 times

),
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and

ṽ := (ṽk)n−1k=1 := ( x1, . . . , x1︸ ︷︷ ︸
p1−r1 times

, . . . , xi−1, . . . , xi−1︸ ︷︷ ︸
pi−1−ri−1 times

, xi, . . . , xi︸ ︷︷ ︸
pi−ri−1 times

,

xi+1, . . . , xi+1︸ ︷︷ ︸
pi+1−ri+1 times

, . . . , xm, . . . , xm︸ ︷︷ ︸
pm−rm times

).

The smoothness vector is easily deduced to be r̃ = (r0, . . . , ri−1, ri + 1, ri+1, . . . , rm);
it is assumed to satisfy the same restrictions as in (2.3), and so ri+1 ≤ min{pi, pi+1}.
Consequently, the spline space Spr̃(∆) is a subspace of Spr(∆) with one additional
continuous derivative at x = xi.

From Remark 3.9 we recall that each of the GTB-splines Ñk, k = 1, . . . n − 1,
that form a basis for Spr̃(∆), are uniquely defined, up to a constant multiple, by a
triple ([ũk, ṽk], rũ(k), rṽ(k)). It can directly be verified that the following relation is
consistent with the definition of the knot vectors ũ and ṽ.

Lemma 5.2. The following relationship holds

([ũk, ṽk], rũ(k), rṽ(k)) =


([uk, vk], ru(k), rv(k)) , if 1 ≤ k < µv(i),

([uk, vk+1], ru(k), rv(k + 1)) , if µv(i) ≤ k ≤ µu(i),

([uk+1, vk+1], ru(k + 1), rv(k + 1)) , if µu(i) < k < n.

An alternative, yet, equivalent perspective is that u and v are obtained from ũ
and ṽ by the process of knot insertion.

Proposition 5.3. Let u and v be obtained from ũ and ṽ by inserting a single
knot u = v = xi ∈ (a, b), respectively. Then,

(5.1) Ñk(x) = αkNk(x) + βk+1Nk+1(x),

where
(i) αk = 1 and βk+1 = 0 if 1 ≤ k < µv(i);

(ii) αk > 0 and βk+1 = −αk
Jumpxi,ri+1(Nk)

Jumpxi,ri+1(Nk+1)
> 0 if µv(i) ≤ k ≤ µu(i);

(iii) αk = 0 and βk+1 = 1 if µu(i) < k < n.

Proof. Because Spr̃(∆) ⊂ Spr(∆), every Ñk ∈ Spr̃(∆) can be uniquely written as a
linear combination of the GTB-splines that form a basis for Spr(∆). The particular
functions involved in the linear combination in (5.1) follow from Lemma 5.2. Case (i)
and (iii) follow directly. Case (ii) follows from Lemma 5.1 and

(5.2) 0 = Jumpxi,ri+1(Ñk) = αkJumpxi,ri+1(Nk) + βk+1Jumpxi,ri+1(Nk+1).

Finally, the start-point smoothness (3.14) implies that

Dj
+Ñk(uk) = Dj

+Nk(uk) = 0, j = 0, . . . , ru(k),

and

(5.3) D
ru(k)+1
+ Ñk(uk) = αkD

ru(k)+1
+ Nk(uk) 6= 0.

Then, the positivity (3.11) implies that the derivatives on both sides of (5.3) have
the same sign. Consequently, αk must be positive. A similar argument, involving the
end-point smoothness in (3.15), shows that βk+1 is positive.
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We can also write (5.1) in matrix notation,

(5.4) Ñk(x) =

n∑
l=1

C̃klNl(x), k = 1, . . . , n− 1 ⇐⇒ Ñ(x) = C̃ N(x).

Here, C̃ ∈ R(n−1)×n and the entries C̃kl are determined by the three cases (i)–(iii).
The matrix C̃ has the following sparsity structure:

(5.5) C̃ =

IA Ĉ
IB

 , Ĉ =


αµv(i) βµv(i)+1

αµv(i)+1

. . .

