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Abstract

For T a planar triangulation, let Srm(T ) denote the space of bivariate splines on T such that f ∈ Srm(T )
is Cr(τ) smooth across an interior edge τ and, for triangle σ in T , f |σ is a polynomial of total degree
at most m(σ) ∈ Z≥0. The map m : σ 7→ Z≥0 is called a non-uniform degree distribution on the
triangles in T , and we consider the problem of computing (or estimating) the dimension of Srm(T )
in this paper. Using homological techniques, developed in the context of splines by Billera (1988),
we provide combinatorial lower and upper bounds on the dimension of Srm(T ). When all polynomial
degrees are sufficiently large, m(σ) � 0, we prove that the number of splines in Srm(T ) can be
determined exactly. In the special case of a constant map m, the lower and upper bounds are equal
to those provided by Mourrain and Villamizar (2013).

Keywords: splines, triangulations, mixed polynomial degrees, mixed smoothness, dimension formula

2010 Mathematics Subject Classification: 13P25, 68W30, 65D17, 65D07

1. Introduction

Polynomial splines on triangulations and quadrangulations have myriad applications and are ubiq-
uitous, especially, in the fields of computer aided geometric design and computational mechanics.
Meaningful use of splines for these purposes requires the construction and analysis of a suitable set
of basis functions for the spline spaces. In turn, this necessitates the computation or estimation of
their dimension which, following the definition of smooth splines, depends on an interplay between
geometry, topology and combinatorics.

In 1D, the problem is tractable and dimension formulas for the spline spaces follow from classical
arguments. Moreover, a set of optimal basis functions called B-splines can be efficiently built and
possess several properties useful for both geometric design and approximation. Over the years a a rich
and mature mathematical theory associated to B-splines and their tensor-product extensions has been
developed [24, 15] alongside several locally refinable extensions [25, 9, 7]. Such splines on quadran-
gulations have found extensive use in the fields of geometric design and, more recently, isogeometric
analysis [11] where smooth splines are used to numerically solve partial differential equations.

On the other hand, efficient and robust software exist for triangulating arbitrary domains, and
splines on triangulations [12] — the focus of this paper — have also been widely studied and employed
for geometric modeling, data interpolation and isogeometric analysis. C0 splines are easy to study;
higher orders of regularity, on the other hand, pose a problem that is significantly more challenging.
A dimension formula for spline spaces on triangulations with global smoothness requirements was
first conjectured in [27]. A lower bound for general planar triangulations was presented in [22], and it
was shown to equal the exact dimension for triangulations containing a single interior vertex. Later,
[1, 2] showed that equality also holds for spline spaces where the polynomial degree is large enough
compared to the required regularity. These advancements were made with the help of Bernstein–Bézier
techniques; e.g., [12].

A radically different solution was presented in [3] by employing the tools of homological algebra.
Building a short exact sequence of chain complexes, [3] showed that the spline space dimension is
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Figure 1: The advantages of using a non-uniform degree spline framework for the purposes of geometric mod-
eling and isogeometric analysis are underscored when the geometry/solution of interest possesses
local features. Figure (a) reproduces an example from [28] that shows how a smooth curve of varying
complexity can be efficiently represented using only a few control points by employing non-uniform
degree spline spaces. Figure (b) shows an example of a bivariate surface which could benefit from
similar flexibility; cf. Example 8.5 in Section 8. The surface has been obtained by superimposing
two Gaussian peaks on a quadratic surface.

equal to the dimension of a graded piece of a particular homology module. A modification that
improved upon [3] and yielded simpler chain complexes was presented in [20] and used to prove that
the dimension formula derived by [2] holds in sufficiently high degree. In particular, this demonstrated
that the homological algebra approach of the former agrees with the Bernstein–Bézier approach of
the latter. These modified chain complexes were further studied, for instance, in [8, 16, 14]. A
generalization to mixed orders of smoothness was presented in [8] by studying ideals generated by
mixed power of linear forms in two variables. The upper bound provided in [14] improved upon the
one from [23]; an alternate proof of the results from [1] was also given. Please see [17, 18] for an
introduction to the usage of homology and graded algebras in the study of splines.

All existing results, including the ones discussed above, only consider uniform degree splines – for
a fixed m ∈ Z≥0, a spline’s restriction to a triangular face is allowed to be any arbitrary polynomial of
total degree ≤ m. In this paper, we relax this restriction and consider the case of non-uniform degree
splines. The phrase “non-uniform degrees” refers to the flexibility of choosing polynomial degrees in
a non-uniform manner on the triangles of T . Let us briefly pin down the notion of such splines; the
notation will be rigorously introduce in Section 2. For a triangulation T of a planar domain Ω ⊂ R2,

let T2 and
◦
T1 denote the sets of triangles and interior edges of T , respectively. Denoting the vector

space of bivariate polynomials of total degree ≤ m with Pm, the space of non-uniform degree splines
on T is defined as

S(T ) =

{
Ω

f−→ R : ∀σ ∈ T2 f |σ ∈ Pmσ , mσ ∈ Z≥0 , and

∀τ ∈
◦
T1 f is Cr(τ) smooth across τ , r(τ) ∈ Z≥0

}
.

In general, the above spline space will allow for local polynomial degree adaptivity. For the special
choice of mσ = m ∈ Z≥0 for all σ ∈ T2, the above space reduces to the uniform degree spline spaces
usually studied [3, 21, 14].

