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Abstract

Recently, a new formation and assembly strategy was proposed in [17], which resulted in significant speedups
in the formation and assembly time of the Galerkin mass matrix in isogeometric analysis. The strategy relies
on three key ingredients: (1) assembly row by row, instead of element by element; and an efficient forma-
tion strategy based on (2) sum factorization and (3) weighted quadrature, that is applied to each specific
row of the matrix. Compared to traditional element procedures applied to three dimensional problems,
the computational complexity is lowered from O(p9) per degree of freedom to O(p4), where p is the order
of polynomials. This is close to the theoretical minimum of O(p3), attained by, for example, collocation.
Consequently, this type of formation and assembly scales favorably with polynomial degree, which opens the
way for high order isogeometric analysis employing k-refinement, that is, use of maximally smooth, higher
order splines. In this work we discuss various important details for the practical implementation of the
weighted quadrature formation strategy proposed in [17]. Specifically, we extend the weighted quadrature
scheme to accurately integrate the elements of the stiffness matrix in linear elasticity and propose a means
of distributing quadrature points for non-uniform, mixed continuity, spline spaces. Furthermore, we dis-
cuss efficient access and assignment into the prevalent sparse matrix data structures, namely, Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC). In particular, row-by-row or column-by-column
assembly allows matrix rows or columns, respectively, to be formed contiguously in the storage order of the
sparse matrix, thereby minimizing the memory overhead and eliminating the addition assignment operation
on sparse matrices. Several three-dimensional benchmark problems illustrate the efficiency and efficacy of
the proposed formation and assembly technique applied to isogeometric linear elasticity. We show that
the accuracy of full Gauss quadrature is maintained while the computational burden of forming the matrix
equations is significantly reduced.

Keywords: Isogeometric analysis, Weighted Quadrature, Sum Factorization, Row assembly, Column
assembly
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Email addresses: rene@ices.utexas.edu (René R. Hiemstra), giancarlo.sangalli@unipv.it (Giancarlo Sangalli),

mattia.tani@imati.cnr.it (Mattia Tani), francesco.calabro@unina.it (Francesco Calabrò), hughes@ices.utexas.edu
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1. Introduction

The great success of the finite element method [29, 47] can be attributed to its strong theoretical rooting
in the fields of variational calculus and functional analysis, and its wide applicability to a range of com-
plex physical phenomena involving complex geometry. Arguably, however, the most important reason for
success of the finite element method has been the rise of the computer age and the relative ease at which5

mathematical finite element formulations can be translated to efficient computer code.
At the core of any finite element implementation are the element subroutines that form the local ele-

ment matrices that are subsequently assembled in the global system of matrix equations. Early on, it was
recognized that this assembly process could be performed in an element-by-element fashion due to the local
support of the finite element basis functions, which were of low order and low continuity. This approach10

worked very well in the early days of serial computation where floating point operations were expensive
and memory limited. Today, floating point operations are relatively inexpensive, memory is abundant, but
expensive to move, and serial computation has been replaced by parallel computation. Not only has the
hardware changed. The finite element method has evolved too. It is therefore questionable whether the
element-by-element assembly process is still “the right one”.15

The emerging field of isogeometric analysis [18, 30] has cast new light on the finite element method.
Although it was introduced to improve the interoperability across the design, analysis and manufacturing
pipeline, isogeometric analysis has proven its fidelity as an analysis technology. In particular, several investi-
gations have demonstrated superior robustness and accuracy per degree of freedom [9, 30, 36], and excellent
spectral behavior has been shown in a number of studies [19, 23, 31, 32] explaining the excellent results ob-20

tained in applications such as structural dynamics [18] and incompressible fluid dynamics [2, 10]. Moreover,
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some fundamental properties of splines have led to the design of so called compatible discretization methods
that preserve important mathematical structure of the partial differential equations under consideration
[16, 24, 28].

Initially, isogeometric analysis was performed using standard finite element procedures. Especially im-25

portant is the introduction of Bézier extraction [13, 45], which allowed isogeometric analysis to be performed
using minor alterations to an existing finite element code. This certainly allowed for the rapid dispersion
of isogeometric analysis into the finite element community and has been important for its acceptance and
application in existing finite element software such as LS-DYNA [11, 39]. On the other hand, standard finite
element formation and assembly practices currently limit isogeometric analysis to low polynomial order,30

primarily quadratics and cubics. This is unfortunate because a number of studies have shown that high
order and high continuity combined in “k-refinement” benefit greatly the accuracy and, more surprisingly,
the robustness of the method in a wide variety of applications in solid and fluid mechanics.

Many important contributions have been made recently in order to make high order and high continuity
isogeometric analysis more efficient. Firstly, collocating the strong form of the equations [4, 5, 21] is a35

viable alternative to the Galerkin method that decreases the formation and assembly time by orders of
magnitude at the expense of decreased accuracy per degree of freedom and sub-optimal convergence rates
[42]. The recently introduced “variational collocation method” [26, 38] puts the collocation method in a
variational context and shows promise to render collocation as accurate as Galerkin. Several other works
have focussed on making Galerkin more efficient by employing specialized or reduced quadrature rules40

[6, 8, 25, 27, 33, 34, 43] and employing fast formation routines such as sum factorization [3, 15, 22, 40] or
table lookup [37].

The objective of this paper is to further develop the recently introduced formation and assembly strategy
presented in [17, 41]. Besides obvious advantages, such as parallel scalability, it turns out that this forma-
tion and assembly strategy scales favorably with polynomial degree p, which opens the way for high-order45

isogeometric analysis employing k-refinement. In this work we extend the weighted quadrature perspective
presented in [17] to the stiffness matrix in linear elasticity and discuss important practical considerations in
computing the numerical integrals, such as distribution of the quadrature points in case of mixed continuity,
non-uniform spline spaces, efficient access and assignment into sparse matrix data structures, and extension
to distributed and shared memory parallel computation.50

(a) O
(
p3

)
quadrature points per element

Formation
Quadrature loop Sum factorization

A
ss

e
m

b
ly Element loop c · p9

c1 · p5
+c2 · p6
+c3 · p7

Row / Column loop c · p9
c1 · p7

+c2 · p6
+c3 · p5

(b) O (1) quadrature points per element

Formation
Quadrature loop Sum factorization

A
ss

e
m

b
ly Element loop c · p6

c1 · p2
+c2 · p4
+c3 · p6

Row / Column loop c · p6
c1 · p4

+c2 · p4
+c3 · p4

Table 1: Number of floating point operations per degree of freedom for different formation and assembly strategies of the
mass matrix in three-dimensional tensor product isogeometric analysis using smooth Cp−1 splines. Here the c’s are constants
independent of p. Note that row assembly using a quadrature rule with O(1) points per element results in O(p4) operations
per degree of freedom in each of the three separate stages of the sum factorization process.
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1.1. Row or column formation and assembly by means of weighted quadrature and sum factorization

Each row of a Galerkin system matrix is associated with a locally supported test function, while each
matrix column is associated with a trial function. Devising a quadrature rule that integrates products
with a particular test function can lead to an efficient quadrature strategy for computing the entries of
the corresponding matrix row. This, combined with sum factorization, is the essential idea of weighted55

quadrature as presented in [17]. We briefly recall the main ingredients and compare among formation and
assembly techniques in Table 1.

1.1.1. Weighted quadrature

The obvious way to improve the performance of the formation and assembly process is to design spe-
cialized quadrature rules that require fewer evaluations. The increased smoothness of splines provides60

opportunities to do so while maintaining accuracy. For example, in [33] Generalized Gaussian rules have
been designed, which require d 2p−r

2 e points per element, where r is the regularity of the univariate degree
p spline space. Additionally, one can employ reduced integration techniques such that the error due to
quadrature is bounded by the discretization error, see [27]. Unfortunately, the number of evaluations of
these techniques is proportional to p. Weighted quadrature is a new technique in which the asymptotic cost65

with k-refinement does not depend on p. A specialized quadrature rule is designed for each test function
by incorporating the test function within the integral measure. It turns out that roughly 3nsd points are
required per element to integrate the entries of the isogeometric stiffness matrix in linear elasticity, where
nsd is the number of space dimensions.