. . . βµu(i)

αµu(i) βµu(i)+1

 .
Here, IA and IB are identity matrices of size (µv(i)−1) and (n−1−µu(i)), respectively,

and Ĉ ∈ R(ri+2)×(ri+3).

Theorem 5.4 (Knot insertion). Let u and v be obtained from ũ and ṽ by
inserting a single knot u = v = xi ∈ (a, b), respectively. Then,

(5.6) s(x) =

n−1∑
k=1

d̃kÑk(x) =

n∑
k=1

dkNk(x),

where

(5.7) dk =


d̃k, 1 ≤ k ≤ µv(i),

βkd̃k−1 + αkd̃k, µv(i) < k ≤ µu(i),

d̃k−1, µu(i) < k ≤ n,

with αk + βk = 1.

Proof. We write (5.6) as,

d̃
T
Ñ(x) = d̃

T (
C̃ N(x)

)
=
(
d̃
T
C̃
)
N(x) = dTN(x).

It follows that

dT = d̃
T
C̃ ⇐⇒ dl =

n−1∑
k=1

d̃kC̃kl, l = 1, . . . , n.

The structure of C̃, given in (5.5), leads to the result in (5.7). Finally, the partition of
unity (3.13) of both bases {Nk, k = 1, . . . , n} and {Ñk, k = 1, . . . , n−1} implies that
the column sum of matrix C̃ is one. Hence, αµv(i) = βµu(i)+1 = 1 and αk +βk = 1 for
k = µv(i) + 1, . . . , µu(i).

Besides its intrinsic interest, the knot insertion procedure can be applied recur-
sively in order to compute a Bézier extraction operator which allows for efficient and
stable evaluation of GTB-splines. This will be shown in the next section.

6. Algorithmic evaluation. In this section we present an algorithm that com-
putes the GTB-spline basis {Nk, k = 1, . . . , n}, whenever it exists, for the spline
space Spr(∆) using Bézier extraction, i.e., representing each basis element in the form

(6.1) Nk(x) =

θ∑
l=1

CklBl(x), k = 1, . . . , n ⇐⇒ N(x) = C B(x).
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Here, {Bl, l = 1, . . . , θ :=
∑m
i=1(pi+1)} denotes the global Bernstein basis for Sp(∆),

see Definition 4.3, and C ∈ Rn×θ is the extraction operator that maps functions from
Sp(∆) to Spr(∆).

By construction, {Bl, l = 1, . . . , θ} forms a global, locally supported basis for the
space Sp(∆) that has the properties listed in Theorem 3.7. Since Spr(∆) is a subspace
of Sp(∆), we can use the knot insertion procedure to convert from the global Bernstein
basis {Bl, l = 1, . . . , θ} to the smooth GTB-spline basis {Nk, k = 1, . . . , n}.

As already observed in [38] for the polynomial setting, the knot insertion proce-
dure in (5.1) can be regarded as a nullspace computation of the smoothness constraints
(5.2) for all k at the breakpoint xi. Let a ∈ Rn denote the vector with entries
(6.2)

a :=
[
0 · · · 0 Jumpxi,ri+1(Nµv(i)) · · · Jumpxi,ri+1(Nµu(i)+1) 0 · · · 0

]T
.

Then, the knot insertion matrix C̃ ∈ R(n−1)×n in (5.4) and (5.5) satisfies C̃a = 0.
This matrix can be computed by Algorithm 6.1 using the vector a as input.

Proposition 6.1. Given the vector a in (6.2) as input, Algorithm 6.1 computes
the matrix C̃ in (5.5).

Proof. The partition of unity (3.13) implies that the column sum of C̃ is equal to
one. In combination with (5.2), it can be observed that the non-trivial entries of C̃
can be computed in succession as follows:

αµv(i) = 1

↓
βµv(i)+1 = −αµv(i) · aµv(i)/aµv(i)+1

↓
αµv(i)+1 = 1− βµv(i)+1

↓
βµv(i)+2 = −αµv(i)+1 · aµv(i)+1/aµv(i)+2

...

