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Abstract

An Isogeometric Boundary Element Method for solving three-dimensional boundary-
value problems of classical linear elasticity theory is proposed. The method is developed
as a generalization of author’s earlier work on Laplace’s equation to Navier’s equations.
As a result the proposed method features (i) proper basis functions for approximating
Dirichlet and Neumann data, (ii) high-order collocation schemes for weakly singular,
singular, and hyper-singular integral operators, (iii) state-of-the-art numerical inte-
gration schemes capable of handling geometries with disparate dimensions, (iv) well-
conditioned linear algebraic systems, with the condition number independent of the
mesh size. Boundary Element Patch Tests, as extensions of concepts widely used for
finite element methods, are also introduced. It is shown how these tests can be used
to assess the veracity of boundary element formulations and numerical integration
schemes, implementations, and geometric precision of Computer Aided Design mod-
els. The method is applied to two challenging case studies, representative of industrial
applications.

1 Introduction

This paper presents an Isogeometric Boundary Element Method (IgBEM) for solving three-
dimensional boundary-value problems of classical elasticity theory. The term isogeometric
means that both geometry and discretization are obtained directly from Computer Aided
Design (CAD) tools, without any intermediate steps. Thus the proposed method allows one
to circumvent major difficulties associated with volumetric mesh generation required by finite
element methods, and consequently provides a direct pathway to a completely automated
design-through-analysis pipeline.
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IgBEMs have been previously considered in the context of both Collocation and Galerkin
BEMs. Galerkin BEMs have a sound mathematical foundation and result in symmetric sys-
tem matrices, but collocation BEMs are often preferred because they involve more efficient
numerical integration schemes. This disadvantage of Galerkin methods becomes particularly
significant for high-order isogeometric discretizations. This may partially explain why exist-
ing Galerkin IgBEMs are restricted to two-dimensional problems [1, 2, 3, 4, 5, 6, 7]. One
notable exception is [8], where a three-dimensional Galerkin IgBEM for linear elastic prob-
lems is presented. Collocation IgBEMs have been applied to many different two- and three-
dimensional problems, including to Laplace’s equation [9, 10], linear elasticity [11, 12, 13, 14],
acoustics [15, 16, 17], waves [18, 19], fracture mechanics [20], and shape-optimization [21, 22].
All of these IgBEMs are based on the singular integral equations, as collocation discretiza-
tions of the hyper-singular integral equations are not straightforward. This issue has been
successfully addressed in [10], where collocation IgBEMs for Laplace’s equation, involving
both singular and hyper-singular integral equations, are developed. Those IgBEMs resulted
in optimally converging and well conditioned methods. Collocation BEMs involving the
hyper-singular integral equations can be beneficial for other classes of problems, such as
acoustic scattering [15].

In this work, we introduce a collocation IgBEM that extends the results established in
[10] to make the linear elastic hyper-singular integral equation accessible to collocation dis-
cretizations, introduce BEM patch tests, and demonstrate the applicability of our method
to engineering problems involving complex geometries. We found patch tests to be a partic-
ularly useful development in the context of BEMs. We show that they can be used for the
assessment of many different errors in BEMs including numerical schemes, computer imple-
mentations, and CAD models. A combination of all these aspects of patch tests allowed us
to assess the accuracy of industrial problems involving complex geometries. We introduce
all techniques in the context of IgBEMs but many of them, including patch tests, can be
applied to other BEMs in exactly the same way.

1.1 Boundary element methods

Mathematical foundations for the proposed method have been developed in [10], where the
focus was on isogeometric analysis of Boundary Integral Equations (BIEs) corresponding
to boundary-value problems governed by Laplace’s equation. In that paper, mathematical
foundations available for BIEs defined on C2-surfaces were exploited for developing numerical
schemes for BIEs defined on C̃2-surfaces, that is, surfaces that are C2 almost everywhere,
except for certain points and/or lines where the surfaces are only C0. Such surfaces are
ubiquitous to CAD models based on T-splines [23, 24, 25, 26, 27, 12] but not NURBS [28,
29]. While numerical schemes for BIEs defined on C̃2-surfaces lack a rigorous mathematical
foundation, numerical examples presented in [10] demonstrate that those schemes can attain
optimal convergence rates established for BIEs defined on C2-surfaces, and deliver very
accurate numerical solutions. The numerical schemes developed in [10] include the following
features:

• Proper basis functions for approximating Dirichlet and Neumann data.
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• High-order collocation schemes for both singular and hyper-singular BIEs.

• All integral operators are evaluated as weakly-singular integrals, using state-of-the-art
numerical integration schemes.

• BIEs are formulated in a way resulting in well-conditioned linear algebraic problems,
with the condition number independent of the mesh size.

All of these features directly translate to BIEs corresponding to boundary-value problems
for Navier’s equations, except for the treatment of the adjoint double layer operator, whose
evaluation requires a special representation. The aforementioned extensions from Laplace’s
to Navier’s equations are straightforward because the smoothness of C2-surfaces allows one
to circumvent delicate issues ubiquitous to BIEs defined on less regular surfaces [30].

Since the emphasis of this paper is on applications rather than mathematical foundations, we
paid particular attention to analysis of engineering structures with complex geometries which
includes large aspect ratios and regions with relatively high curvature. For example, a turbine
blade has disparate length, width, and thickness, and its leading edge may be sharp, so that
its radius of curvature is very small. Upon discretization, BIEs for such geometries result
in poorly conditioned linear algebraic systems [31], and therefore pose major difficulties for
iterative solvers. Nevertheless, based on case studies considered in this paper, it appears that
the accuracy of the proposed IgBEM is so good that problems of practical relevance require
few enough degrees of freedom, so that one can use direct solvers, practically unaffected
by poor conditioning. Geometries involving large aspect ratios and regions with relatively
high curvature are also challenging for numerical integration schemes, even like the one
implemented in [10], which incorporates state-of-the-art techniques for numerical treatment
of weakly singular integrals. This is because the complex geometries involve near-singular
maps between the parametric and physical spaces, and this aspect is simply not reflected even
in state-of-the-art numerical integration schemes. We addressed this issue by augmenting the
numerical integration scheme implemented in [10] with a hierarchical subdivision algorithm,
which in effect regularizes near-singular geometric maps (see Appendix B).