The above notion of splines incorporates polynomial degree adaptivity and is complementary to
the well-known idea of mesh-size adaptive (or locally refinable) splines. The latter idea has been the
focus of many works and, using tools of homological algebra, has been recently analyzed in [19]. The
setting of polynomial degree adaptivity, on the other hand, has only been studied thus far in the
univariate setting [26, 13, 28] and the tensor-product multivariate setting [28]. It is intuitively clear
that non-uniform degree splines combined with local mesh refinements can be tremendously powerful
in the contexts of both geometric modeling and isogeometric analysis. The resulting flexibility would
particularly allow design of complex shapes with fewer control points, i.e., cleaner and simpler designs;
while for isogeometric analysis the same would lead to more efficient analysis. Figure 1 presents
examples of intended applications of such splines.
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Therefore, in this paper, we embark upon the study of non-uniform degree spline spaces on tri-
angulations and use tools from homological algebra for computing (or estimating) their dimension.
Dimension formulas for univariate (and tensor product) non-uniform degree spline spaces can be de-
rived from classical arguments. However, dimension formulas in the multivariate setting do not follow
from any direct generalization of the univariate results. We therefore approach the problem in its own
right. Several assumptions underlying the frameworks presented in [8, 14] do not hold in this setting,
and the corresponding tools need to be reformulated and generalized to account for polynomial degree
adaptivity. We do so and use them to derive combinatorial upper and lower bounds on the spline
space dimension. Furthermore, we show that, in sufficiently high degree — i.e., when mσ � 0 for
all σ ∈ T2 — the dimension of the spline space can be determined exactly. In the special case of a
constant map m, the lower and upper bounds are equal to those provided by [14]. The following is
an overview of the paper.

In Section 2, preliminary concepts regarding planar triangulations are introduced and spline spaces
of non-uniform degrees and mixed smoothness on a triangulation T are defined. Section 2.2 homoge-
nizes the problem by embedding T in R3 and forming its cone with the vertex at the origin. Doing so
allows us to equate the dimension of the spline space to the dimension of a graded piece of a particular
homology module in a short exact sequence of chain complexes, and Section 3 elaborates upon the
reasoning. Combinatorial formulas for vector spaces that will feature in the final dimension formula
are presented in Section 4; in particular, more general forms of the results from [8] are presented.
Sections 5 and 6 analyze several components of the short exact sequence introduced in Section 3.
Section 7 collects the main results of our paper. Lower and upper bounds on the spline space dimen-
sion are provided, and it is shown that for sufficiently high polynomial degrees the dimension can be
determined exactly. Several examples are presented in Section 8 before concluding the paper.

Macaulay2 [10], written by Mike Stillman and Dan Grayson, includes a package called Alge-
braicSplines written by Michael DiPasquale. Given a simplicial complex as input, this package can
compute the dimension of a polynomial spline space of uniform degree and uniform smoothness on
the complex. We have augmented this package’s functionality in this particular context, enabling it
to compute the spline space dimension in the presence of non-uniform degrees and mixed orders of
smoothness. All examples presented in Section 8 have been verified using this modified package, called
SimplicialMDSplines (“MD” stands for mixed degree), and the Macaulay2 scripts used for the same
can be downloaded from the first author’s website.

2. Splines on planar triangulations

In this section we present the required notation for triangulations T and polynomial spline spaces.
We will proceed in the setting of non-uniform degree splines of mixed smoothness.

Given Ω ⊂ R2, denote with T its triangulation, a 2-dimensional simplicial complex. The faces,
edges and vertices of the triangulation are collected in sets T2, T1 and T0, respectively. Edges of T are

called interior edges if they intersect
◦
Ω and boundary edges otherwise. The set of interior edges will

be denoted by
◦
T1. Similarly, if a vertex is in

◦
Ω it will be called an interior vertex and a boundary

vertex otherwise. The set of interior vertices will be denoted by
◦
T0.

We will assign the faces, edges and vertices of T consistent orientations and equivalently call them
2-, 1-, and 0-cells, respectively. The link of � ∈ T1 ∪ T0 is defined as the set

lk(�) := {� ∈ T1 ∪ T0 : � ∪ � is an i-cell in T } ,

where �∪� is defined to be the simplex formed by the vertices in � and �. For example, if T1 3 τ = γγ′,
then γ′ ∈ lk(γ). Similarly, if a face σ has corner vertices γ, γ′, γ′′ and τ = γ′γ′′, then τ ∈ lk(γ). Finally,
an i-dimensional simplicial complex will be called strongly connected if for any two i-cells �,�′, there
is a sequence of i-cells � = �1, · · · ,�j = �′ such that for each k < j, �k ∩�k+1 is an (i− 1)-cell of
T .

Assumption 2.1. The domain Ω is simply connected. Furthermore, T and links of all 0- and 1-cells
of T are strongly connected complexes.

Remark 2.2. By convention, each Assumption introduced will be in effect for the entirety of the text
following it.

3



2.1. Smooth polynomial splines

We will now define the space of smooth polynomial splines on the planar triangulations introduced
above. We start by defining polynomial degree deficits on the faces of the triangulation and orders of
smoothness across its edges.

Definition 2.3 (Degree deficit distribution). A degree deficit distribution on T is a map

∆m : T2 → Z≥0 ,

σ 7→ ∆mσ ,

such that ∃σ ∈ T2, ∆mσ = 0. The face deficits induce deficits on edges and vertices and these are
defined as below,

∆mτ := min
τ⊂∂σ

∆mσ , ∆mγ := min
γ∈∂σ

∆mσ .