1.1.2. Sum factorization70

Sum factorization was first introduced in [40] and is now considered the technique of choice to attain
efficient formation of local element matrices in hp-finite elements [1, 22, 35, 49]. It has been applied in the
context of isogeometric analysis in [3, 15]. In essence, sum factorization is a reordering of the computations
in such a way to exploit the underlying tensor product of the test and trial spaces involved. This reordering
transforms multidimensional integrals into a series of one-dimensional integrals, thereby reducing compu-75

tational complexity in three dimensional tensor product isogeometric analysis from O
(
p9
)

to O
(
p7
)

per
degree of freedom. Here we have assumed that full Gauss quadrature is used resulting in (p+1)3 quadrature
points per element.

1.1.3. Row or column loop

Combining sum factorization and weighted quadrature in a row or column loop significantly reduces the80

computational complexity of forming and assembling the matrix equations. Table 1 illustrated that all three
ingredients, that is, (1) row-loop, (2) sum-factorization, and (3) weighted quadrature, are necessary to lower
the computational complexity from O

(
p9
)

to O
(
p4
)
. The critical observation is that row-formation using

a quadrature rule with O(1) points per element results in the proper balancing of each of the three separate
stages in the sum factorization process.85

1.2. Outline

The outline of this paper is as follows. In Section 2 we develop weighted quadrature rules that are
applicable to second order partial differential equations. In particular, we show how to distribute the
quadrature points and compute the weights of weighted quadrature rules. In Section 3 we introduce the
model problem and derive the matrix equations arising from discretization of linear elasticity. We then90

show how to form the entries of the stiffness matrix using sum factorization and weighted quadrature. In
Section 4 we discuss implementational details with regard to sum factorization and sparse matrix access
and assignment and discuss opportunities for shared and distributed parallel computation. The presented
combination of techniques have been applied in a numerical implementation which leads to the results in
Section 5. Finally, conclusions are drawn and recommendations for future work are made in Section 6.95
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2. Weighted Quadrature

By incorporating the test-function within the integral measure it is possible to develop test function
specific quadrature rules that, asymptotically with k -refinement, have O(1) points per degree of freedom,
independent of the polynomial degree p. This results in formation and assembly procedures that scale nearly
optimal with p. In this Section we introduce weighted quadrature in the general context of arbitrary second100

order partial differential equations. We start with a brief recapitulation of univariate splines and introduce
the main properties that we use in the context of weighted quadrature.

2.1. Background and notation

A spline is a piecewise polynomial that is characterized by the polynomial degree of its segments and
the prescribed regularity at their interfaces. A convenient basis in which to represent polynomial splines is
given by B-splines [20, 44]. Consider a partitioning of ∆ = [x̂0, x̂δ] into δ elements,

x̂0 < x̂1 < . . . < x̂k−1 < x̂k < . . . < x̂δ.

With every internal breakpoint, x̂k, we associate an integer, rk, prescribing the regularity between the
polynomial pieces. Then, given the knot-multiplicity, {p− rk}δ−1

k=1, we can define the knot vector as,

Ξ = {ξi}d+p+1
i=1 := { x̂0, ..., x̂0︸ ︷︷ ︸

p+1

, ..., x̂k−1, ..., x̂k−1︸ ︷︷ ︸
p−rk−1

, x̂k, ..., x̂k︸ ︷︷ ︸
p−rk

, ..., x̂δ, ..., x̂δ︸ ︷︷ ︸
p+1

} . (1)

With a knot vector in hand, B-splines are stably and efficiently computed using the Cox-DeBoor recur-
sion,

N̂i,0(x̂) =

{
1 if x̂ ∈ [ξi, ξi+1)

0 otherwise

N̂i,p(x̂) =
x̂− ξi
ξi+p − ξi

N̂i,p−1(x̂) +
ξi+p+1 − x̂
ξi+p+1 − ξi+1

N̂i+1,p−1(x̂)

where, by definition, 0/0 = 0.
Let r = {0 ≤ rk ≤ p− 1, k = 1, ..., δ − 1}. The space of polynomial splines of degree p and dimension d

with rk continuous derivatives at breakpoint x̂k is defined as,

Spr = span
(
N̂i,p(x̂)

)d
i=1

. (2)

B-splines have important mathematical properties, many of which are useful in design as well as in
analysis. B-spline basis functions of degree p may have up to p − 1 continuous derivatives, they form a
positive partition of unity, and have local support. Furthermore, they feature the following differentiation
rule, which will prove important for our subsequent discussion,

N̂ ′i,p(x̂) =
p

ξi+p − ξi
N̂i,p−1(x̂)− p

ξi+p+1 − ξi+1
N̂i+1,p−1(x̂). (3)

2.2. Definition of Weighted Quadrature Rules105

The univariate integrals that we would like to efficiently evaluate are of the form,∫
∆

wu c(x̂)dx̂,

∫
∆

wu′ c(x̂)dx̂, (4)∫
∆

w′u c(x̂)dx̂,

∫
∆

w′u′ c(x̂)dx̂. (5)
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Here u,w ∈ Spr are trial and test functions and c(x̂) is a coefficient that depends on the geometry mapping
and the material behavior. These type of integrals and their multivariate generalizations occur in a wide
variety of linear boundary value problems involving diffusive, advective and reactive behavior.

Quadrature rules are primarily designed to be exact in case c(x̂) = 1. Such rules perform well, in general,
when applied to a physical problem where c(x̂) is sufficiently regular. The error arising due to quadrature110

can be bounded by the discretization error such that optimal rates of convergence can be guaranteed1.
Weighted quadrature also proceeds in this way. The novelty, however, is that a quadrature rule is designed
for each test function, or its derivative, separately. This is done by combining the test-function or its
derivative within the integral measure. This gives rise to two types of quadrature rules: one is designed to
approximate integrals in (4) and the other integrals of the form in (5).115

Definition 2.1 (Weighted quadrature). Let v ∈ Spr−1 and M̂ (x̂) a B-spline test function. We define weighted
quadrature rules,

Q(0)

M̂
(v) =

∑
k

v(xk) ·W (0)

M̂ ,k
:=

∫
∆

v(x̂)
(
M̂ (x̂)dx̂

)
(6)

Q(1)

M̂
(v) =

∑
k

v(xk) ·W (1)

M̂ ,k
:=

∫
∆

v(x̂)
(
M̂ ′(x̂)dx̂

)
(7)

where { xk ∈ [x̂0, x̂δ], W
(α)

M̂ ,k
∈ R, k = 1, 2, ..., q }.

Consider 4 and 5 with w = M̂ and c(x̂) ≡ const. Because both u, u′ are elements of the space Spr−1, the

quadrature rule Q(0)

M̂
(·) is exact for integrals of the form in (4), while Q(1)

M̂
(·) is exact for integrals of the

form in (5).

2.2.1. Computation of weighted quadrature rules Q(0)

M̂
(·)120

Let { N̂j,p(x̂) }dj=1 denote a B-spline basis for the target space Spr−1 and M̂ (x̂) ∈ Spr a B-spline test

function. Note that Spr ⊂ Spr−1 and Sp−1
r−1 ⊂ Spr−1, that is, the trial space and the space spanned by

derivatives of the trial functions are contained within the target space. From (6)-(7) we can derive the
following equations for exact quadrature,

Q(0)

M̂

(
N̂j1

)
=

k2∑
k=k1

W
(0)

M̂ ,k
· N̂j1(xk) :=

∫
∆

N̂j1(x̂)
(
M̂ (x̂)dx̂

)
...

... (8)

Q(0)

M̂

(
N̂j2

)
=

k2∑
k=k1

W
(0)

M̂ ,k
· N̂j2(xk) :=

∫
∆

N̂j2(x̂)
(
M̂ (x̂)dx̂

)
.

Here j1, . . . , j2 are the indices of trial functions that have non-zero intersecting support with test function
M̂ and k1, . . . , k2 refer to the quadrature points that lie within the support of test function M̂ . Quadrature
weights corresponding to k /∈ k1, . . . , k2 are set to zero.

If the quadrature points {xk, k = k1, ..., k2} are chosen a priori in such a way that the problem statement
is well defined, that is, the quadrature rule exists, then the above exactness conditions are linear in the weights
and are simple to solve. The solution may be non-unique, however, because the number of quadrature

1Optimal rates of convergence can also be attained under looser restrictions, e.g. when strategies such as reduced integration
are applied, see [27].

