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Strategy synthesis for surveillance-evasion games
with learning-enabled visibility optimization

Suda Bharadwaj1, Louis Ly2, Bo Wu1, Richard Tsai2, and Ufuk Topcu1

Abstract— This paper studies a two-player game with a
quantitative surveillance requirement on an adversarial target
moving in a discrete state space and a secondary objective to
maximize short-term visibility of the environment. We impose
the surveillance requirement as a temporal logic constraint.
We then use a greedy approach to determine vantage points
that optimize a notion of information gain, namely, the number
of newly-seen states. By using a convolutional neural network
trained on a class of environments, we can efficiently approx-
imate the information gain at each potential vantage point.
Subsequent vantage points are chosen such that moving to that
location will not jeopardize the surveillance requirement, re-
gardless of any future action chosen by the target. Our method
combines guarantees of correctness from formal methods with
the scalability of machine learning to provide an efficient
approach for surveillance-constrained visibility optimization.

I. INTRODUCTION

Over the last decade, the use of autonomous agents
such as unmanned aerial vehicles in potentially adversarial
environments for patrolling and surveillance has increased
tremendously [1], [2]. In such settings, it is often necessary
to not only perform routine patrolling of the area but also
to maintain visibility of potentially hostile targets until an
appropriate response can be formed. Thus, an autonomous
agent has two objectives. Throughout the operation, it must
maintain line-of-sight visibility of, or otherwise track, a
moving target. Second, the agent may also need to maximize
its visibility of the environment, prioritizing areas which
it has not recently observed. Simply, the agent needs to
optimally patrol an environment subject to the constraint of
a surveillance requirement on a moving target.

There is significant amount of existing work on design-
ing strategies for autonomous patrolling agents in known
environments [3]–[5] and unknown environments [6]–[16].
However, in these cases, the agents are merely passive
observers. When a hostile target is happened to be detected,
the agents simply inform a human operator (for example via a
live camera feed) who will take over from then on. However,
in practice, targets could be lost after detection and thus may
need to be actively tracked by the autonomous agent all the
time. In this paper, we treat the patrol problem as finding and
visiting a set of discrete locations that provides visibility of
the whole map. Such an optimization problem can be seen
as an instance of the art gallery problem, which has been
shown to be NP-hard [17].

The surveillance of adversarial targets is naturally formu-
lated as a two-player game. There have been several variants
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of such games studied in [18], [19], including the case
in which the environment is not known apriori [20], [21].
These settings, however, only handle a simple surveillance
requirement, namely to never lose sight of the target. For
example, in [22] the authors formulate the problem as a
two-player game in which both players choose their controls
at initial time and proceed until the target is able to hide.
If this requirement is relaxed, the agent may not always
observe, or even know, the exact location of the target. In
this case, surveillance is, by its very nature, captured by a
partial-information two-player game.

While there has been a lot of work on both surveillance
and patrolling individually, there has been very little on
the combination of the two problems. To bridge this gap,
this paper proposes a method for maximizing the visibility
of the environment for the patrol objective while actively
maintaining knowledge of the location of a hostile target
for the surveillance objective. We provide a quantitative
guarantee on surveillance performance.

Over an infinite time horizon, the agent must be able to
prevent its uncertainty of the target’s location from exceeding
a user-defined threshold. The approach taken in this paper is
closely related to the framework established in [23] and [24]
where a surveillance-game is formulated as a GR(1) synthe-
sis problem. However, no patrolling objective is considered
in [23] nor [24]. Another salient difference is that we do
not want to synthesize a single strategy, but instead generate
a winning region. Within the winning region, the agent is
guaranteed to not violate the surveillance specification. We
use the winning region as a constraint for the patrol task to
guarantee correctness of the surveillance requirement.

For maximizing visibility in large-scale environments, we
leverage the efficiency of data-driven techniques to deter-
mine approximately-optimal locations for the agent to move
towards. We adopt the approach from [25], where a neural
network is used to approximate a gain function that quantifies
map visibility. However, the approach in [25] does not
consider any surveillance requirements and focuses purely on
visibility optimization. We constrain the generation of these
locations at runtime to guarantee the correctness with respect
to a surveillance specification. The concept of guaranteeing
correctness on systems with different goals is studied in the
field of runtime verification [26], [27] where a winning set is
computed offline and actions that take the system out of the
set are overwritten at runtime. We employ this in principle
as new locations are computed greedily at runtime, such that
those new locations must stay in the winning region.