The map ∆m will help specify the maximum total degree of polynomials on a face σ ∈ T2. Let us
first denote with ∆m the largest degree deficit specified by ∆m,

∆m := max
σ∈T2

∆mσ .

Then, given m ∈ Z≥0, the polynomial degree associated to σ will be denoted as mσ and is defined as
follows, where we have used m := m−∆m,

m ≤ mσ := m−∆m(σ) ≤ m . (2.1)

Denote with R := R[s, t] the polynomial ring with coefficients in R. We define Rm ⊂ R as the
R-linear vector space of polynomials of total degree exactly equal to m spanned by the monomials
sitj , i + j = m, i, j ∈ Z≥0. If m is negative, then Rm := 0. To any σ ∈ T2, we will associate the
vector space Rσ := ⊕mσm=0Rm. This induces an association of edges τ ∈ T1 and vertices γ ∈ T0 with
the spaces Rτ := ⊕mτm=0Rm and Rγ := ⊕mγm=0Rm, respectively, where mτ and mγ are given by

mτ := max
τ⊂∂σ

mσ = m−∆mτ , mγ := max
γ∈∂σ

mσ = m−∆mγ .

Definition 2.4 (Smoothness distribution). A smoothness distribution on T is a map

r :
◦
T1 → Z≥0 ,

τ 7→ r(τ) .

The map r will help us define the smoothness across all interior edges, i.e., for τ ∈
◦
T1, splines will

be required to be at least Cr(τ) smooth across τ .

Definition 2.5 (Spline space on T ). Given triangulation T , degree deficit and smoothness distribu-
tions ∆m and r, respectively, and m ∈ Z≥0, we define the spline space Sr∆m,m(T ) as

Sr∆m,m ≡ Sr∆m,m(T ) :=

{
f : ∀σ ∈ T2 f |σ ∈ Rσ ,

∀τ ∈
◦
T1 f is Cr(τ) across τ

}
.

We will use the following algebraic characterization of the smoothness of a piecewise polynomial
function; its proof can be found in [4], for instance.

Lemma 2.6. Let σ and σ′ be two d-dimensional polyhedra in Rd such their intersection σ ∩ σ′ is
a (d − 1)-dimensional polyhedron τ . A piecewise polynomial function equaling p on σ and p′ on σ′,
p, p′ ∈ R[x1, . . . , xd], is at least r times continuously differentiable across τ if and only if

p− p′ ∈
(
lr+1

)
,

where
(
lr+1

)
is the ideal generated by lr+1 and l is the linear polynomial vanishing on τ .
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2.2. Homogenized problem

As in [3, 8, 14], we approach the problem of finding the dimension of Sr∆m,m by homogenizing

the problem. First, we embed the triangulation T in the hyperplane {(s, t, w)|w = 1} ⊂ R3; let T̂
denote the cone of the embedded triangulation formed with the vertex at the origin. The sets T̂i
are obtained by forming cones of i-cells with the vertex at the origin, i = 0, 1, 2. We denote with
S := R[w] = R[s, t, w] the extension of ring R by the homogenizing variable w. The associated vector
space of homogeneous polynomials of total degree exactly m is denoted as Sm (∼= R≤m).

Definition 2.7 (Module of splines on T̂ ). We define Cr(T̂ ) as

Cr(T̂ ) :=

{
f : ∀σ

∧
∈ T̂2 f |σ

∧ ∈ S ,

∀τ
∧
∈
◦

T̂1 f is Cr(τ) across τ
∧
}
.

Let p = p(s, t) ∈ R be of degree m. Its homogenization p
∧
∈ S is defined as

p
∧

:= wmp(s/w, t/w) .

Similarly, its homogenization in degree m′ ≥ m is defined as wm
′−mp

∧
. Conversely, for p ∈ S, we define

its dehomogenized counterpart p
∨
∈ R as

p
∨
≡ p(1) := p(s, t, 1) .

The next result presents useful properties concerning (de)homogenization and proofs can be found in
[4], for instance.

Proposition 2.8. Consider p1, p2 ∈ R and the principal ideal J =
(
lr+1

)
where l is a linear polynomial

in R.

(a) p1p2

∧
= p
∧

1p
∧

2;

(b) p
∧∨

1 = p;

(c) J
∧

:=
(
f
∧

: f ∈ J
)

=
(
l
∧r+1)

.

Let lτ ∈ S denote the homogenization (in degree 1) of the linear polynomial that vanishes on τ ,

and denote the ideal generated by l
r(τ)+1
τ with Jr(τ) :=

(
l
r(τ)+1
τ

)
⊂ S. The following effectively

restates Lemma 2.6 albeit using notation of the homogenized setup.

Lemma 2.9. A function f lies in Cr(T̂ ) if and only if, for every pair of faces σ and σ′ that share a
common edge τ ,

f |σ
∧− f |σ

∧′ ∈ Jr(τ) .

Definition 2.10 (Restricted spline module on T̂ ). We define Sr∆m(T̂ ) ⊆ Cr(T̂ ) as

Sr∆m(T̂ ) :=

{
f : ∀σ

∧
∈ T̂2 f |σ

∧ ∈
(
w∆mσ

)
,

∀τ
∧
∈
◦

T̂1 f is Cr(τ) across τ
∧
}
.

It was shown in [4] that Cr(T̂ ) is a finitely generated, torsion free S-module and forms a graded
algebra. The same can be said for Sr∆m(T̂ ), and the following results make the reasoning explicit.

Proposition 2.11. Sr∆m(T̂ ) is a finitely generated, torsion free S-module.