6



weights (unknowns) is generally greater than the number of exactness conditions. Therefore, we compute
the non-zero weights of the quadrature rule,

w = { W (0)

M̂ ,k
, k = k1, . . . , k2 } ,

by means of the quadratic optimization problem in (9). This is a weighted least squares problem where
the matrix Z serves to normalize the unknown weights in w, which aids positivity and boundedness. The125

solution of the stated problem is linear in the weights and can be stably and efficiently computed using
QR-factorization.

(O)

Minimize,

P (w) =
1

2
‖Z−1w‖2l2 (9a)

over all w ∈ Rqo subject to,

Aw = b (9b)

where A ∈ Rdo×qo and b ∈ Rdo are defined as,

A =

N̂j1(xk1) · · · N̂j1(xk2)
...

...

N̂j2(xk1) · · · N̂j2(xk2)

 , b =


∫
N̂j1(x̂)

(
M̂ (x̂)dx̂

)
...∫

N̂j2(x̂)
(
M̂ (x̂)dx̂

)
 (9c)

and,

Z = diag
(
M̂ (xk1)hk1 , . . . , M̂ (xk2)hk2

)
, hk = xk+1/2 − xk−1/2. (9d)

Remark 2.2. To maintain 16 digits of accuracy in the quadrature rule the weights have to be computed in
high precision. We solve the normal equations using QR factorization with arbitrary precision arithmetic130

provided by the Julia language.

Remark 2.3. Instead of the presented least squares approach one could solve a linear programming problem,
using e.g. the simplex method, to enforce positivity [50]. However, this fails if such a rule does not exist
given the chosen distribution of quadrature points.

Example 2.4 (Weighted quadrature ). Let ∆ = { 0, 1, 2, 3 } with r = { 1, 1 }. Consider a target space135

for weighted quadrature, S2
r−1 = span

(
N̂j,2

)7

j=1
, and a test space, S2

r = span
(
M̂i,2

)5

i=1
. We consider the

problem of determining a weighted quadrature rule Q(0)

M̂3,2

(·), associated with M̂3,2(x̂), depicted in grey in

Figure 1.
The quadrature points have been chosen a priori as { 1

6 ,
1
2 ,

5
6 , 1 + 1

6 , 1 + 1
2 , 1 + 5

6 , 2 + 1
6 , 2 + 1

2 , 2 + 5
6 }. This

results in the matrices A,Z and right-hand-side vector b,

A = 1
36


25 9 1
10 18 10
1 9 25 25 9 1

10 18 10
1 9 25 25 9 1

10 18 10
1 9 25

 , Z = 1
3·72diag



1
9
25
46
54
46
25
9
1

 , b = 1
60


1
3
19
14
19
3
1

.
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0 1 2 3
0

1

Figure 1: A weighted quadrature rule corresponding to a uniform quadratic B-spline test function, denoted in grey , from
Example 2.4. The remaining functions form a basis for the target space S2r−1. The quadrature points are chosen a priori and
the corresponding weights, that is, the vertical coordinates, are computed by solving the linear equations in (9).

The solution, computed by solving (9), is depicted in Figure 1 and in the first column of Table 2.

2.2.2. Computation of weighted quadrature rules Q(1)

M̂
(·)140

Using (3) and the fact that quadrature is a linear operation we obtain that,

Q(1)

M̂i,p

(v) =

∫
∆

v(x̂)
(
M̂ ′i,p(x̂)dx̂

)
=

p

ξi+p − ξi

∫
∆

v(x̂)
(
M̂i,p−1(x̂)dx̂

)
− p

ξi+p+1 − ξi+1

∫
∆

v(x̂)
(
M̂i+1,p−1(x̂)dx̂

)
=

p

ξi+p − ξi
Q(0)

M̂i,p−1

(v)− p

ξi+p+1 − ξi+1
Q(0)

M̂i+1,p−1

(v) . (10)

Consequently, we can simply compute weighted quadrature rules, { Q(0)

M̂i,p−1

(·) , i = 1, 2, ..., d − 1 }, with

the technique presented in the previous section, and the rules { Q(1)

M̂i,p

(·) , i = 1, 2, ..., d } follow as linear

combinations.

Example 2.5 (Weighted quadrature ). We continue the previous example. We consider the problem of

determining the weighted quadrature rule Q(1)

M̂3,2

(·). According to (10) this quadrature rule is computed as,

Q(1)

M̂3,2

(·) = Q(0)

M̂3,1

(·)−Q(0)

M̂4,1

(·) . (11)

Due to the uniformity of the spline spaces and layout of the quadrature points the rules Q(0)

M̂3,1

(·) and Q(0)

M̂4,1

(·)
are identical. Their solution, depicted in Table 2 and Figure 2, follows from (9) where the matrices have
been computed as,

A = 1
36

25 9 1
10 18 10
1 9 25 25 9 1

10 18 10
1 9 25

 , Z = 1
3·6


1

3
5

5
3

1

 , b = 1
12

1
2
6
2
1

.

2.3. Layout and distribution of the quadrature points

As in [17] we consider weighted quadrature rules where the points are fixed a priori. This needs to be145

done in such a way that the problem statement in (9) is well defined, that is, matrix A ∈ Rdo×qo is of full
rank and qo ≥ do. This poses constraints on the position of the quadrature points, as a direct consequence
of the Schoenberg-Whitney theorem [20].
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0 1 2 3
0

1

(a) Quadrature rule Q(0)

M̂3,1

(·)

0 1 2 3
0

1

(b) Quadrature rule Q(0)

M̂4,1

(·)

0 1 2 3

0

1

(c) Quadrature rule Q(1)

M̂3,2

(·) = Q(0)

M̂3,1

(·)−Q(0)

M̂4,1

(·)

Figure 2: Weighted quadrature rules corresponding to derivatives of test functions of degree p can be written as a linear
combination of weighted rules corresponding to test functions of degree p− 1.
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Table 2: Quadrature rules corresponding to Examples 2.4 and 2.5 computed up to 15 digits of accuracy.

k xk Q(0)

M̂3,2
(·) Q(0)

M̂3,1
(·) Q(0)

M̂4,1
(·) Q(1)

M̂3,2
(·)

1 1
6 0.002079195717828 0.062500000000000 0.062500000000000

2 1
2 0.051402680940575 0.125000000000000 0.125000000000000

3 5
6 0.085395978589138 0.312500000000000 0.312500000000000

4 1 1
6 0.287524825693034 0.312500000000000 0.062500000000000 0.250000000000000

5 1 1
2 0.147194638118850 0.125000000000000 0.125000000000000 0.000000000000000

6 1 5
6 0.287524825693035 0.062500000000000 0.312500000000000 -0.250000000000000

7 2 1
6 0.085395978589138 0.312500000000000 -0.312500000000000

8 2 1
2 0.051402680940574 0.125000000000000 -0.125000000000000

9 2 5
6 0.002079195717828 0.062500000000000 -0.062500000000000

Remark 2.6. The Schoenberg-Whitney condition is fulfilled when every B-spline target function, N̂j , j =
j1, . . . , j2, can be uniquely associated with a quadrature point that lies within its support. In this work we150

additionally require that quadrature points { xk, k = k1, . . . , k2 } lie within the support of test function M̂ ,
although that is not strictly necessary for the invertibility of A.

In the following we introduce a procedure to determine the minimal number of quadrature points required
in each element Ik = [xk−1, xk), k = 1, . . . , δ. That the approach satisfies the Schoenberg-Whitney condition
with the minimal number of quadrature points is left for future work. The process is delineated in Figure 3155

and uses the same target and test space as in Example 2.4. To refer to unions of several elements Ir∪ . . .∪Is
we use the shorter notation (r − s).

(S1) The first step is to determine the elements that are contained within the intersection of test and target

functions, supp
(
N̂j

)
∩ supp

(
M̂i

)
. For example, the intersections of the target functions and test

function depicted in Figure 1 are,

supp
(
N̂1

)
∩ supp

(
M̂3

)
≡ supp

(
N̂2

)
∩ supp

(
M̂3

)
= I1 = (1− 1)

supp
(
N̂3

)
∩ supp

(
M̂3

)
= I1 ∪ I2 = (1− 2)

supp
(
N̂4

)
∩ supp

(
M̂3

)
= I2 = (2− 2)

supp
(
N̂5

)
∩ supp

(
M̂3

)
= I2 ∪ I3 = (2− 3)

supp
(
N̂6

)
∩ supp

(
M̂3

)
≡ supp

(
N̂7

)
∩ supp

(
M̂3

)
= I3 = (3− 3).