βµu(i)+1 = 1.

It can be directly verified that C̃a = 0. This logic is encoded in Algorithm 6.1.

By applying Algorithm 6.1 repeatedly the global Bernstein basis {Bl, l = 1, . . . , θ}
can be mapped to the smooth GTB-spline basis {Nk, k = 1, . . . , n}. This procedure
is called Bézier extraction following terminology introduced in the polynomial spline
context [5, 32]; we follow suit.

Theorem 6.2 (Bézier extraction). Let ρ := ρ(i, j) :=
∑i−1
k=1(rk + 1) + j + 1, and

consider the following linear indexing of the smoothness constraints

Aρ(·) = Jumpxi,j(·), j = 0, . . . , ri, i = 1, . . . ,m− 1.

Let the input into Algorithm 6.2 be given by the matrix A with matrix columns

Aρ(B), ρ = 1, . . . , φ,

where the vector B collects the global Bernstein functions {Bl, l = 1, . . . , θ}; see (6.1).
Then, Algorithm 6.2 produces a Bézier extraction operator C ∈ Rn×θ that reproduces



A TCHEBYCHEFFIAN EXTENSION OF MULTI-DEGREE B-SPLINES 17

Algorithm 6.1 Nullspace computation of a smoothness constraint based on knot
insertion

1: function nullspace(a ∈ Rn)
2: C̃ ← zero matrix (size: (n− 1)× n)
3: k ← 1
4: while k < n & a(k) = 0 do
5: C̃(k, k) ← 1
6: k ← k + 1
7: end while
8: C̃(k, k) ← 1
9: while k + 1 < n & a(k + 1) 6= 0 do

10: C̃(k, k + 1) ← −a(k) /a(k + 1) C̃(k, k)
11: C̃(k + 1, k + 1) ← 1− C̃(k, k + 1)
12: k ← k + 1
13: end while
14: while k < n do
15: C̃(k, k + 1) ← 1
16: k ← k + 1
17: end while
18: return C̃
19: end function

Algorithm 6.2 Generalized Bézier extraction

1: function extraction operator(A ∈ Rθ×φ)
2: C ← identity matrix (size: θ × θ) . Initialize extraction operator
3: for ρ = 1 : φ do . Loop over smoothness constraints
4: C̃ ← nullspace(A(:, ρ)) . Compute nullspace of ρ-th column of A
5: C ← C̃ ∗ C . update C
6: A ← C̃ ∗ A . update A
7: end for
8: return C
9: end function

a GTB-spline basis {Nk, k = 1, . . . , n} for the spline space Spr(∆) according to

N(x) = C B(x).

Proof. Let Sp(ρ) denote the GT-spline space that satisfies the first ρ linear smooth-

ness constraints Ak(·), k = 1, . . . , ρ, in Definition 2.5, and let N(ρ)(x) denote its corre-
sponding GTB-spline basis. Note that Sp(0) ≡ Sp(∆), Sp(φ) ≡ Spr(∆) and Sp(ρ) ⊂ Sp(ρ−1).

The space Sp(ρ−1) can be obtained from Sp(ρ) by inserting a single knot into its

corresponding knot vectors. Consequently, there exists C̃ρ ∈ R(θ−ρ)×(θ−ρ+1) with its

structure given by (5.5) such that N(ρ)(x) = C̃ρ N(ρ−1)(x). Repeating this argument
we observe that

C = C̃φ · · · C̃2C̃1.
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Algorithm 6.2 implements this recursion in line 5. It remains to show that at each
step, ρ, the input into Algorithm 6.1 is such that it reproduces operator C̃ρ. The
correct input is given by the vector, a = Aρ(N(ρ−1)), such that

C̃ρ a = C̃ρ Aρ(N(ρ−1)) = Aρ(C̃ρ N(ρ−1)) = Aρ(N(ρ)) = 0.