Our contribution is summarized as follows:



1) We propose a scalable algorithm to approximately op-
timally explore an environment while guaranteeing a
quantitative surveillance specification.

2) We employ machine learning to generate locations that
maximize visibility in large-scale discrete environments.
Formal verification techniques are often not able to
handle similar state space sizes [28]. We develop an
abstraction method to reduce the state space of a
discrete environment. We show that the abstraction is
sound which guarantees that if a strategy is correct on an
abstract environment, it is also correct on the underlying
concrete environment. We are thus able to leverage the
scalability of machine learning with the guarantees of
formal methods.

3) We present a simulation on a case study and benchmark
on various sizes of state spaces to demonstrate the
scalability of the proposed approach.

The paper is structured as follows. Section II presents the
problem informally in the context of a case study. Section
III provides notations and definitions for the surveillance
game structures. The patrol problem constrained with a
surveillance specification is formally constructed in Section
IV and the solution approach is given in Section V. We
present a method to generate a sound abstraction of a large
discretized state space in Section VI and provide numerical
evaluations in Section VII. Finally, we conclude in Section
VIII and discuss avenues of future research.

II. CASE STUDY

We first describe the problem informally, in the context
of a motivating case study. Figure 1 represents an example
environment that we represent as a gridworld.

(a) Surveillance arena (b) Gridworld representation

Fig. 1: Sample environment and corresponding gridworld
representation. The blue circle corresponds to the controlled
agent and the orange circle corresponds to the hostile target.
Red cells are obstacles that cannot be passed through and
obscure vision. Black cells in (b) correspond to states the
agent cannot see.

We are interested in patrolling the environment, i.e., ob-
serving all the states in the environment infinitely often
given the vision capabilities of the agent. In this example,
the agent’s observations correspond to line-of-sight sensor
measurements, where the sensor range is larger than the

domain of interest, as illustrated in Figure 1b. Additionally,
we require the pursuer (in blue) to satisfy a surveillance
requirement on the target (in orange). Informally we specify
surveillance requirements in the following way - always
know up to some given precision the location of the target.
We make concrete this notion in the following section.

We treat the target’s actions as non-deterministic - we
know what it can do, but we have no model for its behaviour.
Hence, if we are required to satisfy the surveillance require-
ment, we cannot guarantee the entire environment can be
patrolled. We relax the patrol requirement to maximizing the
number of states that are visible subject to the surveillance
specification. In short, we require a strategy, i.e, given the
current joint state of the pursuer and target, choose next
action of the pursuer that is correct with respect to the
surveillance requirement but also maximizes visibility of the
unseen parts of the map.

III. GAME STRUCTURE

A. Environment
We represent the environment, an example of which is

shown in Figure 1a, as a set of states L. We define L ⊆ L
as the set of states representing free space and Lc = L \
L representing the obstacles. For example, in Figure 1b, L
corresponds to all the white cells and Lc corresponds to the
obstacles in red.

We now define a model of the surveillance game in the
form of a two-player game between an agent and a target,
in which the agent has only partial information about the
target’s location.

B. Surveillance games
We define a surveillance game to be a tuple G = (G, vis)

where G = (S, s0,Σ, δ), where:
• S = La × Lt is the set of states, with La the set of

locations of the agent, and Lt the locations of the target;
• sinit = (linita , linitt ) is the initial state;
• Σ = (ΣI,ΣO) is the joint action of the target and

agent respectively in in the case of agents moving in
a gridworld, ΣI = ΣO = {N,S,W,E};

• δ : S ×Σ→ S is the transition function describing the
possible moves of the agent and the target; and

• vis : S → B is a function that maps a state (la, lt) to
true iff position lt is in sight of la.

0 1 2 3 4
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(a) Surveillance arena

vis(4, 18) = false, vis(4, 17) = false,

vis(4, 19) = true, vis(4, 23) = false

(4, 18)

(3, 23) (9, 17)(3, 19)(3, 17) (9, 19) (9, 23)

(b) Transitions from the initial state

Fig. 2: A surveillance game on sample grid. Obstacles are
shown in red, the agent (at cell 4) and the target (at cell 18)
are coloured in blue and orange respectively.