Proof. For arbitrary f, f ′ ∈ Sr∆m(T̂ ) and p ∈ S, we have f + f ′ ∈ Sr∆m(T̂ ) and pf ∈ Sr∆m(T̂ ). Since

S is a Noetherian integral domain, Sr∆m(T̂ ) is finitely generated as it is a submodule of the finitely

generated S-module Cr(T̂ ), and it is torsion free as 0 is its only associated prime. �
5



Proposition 2.12. Sr∆m(T̂ ) is a graded R-algebra.

Proof. Consider an arbitrary f ∈ Sr∆m(T̂ ). Let fm denote the homogeneous component of f of degree
m. For two faces σ and σ′ that share an edge τ , from Lemma 2.9 f |σ

∧ − f |σ
∧′ is a member of a

homogeneous ideal and, therefore, so is its homogeneous component of degree m, fm|σ
∧ − fm|σ

∧′ [5].

This implies that fm ∈ Sr∆m(T̂ ), making Sr∆m(T̂ ) a graded algebra. �

As in [3, 4], splines in Sr∆m(T̂ ) of degree exactly m can be equivalently understood as the splines
in Sr∆m,m that have been homogenized (in degree m), and the following R-vector space isomorphism
holds.

Theorem 2.13.

Sr∆m(T̂ )m
∼= Sr∆m,m .

Proof. We approach the proof as in [4] and build an isomorphism between Sr∆m(T̂ )m and Sr∆m,m. In
fact, this map is simply the R-linear dehomogenization map

∨ : Sr∆m(T̂ )m → Sr∆m,m ,

f 7→ f
∨

= s(1) .

We will first show that the map is well defined and, thereafter, that it is a bijection. In the following,
we assume that σ and σ′ are any two faces that share an edge τ .

If f ∈ Sr∆m(T̂ )m, then f |σ
∧ − f |σ

∧′ lies in Jr(τ). Then, f |σ
∧(1) − f |σ

∧′(1) = (f |σ
∧ − f |σ

∧′)(1) lies in

the ideal generated by lτ (1)r(τ)+1. Therefore, f
∨

∈ Sr∆m,m and the map is well defined.

To show that the map is an injection, observe that if f
∨

≡ 0, then f |σ
∧(1) ≡ 0 for all faces σ. This

implies that f |σ
∧ is a multiple of (w− 1) for all σ. Since f is a homogeneous spline, this is not possible

and we must have f ≡ 0.

Next, let f ∈ Sr∆m,m and denote with f
∧

its homogenization in degree m. Since f |σ has degree

at most mσ, it is clear that f
∧

|σ
∧ ∈

(
w∆m(σ)

)
∩ Sm. Moreover, by Lemma 2.6 and Proposition 2.8,

f
∧

|σ
∧ − f

∧

|σ
∧′ lies in Jr(τ). From Lemma 2.9, this implies that f

∧

is a member of Sr∆m(T̂ )m. Since

f
∧

(1) = f , the dehomogenization map is a surjection between the spaces. �

Theorem 2.13 shows that to analyze the dimension of Sr∆m,m, we can instead focus on the mth

graded piece of Sr∆m(T̂ ), i.e., Sr∆m(T̂ )m, and we proceed in this direction.

3. Topological chain complexes

In this section we will describe the tools from homology that we will use for computing the
dimensions of graded pieces of Sr∆m(T̂ ). For � ∈ T2 ∪ T1 ∪ T0, define S� :=

(
w∆m�

)
. We also define

Jτ := Jr(τ) ∩ Sτ , τ ∈
◦
T1 and use it to define Jγ :=

∑
γ∈∂τ Jτ , γ ∈

◦
T0. The mth graded pieces of the

above will be denoted in the usual manner as S�,m and J�,m.

3.1. Definitions

In the following, faces σ, edges τ , and vertices γ will generate S-modules with the indexed gen-
erators denoted, respectively, by [σ], [τ] and [γ]. We will assume that all oriented 2-cells have been
assigned a counter-clockwise orientation. For τ ∈ T1 with end points γ, γ′ ∈ T0, the associated gener-
ator will be denoted as [τ] = [γγ′], with [γ′γ] = −[γγ′] defining the oppositely oriented edge. In the
following sections we will only be interested in homology relative to ∂Ω. Therefore, we will assume
that [τ] = 0 and [γ] = 0 when τ ⊂ ∂Ω and γ ∈ ∂Ω, respectively.

Consider the orientation function, εθ,φ ≡ ε([θ], [φ]), that takes as inputs one n-dimensional cell [θ],
and one (n− 1)-dimensional cell, [φ], and returns

• 0 if θ ∩ φ = ∅,

• −1 if θ ∩ φ = φ and the orientation endowed by [θ] upon its boundary is incompatible with
orientation of [φ], and,
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• +1 if θ ∩ φ = φ and the orientation endowed by [θ] upon its boundary is compatible with
orientation of [φ].

We will consider the usual boundary maps defined as

∂([σ]) =
∑
τ∈
◦
T1

εσ,τ [τ] , ∂([τ]) =
∑
γ∈
◦
T0

ετ,γ [γ] , ∂([γ]) = 0 .

3.2. Topological complexes

Consider an element p =
∑
σ[σ]pσ of the S-module ⊕σ∈T2 [σ]Sσ . We can express its image under

the action of ∂ as

∂

(∑
σ∈T2

[σ]pσ

)
=
∑
τ∈
◦
T1

[τ]

(∑
σ∈T2

εσ,τpσ

)
.