We have that
(i) at step 1 the input into Algorithm 6.1 is

A1(B) = A1(N(0));

(ii) the update in line 6 shows that at step ρ the input into Algorithm 6.1 is

C̃ρ−1 · · · C̃1Aρ(B) = C̃ρ−1 · · · C̃2Aρ(N(1)) = C̃ρ−1Aρ(N(ρ−2)) = Aρ(N(ρ−1)).

Hence, by induction, the input into Algorithm 6.1 is correct at every step of the
recursion. Consequently, Algorithm 6.2 produces the expected output.

Remark 6.3. Because the coefficients αk and βk are positive and sum to 1, Al-
gorithm 6.1 is numerically stable. Hence, the computation of the matrix C̃ will be
accurate as long as the vector a is known to sufficient precision. In practice this
means that we require accurate and stable evaluation of Bernstein functions and their
higher-order derivatives at the breakpoints.

Remark 6.4. For polynomial B-splines of non-uniform degree, so-called multi-
degree B-splines, Bézier extraction has been analyzed and successfully applied in
[37, 38]. An efficient Matlab toolbox implementation illustrating Algorithms 6.1
and 6.2 can be found in [36].

Remark 6.5. Whenever the space Spr(∆) admits a basis {Nk, k = 1, . . . , n} with
the properties listed in Theorems 3.7 and 5.4, Algorithm 6.2 (using Algorithm 6.1)
can be applied for an efficient evaluation of these basis functions. In other words, the
algorithm does not require that the space Spr(∆) is identified by an admissible weight
system (see Definition 2.7).

7. Case study: generalized polynomial B-splines. In this section we con-
sider a special class of GTB-splines, the so-called generalized polynomial B-splines
(GPB-splines); see [23] and references therein. They can be seen as the minimal ex-
tension of polynomial splines of non-uniform degree still offering a wide variety of
additional flexibility.

Given pi ≥ 2, let u(i), v(i) ∈ Cpi([xi−1, xi]), and

U (i) := Dpi−1u(i), V (i) := Dpi−1v(i),

such that G(i) := span
{
U (i), V (i)

}
is an ECT-space on [xi−1, xi]. There exists a

unique couple of functions Ũ (i), Ṽ (i) ∈ G(i) such that

Ũ (i)(xi−1) = 1, Ũ (i)(xi) = 0, Ṽ (i)(xi−1) = 0, Ṽ (i)(xi) = 1.

The generalized polynomial space of degree pi ≥ 2 on the closed interval [xi−1, xi] is
then defined by

(7.1) G(i)
pi := span

{
1, x, x2, . . . , xpi−2, u(i)(x), v(i)(x)

}
.

We refer to [11] for more details on such spaces and their properties.
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Example 7.1. Popular choices for u(i) and v(i) are given by
• u(i)(x) = xpi−1, v(i)(x) = xpi ,
• u(i)(x) = sinh(ωx), v(i)(x) = cosh(ωx), 0 < ω,
• u(i)(x) = sin(ωx), v(i)(x) = cos(ωx), 0 < ω(xi − xi−1) < π,

which correspond to the classical polynomial, exponential and trigonometric spaces,
respectively.

Remark 7.2. Once u(i) and v(i) are chosen they uniquely define U (i) and V (i).

Conversely, if U (i) and V (i) are chosen they uniquely define the space G(i)
pi .

Remark 7.3. From [17, Example 10] we know that the space G(i)
pi is an ECT-space

generated by the weights

w
(i)
0 (x) = · · · = w

(i)
pi−2(x) = 1,

w
(i)
pi−1(x) = Ũ (i)(x) + Ṽ (i)(x),

w(i)
pi (x) =

Ũ (i)(x)DṼ (i)(x)− Ṽ (i)(x)DŨ (i)(x)(
Ũ (i)(x) + Ṽ (i)(x)

)2 .

It can be easily checked that these local weights are admissible for the spline space

Spr(∆), where the different pieces belong to G(i)
pi , i = 1, . . . ,m (see Definition 2.7),

whenever ri < min{pi, pi+1}. Moreover, they fulfill the partition-of-unity assumption
in (3.10).