1.2 The patch test

The patch test is a procedure used in finite element methods to assess the veracity of formu-
lations and their computer implementations. The basic idea is that a properly formulated
and implemented finite element method should be capable of exactly reproducing solutions
to certain simple boundary-value problems up to round-off error. A typical use of the patch
test in linear elasticity is based on displacement fields that are affine functions of spatial
coordinates and therefore satisfy homogeneous Navier’s equations exactly. The boundary
conditions are set in accordance with the displacement fields and various element configura-
tions are tested; the meshes can be uniform or non-uniform. The expectation for a properly
formulated and implemented finite element method is that the computed solutions will be
point-wise exact everywhere. This is what one may refer to as the engineering version of the
patch test; see [32, Section 4.6, pp. 237-242], for a description and examples illustrating its
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use. The engineering version of the patch test was devised by Bruce Irons, first described in
[33], and later given a mathematical interpretation in the classic text of Strang and Fix [34,
Section 4.5, pp. 174-181], in which it was extolled as “a simple but brilliant idea” and shown
to be the key ingredient for mathematically assessing the convergence of non-conforming
elements, an open problem theretofore. For further discussion of the engineering version of
the patch test, see [35].

As far as we are aware, conceptions of the patch test appropriate for BEMs have never been
given heretofore, and therefore we regard patch tests for BEMs as a primary contribution of
the present paper. Like their finite element counterparts, BEM patch tests can be applied to
numerical schemes and computer implementations, but they can be also used for assessing
CAD models. Why have patch tests not been devised for BEMs? To answer this question, we
need to examine properties of BEMs and their abilities to reproduce certain simple solutions
exactly. We begin by noting that affine displacement fields, used in finite element patch
tests, cannot be exactly reproduced with BEMs because BEMs involve singular integrals, for
which no standard numerical integration scheme is exact on general surfaces. Consequently,
the most we can hope for is to obtain exact solutions up to numerical integration errors. This
places an onus on the integration schemes. Namely, upon refinement, their accuracy needs
to be consistent with a mathematically predetermined convergence rate. We view this as a
precondition for any viable BEM, and note that in our work we utilize an integration scheme
that guarantee exponential convergence as the number of integration points per element in
each parametric direction is increased [36]. This then becomes an essential feature of the
BEM patch tests. Thus the issue of reproducing certain simple solutions exactly is a bit
more involved than one might initially realize. In this context, we identify three BEM patch
tests.

Interior Neumann Patch Test: This is the most broadly applicable patch test for BEMs
corresponding to Neumann boundary-value problems defined on bounded domains. The
boundary data for the Interior Neumann Patch Test are derived from a candidate affine
displacement field, and in a successful Interior Neumann Patch Test the computed surface
displacement field must be exact, up to integration error. We note that the traction field
prescribed on the surface incorporates the unit normal field corresponding to the BEM sur-
face discretization, and neither the discretization nor the unit normal field have to be exact,
as long as the unit normal field is consistent with the surface, as dictated by equations of
differential geometry. The Interior Neumann Patch Test is applicable to both isogeometric
and conventional BEMs. It is particularly useful for identifying CAD models that are not
watertight. Consequently, many NURBS-based models will not be able to pass the test,
whereas watertight T-spline models will.

Interior Dirichlet Patch Test: In this case, the candidate affine displacement field gen-
erates the boundary data directly, and one solves for the surface traction field. The question
that arises in this case is ”Is the surface traction field exactly representable by the basis
functions employed?” The answer to this question will be ”yes” if the surface unit normal
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field can be exactly spanned by the basis functions. Consequently, the Interior Dirichlet
Patch Test will only be applicable to relatively simple geometries. For IgBEMs, these in-
clude polyhedra, spheres and tori; for conventional BEMs, with C0 elements, only polyhedra
would be candidate geometries.

Exterior Neumann Patch Test: Exterior problems are defined on infinite domains con-
taining cavities. In these problems one specifies asymptotic conditions at infinity and bound-
ary conditions on the cavity surface. BEMs are particularly effective for exterior problems
because one needs to discretize the cavity surface only. For the Exterior Neumann Patch
Test, we exploit the celebrated result of Eshelby [37] for ellipsoidal cavities which states that
if the asymptotic conditions at infinity prescribe an affine displacement field and the cavity
surface is traction-free, then the displacement field on the cavity surface is affine. Note that
unlike the two interior patch tests, this one involves an affine displacement field only on the
boundary but not in the entire domain. The Exterior Neumann Patch Test is restricted to
IgBEMs because CAD basis functions are capable of representing all conic sections whereas
conventional polynomial basis functions are not.

As a demonstration of the power of the proposed IgBEM and patch tests, we apply them to
the analysis of two case studies representative of problems encountered in industrial applica-
tions within a fully automated design-through-analysis pipeline. Both cases involve T-spline
CAD models analyzed elsewhere [12, 38], so that we can compare our predictions with those
reported previously.

The remainder of the paper is organized as follows. In Section 2, we summarize the IgBEM
and provide some implementation details. In Section 3, we focus on the patch tests. In
Section 4, we present two case studies representative of industrial applications. In Section
5, we summarize key results and briefly discuss future work.

2 IgBEM

In this section, we summarize the governing BIEs and numerical schemes underlying the
IgBEM defined on C̃2 surfaces. Our presentation heavily relies on results developed in [10].
Also some of the details are presented in the appendices.

2.1 Model boundary-value problem

Consider a bounded domain Ω ⊂ R3 with Γ := ∂Ω ∈ C̃2. The model boundary-value
problem is formulated for Navier’s equations of classical linear elasticity,

µui,jj + (λ+ µ)uj,ij = 0 in Ω , (1)
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where ui is the displacement field, and λ and µ are Lamé’s constants. The boundary condi-
tions include Dirichlet data, prescribed for the displacement vector

ui = gi on ΓD, (2)

and Neumann data, prescribed for the traction vector

ti := µ(ui,j + uj,i)nj + λuj,jni = hi on ΓN . (3)

The surfaces ΓD and ΓN satisfy the usual restrictions ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅.