It is clear that
∑
σ εσ,τpσ ∈ Sτ . Since p also needs to be in smoothness class Cr, we require

∀τ ∈
◦
T1 ,

∑
σ∈T2

εσ,τpσ ∈ Jτ .

Then, Sr∆m(T̂ ) contains all splines s such that their polynomial pieces satisfy the above requirement,
with pσ = s|σ

∧. In other words,

Sr∆m(T̂ ) = ker
(
∂
)
,

where ∂ is the map

∂ : ⊕
σ∈T2

[σ]Sσ → ⊕
τ∈
◦
T1

[τ]Sτ/Jτ .

The above map is obtained by composing ∂ with the natural quotient map. In light of the above
reasoning, we consider the following short exact sequence of chain complexes of S-modules as the
object of our analysis, with the top homology of the complex Q corresponding to Sr∆m(T̂ ).

0 0

I : 0
⊕
τ∈
◦
T1

[τ]Jτ
⊕
γ∈
◦
T0

[γ]Jγ 0

C :
⊕
σ∈T2

[σ]Sσ
⊕
τ∈
◦
T1

[τ]Sτ
⊕
γ∈
◦
T0

[γ]Sγ 0

Q :
⊕
σ∈T2

[σ]Sσ
⊕
τ∈
◦
T1

[τ]Sτ/Jτ
⊕
γ∈
◦
T0

[γ]Sγ/Jγ 0

0 0

(3.1)

Considering only the mth graded pieces of the S-modules above would yield a short exact sequence
of chain complexes of R-vector spaces. In particular, from Theorem 2.13, Sr∆m,m is isomorphic to the
top homology of Qm,

Sr∆m,m
∼= Sr∆m(T̂ )m = ker

(
∂
)
m

= H2(Q)m . (3.2)
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3.3. Summary of approach

From Equation (3.2), the dimension of Sr∆m,m can be computed using the Euler characteristic of
Q,

χ (Q)m =
∑
σ∈T2

dimR Sσ,m −
∑
τ∈
◦
T1

dimR Sτ,m/Jτ,m +
∑
γ∈
◦
T0

dimR Sγ,m/Jγ,m ,

= dimRH2(Q)m − dimRH1(Q)m + dimRH0(Q)m .

(3.3)

Therefore, our objective is the computation (or estimation) of dimRH1(Q)m − dimRH0(Q)m. Using
the fact that the vertical columns in Equation (3.1) are short exact sequences, we obtain the long
exact sequence

0→ H2(C)→ H2(Q)→ H1(I)→ H1(C)→ H1(Q)→ H0(I)→ H0(C)→ H0(Q)→ 0 . (3.4)

Assumption 3.1. The mesh T is such that H1(C)m = 0.

Roughly, the above assumption rules out those ∆m that imply polynomial degree adaptivity
patterns that contain “holes” or are “ring-like”; cf. Proposition 5.4 for the precise implication of this
assumption. Then, by exactness of the sequence in Equation (3.4), we obtain

dimRH1(Q)m − dimRH0(Q)m = dimRH0(I)m − dimRH0(C)m .

Thus, we obtain the following result from Theorem 2.13 from Equations (3.2) and (3.3).

Theorem 3.2.

dimR Sr∆m,m = χ (Q)m + dimRH0(I)m − dimRH0(C)m .

An alternate expression for the dimension of Sr∆m,m can be obtained by using the first part of the
long exact sequence from Equation (3.4) and the Euler characteristic of I,

χ (I)m = −
∑
τ∈
◦
T1

dimR Jτ,m +
∑
γ∈
◦
T0

dimR Jγ,m ,

= −dimRH1(I)m + dimRH0(I)m .

Theorem 3.3.

dimR Sr∆m,m = dimRH2(C)m + dimRH0(I)m − χ (I)m .

4. Dimensions of relevant vector spaces

Before progressing to the analysis of the ingredients in Theorems 3.2 and 3.3, we collect combina-
torial formulas for dimensions of relevant vector spaces that appear in the previous section. The first
result follows directly from the definitions and is presented below.

Proposition 4.1.

dimR Sσ,m =

(
mσ + 2

2

)
,

dimR Sτ,m/Jτ,m =

(
mτ + 2

2

)
−
(
mτ − r(τ) + 1

2

)
.

Only a characterization of graded pieces of the ideal Jγ remains. This is an ideal generated by
mixed powers of homogeneous linear forms. We will use results proved in [8] (Lemmas 4.2—4.4 below)
for treatment of these, albeit in a slightly more general form; see Lemma 4.5 below. Let us first set
up the problem and present some preliminary results that help with the final solution.

Let A := R[x1, x2], and let h1, . . . , hk ∈ A be k pairwise linearly independent homogeneous linear
forms. Denote with c := (c1, . . . , ck) ∈ Zk>0 an exponent vector, c1 ≤ · · · ≤ ck. If, for all 2 ≤ i ≤ k−1,

ci+1 ≤
∑i
j=1 cj − i
i− 1

, (4.1)

then c will be called a minimal exponent vector. This is because, as stated in the next result, this
means that the linear forms h1, . . . , hk form a minimal generating set for the ideal (hc11 , . . . , h

ck
k ) ⊆ A.
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Lemma 4.2 (Geramita and Schenck [8]). For 2 ≤ i ≤ k − 1,

h
ci+1

i+1 /∈ (hc11 , . . . , h
ci
i )⇔ (c1, . . . , ci+1) is minimal .