From Remark 7.3 and Theorem 3.7 it follows that there exist GTB-splines for
spline spaces composed of generalized polynomial spaces as in (7.1) of possibly differ-
ent dimensions. These GTB-splines can be computed by the algorithmic procedure
described in section 6 starting from the local Bernstein bases. In the remainder of the
section we discuss and illustrate the Bernstein basis in case of generalized polynomial
spaces.

Using the explicit expressions of the weights provided in Remark 7.3, we can

simplify the recurrence relation in (4.7)–(4.8) of the local Bernstein functions B
(i)
j :=

Bj,pi , j = 0, . . . , pi as follows; see also [17, Section 4]. For q = 1, . . . , pi and j =
0, . . . , q, the function Bj,q can be evaluated at x ∈ [xi−1, xi] as

(7.2) B0,1(x) := Ũ (i)(x), B1,1(x) := Ṽ (i)(x),

and

(7.3) Bj,q(x) :=



1−
∫ x

xi−1

B0,q−1(y)

b0,q−1
dy, j = 0,∫ x

xi−1

[
Bj−1,q−1(y)

bj−1,q−1
− Bj,q−1(y)

bj,q−1

]
dy, 0 < j < q,∫ x

xi−1

Bq−1,q−1(y)

bq−1,q−1
dy, j = q,

q > 1,

where bj,q−1 is defined in (4.9).

Example 7.4. The classical (polynomial) Bernstein basis of degree pi = q on
[xi−1, xi] = [0, 1] can be expressed as

Bj,q(x) =

(
q

j

)
xj(1− x)q−j , j = 0, . . . , q.
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Example 7.5. The generalized Bernstein basis for the exponential space in Exam-
ple 7.1 defined on [xi−1, xi] = [0, 1] reads for degree q = 1,

B0,1(x) =
sinh(ω(1− x))

sinh(ω)
, B1,1(x) =

sinh(ωx)

sinh(ω)
,

and for degree q = 2,

B0,2(x) =
1− cosh(ω(1− x))

1− cosh(ω)
, B2,2(x) =

1− cosh(ωx)

1− cosh(ω)
,

B1,2(x) =
cosh(ω(1− x)) + cosh(ωx)− cosh(ω)− 1

1− cosh(ω)
.

Example 7.6. The Bernstein basis for the trigonometric space in Example 7.1
defined on [xi−1, xi] = [0, 1] reads for degree q = 1,

B0,1(x) =
sin(ω(1− x))

sin(ω)
, B1,1(x) =

sin(ωx)

sin(ω)
,

and for degree q = 2,

B0,2(x) =
1− cos(ω(1− x))

1− cos(ω)
, B2,2(x) =

1− cos(ωx)

1− cos(ω)
,

B1,2(x) =
cos(ω(1− x)) + cos(ωx)− cos(ω)− 1

1− cos(ω)
.

Remark 7.7. Instead of using the recurrence relation (7.2)–(7.3), each Bernstein

function B
(i)
j can also be computed by solving in the space G(i)

pi the Hermite interpo-
lation problem stated in Remark 4.4.

GT-spline spaces with pieces drawn from (different) generalized polynomial spaces
containing polynomial, exponential or trigonometric functions (see, e.g., Examples 7.4
and 7.6) are of particular interest both in geometric design and numerical simulation
because they offer a valid alternative to NURBS. Indeed, they allow for a locally exact
representation of conic sections with respect to (almost) arc length, and moreover,
the derivative spaces belong to the same class, exactly as for polynomial splines; see
[23] and references therein for further details.

8. Numerical examples. In this section we present two numerical examples
to illustrate the algorithmic procedure in section 6 and a simple application of GTB-
splines for exact smooth representation of profiles containing conic section segments.