2.2 Integral equations

To define the governing BIEs one needs to introduce the fundamental solution

Uij(x, y) =
λ+ µ

2πµ(λ+ 2µ)

[
λ+ 3µ

λ+ µ

δij
|x− y|

+
(yi − xi)(yj − xj)

|x− y|3

]
,

and the Dirichlet-to-Neumann map γij:

ti(x) = γij [uj(x), x] :=

{
nk(x) [µ (δijδkl + δjkδil) + λδikδjl]

∂

∂xl

}
uj(x) ,

where δij is Kronecker’s delta. Then the Singular BIE (SBIE) is expressed as

[σijI +Kij]uj = Vijtj on Γ .

Similarly, the Hyper-Singular BIE (HSBIE) is expressed as[
(δij − σij)I − K′ij

]
tj = Dijuj on Γ .

In these equations, I is the identity operator,

Vijtj(x) =

∫
Γ

Uij(x, y)tj(y)dsy x ∈ Γ

is the single-layer operator,

Kijuj(x) =

∫
Γ

γik [Ukj(x, y), y]uj(y)dsy x ∈ Γ

is the double-layer operator,

K′ijtj(x) =

∫
Γ

γik [Ukj(x, y), x] tj(y)dsy x ∈ Γ

is the adjoint double-layer operator,

Dijuj(x) = −
∫

Γ

γik {γkl [Ulj(x, y), y] , x}uj(y)dsy x ∈ Γ
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is the hyper-singular operator, and

σij(x) = −
∫

Γ

γik [Ukj(x, y), y] dsy x ∈ Γ .

Note that for C2-surfaces σij = δij/2, but the adopted level of generality is necessary for
C̃2-surfaces.

Since the integral operators are defined via integrals over the entire Γ, one must extend both
gi and hi onto the entire Γ. We denote the extensions by g̃i and h̃i, and require g̃i to be
C̃2(Γ), but allow h̃i to be discontinuous. Then the surface displacement and traction fields
can be represented as

ui = ũi + g̃i (4)

and

ti = t̃i + h̃i , (5)

with the obvious provisions ũi|ΓD
= 0 and t̃i|ΓN

= 0. Accordingly, the SBIE and HSBIE are
rewritten as

Vij t̃j − [σijI +Kij] ũj = fS
i on Γ (6)

and [
(δij − σij)I − K′ij

]
t̃j −Dijũj = fH

i on Γ, (7)

respectively, where

fS
i = [σijI +Kij] g̃j − Vijh̃j,

fH
i = Dij g̃j −

[
(δij − σij)I − K′ij

]
h̃j.

In this construction, the choice of extensions is not unique, but the recovered surface dis-
placement and traction fields do not depend on how the extensions are chosen. Equations
(6) and (7) are the governing BIEs for the IgBEM.

2.3 Discretization

Integral equations (6) and (7) are discretized using the approximations

ũi(x) ≈ ũhi (x) =
nD∑
A=1

ũi[A]ND
A (x) and t̃i(x) ≈ t̃hi (x) =

nN∑
A=1

t̃i[A]NN
A (x), (8)

where ND
A and NN

A are the basis functions, and ũi and t̃i are column-vectors. The basis
functions are such that ND

A (x) = 0 for x ∈ ΓD and NN
A = 0 for x ∈ ΓN . The hyper-singular

operator requires the basis functions ND
A to be C̃2. If the basis functions are T-splines
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with p = 3, this requirement is automatically satisfied. In contrast, the basis functions
NN

A are acted upon by the single and adjoint double layer operators, and therefore can
be discontinuous. To attain optimal approximations, NN

A should have p ≥ 2, and be C1

almost everywhere, except for edges, corners, Neumann-Dirichlet interfaces, collapsed edges,
and extraordinary points, where it must be discontinuous. This requirement follows directly
from results which show that if the displacement field is approximated by T-splines of degree
p and smoothness k, then the optimal approximation for the traction is of degree p− 1 and
smoothness k − 1 [10]. However, we utilized T-splines with proper discontinuities but with
p = 3 and k = 2 rather than p = 2 and k = 1. This choice of the basis functions did not
prevent us from obtaining very accurate numerical solutions for boundary-value problems
considered in this work.

Once the approximations for ũi and t̃i have been introduced, the integral equations are
discretized by collocating (6) at points xDA and (7) at points xNA . Those points can be defined
as generalized Greville’s abscissae; see [10, 12] for details. As a result one obtains the system
of linear algebraic equations for ũi and t̃i:

V t̃−
(
ΣD +K

)
ũ = fS (9)

and [(
IN − ΣN

)
−K ′

]
t̃−Dũ = fH . (10)

These matrices can be assembled using the exact same techniques as in [10], only the adjoint
double layer operator needs a new representation (see Appendix C). Detailed expressions for
the matrices and column-vectors in these equations are given in Appendix A.

In this section, we heavily rely on similarities between fundamentals and numerical schemes
for BIEs corresponding to Laplace’s and Navier’s equations, and therefore refer the reader to
[10] for details. Nevertheless, there are two aspects in which these two classes of problems are
different. First, from the mathematical perspective, the techniques for regularizing integral
operators are somewhat different, although the end result is the same: all integral operators
can be evaluated using weakly-singular integrals; see Appendix C for details. Second, from
the engineering perspective, many components designed for structural applications include
rounds, fillets, thin walls, and other features associated with disparate lengths. For these
types of problems, we developed a numerical integration scheme in which elements with large
aspect ratios and/or curvatures are hierarchically partitioned, so that numerical integration
errors are tightly controlled; see Appendix B for details.

3 Patch Tests

3.1 Formulation

For simplicity of presentation, we develop BEM patch tests by considering linear rather than
affine displacement fields in the form

ui(x) = αijxj , (11)
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where αij is a constant symmetric second rank tensor. These fields satisfy Navier’s equa-
tions, and their rigid body motion consists of zero translation and rotation with respect to
the origin. For Dirichlet boundary-value problems, (11) also defines prescribed boundary
data and implies uniqueness. For Neumann boundary-value problems, the boundary data is
derived from (11),

ti(x) = λαkkni(x) + 2µαijnj(x) , (12)

and uniqueness is achieved by nullifying the rigid body motion with respect to the origin.