The function δ captures the next allowed move of both
the target and the agent, where the target moves first and



the agent moves second. For a state (la, lt) we define
succt(la, lt) as the set of possible successor states of the
target. We extend succt to sets of states of the target by
stipulating that the set succt(la, L) consists of all possible
successor states of the target for states in {la}×L. Formally,
let succt(la, L) =

⋃
lt∈L succt(la, lt).

For a state (la, lt) and a successor location of the target l′t,
we denote with succa(la, lt, l

′
t) the set of successor locations

of the agent, given that the target moves to l′t:
succa(la, lt, l

′
t) = {l′a ∈ La | δ(la, lt) = (l′a, l

′
t)}.

Example 1: Figure 2 shows an example of a surveillance
game on a gridworld. The state spaces La and Lt for the
agent and the target consist of the cells of the gridworld. δ
captures the possible actions of both the agent and the target
on the grid – in this case, all the cardinal directions. Figure 2b
shows the possible transitions from the initial state (4, 18).
Note that transitions to an obstacle state is not allowed and
this is accounted for in δ.

The function vis captures line-of-sight visibility: a location
lt is visible from a location la if there is no obstacle
obscuring the straight line between them. Initially the target
is not in the view of the agent, but the agent knows the initial
position of the target. If the target moves to location 19 (by
choosing σi = W ), then the agent observes its location, but
if it moves to 23 or 17, then the agent no longer knows its
exact location. The agent will then need to maintain a belief
of the target location and this is discussed in the next section.

C. Belief-set game structures

For surveillance games, when the agent cannot see the
target, we need to reason about the belief the agent has
in the location of the target. To this end, we employ a
powerset construction which is commonly used to transform
a partial-information game into a perfect-information one, by
explicitly tracking the knowledge the agent has as a set of
possible locations of the target.

Given a set B, we denote with P(B) = {B′ | B′ ⊆ B}
the powerset (set of all subsets) of B.

For a surveillance game G = (G, vis) we define the cor-
responding belief-set game structure Gbelief = (Gbelief , vis)
where Gbelief = (Sbelief , s

init
belief ,Σ, δbelief) where:

• Sbelief = La×P(Lt) is the set of states, with La the set
of locations of the agent, and P(Lt) the set of belief sets
describing information about the location of the target;

• sinitbelief = (lainit
, Btinit

) is the initial state;
• Σ is the same as in the underlying surveillance game;
• δbelief : Sbelief × Σ → Sbelief is the transition function

where δbelief(la, Bt) = (l′a, B
′
t) iff l′a ∈ succa(la, lt, l

′
t)

for some lt ∈ Bt and l′t ∈ B′t and one of these holds:
(1) B′t = {l′t}, l′t ∈ succt(la, Bt), vis(la, l

′
t) = true;

(2) B′t = {l′t ∈ succt(la, Bt) | vis(la, l
′
t) = false}.

Example 2: Consider the surveillance game on the grid-
world from Example 1. The initial belief set is {18}, as the
agent knows the target’s initial position. After the first move
of the target, there are two possible belief sets: the set {19}
when the target moves to the right, and {17, 23} when the

(4, {18})

(3, {17, 23}) (9, {19})(3, {19}) (9, {17, 23})

Fig. 3: Transitions from the initial state in the belief-set game
from Example 2 where vis(4, 17) = vis(4, 23) = false .

target moves left or down. Both of these states are not visible
to the agent. Figure 3 shows the successor states of the initial
state (4, {18}) in Gbelief .

A run ρ in the game Gbelief is an infinite sequence
ρ = (la0 , Bt0), (la1 , Bt1) . . . of states in Sbelief , where
(la0 , Bt0) = (lainit , Btinit) = sinitbelief , δbelief((lai , Bti), σi) =
(lai+1 , Bti+1) for all i. A strategy for the agent in Gbelief is a
function fa : Sbelief ×P(Lt)→ Sbelief that maps the history
of the play and the current beliuef of the target location to
the agent’s next action.

D. Temporal surveillance objectives

We can state and interpret surveillance objectives over the
runs the previously defined games. We now formally define
the surveillance properties of interest in this paper.