Example 8.1. Consider a GT-spline space Spr(∆) defined by

∆ = {0, 1, 5/2, 5}, p = {2, 3, 4}, r = {−1, 2, 2,−1},

and

T(1)
2 = span

{
1, x, x2

}
, T(2)

3 = span {1, x, cos(πx/2), sin(πx/2)} ,

T(3)
4 = span

{
1, x, x2, sinh(10x), cosh(10x)

}
.

All these spaces are special instances of generalized polynomial spaces discussed in
section 7. Sequences of admissible weights for Spr(∆) can be computed as described in
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Table 8.1
The triples ([uk, vk], ru(k), rv(k)) defining Nk ∈ Spr (∆) for k = 1, . . . , n as in Example 8.1.

k 1 2 3 4 5 6

uk 0 0 0 1 5/2 5/2
vk 5/2 5 5 5 5 5

ru(k) -1 0 1 2 2 3

rv(k) 2 3 2 1 0 -1

Remark 7.3 by taking into account the explicit expressions for Ũ (i) and Ṽ (i), i = 1, 2, 3:

Ũ (1)(x) = 1− x, Ũ (2) = −
√

2 cos(π/4 + πx/2), Ũ (3) =
sinh(50− 10x)

sinh(25)
,

Ṽ (1)(x) = x, Ṽ (2) = −
√

2 cos(πx/2), Ṽ (3) = − sinh(25− 10x)

sinh(25)
.

The resulting GT-spline space Spr(∆) has dimension 6 and, in view of Theorem 3.7,
possesses a GTB-spline basis. For this space, the knot vectors, u and v, and the start-
point and end-point smoothness, ru and rv, are depicted in Table 8.1. Figure 8.1 shows
the spline functions constructed at different iterations in Algorithm 6.2, together with
their first and second derivatives. Starting from the 12 global Bernstein basis functions
of Sp(∆) (Figure 8.1, first row), Algorithm 6.2 incrementally increases the smoothness
at the breakpoints until the 6 final GTB-splines (Figure 8.1, last row) are obtained.

Example 8.2. The profile depicted in Figure 8.2 (left) consists of one circular
arc, with center (2, 0) and radius 1, connected by a straight line segment to another
circular arc, with center (0, 3) and radius 2. More precisely, we are considering the
profile described by the parametric curve

(X(x), Y (x)) =


(2− sin(x), cos(x)), x ∈ [−3π/4, 0),

(2− x, 1), x ∈ [0, 2),

(−2 sin(x/2− 1), 3− 2 cos(x/2− 1)), x ∈ [2, 2 + π].

One can easily verify that this parameterization is C1 in both components. This profile
can be exactly represented as a parametric C1 GT-spline curve whose components
belong to the 4-dimensional GT-spline space Spr(∆) defined by

∆ = {−3π/4, 0, 2, 2 + π}, p = {2, 1, 2}, r = {−1, 1, 1,−1},

and

T(1)
2 = span {1, cos(x), sin(x)} , T(2)

1 = span {1, x} ,

T(3)
2 = span {1, cos(x/2), sin(x/2)} .

The parametric coefficients (control points) are given by

(2 +
√

2/2, −
√

2/2), (3 +
√

2, 1), (−2, 1), (−2, 3).

The representation in terms of GTB-splines and the corresponding control polygon
is visualized in Figure 8.2 (left). We see that the control polygon nicely encapsulates
the profile. The C1 basis functions used in the representation are shown in Figure 8.2
(middle), and their first derivatives in Figure 8.2 (right).
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(a) r = {−1,−1,−1,−1}
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(b) r = {−1, 0, 0,−1}
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(c) r = {−1, 1, 1,−1}
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(d) r = {−1, 2, 2,−1}

Fig. 8.1. Sets of GTB-splines for the GT-spline spaces Spr (∆) built from the ECT-spaces T(i)
pi ,

i = 1, 2, 3 defined in Example 8.1 and different smoothness classes r (left column), together with
their first derivatives (middle column) and second derivatives (right column). Knot positions are
visualized by vertical dotted lines.