For x ∈ Γ,

xj = ϕj(s) =
∑
A

PA,jÑA(s), (13)

where s denotes parametric coordinates, the PA,j’s are the coordinates of the control points
in isogeometric analysis or nodes in conventional BEMs, and ÑA are the basis functions in
the parametric domain, i.e. ÑA = NA ◦ ϕ. The discretized displacement field is written as

uhi [ϕ(s)] =
∑
A

uA,iÑ
D
A (s),

where the uA,i’s are the control point, or nodal, values of the discrete displacement field. The
isoparametric hypothesis [32] amounts to using the same basis functions for approximation
and geometry, i.e. ÑD

A = ÑA. If we select uA,i = αijPA,j, then

uhi [ϕ(s)] =
∑
A

αijPA,jÑ
D
A (s) = αij

∑
A

PA,jÑA(s) = αijxj = ui(x),

which demonstrates that the discrete displacement field is also capable of representing the
exact linear displacement field.

The discretized traction field is written as

thi [ϕ(s)] =
∑
A

tA,iÑ
N
A (s),

where the tA,i’s are the control point, or nodal, values of the discrete traction field, and ÑN
A

are the basis functions in the parametric domain If the unit normal field can be exactly
represented by the traction basis functions, i.e.

ni [ϕ(s)] =
∑
A

nA,iÑ
N
A (s),

and we set
tA,i = nA,iλαkk + 2µαijnA,j,
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then

thi [ϕ(s)] =
∑
A

[nA,iλαkk + µαijnA,j] Ñ
N
A (s)

= λαkk

∑
A

nA,iÑ
N
A (s) + µαij

∑
A

nA,jÑ
N
A (s)

= λαkkni(x) + µαijnj(x) = ti(x).

This demonstrates that the discrete traction field is capable of representing the exact traction
field, only when the unit normal field can be exactly represented by the traction basis
functions ÑN

A . In the context of isogeometric analysis, we are aware of only three classes
of geometries for which NURBS or T-splines can exactly represent the unit normal field:
polyhedra, spheres, and tori. In these cases, reliance on the isoparametric hypothesis for
approximating the traction field becomes irrelevant.

Now it is appropriate to ask the question “In what sense can the candidate fields be exactly
represented by either isogeometric or conventional BEM basis functions?” To answer this
question, we observe that the BIE kernels involve singular kernels, for which no standard
numerical integration scheme is exact on general surfaces. One notable exception is the
exact evaluation of singular integrals on polyhedrons (or polyhedral meshes); for details see
[39] and references therein. In this paper, with the emphasis on CAD geometries, we ignore
this exception, and adopt the notion that the accuracy of computed displacement fields is
dominated by numerical integration. From this perspective, in a successful BEM patch test,
the error must decay as the number of integration points per element in each parametric
direction is increased, and the rate of decay must be mathematically predetermined. We view
this requirement as a precondition for any viable BEM, and therefore the essential feature
of a BEM patch test. In our work we utilize rules that guarantee exponential convergence
of numerical integration errors as the number of integration points per element in each
parametric direction is increased [36]. If the error converges to zero exponentially and only
stagnates at a level similar to machine precision, we consider the patch test to be passed. If
the error stagnates at a level well above machine precision, or does not converge exponentially,
it implies that there are additional sources of error, and the patch test is failed. In certain
situations, those additional sources of error can be identified which we show in turn. We will
see that this information can be used to assess new formulations, numerical schemes, and
their implementations. Once their validity has been established, patch tests can be used to
assess the quality of CAD models and/or the error due to integration schemes (see Section
4). Both are important, as CAD representations with gaps are ubiquitous, and numerical
integration often controls the accuracy of BEM computations.

The difference in approximations for the displacement and traction fields give rise to two
distinct patch tests.

Interior Neumann Patch Test: For this test, we prescribe Neumann boundary data de-
fined in (12) and solve the SBIE (9) for uhi (x). This approximation should always be exact,
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for any geometry, as long as the surface geometry is watertight. Consequently, this may be
viewed as a universal patch test applicable to both isogeometric and conventional BEMs.

Interior Dirichlet Patch Test: For this test, we prescribe Dirichlet data defined in (11)
and solve the HSBIE (10) for thi (x). We expect to compute the exact traction field only
if the unit normal field can be exactly spanned by the basis functions of the traction field.
This condition holds for polyhedra for all discretizations, for spheres and tori in isogeometric
discretizations, but not for more general geometries, even simple ones such as general ellip-
soids.

Exterior Neumann Patch Test: There is a class of exterior problems, discovered by Es-
helby [37], in which the linear displacement fields are realized only on the boundary rather
then the entire domain. A boundary-value problem of interest is formulated for an ellipsoidal
traction-free cavity and asymptotic conditions ui(x) = αijxj as |x| → ∞. For this problem,
one can establish that the governing BIE is[

1

2
I − Kij

]
uj = αijxj on Γ , (14)

and the solution ui(x) of this integral equation is a linear field on Γ; this field can be
constructed following [37]. This approximation should be exact for watertight ellipsoids.
Since ellipsoidal surfaces can be exactly represented by cubic NURBS or T-splines, this
patch test is applicable to IgBEMs but not conventional BEMs. However, highly oblate
or prolate ellipsoids may pose significant challenges for numerical integration because maps
from the physical to parametric space are near-singular, and therefore one needs a robust
scheme capable of handling such maps; see Appendix B.

3.2 Numerical examples

In this section, we illustrate the use of the patch tests on a suite of interior and exterior
boundary-value problems. For all patch tests, correctly posed according to the aforemen-
tioned requirements, the only source of error should be due to numerical integration. In the
numerical integration scheme utilized herein this error will decay to zero (up to round-off
error) exponentially fast, as the number of integration points per (Bézier) element is in-
creased in each parametric direction. This would amount to patch tests being passed. If the
error stagnates, or decays at a slower rate, there are sources of error other than numerical
integration, or there is an error in the integration scheme. In what follows, we presume that
the integration scheme is correct.

In all examples, we set λ = µ = 1 and

αij =

−1/4 0 0
0 −1/4 0
0 0 1


11



This choice corresponds to a uniaxial stress σ33 = 5/2. Numerical experiments with other
choices of the elastic constants and αij resulted in very similar quantitative and qualitative
results. The error was defined as the L2-norm of the difference between the numerical and
exact solutions normalized by the L2-norm of the exact solution. The norm was defined with
respect to the boundary data of interest.