This information is stored as row two in Figure 3. Note that common intersecting intervals are
highlighted in the same color to display their equivalence.

(S2) The information gathered in S1 is reordered into a three-dimensional array, see Figure 3. Each slice160

is associated with a test function. The notation (r − s) ∗ µrs means that the interval (r − s) has
multiplicity µrs in a particular row of S1.

(S3) For each slice the minimum number of points in interval (r − s), denoted by µrs, is determined by
summing the multiplicities corresponding to intervals (k − l) ⊂ (r − s), that is,

µrs =

s∑
k=r

s∑
l=k

µkl.

(S4) The global number of points required in each of the intervals is obtained by taking the maximum over
each of the constraints in S3, highlighted in grey .
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(S5) The constraints in S4 lead to a global integer optimization problem. The unknowns are the number165

of quadrature points in each element.

(S6) Solve the integer problem and obtain layout.

0 1 2 3 4 5 6

0 1− 1 1− 1 1− 1 − − − −

1 1− 1 1− 1 1− 2 2− 2 2− 2 − −

2 1− 1 1− 1 1− 2 2− 2 2− 3 3− 3 3− 3

3 − − 2− 2 2− 2 2− 3 3− 3 3− 3

4 − − − − 3− 3 3− 3 3− 3

index target function

in
d
e
x

t
e
s
t
fu

n
c
t
io

n

(1− 1) ∗ 3 (1− 2) ∗ 0

(2− 2) ∗ 0 (2− 3) ∗ 0

(3− 3) ∗ 0

test function 0

(1− 1) ∗ 2 (1− 2) ∗ 1

(2− 2) ∗ 2 (2− 3) ∗ 0

(3− 3) ∗ 0

test function 1

(1− 1) ∗ 2 (1− 2) ∗ 1

(2− 2) ∗ 1 (2− 3) ∗ 1

(3− 3) ∗ 2

test function 2

(1− 1) ∗ 0 (1− 2) ∗ 0

(2− 2) ∗ 2 (2− 3) ∗ 1

(3− 3) ∗ 2

test function 3

(1− 1) ∗ 0 (1− 2) ∗ 0

(2− 2) ∗ 0 (2− 3) ∗ 0

(3− 3) ∗ 3

test function 4

(1− 1) ∗ 3 (1− 2) ∗ 3

(2− 2) ∗ 0 (2− 3) ∗ 0

(3− 3) ∗ 0
(1− 1) ∗ 2 (1− 2) ∗ 5

(2− 2) ∗ 2 (2− 3) ∗ 2

(3− 3) ∗ 0
(1− 1) ∗ 2 (1− 2) ∗ 4

(2− 2) ∗ 1 (2− 3) ∗ 4

(3− 3) ∗ 2
(1− 1) ∗ 0 (1− 2) ∗ 2

(2− 2) ∗ 2 (2− 3) ∗ 5

(3− 3) ∗ 2
(1− 1) ∗ 0 (1− 2) ∗ 0

(2− 2) ∗ 0 (2− 3) ∗ 3

(3− 3) ∗ 3

(1− 1) ∗ 3 (1− 2) ∗ 5

(2− 2) ∗ 2 (2− 3) ∗ 5

(3− 3) ∗ 3

1

1

1

1 1

1 1





(1− 1) ∗#1

(2− 2) ∗#2

(3− 3) ∗#3





global integer problem

≥

(1− 1) ∗ 3

(2− 2) ∗ 2

(3− 3) ∗ 3

(1− 2) ∗ 5

(2− 3) ∗ 5





(1− 1) ∗#1

(2− 2) ∗#2

(3− 3) ∗#3




(1− 1) ∗ 3

(2− 2) ∗ 2

(3− 3) ∗ 3

S6

S5

S4

S3

S2

S1

accumulate

maximum

assemblesolve

Figure 3: Schematic illustrating the selection of a suitable layout of the quadrature points corresponding to the same test space
Spr and target space Spr−1 as used in Example 2.4, defined on ∆ = { 0, 1, 2, 3 }, p = 2 and r = { 1, 1 }. First, the supports
(in terms of elements) are determined for all the intersections between the test functions and the target functions (S1). The
notation (r − s) is short for Ir ∪ . . . ∪ Is. Note that common intersecting intervals are highlighted in the same color to display
their equivalence. This information is stored in a three-dimensional array (S2), where each slice shown corresponds to a single
test function. Subsequently, in every slice, the cumulative number of points in every interval is determined (S3). In the second
slice, for example, the cumulative number of points in elements 1 − 2 is 5; 2 points are located in element 1 (red), 2 points
in element 2 (green) and 1 additional point in element 1 or 2 (yellow). By taking the maximum over the slices, we obtain
the minimum number of points required in the union of k = 1, 2 elements (S4). These global constraints can be assembled
into a global linear system of equations, (S5), with integer unknowns. Its global solution in (S6) provides the layout of the
quadrature points.
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In practice we solve the global integer problem using a greedy approach. Note that the first column
in (S4), Figure 3, provides a good initial guess. We incrementally increase the point count, distributed as
evenly as possible, until all constraints in (S5) are satisfied.170

Once the layout, that is, the number of points per element, is determined, points can be distributed in
different ways. In this work we place points within element interiors only, and we uniformly distribute them
as follows. Let q̂i denote the number of points, xi1, . . . , xiq̂i , to be distributed in element (x̂i−1, x̂i). We
define,

xik =

(
1− k

2q̂i

)
x̂i−1 +

k

2q̂i
x̂i, k = 1, 3, 5 . . . , 2q̂i − 1. (12)

Performing this operation for every element in the partition, ∆, we obtain a set of quadrature points that
yields well-defined weighted quadrature rules for the target space and test space under consideration.

3. Row formation by means of sum factorization and weighted quadrature

In this section we apply row formation and assembly by means of weighted quadrature and sum factor-
ization to the equations of linear elasticity. Sum factorization constitutes a reordering of the computations175

that reduces the computational cost by a factor of p2. Combined with row formation and assembly using
weighted quadrature, this is further reduced to O(p4) floating point operations per degree of freedom, which
is close to the optimal, O(p3), obtained by collocation.

3.1. The model problem

The ideas in this paper will be illustrated by considering linear elasticity as a model problem. Our
notation and exposition closely follows that of [29]. We adopt the summation convention using indices
i, j, k, l that take values 1, 2, . . . , nsd, where nsd(= 2 or 3) denotes the number of space dimensions. Please
note that these are Roman fonts and not to be confused with the earlier usage of Latin fonts. The partial
derivative of a field wi in direction j shall be denoted by wi,j. Multivariate tensor product B-spline basis
functions will be denoted by,

N̂A (x̂) :=

nsd∏
k=1

N̂ak (x̂k) , (13)

where node A corresponds to the product of one-dimensional splines indexed by a1, . . . , ansd
. Although180

we start with a standard presentation of the material, special attention is devoted to obtain the matrix
equations in a new format that is suitable for applying sum factorization.