We consider a set of surveillance predicates SP = {pk |
k ∈ N>0}, where for k ∈ N>0 we say that a state (la, Bt) in
the belief game structure satisfies pk (denoted (la, Bt) |= pk)
iff |{lt ∈ Bt | vis(la, lt) = false}| ≤ k. Informally, a state
in the belief game satisfies pk if the size of the belief set
does not exceed the threshold k ∈ N>0.

We study surveillance objectives expressed by formulas of
linear temporal logic (LTL) over surveillance predicates. Of
focus in this paper will be surveillance formulas of the form
pk, termed safety surveillance objective which is satisfied

if at each point in time the size of the belief set does not
exceed k.

LTL formulas of this type are interpreted over (infinite)
runs. If a run ρ satisfies an LTL formula ϕ, we write ρ |= ϕ.
The formal definition of LTL semantics can be found in [29].

IV. PROBLEM FORMULATION

Besides the surveillance task with respect to a given
target, the agent is also expected to patrol the map to detect
unexpected events. Such a problem requires maximizing
visibility of the map which we refer to as the patrol problem
and formalize in the following.

A. Patrol problem

Consider an environment as in Figure 1 represented by
a set L, with a set L ⊆ L of free states. We construct
a surveillance game structure G = (G, vis) with G =
(S, s0,Σ, δ). Recall that S = La×Lt is the joint state space
of the target and agent. We assume without loss of generality
that La = Lt = L, i.e., both target and agent share the same
state space, which is natural in the setting where both the
agent and target can move in the same discretized space.



Given the visibility function vis , let Vvis(l) ⊆ L be the
set of points in L that are visible from l ∈ L, i.e.,

Vvis(l) := {lt ∈ L | vis(l, lt) = true}.

We first present the standard patrol problem studied in
[25].

Problem 1: Find the smallest set O ⊆ L of vantage points
such that each point in L is visible from at least one vantage
point l ∈ O, i.e.,

min
O
|O|

s.t.
⋃
l∈O

Vvis(l) = L.

This problem was solved in [25], by using a greedy
approach to determine vantage points sequentially; i.e., a new
vantage point is determined based on the visibility of the map
obtained from the previous vantage points. Each new point
is chosen to maximize information gain. In this case, since
we deal with discrete state spaces, the information gain is
quantified by the number of previously unseen states of a
newly surveyed region resulting from moving to a potential
vantage point li. We define this gain function as:

gK(li; Ωii−K) = |Vvis(li) ∪ Ωii−K | − |Ωii−K |, (1)

where Ωii−K represents the set of visible points for the last
K observations:

Ωii−K =

i⋃
j=i−K

Vvis(lj).

We enforce that i − K = 0 when i ≤ K. When K =
∞, the agent remembers everything it sees and patrolling is
complete when all the states in the map have been seen at
least once. When K is finite, the agent has to try to observe
states it has not seen in the last K steps. In the next section,
we discuss the patrol problem with finite K.

Example 3: Figure 4 shows a visualization of the gain
function for the environment shown in Figure 1a.

Unfortunately, computing gK(l; Ωii−K) is costly. For each
l, computing the gain function requires O(|L|) operations.
Thus computing the gain for all l ∈ L has complexity
O(|L|2) [25]. The computation becomes prohibitively ex-
pensive, especially for large state spaces. It is worth noting
that this computation cannot be performed offline as it will
depend on the choices of the target at run time.

B. Constrained patrol problem

We first provide some additional notation. We note that
to help readability and avoid nested subscripts, we slightly
abuse notation by dropping the subscripts a, t in the state
si = (lai , Bti). The state in the belief-set game at time
i is referred to in this section as (li, Bi). Given a belief-
set game Gbelief = (Gbelief , vis), let ρ = s0, s1, · · · =
(l0, B0), (l1, B1), . . . be an infinite run in the belief game
Gbelief . We define ρij = ((lj , Bj), . . . (li, Bi)) with j < i
as the finite word in the infinite run from j to i. We can
thus write the infinite run as ρ = ρj−10 · ρij · ρωi+1 and

(a) Obstacles and visibility

0.0

0.2

0.4

0.6

0.8

1.0

(b) Gain function

Fig. 4: (a) Black regions are obstacles. White regions are
visible from the red dot. Light gray regions are visible from
the cross, but not from the dot. The area of light gray
region corresponds to the gain at the cross. (b) The gain
function (normalized for visualization), given that the dot
has been visited. The cross marks the location of maximum
information gain.