3.2.1 Interior Neumann Patch Test for general geometries

To confirm that the Interior Neumann Patch Test is passed by any geometry we consider
three geometries: a unit sphere, a prolate spheroid, and a regularly perturbed unit sphere,
generated by the parametrization

x = (1 + ε sin 8φ1) (1 + ε sin 16φ2) cosφ1 sinφ2

y = (1 + ε sin 8φ1) sinφ1 sinφ2

z = (1 + ε sin 16φ2) cosφ1

where ε = 0.1, φ1 ∈ [−π/2, π/2], and φ2 ∈ [0, 2π] (see Figure 1). All geometries were
constructed using GrasshopperTM and RhinocerosTM. The plots for the error versus the

Figure 1: Parametrization of the sphere (left), the prolate spheroid (center), and the per-
turbed sphere (right).

number of integration points per element in each parametric direction are shown in Figure 2.
As expected, all errors exhibit exponential decay which indicates that the Interior Neumann
Patch Test is passed for all three geometries. This confirms that the Interior Neumann
Patch Test has to be passed on any watertight geometry as long as the SBIE is correctly
implemented.

3.2.2 Interior Neumann Patch Test for non-watertight geometries

To demonstrate that the Interior Neumann Patch Test can be used to detect non-watertight
geometries, let us consider two unit cubes generated by six quadratic NURBS patches with
no continuity enforced over patch boundaries. The first cube is perfect with no gaps. The
second cube is imperfect, and to describe the imperfection let us introduce a coordinate
system such that 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, and 0 ≤ x3 ≤ 1. Note that since no continuity is
enforced over patch boundaries, there are 9 control points per patch, and since the control
points are not shared by the patches the total number of control points is 54. Then there are
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Figure 2: Interior Neumann Patch Tests: The error versus the number of integration points
per element in each parametric direction for the normalized L2-error of the displacement field
for the unit sphere (top), the prolate spheroid (center), and the perturbed sphere (bottom).
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three control points at each corner. To create an imperfection we displace the control point
at the corner (1,1,0) corresponding to the patch in the plane x1 = 1 by 10−3 along positive
x1. This results in bending of the patch and opens two gaps, between the bent patch and
the patches in the planes x2 = 1 and x3 = 0. Results for the Interior Neumann Patch Test
are shown in Figure 3. For the perfect cube, the error decays exponentially as the number
of integration points per element in each parametric direction is increased, whereas for the
imperfect cube the error stagnates indicating that the surface is not closed. The magnitude
of the stagnated error is O(10−4), which is only one order of magnitude less than the gap
size. While there is no simple explanation why the error is not closer to the gap size, it is
also clear that the error could be used as a rough estimate for the gap size. This technique
may be used to assess the magnitude of errors produced by imperfections in the geometry,
e.g. gaps or overlaps, which are common in trimmed NURBS models.
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Figure 3: Interior Neumann Patch Tests: The error versus the number of integration points
per element in each parametric direction for the perfect and imperfect cube.

In addition, the gaps can be located by plotting the local error of the displacement field.
Figure 4 shows the error of the displacement field for the imperfect cube, and clearly indicates
that there are problems near the corner (1,1,0).

3.2.3 Interior Dirichlet Patch Test for a sphere and spheroid

Now we confirm that the Interior Dirichlet Patch Test is only passed by geometries whose
unit normal field can be spanned exactly by cubic T-splines used to approximate the traction
field. To this end, we consider three geometries: the same sphere and spheroid as in Section
3.2.1, and the perfect cube from Section 3.2.2. It is clear that the unit normal field of the
cube is constant on each face and discontinuous over the edges. Therefore, the traction field
is piecewise constant and can be exactly represented by the T-splines used for approximation.
Consequently, we expect that the cube would pass the test. The unit sphere (κ = 1) and
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Figure 4: The plot of the local error for the perfect (top) and imperfect (bottom) cube.

the prolate spheroid (κ = 2) can be defined by the equation

x2
1 + x2

2 +
(x3

κ

)2

= 1.

Then the unit normal fields for the sphere and spheroid are

n(x) =

x1

x2

x3

 and n(x) =
1√

x2
1 + x2

2 + x2
3/κ

4

 x1

x2

x3/κ
2

 ,

respectively. Thus for the sphere the unit normal field is a linear field, and it can be exactly
spanned by cubic T-splines. This is not the case for the prolate spheroid. Consequently, we
expect that the sphere would pass the test but the spheroid would not.

The plots for the error versus the number of integration points per element in each paramet-
ric direction are shown in Figure 5. As expected, the data for the sphere and cube exhibit
exponential decay, whereas the data for the prolate spheroid stagnates at a value corre-
sponding to the approximation error for the unit normal field. The results for the sphere
and cube indicate the Interior Dirichlet Patch Test is passed. The results for the spheroid
indicate that the Interior Dirichlet Patch Test is failed. This confirms that for a correctly
implemented HSBIE using a suitable integration rule, the Interior Dirichlet Patch Test is
only passed for geometries whose unit normal field can be represented by the basis functions
used to approximate the traction field.

3.2.4 Exterior Neumann Patch Test for exact ellipsoids

To confirm that the Exterior Neumann Patch Test is passed by any ellipsoid, we consider
spheroids with aspect ratios κ = 0.01, 0.1, 0.5, 1, 2, 10, 100; κ < 1 (κ > 1) represents oblate
(prolate) spheroids. Each of the spheroids is (exactly) parametrized by T-splines using 8
elements. The plots for the error versus the number of integration points per element in
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Figure 5: Interior Dirichlet Patch Tests: The error versus the number of integration points
per element in each parametric direction for the normalized L2-error of the traction field for
the unit sphere (top), the prolate spheroid (center), and the cube (bottom).
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Figure 6: Exterior Neumann Patch Tests: The error versus the number of integration points
per element in each parametric direction for the normalized L2-error of the displacement
field for spheroids with different aspect ratios κ (top: oblate spheroids, bottom: prolate
spheroids).
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each parametric direction are shown in Figure 6. It is clear that for all geometries the errors
converge exponentially to machine precision.