Lemma 4.3 (Geramita and Schenck [8]). Let c be a minimal exponent vector and J = (hc11 , . . . , h
ck
k ) ⊆

A. Then the dimension of the vector space Jm is given by

dimR Jm = dimR J ∩Am =

k∑
i=1

dimRA(−ci)m − α dimRA(−Ω − 1)m − β dimRA(−Ω)m ,

where

Ω :=

⌊∑k
i=1 ci − k
k − 1

⌋
+ 1 , α :=

k∑
i=1

ci + (1− k)Ω , β := k − 1− α .

If k = 1, then we define Ω = α = 0.

Consider now B := A[x3] = R[x1, x2, x3], and let h1, . . . , hk ∈ B be k homogeneous linear forms.

Lemma 4.4 (Geramita and Schenck [8]). Let c be a minimal exponent vector and J = (hc11 , . . . , h
ck
k ) ⊆

B. If all hi only involve the variables x1 and x2, the dimension of the vector space Jm is given by

dimR Jm = dimR J ∩Bm =
k∑
i=1

dimRB(−ci)m − α dimRB(−Ω − 1)m − β dimRB(−Ω)m ,

with Ω,α, β as defined in Lemma 4.3.

Let us now present a more general form of this last result. Assume that c = (c1, . . . , ck) is
now an exponent vector that is not necessarily minimal, but still has non-decreasing entries, and let
(e1, . . . , ek) ∈ Zk≥0 be any vector; define E := {e1, . . . , ek}. Our main object of interest now is the
homogeneous ideal

J = (xe13 h
c1
1 , . . . , x

ek
3 h

ck
k ) ⊆ B ,

where the homogeneous linear forms hi only involve the variables x1 and x2.
Let I := {1, . . . , k}. Given a fixed e ∈ E, let Ie := {i1, . . . , ia(e)}, i1 < · · · < ia(e), be the maximal

subset of I such that ei < e for all i ∈ Ie. Next, recursively define the following ideals in rings A and
B (we allow hi to denote linear forms in both A and B as they only involve variables x1 and x2),

B ⊇ J0 := (hcii : i ∈ I∞) ,

A ⊇ J1 :=
(
hcii : i ∈ Ie

1

for e1 := maxE
)
,

A ⊇ Jj :=
(
hcii : i ∈ Ie

j

for ej := maxE\{e1, . . . , ej−1}
)
, j = 2, . . . , d ,

(4.2)

where we assume that d is the integer such that the set E\{e1, e2, . . . , ed−1, ed} contains exactly one

element denoted ed+1. For any given ej ,
{
hcii : i ∈ Ie

j
}

may not form a minimal generating set for

Jj . However, it can be easily pruned by removing pairwise linear dependencies between the forms hi,
i ∈ Ie

j

and forming a minimal generating set using Lemma 4.2.
Once minimal generating sets have been formed for ideals Jj , dimensions of their mth graded

pieces can be found using Lemma 4.3 for j > 0 and Lemma 4.4 for j = 0. Note that the next result
collapses onto Lemma 4.4 when E = {0}.

Lemma 4.5. With the above setup, the dimension of the vector space Jm is given by

dimR Jm := dimR J ∩Bm = dimR J
0 ∩B(−e1)m +

d∑
l=1

el−1∑
e=el+1

dimR J
l ∩A(−e)m .

9



Proof. We can equivalently write Jm as

Jm =

k∑
i=1

xei3 h
ci
i B(−ci − ei)m .

Since B = A[x3], the claim follows upon using Bm = ⊕mi=0 x
i
3Am−i and grading Jm by powers of

x3. �

Remark 4.6. The above result inherits the generality of Lemmas 4.3 and 4.4 — none of them depend
on the particular linear forms chosen as long as they are pairwise linearly independent.

By definition, Jγ is of the same form as J in Lemma 4.5, and we can therefore use the above
result to compute its dimension. Let Iγ be the index set for edges containing γ and define dγ := #Iγ .
We assume that Iγ =

{
i1, . . . , idγ

}
such that r(τi1) ≤ · · · ≤ r(τidγ ). Define the k-tuple c and ej ,

j = 1, . . . , dγ , as

ej := ∆mτij
, c :=

(
r(τi1) + 1, . . . , r(τidγ ) + 1

)
.

Finally, with E := {e1, · · · , edγ}, define the integers e1, . . . , ed+1 and the ideals J0, . . . , Jd analo-
gously to Equation (4.2) and Lemma 4.5, where the homogeneous linear forms are now chosen to be
lτi1 , . . . , lτidγ

. The dimension of Jγ,m can then be computed to be

dimR Jγ,m = dimR J0 ∩ S(−e1)m +

d∑
l=1

el−1∑
e=el+1

dimR Jl ∩R(−e)m . (4.3)

Example 4.7. Consider a vertex γ where 5 edges τ1, . . . , τ5 meet. Let the homogeneous linear forms
corresponding to the 5 edges in Γ(γ) be l1, . . . , l5 and assume they are pairwise linearly independent.
Let the smoothness requirements imposed on the edges be

r(τ1) = 3 , r(τ2) = 5 , r(τ3) = r(τ4) = r(τ5) = 6 ,

so that c = (4, 6, 7, 7, 7). Let ∆m be such that

e1 = ∆mτ1 = 3 , e2 = e3 = ∆mτ2 = ∆mτ3 = 1 , e4 = e5 = ∆mτ4 = ∆mτ5 = 0 ,

thereby implying that E = {0, 1, 3}. Let us illustrate the computation of the dimension of Jγ,m, where

Jγ =

5∑
i=1

wei lcii S(−ci − ei) .