denote ρj−10 = (l0, B0), . . . (lj−1, Bj−1) as a finite prefix and
ρωi+1 = (li+1, Bi+1), (li+2, Bi+2), . . . as an infinite suffix.
We are interested in constraining the patrol problem with the
addition of a surveillance requirement. However, recall that
the temporal surveillance objectives are only satisfied over
infinite runs. This setting differs from the approach in [25] in
that it now involves an infinite time horizon. We thus want to
observe states that have not been seen for a certain amount
of time. We want to maximize the short-term visibility in a
time interval of length K in order to incentivize the agent
to gain visibility of states it has not seen from the last K
vantage points.

We construct a sequentially optimal vantage point gener-
ation problem. Simply, given the current state of the belief
game (li, Bi) and an integer K > 0, we want to choose the
next vantage point that maximizes the visibility of states that
have not been seen by the last K vantage points and does
not violate the surveillance safety specification ϕ.

We now present the main problem of this paper.
Problem 2: Given a belief-set surveillance game Gbelief ,

at time step i− 1, the run in the game is ρi−10 . Additionally,
given an integer K > 0, and a surveillance requirement ϕ,
solve

arg max
li

gK(li; Ωii−K)

s.t. ρ |= ϕ

where ρ = ρi−10 ·(li, Bi)·ρωi+i for all Bi ∈ succt(li−1, Bi−1).
Informally the agent needs to choose the next vantage

point that guarantees the infinite suffix will still be correct
with respect to the surveillance specification regardless of
the target’s action choices.

In the next section we present how to translate the
constraint on the infinite suffix as a feasible set for the
optimization problem. The resulting optimization problem
needs to be solved online for every time step. As discussed
previously, evaluating the exact gain function for all feasible



points is a computationally intensive task. We thus show how
to approximate the gain function using a convolutional neural
network which allows for the generation of the next vantage
point in real time even for large maps.

V. SOLUTION APPROACH

A. Surveillance winning region

Consider a pair (G,ϕ), where G is a surveillance game
structure and ϕ is a surveillance objective. Given the relevant
surveillance predicates and specification over the belief-set
game structure Gbelief , we obtain a safety game.

A safety game defines a set F ⊆ L×P(L) of safe states.
A run ρ |= ϕ iff si ∈ F for all i ≥ 0, i.e., if only safe states
are visited in the run. Otherwise, ρ 2 ϕ. The winning region
W ⊆ F is the set of states from which a winning strategy
exists. Informally a state (la, Bt) in the belief game is said
to be in the winning region W iff, for all future steps the
target can make from the current belief state Bt, there exists
a strategy from la that guarantees that only states in W will
be visited. We can use standard algorithms for safety games
(e.g. [30]), to compute the winning region.

We note that to avoid the state space blow-up arising
from the subset construction in the partial information game,
we can solve these games using the belief-set abstraction
techniques detailed in [23].

B. Feasible set construction

Synthesizing a strategy for a surveillance specification is
inherently reactive, the agent observes the target’s action
and reacts appropriately in order to satisfy its specification.
We illustrate the idea behind the proposed solution with an
example.

Example 4: In Figure 1b, it is clear that moving to any of
the agent’s nearby states will not provide much in the way of
observing the unseen states in black. Consider the case where
the agent (blue) can move 10 cells for every 1 cell the target
(orange) can, i.e., the agent can move 10 times faster than the
target. Additionally, assume that the surveillance requirement
is ϕ = �p1 – the agent must always have direct sight of the
target. Informally, the agent’s superior speed should enable it
to move a few steps ahead to better vantage points to observe
unseen states, while still maintaining visibility of the target
regardless of the target’s actions.
Since we do not know how the target will behave in the
future, we cannot look too far ahead. Informally, we want
to be able to move to the best vantage point possible in a
region that guarantees that no matter what the target does
for all time in the future, there will always exist a way for
the agent to satisfy its surveillance requirement.