3.1.1. Classical elastostatics

Let Ω ⊂ Rnsd be an open set with piecewise smooth boundary Γ = Γgi ∪ Γhi , ∅ = Γgi ∩Γhi , and outward
unit normal vector ni. The classical linear equations of elastostatics are,

σij,j + fi = 0 in Ω (14a)

ui = gi on Γgi (14b)

σij · nj = hi on Γhi (14c)

Here σij denote the Cartesian components of the Cauchy stress tensor, ui are components of the displacement
vector and fi is the i’th component of the prescribed body force per unit of volume. The functions gi and185

hi are the prescribed boundary displacements and tractions, respectively.
The stress is related to the deformation through the generalized Hooke’s law,

σij = cijklu(k,l) (15)
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where cijkl are the components of the 4th order elasticity tensor, which is assumed symmetric positive
definite on symmetric tensors, and u(k,l) denotes the symmetric part of the gradient of displacement, that

is, u(k,l) = 1
2 (uk,l + ul,k). We shall assume the standard material law for a linear isotropic material, that is,

cijkl(x) = µ(x) (δikδjl + δilδjk) + λ(x)δijδkl, where λ(x) and µ(x) are the Lamé parameters.190

Restricting our attention to the nsd = 3 case, we may write the constitutive law in (15) using Voight
notation as,

σ = C ε(u) (16)

where,

C =


c1111 c1122 c1133 0 0 0

c2222 c2233 0 0 0
c3333 0 0 0

c2323 0 0
c1313 0

sym. c1212

 , σ =


σ11

σ22

σ33

σ23

σ13

σ12

 , ε (u) =


u1,1

u2,2

u3,3

u2,3 + u3,2

u1,3 + u3,1

u1,2 + u2,1

 . (17)

3.1.2. The weak formulation and Galerkin’s method

We proceed as is standard in finite elements and seek the displacement in a trial solution space S =
{u | ui ∈ Si}, with components, Si :=

{
ui ∈ H1(Ω) | ui = gi on Γgi

}
. Furthermore, let Vi := H1

0 (Ω) be
the space of functions in H1(Ω) with homogeneous Dirichlet boundary conditions on Γgi and define V =
{w | wi ∈ Vi}. With these definitions the corresponding weak form of the problem in (14) is given as follows.195

(W )

Find u ∈ S, such that,

a(w,u) = (w, f ) + (w,h)Γ (18a)

for all w ∈ V, where,

a(w,u) =

∫
Ω

ε(w)TC ε(u)dΩ (18b)

(w, f ) =

∫
Ω

wifidΩ (18c)

(w,h)Γ =

nsd∑
i=1

(∫
Γhi

wihidΓ

)
. (18d)

Let Sh and Vh denote finite dimensional subspaces of S and V, respectively. The displacement uh ∈ Sh
can be decomposed, uh = vh + gh, such that vh ∈ Vh and gh ∈ Sh satisfies the Dirichlet boundary data.
The Galerkin formulation reads,

(G)
Find vh ∈ Sh such that for all wh ∈ Vh,

a(wh,vh) =
(
wh, f

)
+
(
wh,h

)
Γ
− a(wh,gh). (19)

200

This presentation of the strong (S), weak (W) and Galerkin (G) form are standard, see [29]. In the
following we derive the matrix equations in a form that is suitable for use with sum factorization.

3.1.3. The matrix formulation

Let F : Ω̂ 7→ Ω denote an nsd-variate conforming parameterization of the physical domain Ω ⊂ Rnsd

that maps each point x̂ = (x̂1, . . . , x̂nsd
) in Ω̂ to a point x = (x1, . . . , xnsd

) in physical space Ω. We assume205
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that F is a smooth mapping with a smooth inverse, such that the Jacobian matrix [DF (x̂)]ij := ∂Fi

∂x̂j and its
inverse are well defined throughout Ω.

Let Si 3 uhi (x) = vhi (x) + ghi (x) be expanded in terms of basis functions, NA(x) = N̂A ◦ F−1, as,

vhi (x) =
∑

A∈η−ηgi

NA(x)vAi (20)

ghi (x) =
∑
A∈ηgi

NA(x)gAi. (21)

Similarly, an element of Vhi has the form,

whi (x) =
∑

A∈η−ηgi

NA(x)wAi. (22)

Here η = { 1, 2, . . . , nnodes } denotes the set of global node numbers and nnodes = dimSh is the global
number of nodes. Furthermore, ηgi ⊂ η refers to the subset of nodes that are prescribed by the Dirichlet
data, uhi (x) = gi(x), on Γgi .210

Using (17) we can write the strain as,

ε(u) =

nsd∑
i=1

∑
A∈η

BAi(x)uAi (23)

where,

BA1(x) =


NA,1(x)

0
0
0

NA,3(x)
NA,2(x)

 BA2(x) =


0

NA,2(x)
0

NA,3(x)
0

NA,1(x)

 , BA3(x) =


0
0

NA,3(x)
NA,2(x)
NA,1(x)

0

 . (24)

Alternatively, we write, BAi(x) =
∑nsd

j=1 E:ijNA,j(x)2, where E:ij denotes the ith column vector of the incidence
matrix, E::j, j = 1, 2, 3, given by,

E::1 =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 , E::2 =


0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 , E::3 =


0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 . (25)

We wish to pull back the above expressions to the parameter domain. Using,

NA,j =

nsd∑
k=1

[
DF−T (x̂)

]
jk

N̂A,k(x̂)

we may write,

BAi(x) =

nsd∑
k=1

Ê:ik(x̂) N̂A,k(x̂) where Ê:ik(x̂) =

nsd∑
j=1

E:ij

[
DF−T (x̂)

]
jk
. (26)

2We use Matlab notation to slice multidimensional arrays using the colon operator.

14



Then we can write the contribution to the stiffness matrix corresponding to test function NA(x) and
trial function NB(x) as,

[Kij]AB =

∫
Ω

BTAi(x) C(x) BBj(x) dΩ =

nsd∑
k=1

nsd∑
l=1

∫
Ω̂

N̂A,k(x̂)Ĉijkl(x̂)N̂B,l(x̂) dΩ̂ (27)

where Ĉijkl(x̂) ∈ R3×3×3×3 has components,[
Ĉij(x̂)

]
kl

= ÊT:ik(x̂)C(F (x̂))Ê:jl(x̂) detDF (x̂), i, j, k, l ∈ { 1, 2, 3 } . (28)

To summarize, we have the following matrix problem with ndofs = nsd · nnodes −
∑nsd

i=1 dim(ηgi) degrees
of freedom:

(M)

Find d ∈ Rndofs such that,

Kd = f (29a)

with,

K =

 K11 K12 K13

K21 K22 K23

K31 K32 K33

 , d =

 d1

d2

d3

 , f =

 f1

f2

f3

 (29b)

where,

[Kij]AB =

3∑
k=1

3∑
l=1

∫
Ω̂

N̂A,k(x̂)Ĉijkl(x̂)N̂B,l(x̂) dΩ̂ (29c)

[f i]A =

∫
Ω̂

N̂A(x̂)fi(x̂) detDF (x̂)dΩ̂ +

∫
Γhi

N̂A(x̂)hi(x̂)dΓ

−
3∑

k=1

3∑
l=1

∫
Ω̂

N̂A,k(x̂)Ĉijkl(x̂)ghj,l(x̂) dΩ̂. (29d)

Keeping i, j fixed, this representation of the bilinear form is equivalent to that in a scalar Poisson problem
with a non-isotropic diffusivity law. Consequently, this form of the matrix equations is easier to implement215

than the form of the matrix equations proposed in [3]. Once the new formation and assembly strategy is
applied to a scalar Poisson problem with a non-isotropic diffusivity law, it can be easily extended to linear
elasticity.

3.2. Application of sum factorization and weighted quadrature

Sum factorization achieves its efficiency by reordering the operations of a multivariate quadrature rule220

in such a way that in every stage of the algorithm a univariate quadrature is performed. The essential
ingredient is the tensor product structure of both the quadrature rule and the basis functions. In order
to exploit this structure, the equations have to be pulled back to the parameter domain. In the previous
section we did this in the setting of elastostatics in (29).