Using similar notation as in Lemma 4.5 and Equation (4.3), we see that d = 2 and

I∞ = {1, 2, 3, 4, 5} ; e1 = 3 , Ie
1

= {2, 3, 4, 5} ; e2 = 1 , Ie
2

= {4, 5} ; e3 = 0 .

Thus, from Lemma 4.2, the ideals of interest are minimally generated as given below,

S ⊇ J0 =
(
l41, l

6
2, l

7
3, l

7
4

)
, R ⊇ J1 =

(
l62, l

7
3, l

7
4, l

7
5

)
, R ⊇ J2 =

(
l74, l

7
5

)
.

Using Equation (4.3), the dimension of Jγ,m is found to be

dimR Jγ,m = dimR J0 ∩ S(−3)m +

2∑
e=1

dimR J1 ∩R(−e)m + dimR J2 ∩Rm .

Everything on the right can be computed using Lemmas 4.3 and 4.4, and we confirm using Macaulay2
that dimR Jγ,m is correctly computed to be 4, 13, 27 and 42 for m = 7, 8, 9 and 10, respectively.
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i = 0

i = 1

i = 2

T 0

T 1

T 2

Figure 2: An example illustrating the concept of active triangulations introduced in Definition 5.2. The degree
deficit on all triangles in T 2

2 \T 1
2 is 2, while for triangles in T 1

2 \T 0
2 it is equal to 1; the degree deficit

on all triangles in T 0
2 is equal to 0.

5. Homology of C

In this section we collect main results characterizing the homology of the chain complex C. Recall
the notation introduced in Equation (2.1).

Proposition 5.1.

dimRH2(C)m = dimR
⋂
σ∈T2

Sσ,m =

(
m+ 2

2

)
.

Proof. Let p =
∑
σ[σ]pσ, pσ ∈ Sσ,m, be in the kernel of ∂, i.e.,

0 = ∂(p) =
∑
τ∈
◦
T1

[τ]
∑
σ∈T2

εσ,τpσ ⇔ ∀τ ∈
◦
T1 ,

∑
σ∈T2

εσ,τpσ = 0 .

If any σ and σ′ share an edge τ , εσ,τ = −εσ′,τ . Therefore, we must have pσ = pσ′ for every σ and σ′

that share an edge. By Assumption 2.1, all pσ must correspond to the same global polynomial. �

In order to analyze H1(C)m and H0(C)m, we introduce the concept of the active part of the
triangulation T with respect to an integer i; Figure 2 visually introduces this notion. Recall that ∆m
is the largest degree deficit specified by ∆m.

Definition 5.2 (Active triangulation). The active triangulation T i with respect to i ∈ Z≥0, 0 ≤ i ≤
∆m, is defined as:

• T i2 ⊂ T2 such that σ ∈ T i2
def.⇐⇒ i ≥ ∆mσ,

• T i1 ⊂ T1 defined as the set of all edges contained in the union ∪σ∈T i2 ∂σ, and,

• T i0 ⊂ T0 defined as the set of all vertices contained in the union ∪τ∈T i1 ∂τ .

The domain of this active triangulation is defined as the union Ωi = ∪σ∈T i2 σ ⊂ R2.

The symbols for interior edges, vertices etc. are all appended with a superscript of i when talking
about the active triangulation with respect to i. Note that “interior” will always mean interior with
respect to Ω. The above definition has been motivated by the fact that for i, j ∈ Z≥0, i + j = m,
monomial sitjwm−m is in Sσ,m (resp. Sτ,m and Sγ,m) only for σ ∈ T m−m2 (resp. τ ∈ T m−m1 and
γ ∈ T m−m0 ). Of course, for m ≤ m, T m−m = T .

11



Definition 5.3 (Number of relative holes in Ωi). We define πi to be the number of linearly indepen-
dent, non-trivial cycles in Ωi relative to ∂Ωi ∩ ∂Ω,

πi := rank
(
H1(Ωi, ∂Ωi ∩ ∂Ω)

)
.

Proposition 5.4.

dimRH1(C)m =

m∑
m=m+1

(m+ 1)πm−m .

Proof. The entire kernel of ∂ : ⊕
τ∈
◦
T1

[τ]Sτ,m → ⊕
γ∈
◦
T0

[γ]Sγ,m can be generated by (R-linear combinations

of) cm, 0 ≤ m ≤ m, of the form cm = [φm]sitjwm−m, where

• i, j ∈ Z≥0, i+ j = m;

• [φm] =
∑
τ∈
◦
T1

[τ]oτ , oτ ∈ Z, is a relative cycle, i.e., ∂[φm] = 0; and,

• oτ 6= 0⇒ sitjwm−m ∈ Sτ,m.

Then, for fixed i, j, we only need to see how many such cm are linearly independent and not null-
homologous. It is sufficient to check if there exists some dm = (

∑
σ∈T2 [σ]oσ)sitjwm−m such that

∂(dm) = cm, where

• oσ ∈ Z; and,

• oσ 6= 0⇒ sitjwm−m ∈ Sσ,m.

Since oσ 6= 0 ⇒ σ ∈ T m−m2 , it is clear that cm is not nullhomologous in H1(C) iff [φm] is not
nullhomologous in H1(Ωm−m, ∂Ωm−m∩∂Ω). For i+j = m, each such homology class [φm] contributes
to (m+ 1) homology classes in H1(C). The claim follows upon recalling that πi = 0 for i ≥ ∆m from
Assumption 2.1. �

Remark 5.5. Following Proposition 5.4, Assumption 3.1 implies that all πi must be 0 for all 0 ≤ i ≤
∆m. In other words, none of the domains Ωi are allowed to have any holes in homology relative to
∂Ω ∩ ∂Ωi.