More concretely, consider the belief-set game Gbelief

along with a surveillance specification ϕ. Assume we
have solved the resulting safety game and computed
the winning region W ⊆ L × P(L). Recall that the
state of the belief-set game structure is the joint po-
sition and belief s = (la, Bt). We extend the defi-
nition of succa(la, lt, l

′
t) to sets by stipulating that the

set succa(la, Bt) =
⋃
l′t∈succt(la,Bt)

succa(la, Bt, l
′
t). Ad-

ditionally, we extend the definition of succt(la, Bt) to
more than the immediate successor by recursively defining
succkt (la, Bt) =

⋃
B′t∈succ

k−1
t (la,Bt)

succt(la, Bt).
We now define the reachable successor set R(la, Bt) as

R(la, Bt) = {l′a ∈ L | ∃ l′a ∈ succa(la, Bt),

∀B′t ∈ succt(la, Bt), (l
′
a, B

′
t) ∈ W}. (2)

Informally, a successor state l′a is a reachable successor
of (la, Bt) if, for for all possible successor belief states
B′t, we have that (l′a, B

′
t) does not violate the surveillance

specification. Note that the ordering of the existential (∃) and
universal (∀) operators makes being in the set R(la, Bt) a
strict condition – the same successor state l′a has to be correct
for all possible B′t choices the target can make.

We can then recursively define reachable successor set
over a finite horizon k, by applying Equation 2 k times:

Rk(la, Bt) = {l′a ∈
⋃

la∈Rk−1

succa(la, Bt) |

∀B′t ∈ succkt (la, Bt), (l
′
a, B

′
t) ∈ W}.

Intuitively, as k gets larger, finding a point l ∈ L that
guarantees staying in the winning region W gets harder. We
define k∗, the largest k such that Rk

∗+1 = Rk and refer to
the set as the maximum reachability set R∗(la, Bt).

Remark: Computing the set R∗ is similar to standard
fixed point set computations detailed in [31] for computing
the winning region W in temporal logic synthesis problems.
The main difference is that these algorithms focus on com-
puting a set where for all actions by a player there exists
a strategy for the other player to win. We are interested in
reversing the order of the quantifiers which results in a more
restrictive condition. One can think of k∗ as the maximum
number of actions the agent can make without ”reacting” to
the target’s actions and still guaranteeing correctness with
regards to the specification.

The reachable set computation can be performed online in
O(|L×P(L)|2). However, if required, the entire computation
can be performed offline with complexity O(|L × P(L)|4),
and the results stored for all possible states – there will be
a set R∗ stored for up to |L× P(L)| states.

We now present an equivalent version of Problem 2 with
the constraint on the infinite run translated to a feasible set.
Given that the state of the game at time i is (li, Bi), the
next vantage point to go to is the solution to the following
problem:

Problem 3: Given a belief-set surveillance game Gbelief , at
time step i−1, the current state in the game is (li−1, Bi−1).
Additionally, given an integer K > 0, and a surveillance
requirement ϕ, solve

arg max
l∈R∗(li−1,Bi−1)

gK(li; Ωii−K)



C. Approximating the gain function

When the state space is large, computing the gain function
is computationally expensive. In such cases, we approximate
gK(li; Ωii−K) using a convolutional neural network which
enables efficient computation of the gain function at run time.

Without loss of generality, we discuss the training process
for K = ∞. The approximated gain function gθ(li; Ωi0, Bi)
takes as input the cumulatively visible set Ωi0, and the
associated shadow boundaries Bi = ∂Ωi0 \LC . Here, ∂Ωi0 is
boundary of the set of states visible from at least one of the
previous vantage points. Intuitively, the shadow boundaries
(or frontiers) Bi are the boundaries between free space and
occlusion. In order to train the neural network, we sample
different environments L cropped from the INRIA Aerial
Image Labeling Dataset [32]. For each L, an initial position
l0 ∈ L ⊆ L for the agent is randomly sampled. We compute
the corresponding data pairs {(Ωi0,Bi), g(li; Ωi0)}.

Each subsequent li after the initial position is chosen as

li = arg max
l
g(l; Ωi−10 ).

The parameters θ of the neural network are updated to
minimize the cross entropy loss E

(
g(li; Ωi0), gθ(li; Ωi0,Bi)

)
between the normalized exact gain function g and the nor-
malized prediction gθ, where the cross entropy loss E is
defined as

E(p, q) :=

∫
p(x) log q(x) + (1− p(x)) log(1− q(x)) dx.