To show that the construction of a suitable integration rule for spheroids with high aspect
ratios is not trivial, let us consider the same test but without the additional subdivision
scheme described in Appendix B. The plots for the error versus the number of integration
points per element in each parametric direction are shown in Figure 7. It is clear that the
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Figure 7: Exterior Neumann Patch Tests: The error versus the number of integration points
per element in each parametric direction for the normalized L2-error of the displacement
field for spheroids with different aspect ratios κ (top: oblate spheroids, bottom: prolate
spheroids), without an additional subdivision scheme to account for high curvature and
aspect ratios.

errors converge exponentially to zero for all cases. However, it is also clear that the error
reduction is rather slow for either κ � 1 or κ � 1. This is because such spheroids involve
regions of high curvature. Further, prolate spheroids with κ � 1 involve Bézier elements
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with very high aspect ratios. Both geometric features significantly affect the numerical
integration scheme and in principle can result in unacceptable errors. This demonstrates
how the Exterior Neumann Patch Test can be used for evaluating and designing numerical
integration schemes.

4 Case Studies

In this section, we present computational results for two case studies representative of indus-
trial applications. Both cases involve T-spline CAD models and have been analyzed previ-
ously using a different IgBEM [12] and an immersed isogeometric finite element method [38].
In this paper, each case is analyzed in two stages: (i) the T-spline CAD model is assessed
with an Interior Neumann Patch Test, and (ii) the boundary-value problem corresponding
to boundary conditions specified in the original paper is solved.

4.1 A propeller subjected to a wind load

4.1.1 Geometry and patch tests

The first case involved an aluminum propeller (Young’s modulus E = 100GPa and Poisson’s
ratio ν = 0.3) subjected to a wind load. Following [12] and [38], the propeller was specified
using a CAD file generated using RhinocerosTM and T-SplinesTM. This CAD representation
involved 5,136 Bézier elements and 48 extraordinary points (Figs. 8 and 9).

Figure 8: The CAD geometry of the propeller.

The CAD model was first subjected to an Interior Neumann Patch Test using the prescribed

19



Figure 9: The Bézier element mesh of the propeller.

traction field
ti = σijnj = −δi3n3 ;

the rigid body translation and rotation were set equal to zero at the origin. Results of this
test are presented in Figure 10, where the normalized L2-error of the surface displacement
field is plotted versus the number of integration points per element in each parametric direc-
tion. This plot clearly shows that, as the number of integration points per element in each
parametric direction is increased, (i) the error is reduced exponentially, and (ii) the error can
be reduced to 10−9. We accepted this as a confirmation that the CAD model was sufficiently
watertight.

Once we had established that the geometry was suitable, we switched to the automated
integration scheme, in which the number of integration points per element in each parametric
directions is determined using simple local rules; see Appendix B for details. The automated
integration rule is designed so that it does not adversely affect the convergence rate of the
approximation error, and this condition is realized using a minimal number of integration
points per element in each parametric direction. Therefore, the error introduced by the
automated integration scheme was treated as a lower bound for the error expected for the
solution of the main problem. If this error was unacceptable, the mesh inherited from the
CAD geometry would have to be refined. For our problem, we determined that the L2-error
for the surface displacement field was O (10−3). We regarded this error as acceptable, and
proceeded to the main problem.
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Figure 10: Interior Neumann test: The error versus the number of integration points per
element in each parametric direction for the propeller.

4.1.2 Main problem

The wind load was simulated by assigning zero displacement field on the interior cylindrical
surface of the hub, as shown in Figure 11, while the remaining boundary was subjected to
the traction field as

t = [0, 0,−Pn3H(n3)] ,

where P = 1 kPa is the wind pressure, H is the Heavyside function, and x3 is the symmetry
axis of the propeller pointing upward. The boundary-value problem specified here is exactly
the same as specified in [12]. In the original paper, E and P were specified using inconsistent
units, and we took this into account while comparing our results with the original ones.

Figure 12 shows the deformed shape of the propeller, where the displacement field is exag-
gerated by a factor of 1000. The deformed geometry is colored using the magnitude of the
displacement field, and shown in relation to the Bézier mesh of the original geometry. The
lack of smoothness of the Bézier mesh is due to post-processing only. Figure 13 shows the
von Mises stress. Note that both fields exhibit the expected six-fold symmetry.

It is somewhat difficult to compare our results with those in [12]. For the displacement field,
the original paper provides only the deformed shape but no information for quantifying the
displacement field. For the von Mises stress, the original results are somewhat similar to
ours. However, there are significant differences. In particular, our analysis identifies high-
stress regions only near the hub, whereas in the original analysis there are also high-stress
regions at the blade tips. High-stress regions near the hub are straightforward to explain
using elementary beam theory, by assuming that each blade is a cantilever beam subjected
to a uniformly distributed load. With this assumption, we estimated the maximum von
Mises stress to be 5.7MPa, which compares favorably with the computational results. We
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Figure 11: The Dirichlet boundary, highlighted in yellow, for the wind loading on the pro-
peller.

Figure 12: The deformed geometry exaggerated by a factor of 1000. The propeller is colored
by the magnitude of the displacement field and shown in relation to the Bézier mesh of the
original geometry.
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Figure 13: The von Mises stress.
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believe that the difference between the two sets of computational results is primarily due to
significantly different integrations schemes. In the original paper, no special provisions were
made for the near-singular integration, whereas in the integration scheme of this paper the
near-singular integration is a focal point.

4.2 The rim of a car wheel

4.2.1 Geometry and patch tests

The second problem involves an aluminum rim of a car wheel (Young’s modulus E = 70GPa
and Poisson’s ratio ν = 0.34) subjected to a load mimicking contact. The rim radius R =
239mm, height h = 223mm, measured along the y-axis, and the wall thickness w = 5mm
(Fig. 14). The rim was specified using a CAD file generated using RhinocerosTM and T-
SplinesTM. The CAD representation involved 11,712 Bézier elements and 96 extraordinary
points (Figs. 15 and 16).

Figure 14: A schematic view of the rim.

For this geometry we did not test the CAD model for watertightness but we did subject
the CAD model to the Interior Neumann Patch Test with the fixed automated integration
scheme in order to get a lower bound for the error we can expect for the main problem.
We determined that the normalized L2-error for the surface displacements is O(10−5). We
regarded this error as acceptable and proceeded to the main problem.
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Figure 15: The CAD geometry of the rim.

Figure 16: The Bézier element mesh of the rim.

25



4.2.2 Main problem

We simulated lateral forces induced by the car turning by assigning zero displacement field
on the hub of the rim (see Figure 17), and the traction field (see Fig. 17)

t =

[
0,

F

Rw

√
1− x2

b2
, 0

]
where F = 10kN and b = R sin(π/5). The rest of the boundary is set to be traction-free.
The boundary conditions are summarized in Figure 14.