We consider application of sum factorization and weighted quadrature to the main term in (29). For a

fixed i, j, k, l ∈ 1, 2, 3, let ĉ(x̂) = Ĉijkl(x̂) ∈ R. We wish to evaluate the integral,

[S]AB =

∫
Ω̂

N̂A,k(x̂)ĉ(x̂)N̂B,l(x̂) dΩ̂. (30)
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Let N̂
(0)
ai (x̂i) := N̂ai(x̂i), N̂

(1)
ai (x̂i) := N̂ ′ai(x̂i) and let δki be equal to 1 if k = i and 0 otherwise. Using the

tensor product structure of the basis functions (13), we may change the order of integration to obtain,

[S]AB =

∫
Ω̂1

N̂ (δk1)
a1 (x̂1)N̂

(δl1)
b1

(x̂1)×
[
. . .∫

Ω̂2

N̂ (δk2)
a2 (x̂2)N̂

(δl2)
b2

(x̂2)×
[
. . .∫

Ω̂3

N̂ (δk3)
a3 (x̂3)N̂

(δl3)
b3

(x̂3) ĉ(x̂1, x̂2, x̂3) dx̂3

]
dx̂2

]
dx̂1. (31)

Hence, the multivariate integral can be written as a recursion of univariate integrals. The univariate weighted
quadrature rules, as defined in Definition 2.1, can now be easily applied to obtain,

[S]AB ≈
q1∑
i=1

W
(δk1)
a1i

N̂
(δl1)
b1

(x̂1i)×
[
. . .

q2∑
j=1

W
(δk2)
a2j

N̂
(δl2)
b2

(x̂2j)×
[
. . .

q3∑
k=1

W
(δk3)
a3k

N̂
(δl3)
b3

(x̂3k) ĉ(x̂1i, x̂2j , x̂3k)

] ]
. (32)

In practice, the integral is evaluated as follows. Input is a three-dimensional array,

{ ĉ(x̂1i, x̂2j , x̂3k), i ∈ 1 : q1, j ∈ 1 : q2, k ∈ 1 : q3 } . (33)

In the inner stage of the recursion this array is contracted along one dimension to a matrix. This matrix225

is subsequently contracted to a vector in the second stage of the recursion. Finally, in the outer stage, the
vector is reduced to a single number that is the approximation of the integral corresponding to index AB.
The other terms in (29) can similarly be evaluated using using sum factorization and weighted quadrature.

4. Implementational aspects of the methodology

In this section we discuss several important implementational aspects of the methodology. Firstly, we230

discuss efficient implementation of sum factorization and provide useful pseudocode. The implementation
does not depend on the type of assembly method nor on the type of quadrature rule. Furthermore, we
discuss efficient access and assignment into the prevalent sparse matrix data structures, namely, Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC). In particular, row-by-row or column-by-column
assembly allows matrix rows or columns, respectively, to be formed contiguously in the storage order of the235

sparse matrix, thereby minimizing the memory overhead and eliminating the addition assignment operation
on sparse matrices. Finally we discuss opportunities for shared and distributed memory parallelism.

4.1. Efficient implementation of sum factorization

Sum factorization is performed in several stages. In a three-dimensional problem the input is a five-
dimensional array3, C ∈ Rq1×q2×q3×1×1, where qi represents the number of quadrature points in component240

direction i. The entries of this array encode the metric and material dependence evaluated at the quadrature
points. In each one of the three stages of the sum factorization algorithm the input array is contracted along
one dimension. The final result will be a matrix.

3Note that C is in fact a three-dimensional array because of the two trailing singleton dimensions. These extra dimensions
are convenient in template programming such that in each stage of the sum factorization the dimension of the input array
reduces by one dimension.
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Algorithm 1 provides pseudocode for the efficient implementation of sum factorization. The function
kron represents the standard kronecker product of two matrices. The loops are nested in such a way that245

entries in arrays A and C are accessed and assigned to in storage order.
The implementation does not depend on the chosen assembly method, that is, it works in the case of

element-by-element, row-by-row or column-by-column formation and assembly, nor does it depend on the
chosen quadrature rule4. The specific dimension of the input arrays does depend on the chosen assembly
method:250

• Element-by-element assembly: ni, mi > 1, i = 1, 2, 3.

• Row-by-row assembly: ni > 1, mi = 1, i = 1, 2, 3.

• Column-by-column assembly: ni = 1, mi > 1, i = 1, 2, 3.

1 Function sumfact stage 1 (C, testfuns, trialfuns)

input : C ∈ Rq1×q2×q3×1×1, testfuns ∈ Rn3×q3 , trialfuns ∈ Rm3×q3

output: A ∈ Rn3×m3×q1×q2

2 Loop over 3rd array dimension
3 for k ← 1 to q3 do

4 B = testfuns(:, k) ∗ trialfuns(:, k)T

5 Loop over 2nd array dimension
6 for j ← 1 to q2 do
7 Loop over 1st array dimension
8 for i← 1 to q1 do
9 A(:, :, i, j) += C(i, j, k, 1, 1) ∗ B

10 end

11 end

12 end

13 end

1 Function sumfact stage 2 (C, testfuns, trialfuns)

input : C ∈ Rn3×m3×q1×q2 , testfuns ∈ Rn2×q2 , trialfuns ∈ Rm2×q2

output: A ∈ R(n3·n2)×(m3·m2)×q1

2 Loop over 2nd array dimension
3 for j ← 1 to q2 do

4 B = testfuns(:, j) ∗ trialfuns(:, j)T
5 Loop over 1st array dimension
6 for i← 1 to q1 do
7 A(:, :, i) += kron (C(:, :, i, j),B)
8 end

9 end

10 end

1 Function sumfact stage 3 (C, testfuns, trialfuns)

input : C ∈ R(n3·n2)×(m3·m2)×q1 , testfuns ∈ Rn1×q1 , trialfuns ∈ Rm1×q1

output: A ∈ R(n3·n2·n1)×(m3·m2·m1)

2 Loop over 1st array dimension
3 for i← 1 to q1 do

4 B = testfuns(:, i) ∗ trialfuns(:, i)T
5 A(:, :) += kron (C(:, :, i),B)

6 end

7 end

Table 3 summarizes the number of floating point operations of the algorithm that has been used to
estimate the computational cost in Table 1. As discussed in the introduction, combined with a traditional255

4We assume that the quadrature weights have been incorporated in testfuns.
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input : C ∈ Rq1×q2×q3×1×1, test ∈
(
Rn1×q1 ,Rn2×q2 ,Rn3×q3

)
, trial ∈

(
Rm1×q1 ,Rm2×q2 ,Rm3×q3

)
output: C ∈ R(n3·n2·n1)×(m3·m2·m1)

1 Loop over all 3 array dimensions
2 C = sumfact stage 1 (C, test {3} , trial {3})
3 C = sumfact stage 2 (C, test {2} , trial {2})
4 C = sumfact stage 3 (C, test {1} , trial {1})
Algorithm 1: Sum factorization. ni and mi represent the number of test and trial functions, respectively, that are

integrated in component direction i. qi represents the number of quadrature evaluations in component direction i. We note

that in row formation ni = 1, mi > 1, in column formation mi = 1, ni > 1 and in element-by-element formation ni,mi > 1.

The indexing into the multidimensional array C is such that computations are performed contiguously in the storage order

of the array. Finally, it is assumed that the quadrature weights are combined with the test function array.

Table 3: Floating point operations of sum factorization

stage 1 stage 2 stage 3
FLOPS 2(n3 ·m3) · q1 · q2 · q3 2(n3 ·m3) · (n2 ·m2) · q1 · q2 2(n3 ·m3) · (n2 ·m2) · (n2 ·m2) · q1

element loop, sum factorization reduces the number of FLOPS from O(p9) to O(p7). Combined with a row
or column loop and in weighted quadrature the complexity is further reduced by a factor of p3 resulting in
a method that scales O(p4) per degree of freedom.

Sum factorization significantly speeds up the quadrature process. However, besides the implementation
burden, the main drawback of sum factorization is that the metric and material dependent part needs to260

be precomputed at the quadrature points. In element-by-element assembly this is not an issue because the
array sizes remain constant and relatively small ((p + 1)nsd points per element). However, the presented
weighted quadrature scheme operates patch wise and the number of quadrature points basically has no
upper bound with patch refinement. Therefore, a serious implementation of these ideas needs some form of
domain or matrix partitioning and load balancing. This can be directly combined with parallel computation265

of the matrix rows or columns.

4.2. Sparse matrix data structures

There exist different data structures for storing sparse data in a matrix. There are storage formats
that allow for efficient access and ease of handling and formats that allow for efficient storage and matrix
operations. We are interested in the second group, because those are the sparse matrix data structures270

typically encountered in scientific computing. In particular, we are interested in the following two sparse
matrix formats:

(i) Compressed Sparse Row (CSR).

(ii) Compressed Sparse Column (CSC).

The CSC data structure is supported by scientific languages such as Matlab and Julia, the CSR format is275

used in high performance packages such as Trilinos and PETSc, and some scientific packages, such as ScyPy
for the Python language, support both.