The architecture of gθ is based on U-Net, a standard CNN
architecture for dense inference problems which aggregates
information across various scales [33]. For more details we
refer the reader to [25].

At run time, we approximate the gain function using gθ,
which is measure of how useful it is to place a new vantage
point at l. Since not all l are reachable due to the surveillance
constraint, we restrict gθ to be zero for l outside R∗. The
next vantage point is chosen as the point within the R∗ that
maximizes gθ and this process is repeated for all time.

VI. SURVEILLANCE GAME ABSTRACTION

In order to scale to large state spaces, we present a
conservative abstraction of the surveillance game G with
visibility function vis . We first define an abstraction function.

Abstraction function: Given an environment with state
space L an abstraction function ψ : L→ 2L yields a partition
Lψ = l1, . . . , ln of the state space L with

⋃n
i=1 li = L and

∀ i 6= j we have li ∩ lj = ∅.
Theorem 1: Given concrete surveillance game G =

(G, vis), we say the abstract surveillance game Gψ =
(Gψ, visψ) with Gψ = (Sψ, s0ψ,Σ, δψ), and sψ = (laψ, l

t
ψ)

with laψ, l
t
ψ ∈ Lψ , generated by abstraction function ψ is

sound if the following holds
1) δψ(sψ, σ) = s′ψ with s′ψ = (la

′

ψ , l
t′

ψ) iff
• For all la ∈ laψ in the concrete game, it must be

the case that δ((la, lt), σ) = (l′a, l
′
t) with either

l′a ∈ la
′

ψ or l′a ∈ laψ . Or equivalently, we require

there does not exist la ∈ laψ such that l′a /∈ la
′

ψ and
l′a /∈ laψ

• There exists an lt ∈ ltψ in the concrete game, such
that δ((la, lt), σ) = (l′a, l

′
t) with l′t ∈ lt

′

ψ .
2) visψ((laψ, l

t
ψ)) = > iff for all (la, lt) ∈ (laψ, l

t
ψ) we

have vis(la, lt) = >.
Simply, the abstract version of the surveillance game gives

more power to the target and removes power from the agent
by disallowing transitions between abstract states for the
agent if it is not possible for all underlying concrete states.
Conversely transitions between abstract states are allowed
for the target if there exists a corresponding transition in any
of the underlying concrete states.

Example 5: Figure 1 shows an example of abstracting a
concrete map with a large state space to a coarser represen-
tation. Each grid state in Figure 1b represents a collection of
finer grid states from Figure 1a. We note that the abstraction
procedure inflates obstacles for the agent (blue), but not the
target. In fact, states that are represented as obstacles in
Figure 1b may be passed through by the target (orange) as not
all of the underlying concrete state is necessarily an obstacle.
This effect is, in essence, caused by the different for all and
there exists quantifiers in the abstract game construction.

This construction of the abstraction guarantees that a
strategy that is correct on the abstract game with respect
to safety surveillance objective ϕ corresponds to a winning
strategy on the concrete game. However, since the abstrac-
tion is conservative, not finding a winning strategy on the
abstraction does not mean one does not exist in the concrete
game. In the experiments that follow in the next section, we
use these abstractions to reduce the size of the state space
for the winning region computation in the safety game.

Remark: The methodology detailed in this paper in-
troduces several sources of conservatism – state abstraction
shown in this section and the belief abstraction in [23] used in
generating strategies. These allow for more scalable synthesis
on large problems. However, due to the added conservatism,
there is no guarantee that there exists a winning strategy
in the abstract model, even if one does exist in the con-
crete models. Techniques such as counterexample guided
abstraction refinement (CEGAR) can be used to generate
new abstractions if no winning strategy can be found.

VII. NUMERICAL EXPERIMENTS

A. Effectiveness of patrol

In order to illustrate the efficacy of including the vision-
maximization for the patrol problem, we compare an agent
employing the surveillance constrained patrol method with
a window of K = 5 to an agent following a pure safety
surveillance strategy. We compare the receding gain the ratio
of newly seen states (that have not been seen in the last
K = 5 steps), to the total number of traversable states in the
map.