Figure 17: The Dirichlet (left) and non-zero Neumann (right) boundaries highlighted in
yellow.

To accommodate the prescribed boundary conditions, we had to change the original CAD file
because our implementation of the IgBEM only allows for prescribing boundary conditions
on an element-by-element basis, and the prescribed traction field is not aligned with the
elements in the original CAD file. To this end, we had to subdivide two elements in the
original T-spline model into two sub-elements. This is a straightforward change since T-
splines naturally allow for hanging nodes.

Figure 18 shows the deformed shape of the rim, where the displacement field is exaggerated by
a factor of 300. The deformed geometry is colored using the magnitude of the displacement
field. Figure 19 shows the von Mises stress. Figures 18 and 19 should be compared to
Figures 50 and 51 in [38], respectively. For comparison purposes, we rescaled the color map
of the von Mises stress to the same ones as in [38]. For the displacement field, our results
are similar to the ones computed in [38]: the maximum displacement in [38] is 0.64mm,
and ours is 0.59mm. While the von Mises stress maps also look similar, our prediction for
the maximum stress is much larger than that in the original paper. This can be explained
as follows. The original paper relies on an immersed finite element method, which does
not exploit the T-splines of the geometric model as the basis functions. The advantage of
this approach is that it allows for mesh refinement without changing the geometric model.
However, as it is the case for all immersed finite element methods, the basis functions do not
conform with the geometric model, and therefore are not ideal for computing surface and
near-surface data. This challenge for immersed methods is currently being researched.
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Figure 18: The deformed shape exaggerated by a factor of 300. The rim is colored by the
magnitude of the displacement field.

Figure 19: The Von Mises Stress on the rim.
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5 Concluding Remarks

In this paper we have presented an Isogeometric Boundary Element Method for linear elas-
ticity problems that generalizes the method we developed previously for Laplace’s equation
[10]. Particular attention was paid to the development of numerical integration schemes
applicable to domains with fine-scale features, regions of high curvature, large aspect ratios,
rounds, and fillets; see Appendix B for details.

A focus of this paper has been the development of BEM patch tests, an extension of the
well-known finite element patch test concept, which has proved invaluable in the develop-
ment of finite element methods. The utility of patch tests is multifold. They can be used to
assess the veracity of a formulation, locate flaws in a discrete model (e.g., gaps and overlaps
between patches in CAD models), expose coding errors, identify shortcomings of a numerical
integration procedure, etc. We proposed and described three different patch tests, the In-
ternal Neumann and Dirichlet Patch Tests, and the External Neumann Patch Test. Each of
these tests queries different aspects of a formulation, providing independent information to
assess the validity of a method and its implementation. The Internal Neumann Patch Test is
applicable to isogeometric and conventional BEMs. However, the other two patch tests are
geometrically restrictive and it seems only isogeometric discretizations have the geometric
precision to employ them.

In our work we have employed direct solvers, but the research thrust in BEMs has been
iterative solvers [40, 41, 42, 43]. Significant progress has been made for many problem classes,
but structural analysis problems provide unique challenges. Engineering structures are often
very thin, have large aspect ratios, possess regions of very high curvature, feature sharp
edges, etc. The propeller example is representative. It would be an enormously valuable
contribution to develop an efficient and robust iterative solver for this class of problems.

In this paper we used the first commercialization of T-splines, the industrial design plugin
T-SplinesTM for the NURBS modeler RhinocerosTM. The success of this tool led to the
acquisition of T-SplinesTM by AutodeskTM and the integration of T-splines into several major
CAD packages, including Fusion 360TM. However, while T-splines have been successfully
applied in the context of isogeometric analysis, their commercial support is still mainly
focused on design rather than analysis.

Recently proposed U-splines [44] are intended to subsume and improve T-splines, by adding
robustness and flexibility to both design and analysis. We believe that those improvements
will significantly impact the proposed IgBEM, and result in an implementation with full
commercial support.
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A Representation of system matrices

In this appendix, we provide details helpful for formulating linear algebraic equations (9)
and (10). The column-vectors are formed by grouping the Cartesian components into sub-
column-vectors. Namely, the displacement column-vector has the structure

ũ =

ũ1

ũ2

ũ3

 .

Here ũ1 is the column-vector of length nD,1. It contains the x1 Cartesian components of the
vector-valued coefficients approximating the field ũ1(x) with x ∈ ΓN,1; see (8). The length
of ũ is

nD = nD,1 + nD,2 + nD,3 .

The structure of the column-vector fS is exactly the same. The column-vectors t̃ and fH

are structured similarly, but their blocks have length nN,1, nN,2, and nN,3; the total length
of each t̃ and fH is

nN = nN,1 + nN,2 + nN,3 .

The column-vectors dictate the structure of the block-matrices representing the operators in
(9) and (10). Accordingly, V is an nD × nN matrix, ΣD and K are nD × nD matrices, IN ,
ΣN , and K ′ are nN × nN matrices, and D is an nN × nD matrix.

The components of the blocks of the system matrices are defined as

ΣD
ij [A,B] = σij(x

D
A)ND

B (xDA),

ΣN
ij [A,B] = σij(x

N
A )NN

B (xDA),

INii [A,B] = NN
B (xDA),

and

Vij[A,B] = VijNN
B (xDA)

=

∫
Γ

Uij(x
D
A , y)NN

B (y)dsy,

Kij[A,B] = KijN
D
B (xDA)

=

∫
Γ

γik
[
Ukj(x

D
A , y), y

]
ND

B (y)dsy,

K ′ij[A,B] = K′ijNN
B (xNA )

=

∫
Γ

γik
[
Ukj(x

N
A , y), xNA

]
NN

B (y)dsy,

Dij[A,B] = DijN
D
B (xNA )

= −
∫

Γ

γik
{
γkl
[
Ulj(x

N
A , y), y

]
, xNA

}
ND

B (y)dsy.

33



In these definitions, no summation is implied over repeated indices i and j. The components
of the blocks of the right-hand-side vectors are

fS

i
[A] := fS

i (xDA)

= σij(x
D
A)g̃j(x

D
A) +Kij g̃j(x

D
A)− Vijh̃j(xDA),

fH

i
[A] := fH

i (xNA )

= Dij g̃j(x
N
A )−

[
δij − σij(xNA )

]
h̃j(x

N
A ) +K′ijh̃j(xNA ).