Let nnz denote the number of nonzero entries of a sparse matrix A. Its compressed sparse row format
is represented by the triple (rowptr, colind, nzval). Here nzval contains the nnz-nonzero values of A in
row-major ordering, i.e. ordered from left to right and from top to bottom, colind stores the column index280

of each value in nzval, and rowptr is the list of nzval-indices that start a new row in A.
The CSC storage format is similar to the CSR format. Instead, the nnz-nonzero values of A are stored

in column major ordering in the vector nzval, row indices are stored in rowind and pointers to the first
nonzero value in each column of A are stored in colptr. Example 4.2 depicts an example of a matrix in
CSR and CSC format, respectively.285
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Remark 4.1. One can readily check that the CSC representation of matrix A is equal to the CSR format
of AT .

Example 4.2 (Sparse matrix data structures). Consider the sparse matrix,

A =


11 0 22 0 0
33 0 0 44 55
0 66 77 0 0
0 88 0 0 99

 , (34)

(i) The CSR format of A is is shown in Table 4

Table 4: CSR format of A
0 1 2 3 4 5 6 7 8

nzval 11 22 33 44 55 66 77 88 99
colind 0 2 0 3 4 1 2 1 4
rowptr 0 2 5 7 9

(ii) The CSC format of A is shown in Table 5

Table 5: CSC format of A
0 1 2 3 4 5 6 7 8

nzval 11 33 66 88 22 77 44 55 99
rowind 0 1 2 3 0 2 1 1 3
colptr 0 2 4 6 7 9

Note, we have used zero-based indexing because it is usually preferred over 1-based indexing.290

As it turns out, the row-by-row finite element formation and assembly is tailored to the CSR structure.
This is due to the fact that the entries of the matrix are computed in the same order as the row-major
ordering of the CSR matrix. On the other hand, column-by-column formation and assembly is more efficient
in combination with the CSC storage format.

4.3. Domain partitioning and parallel formation and assembly295

row-by-row or column-by-column formation and assembly provides many opportunities for shared and
distributed memory parallelism. Consider the matrix equations in (29). We list the following:

1. The nine stiffness matrices Kij corresponding to i, j ∈ { 1, 2, 3 } can be independently formed. Hence,
computing these matrices can be done efficiently in parallel on a shared memory or distributed memory
parallel machine.300

2. Keeping i, j fixed, the matrices corresponding to k, l ∈ { 1, 2, 3 } can be formed by a parallel reduction,
which is attuned to shared memory parallelism.

3. On a shared memory machine the rows or columns of Kij i, j ∈ { 1, 2, 3 } can be independently formed
in parallel.

4. If one were to recompute the metric and material dependent data for each test or trial function305

separately then rows or columns could be formed independently in parallel on a shared or distributed
parallel machine.
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Although the last approach leads to many more evaluations of the metric and constitutive equations it leads
to an approach that is both simple and embarrassingly parallel. In fact, it can be considered as a domain
partitioning procedure, in which the support of a single test or trial function is the relevant domain that310

follows from the partitioning. If we assume that the load is uniform across the rows or columns of the
matrix, then this leads to a very simple domain decomposition and load balancing scheme.

5. Numerical results

In this section we present results for several numerical benchmark problems that illustrate the efficiency
and efficacy of the proposed formation and assembly techniques applied in the context of isogeometric315

linear elasticity. In particular, we show that the accuracy of full Gauss quadrature is maintained while the
computational burden of forming the matrix equations is significantly reduced. The following benchmark
problems are considered:

1. Hole in plate problem (2D smooth solution solved as a 3D problem).

2. Spherical cavity problem (3D smooth solution).320

In every benchmark problem we compare the accuracy of weighted quadrature versus full Gauss quadrature
by investigating the L2(Ω) error in displacement and stress. Full Gauss quadrature requires (p+1)nsd points
per element compared to roughly 3nsd points per element, measured asymptotically with k-refinement, for
weighted quadrature.

5.1. Setup325

The ideas in this paper have been implemented in the Julia language [12]. Julia features the Compressed
Sparse Column (CSC) storage format for sparse matrices, which is why we employ a column loop instead of
a row loop. The performance of the new methodology is studied by comparing absolute and relative timings
of the following combinations of formation and assembly procedures:

1. Element loop with standard quadrature loop employing full Gauss quadrature.330

2. Element loop with standard quadrature loop employing weighted quadrature.

3. Element loop with sum factorization employing full Gauss quadrature.

4. Element loop with sum factorization employing weighted quadrature.

5. Column loop with sum factorization employing weighted quadrature.

All combinations of techniques employ the same representation of the matrix equations of linear elasticity335

(29), use the same NURBS description of the geometry and the same test and trial spaces based on B-splines.
We therefore consider this as a fair comparison. Note that we no longer strictly conform to the isoparametric
concept that is usually applied in isogeometric analysis, because the solution variables are represented in
terms of B-splines while the geometry is represented by NURBS.

The absolute timings are obtained on a 2.7GHz E5− 2680 (Sandy Bridge) processor with 32GB RAM.340

We measure only the formation and assembly of the stiffness matrix and right-hand-side forcing vector. The
timings do not include the solution of the linear system using MUMPS, a high performance direct solver.
Finally, the absolute timings are normalized by the presented approach (# 5) in this paper, that implements
a column loop with sum factorization employing weighted quadrature. These results give an indication of
the speedup that can be expected for three-dimensional problems of engineering interest.345
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5.2. Infinite plate with circular hole under constant in-plane tension

Consider a thick infinite plate with a circular hole under constant in-plane tension at infinity [7, 48]. The
infinite plate is modeled by a finite quarter plate using symmetry conditions as depicted in Figure 4 and
plane strain displacement conditions. The exact solution of displacement and stress, represented in polar
coordinates (r, θ), are,

ur(r, θ) =
ν + 1

E

(
rTx
4

(
2R2

r2
+ 2− 4ν

)
+
rTx cos(2θ)

2

(
−R

4

r4
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R2

r2
+ 1

))
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Here Tx is the applied force at infinity and R is the radius of the hole in the quarter plate. Furthermore, E
and ν are the Young’s modulus and Poisson’s ratio of the isotropic linearly elastic material.

Although the problem definition is two-dimensional, we model the plate using a single three dimensional
quadratic NURBS patch with one quadratic element through the thickness. The knot vectors of the coarsest350

geometry description are Ξ1 = { 0, 0, 0, 1, 1, 1 }, Ξ2 = { 0, 0, 0, 1, 2, 2, 2 } and Ξ3 = { 0, 0, 0, 1, 1, 1 }. Note
that there is one internal knot in the second parametric direction. Under p- or k-refinement the smoothness
of the test and trial spaces must remain C1 at this knot. The upper-right corner is created by collapsing edges
of the control mesh, creating a singular edge. We note that the Jacobian and its determinant are undefined
there. This is not an issue because we have no quadrature points that coincide with this singularity. We355

refer to [18] for a complete description of the geometric model. The conditions of plain strain, as well as the
in-plane symmetry conditions, are imposed strongly. The exact tractions are imposed weakly.

In Figure 5 the accuracy of weighted quadrature is verified by comparing directly with numerical bench-
mark results obtained using full Gauss quadrature. The L2(Ω) errors in displacement and stress are com-
pared under uniform h-refinement for polynomial degrees (p, p, 2), p = 2, 4, 6, 8 and 10. Virtually no loss360

in accuracy is observed when using weighted quadrature versus full Gauss quadrature in both displacement
and stress. The absolute and relative timings depicted in Figure 6 report speedups by a factor of 10 at
low p and up to 500 at high p, compared to traditional formation and assembly techniques. Compared
to the fastest existing finite element procedures employing sum factorization in an element loop, the new
procedures, employing a column loop with sum factorization and weighted quadrature, are a factor of 3-20365

faster.

5.3. Spherical cavity in an infinite medium subjected to uniform tension at infinity

The second benchmark problem demonstrates the performance of the proposed methodology for three-
dimensional spline discretizations. Consider an infinite three-dimensional medium with a spherical cavity
located at the origin and uniform uniaxial tension in the z-direction at infinity, see Figure 7. This is a
classical problem in isotropic linear elasticity and has the following analytical solution [7, 48] 5 in terms of

5Several textbooks and publications contain errors in the worked out solution to this problem. [7, 14] contain worked
out solutions to the stress which are not correct. At http://www-personal.umich.edu/~jbarber/elasticity/errata.pdf a
correction can be found accompanying the book [7]. [46] contains an analytical solution to the displacement and stress, the
former which is correct and the latter which is not.
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Figure 4: Elastic plate with a circular hole: problem definition.

displacement and stress in spherical coordinates (r, β, θ),
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Here Tz is the applied force at infinity and R is the inner radius of the spherical cavity.
We use the symmetry of the analytical solution, and model the geometry using a single tri-quadratic

NURBS patch with knot vectors Ξ1 = Ξ2 = Ξ3 = { 0, 0, 0, 1, 1, 1 }. The spherical geometry is modeled370

exactly by collapsing one of the faces to an edge. This creates a singular line that coincides with the z-axis.
Similar to the previous problem this is not an issue because there are no quadrature points located along
this edge.