Figure 6 shows the results of the comparison. We note that
when no patrol optimization is enforced, the agent tends to
stay still as it is sufficient to maintain surveillance of the
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Fig. 5: Simulation of the case study presented in Section II. The green cells correspond to the path to the optimal vantage
point which is the last green square on the path. Snapshots of when a new vantage point is recomputed is shown here.
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Fig. 6: Comparison of the effects of visibility optimization.
Adding the patrol objective drastically increases the agent’s
visibility of the environment.

target. This causes no new states to be seen and results in
the value of the receding gain to be zero for much of the
time. Meanwhile, when visibility-maximization is taken into
account, the agent actively moves to the best vantage point
it can safely reach. The sum of gain over the time period is
2.07 when patrol optimization is performed vs 0.52 for the
pure surveillance case. This corresponds to average gain of
3.4% per time step vs 0.8%.

Finally, we remark that when the agent in the pure
surveillance case stays still for longer than K steps, all states
not in its current vision become unseen states. Hence, when
it finally moves, the gain becomes high, causing the spikes.

B. Motivating case study

Here we present the results of solving the case study
presented in Section II with surveillance requirement �p ≤ 1
– which corresponds to not allowing the agent to lose sight
of the target. We assume the agent can move 4 cells for
every 1 cell the target can move. The target is controlled by
a human moving it with the arrow keys on a keyboard.

We have implemented the simulation in Python, using the
slugs reactive synthesis tool [34] to solve the safety game and
find the winning regionW . The experiments were performed
on an Intel i5-5300U 2.30 GHz CPU with 8 GB of RAM.
We solve for the winning surveillance region on the 32× 32
abstraction shown in Figure 1b. New vantage points and the
paths to those points were computed at each snapshot shown
in Figure 5 in green, and took approximately ≈ 1 second for

Table I: Comparison of gain function computation time (secs)
for various map sizes. Using the exact gain function quickly
becomes prohibitively expensive.

Grid size
642 1282 2562 5122 10242

Exact 0.499 2.565 36.234 597.797 8105.750
CNN 0.058 0.071 0.126 0.334 1.194

each new computation. Once the agent reaches the vantage
point, the next one is computed and this process is repeated.
We see that the agent can leverage its superior speed to move
away from the target in order to see new areas, but it is still
able to keep sight of the target at all times. A video of the
simulation can be seen at https://bit.ly/2F2Vnjb.

C. Gain function computation benchmarks

Here we compare the process on various sized maps in
order to demonstrate the scalability of using a CNN to
compute the gain function. See Table I for a comparison of
computation time for the gain function. The CNN computes
the gain function within 1 second for maps up to 1024×1024.
Meanwhile, the exact gain function computation already
takes more than 1 second for 128×128 maps and more than
2 hours for 1024× 1024 maps. The scalability is crucial as
the vantage point computation is conducted online on the
concrete environment, compared to the surveillance strategy
synthesis which is performed offline on an abstraction. For a
more detailed discussion on the loss of optimality from the
gain function approximation, we refer the reader to [25].

D. Discussion

We are able to generate approximately optimal vantage
points in real time for very large scale maps. Due to
restricting the search space of these vantage points through
the winning region in a surveillance game, we are also able
to guarantee correctness on these large-scale maps.

We note that for illustration, the experiments shown here
use a simple surveillance specification ϕ = �p1 which
means the agent cannot lose sight of the target. We provide
additional examples and animations with looser surveil-
lance requirements at http://visibility.page.
link/evasion.

https://bit.ly/2F2Vnjb
http://visibility.page.link/evasion
http://visibility.page.link/evasion


VIII. CONCLUSION

We proposed a framework for constraining patrol strate-
gies to be formally correct with respect to a surveillance
requirement defined as a temporal logic constraint. Our ap-
proach is flexible as it allows a user to tailor the surveillance
requirement for their specific application. Using convolu-
tional neural networks, we compute a measure of information
gain which prioritizes observing states that have not been
seen for a given time interval. We choose the next vantage
point as the location within the maximal reach set R∗ that
optimizes the gain function. We show that employing the
patrol strategy leads to better visibility of the environment,
as measured by a receding gain metric.

For future work, we will extend the framework to handle
the case of exploration, where the environment is initially un-
known. We also plan to consider more sophisticated surveil-
lance requirements, such as surveillance liveness objectives,
where, infinitely often, the agent must keep the uncertainty
of the target’s location below a predefined threshold.
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