Here no summation is implied over repeated indices i.

B Details of numerical integration

In this paper we extended the integration scheme adopted in [10] by introducing two hier-
archical partitioning schemes, one for elements with large curvatures and aspect ratios, and
the other for more efficient near-singular integration. In both schemes, decisions must be
made on partitioning a given Bézier element (or sub-element) ϕ(e). Those decisions require
one to compute distances, curvatures, and aspect ratios. Once the new hierarchical parti-
tioning schemes have been implemented, the numerical integration schemes adopted in [10]
are applied to the generated integration mesh rather than the original Bézier mesh. In the
remainder of this appendix, we provide details of criteria used for generating the integration
mesh.

To eliminate elements with large curvatures we adopt the following scheme:

1. For a given ϕ(e), compute the tangential gradient of the unit normal field to ϕ(e) and
thus form a 3× 2 matrix.

2. Compute the maximum principal value Λ of the 3× 2 matrix.

3. Use the 5× 5 Gaussian integration rule to compute κ := ‖Λ‖L10 as an approximation
of ‖Λ‖L∞ .

4. Use the 4 × 4 Gaussian integration rule to compute the area A of ϕ(e); define the
element size h :=

√
A.

5. Identify a quadrilateral by connecting the vertices of ϕ(e) by straight segments. Denote
the lengths of those segments by l1 through l4, so that l1 (l2) and l3 (l4) are opposite
of each other. Define the aspect ratio of ϕ(e) as

χ = max

(
l1 + l3
l2 + l4

,
l2 + l4
l1 + l3

)
.

6. If κh > 1/8 and χ > 3 then partition e into two subdomains, so that the aspect ratio
of each subdomain is less than χ. If κh > 1/8 and χ < 3 then partition e uniformly
into four subdomains. If κh ≤ 1/8 then no partitioning is necessary.
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7. Repeat the steps until κh ≤ 1/8 on each subdomain.

This scheme is valid for elements that do not involve collapsed edges. If ϕ(e) contains a
collapsed edge, and κh > 1/8, then ϕ(e) is partitioned into a triangle and trapezoid as
shown in Figure 20.

Figure 20: Partitioning of an element containing a collapsed edge. The collapsed edge is
shown in red. The dashed line bisects the square.

Once the curvature has been reduced for all elements and sub-elements, elements and sub-
elements with large aspect ratios are eliminated by bisecting domains until χ ≤ 3 for each
subdomain.

In the near-singular integration scheme in [10], ϕ(e) is partitioned when

d ≤ 3h ,

where d is the physical distance between a collocation point P , at which the integral is
evaluated, and ϕ(e). Here we retain this criterion, but replace the algorithm for computing
the distance with a more efficient one:

1. Assign node numbers to ϕ(e) (Fig. 21).

2. Approximate ϕ(e) by two flat triangles whose vertices are the nodes 1, 2, and 3, and
3, 4, 1. (Fig. 21 ).

3. Compute the distances between P and each of the triangles, and define the first ap-
proximation d1 as the minimum of the two.
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4. Partition ϕ(e) into four quadrilaterals, and then each quadrilateral into two flat trian-
gles.

5. Compute the distances between P and each of the four quadrilateral subdomains fol-
lowing the previous steps; define the second approximation d2 as the minimum among
the four distances.

6. If

|d1 − d2| <
1

2
|d2 − 3h| ,

then accept d2 as an estimate of the distance. Otherwise, further partition the four
quadrilaterals, and compute the third approximation d3. If

|d2 − d3| <
1

2
|d3 − 3h| ,

then accept d3 as an estimate of the distance. Otherwise continue the partitioning
scheme until a sufficient approximation of d is obtained.

If ϕ(e) contains a collapsed edge, then an approximation to the distance can be computed
using one rather than two triangles.

Figure 21: Approximation of ϕ(e) by two interpolating triangles. The numbers denote the
numbers assigned to each node of ϕ(e); the interpolating triangles are shown in dashed red
lines.

The proposed scheme for estimating d is by far more efficient than the one based on con-
structing a bounding ball for ϕ(e) and adopted in [10]. However, unlike the old scheme, the
proposed scheme is not robust. Nevertheless, our numerical experiments suggest that the
proposed scheme yields essentially the same accuracy.

36



C Regularization of operators

Similar to BIEs corresponding to Laplace’s equation, the SBIE and the HSBIE corresponding
to the equations of linear elasticity involve weakly-singular, singular and hyper-singular
integrals. In this section we establish that the evaluation of all integral operators at a point
x ∈ Γ can be reduced to the evaluation of weakly-singular integrals.

The single-layer operator is naturally weakly singular; while the same is true for the double-
layer operators associated with Laplace’s equations, this is not true for the double-layer
operators associated with Navier’s equations. Nevertheless, it can be easily seen that

σij +Kij1 = 0, for all i, j = 1, 2, 3

and therefore

(σij +Kij)uj(x) =

∫
Γ

γik [Ukj(y, x), y] [uj(y)− uj(x)] dsy

for all i, j = 1, 2, 3. If uj is Lipschitz continuous, so that

|uj(y)− uj(x)| < C|y − x|,

then the integral becomes weakly singular. This additional restriction on uj(x) is auto-
matically satisfied for each basis function, and therefore the double layer operator can be
evaluated as a weakly-singular integral.

To regularize the adjoint double-layer operator, first, one can establish that for any x and y
on the smooth part of Γ

|γik [Ukj(y, x), y]− γik [Ukj(x, y), x]| ≤ C

|x− y|
. (15)

Then the adjoint double-layer operator can be expressed as[
(δij − σij)−K′ij

]
tj(x) =

ti(x)− (σij +Kij) tj(x)−
∫

Γ

{γik [Ukj(x, y), x]− γik [Ukj(y, x), y]} tj(y)dsy

.

Following the proof for the double-layer operator, the second term on the right-hand side
is weakly-singular as long as tj is Lipschitz continuous in the vicinity of x. This condition
holds for x on the smooth part of Γ. The last term on the right-hand side is weakly-singular
because of (15).

The hyper-singular operator is regularized using exactly the same technique as for Laplace’s
equation [10].
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