The accuracy of weighted quadrature is studied by comparing the h-convergence behavior with results
obtained using full Gauss integration. This is done for polynomial degrees 2, 4, 6 and 8, see Figure 8. As in375

the previous benchmark test case, weighted quadrature attains the same accuracy as full Gauss quadrature
for both displacement and stress. In Figure 9a the absolute time to form the isogeometric stiffness matrix
using each of the five different formation and assembly procedures is measured for a fixed 16× 16× 16 mesh
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Figure 5: Comparison of the accuracy of weighted quadrature versus standard Gauss quadrature for the hole in plate problem.

2 3 4 5 6 7 8 9 10
degree p

101

102

103

104

105

tim
e
[s
]

E-loop, standard, Gauss q.
E-loop, standard, Weighted q.
E-loop, sumfact, Gauss q.
E-loop, sumfact, Weighted q.
Col-loop, sumfact, Weighted q.

(a) Absolute formation and assembly times.

2 3 4 5 6 7 8 9 10
degree p

10−1

100

101

102

103

Re
la
tiv

e
tim

e

Assembly time relative t  c l-loop with sum 
 factorization and weighted quadrature
E-loop, standard, Gauss q.
E-loop, standard, Weighted q.
E-loop, sumfact., Gauss q.
E-loop, sumfact., Weighted q.
Col-loop, sumfact., Weighted q.

(b) Assembly time relative to col-loop with sum factorization
and weighted quadrature.
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hole in plate problem. The results are obtained using a 32× 64× 1 element mesh of polynomial degree (p, p, 2).
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with polynomial degrees ranging from 2 to 8. Figure 9b illustrates the speed-ups attainable when using
a row or column loop with sum factorization and weighted quadrature. We report speedups compared to380

traditional approaches ranging from a factor of 18 at low polynomial degree to well over a 1000 at polynomial
degree 8. Compared to the fastest existing finite element procedures employing sum factorization, we achieve
speed-ups ranging from a factor of 8 at low polynomial degree p = 2 up to a factor of 40 at polynomial
degree equal to p = 8.

6. Conclusion385

This work continues the study in [17] which proposed a novel formation and assembly strategy for
finite element analysis that attains significant speedups compared to existing methods while maintaining
the accuracy of the Galerkin method. The novel methodology relies on three key ingredients: (1) assembly
row-by-row or column-by-column, instead of element-by-element; and an efficient formation strategy based
on (2) sum factorization and (3) weighted quadrature, that is applied to each specific row or column of the390

matrix. This unique selection of techniques leads to a formation and assembly approach that scales favorably
with polynomial degree p, opening the door for higher-order isogeometric analysis employing k-refinement.
For three-dimensional problems, a rough count of the number of floating point operations reveals that,

1. Sum factorization lowers the complexity from O(p9) per degree of freedom to O(p7).

2. Weighted quadrature rules scale optimally with the polynomial degree, that is the number of quadra-395

ture points does not depend on p, which reduces the computational burden further down to O(p6) per
degree of freedom.

3. Sum factorization combined with weighted quadrature in a row or column assembly reduce the com-
plexity further toO(p4) per degree of freedom, which is close to the theoretical optimumO(p3) obtained
by collocation.400

In this work we have made several contributions, with a particular focus on efficiency, robustness and
generality, while maintaining the accuracy of the Galerkin method. Specifically, we have extended the
weighted quadrature scheme to accurately integrate the entries of the stiffness matrix in linear elasticity.
We proposed a new distribution of quadrature points that works in the general setting of non-uniform,
mixed continuity isogeometric spaces. Furthermore, we investigated efficient access and assignment into the405

prevalent sparse matrix data structures, namely, Compressed Sparse Row (CSR) and Compressed Sparse
Column (CSC).

Numerical studies verified the gain in efficiency of the methodology compared to existing techniques.
In each case, the accuracy of the Galerkin method was maintained while significantly reducing the com-
putational time. Compared to traditional finite element formation and assembly techniques, using full410

Gauss-Legendre quadrature, we reduced the time by a factor of 18 for p = 2, a factor of 80 for p = 4 and
a factor of well over a thousand for polynomial degree p = 8. Compared to the fastest element-by-element
assembly techniques, employing sum factorization, we have reported savings up to a factor of 8 for p = 2, a
factor of 18 for p = 4, up to a factor of 40 for p = 8.

Although the advantages of the methodology are clear there are several disadvantages of the approach.415

Firstly, finite element routines will have to be completely rewritten. This could be done in a step by step
fashion. First, sum factorization and weighted quadrature can be combined within a standard element loop.
Once those facets of the methodology are in place, one could change to a row or column loop. Another
disadvantage of the formation and assembly strategy is that many quantities need to be precomputed for
use in sum factorization. One could consider to recomputing the geometry and constitutive data on the420

fly. This way, rows or columns can be formed independently, resulting in a very scalable formation and
assembly. Evaluation of constitutive equations can, however, be very expensive for certain types of physical
phenomena. Hence, it will always be a trade-off of minimizing the total number of evaluations versus
minimizing memory use.
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Figure 7: Infinite medium with spherical hole in uniaxial tension: (a) Problem definition; (b) Isogeometric mesh; and (c)
Analytical stress component in z-direction.
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Figure 8: Comparison of the accuracy of weighted quadrature versus standard Gauss quadrature for the spherical cavity
problem.

In future work we will explore weighted quadrature in the setting of non-uniform spline spaces with a425

focus on stability and accuracy. Also, we plan to extend the methodology to unstructured discretizations
employing local refinement through truncated hierarchical B-splines, proceeding along the lines of [27].
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Figure 9: Absolute and relative formation and assembly times for different formation and assembly strategies applied to the
spherical cavity problem with uniform open knot vectors with 16 × 16 × 16 elements of uniform polynomial degree p. The
results associated with a standard quadrature loop have been extrapolated based on their FLOPS count of O(p9) and O(p6).
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[3] Antolin, P., Buffa, A., Calabrò, F., Martinelli, M., and Sangalli, G. Efficient matrix computation for tensor-

product isogeometric analysis: The use of sum factorization. Computer Methods in Applied Mechanics and Engineering
285 (2015), 817–828.
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[9] Bazilevs, Y., Beiraõ da Veiga, L., Cottrell, J. A., Hughes, T. J. R., and Sangalli, G. Isogeometric analysis:460

approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences
16, 07 (2006), 1031–1090.

[10] Bazilevs, Y., Calo, V. M., Cottrell, J. A., Hughes, T. J. R., Reali, A., and Scovazzi, G. Variational multiscale
residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied
Mechanics and Engineering 197, 1-4 (2007), 173–201.465

[11] Benson, D. J., Bazilevs, Y., Hsu, M. C., and Hughes, T. J. R. Isogeometric shell analysis: the Reissner–Mindlin shell.
Computer Methods in Applied Mechanics and Engineering 199, 5-8 (2010), 276–289.

[12] Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. Julia: A fast dynamic language for technical computing.
arXiv preprint arXiv:1209.5145 (2012).

[13] Borden, M. J., Scott, M. A., Evans, J. A., and Hughes, T. J. R. Isogeometric finite element data structures based470

on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering 87, 1-5 (2011), 15–47.
[14] Bower, A. F. Applied mechanics of solids. CRC press, 2009.
[15] Bressan, A., and Takacs, S. Sum-factorization techniques in Isogeometric Analysis. arXiv preprint arXiv:1809.05471

(2018).

27



[16] Buffa, A., Rivas, J., Sangalli, G., and Vázquez, R. Isogeometric discrete differential forms in three dimensions. SIAM475

Journal on Numerical Analysis 49, 2 (2011), 818–844.
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