Remark 8.3. The nice behavior of the control polygon in Example 8.2 (and corre-
sponding Figure 8.2) is not a coincidence. The control polygon is easy to construct for
any C1 GTB-spline curve whose components belong to a GT-spline space consisting
of ECT-spaces of dimension 3 and 2 in an alternating sequence. The control points
are given by: (a) the two end points of the curve, and (b) the ordered intersections
of the two end point tangent lines with the tangent lines corresponding to the linear
segments.
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Fig. 8.2. A profile consisting of two circular arcs connected by a straight line defined in Exam-
ple 8.2 (left column), together with the C1 GTB-splines used in the representation (middle column)
and their first derivatives (right column). Knot positions are visualized by vertical dotted lines.

9. Conclusion. GT-spline spaces are smooth function spaces where the pieces
are drawn from different ET-spaces of possibly different dimensions. Under quite mild
assumptions, they offer the possibility of exploiting the wide flexibility of ET-spaces
while retaining the nice properties of classical polynomial spline spaces, including a
B-spline-like basis, the so-called GTB-splines.

Besides their common application in constrained interpolation/approximation
and computer-aided geometric design — the richness of ET-spaces offers a huge uni-
verse of shapes for modeling — GTB-splines can be a powerful tool for numerical sim-
ulation as well. Since a relevant class of ET-spaces can be specified as the nullspaces
of linear differential operators, it is clear that GT-splines and GTB-splines can pro-
vide an appealing problem-dependent alternative to classical polynomial splines for
the numerical treatment of differential and integral problems. Heretofore, this great
potential has been thwarted by the lack of efficient and reliable evaluation procedures
for GTB-splines, even in the simpler case where ET-spaces of the same dimension are
glued together.

We have presented an efficient and robust algorithm for evaluation of GTB-splines
whenever they exist. The algorithm proceeds by incrementally increasing the smooth-
ness starting from the space of piecewise discontinuous functions obtained by collect-
ing the various ET-spaces. It requires as input the local Bernstein-like bases and
produces as output the entire set of GTB-splines that span the considered GT-spline
space. The algorithm recursively constructs the nullspace of a suitable matrix in a
numerically stable way without solving a linear system. In contrast with the current
available methods for evaluation of GTB-splines, the proposed strategy does not re-
quire any (numerical) integration. Indeed, integration can be avoided also to produce
the starting Bernstein-like bases as they can be obtained by solving suitable local
Hermite interpolation problems and this can be done in a pre-processing step. The
provided algorithm is a Tchebycheffian extension of the procedure recently developed
and analyzed in [36, 37, 38] for multi-degree polynomial splines.

The considered ET-spaces, defined on the bounded and closed intervals identified
by the breakpoints, are represented in terms of weights, possibly constrained by some
admissibility conditions. It should be noted, however, that this is merely for the sake
of presentation, so as to have a framework where GTB-splines exist. The proposed
algorithm does not require any weights and always produces the GTB-spline basis
whenever it exists. Therefore, the end-user can completely ignore this representation
in terms of weights when just interested in the computation of GTB-splines.

The majority of works on Tchebycheffian splines deals with spline spaces obtained
by gluing together ET-spaces of the same dimension. In this context, mainly moti-
vated by computer-aided geometric design as application, the concept of geometric
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continuity is often considered instead of classical continuity. Geometric continuity
offers additional shape parameters for design. However, this flexibility comes at a
price of increased complexity and can be of practical interest only when equipped
with proper, preferably automatic, strategy for parameter selection. In this paper, we
have deliberately confined ourselves to classical continuity with the aim of promoting
the use of GT-splines in the wider context of numerical simulation and more pre-
cisely in isogeometric methods, where the choice of the ET-spaces has to be driven by
the character of the problem under consideration. Nevertheless, the presented proce-
dure has the potential to construct an efficient evaluation algorithm for geometrically
continuous Tchebycheffian splines as well. Future research efforts will also focus on
multivariate extensions of the algorithmic evaluation approach; a particularly inter-
esting topic in this direction is the construction of a B-spline-like basis for GT-splines
on T-meshes.
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