Definition 5.6 (Number of relative connected components in Ωi). We define N i to be the number
of connected components in Ωi relative to ∂Ωi ∩ ∂Ω,

N i := rank
(
H0(Ωi, ∂Ωi ∩ ∂Ω)

)
.

Proposition 5.7.

dimRH0(C)m =

m∑
m=m+1

(m+ 1)Nm−m .

Proof. For 0 ≤ i + j ≤ m, all [γ]sitjwm−i−j , γ ∈
◦
T0, sitjwm−i−j ∈ Sγ,m, are in the kernel of ∂. Let

vertex γ0, edges τ1, . . . , τk ∈
◦
T1 and o1, . . . , ok ∈ Z be such that

• ∀l ∈ {1, . . . , k}, sitjwm−i−j ∈ Sτl,m; and,

• [γ] = [γ0] + ∂
(∑k

l=1[τl]ol

)
.

Let i+ j = m. Then, [γ]sitjwm−m is nullhomologous only if (a) γ0 ∈ ∂Ω and (b) γ and γ0 belong to
the same connected component of Ωm−m. Otherwise, [γ0]sitjwm−m would be a generator of H0(C)
corresponding to the particular connected component of Ωm−m that γ0 belongs to. For each sitjwm−m,
the number of such generators is exactly equal to Nm−m. In particular, the number of generators for
a fixed i+ j = m is equal to (m+ 1)Nm−m, and the claim follows. �
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6. Homology of I

In this section we collect results on the characterization and computation of the homology of I.

We start by providing a lower bound on the dimension of ∂

(
⊕
τ∈
◦
T1

[τ]Jτ,m

)
, and we follow the recipe

employed in [14]. For γ ∈
◦
T0, consider the map φ defined as

φ : ⊕
τ∈
◦
T1

[τ]Jτ,m → ⊕
γ∈
◦
T0
⊕
τ∈
◦
T1

[γ|τ ]Sτ,m

[τ] 7→
∑
γ∈τ

ετ,γ [γ|τ ] ,

and the map ψ defined as

ψ : ⊕
γ∈
◦
T0
⊕
τ∈
◦
T1

[γ|τ ]Sτ,m → [γ]Jγ,m

[γ|τ ] 7→

{
[γ] , γ ∈ τ
0 , otherwise

,

where [γ|τ ] is a half-edge element, with [γ|τ ] := 0 when ετ,γ = 0 or when γ ∈ ∂Ω.

Lemma 6.1.

∂ = ψ ◦ φ .

Definition 6.2 (Interior vertex ordering). An injective map ι :
◦
T0 → N is called an ordering of the

interior vertices of the triangulation T . For γ ∈
◦
T0, define Γι(γ) as the set of interior edges connecting

γ to γ′ such that either γ′ ∈ ∂Ω or ι(γ) > ι(γ′). We will abuse the notation by saying γ � γ′ when
ι(γ) > ι(γ′).

We will assume that ι, once chosen, is fixed and will omit it from all notation hereafter. Next,
define J̃γ,m :=

∑
τ∈Γ(γ) Jτ,m, and consider the map

δ : ⊕
γ∈
◦
T0
⊕
τ∈
◦
T1

[γ|τ ]Sτ,m → ⊕
γ∈
◦
T0
⊕
τ∈
◦
T1

[γ|τ ]Sτ,m

[γ|τ ] 7→

{
[γ|τ ] , τ ∈ Γ(γ)

0 , otherwise
.

Define ∂̃ := ψ ◦ δ ◦ φ. By construction,

dimR ⊕
γ∈
◦
T0

[γ]J̃γ,m = dimR ∂̃

(
⊕
τ∈
◦
T1

[τ]Jτ,m

)
≤ dimR ∂

(
⊕
τ∈
◦
T1

[τ]Jτ,m

)
, (6.1)

with each interior edge τ contributing to exactly one J̃γ,m.

Proposition 6.3.

0 ≤ dimRH1(I)m ≤
∑
τ∈
◦
T1

dimR Jτ,m −
∑
γ∈
◦
T0

dimR J̃γ,m .

Proof. Since H1(I) = ker (∂), and ⊕
τ∈
◦
T1

[τ]Jτ ∼= ker (∂)⊕ im (∂), the claim follows from Equation

(6.1). �

Corollary 6.4.

0 ≤ dimRH0(I)m ≤
∑
γ∈
◦
T0

dimR Jγ,m −
∑
γ∈
◦
T0

dimR J̃γ,m .
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Remark 6.5. The dimension of J̃γ,m can be found by following the same set of steps that led to
Equation (4.3) albeit by defining Iγ to be the index set of only those edges that are contained in Γ(γ).

Alternate lower bounds can be derived from the following observation: since the vector spaces of
the complex Im are subspaces of the vector spaces of Cm, if a representative of a homology class in
H0(C)m is a member of ⊕[γ]Jγ,m, then it must correspond to a homology class in H0(I)m as it can
not be in the image of ∂ : ⊕[τ]Jτ,m → ⊕[γ]Jγ,m.

Proposition 6.6. Given m ≥ m+ 1, let each connected component of Ωm−m that does not intersect
the boundary contain a vertex γ such that lmγ w

m−m ∈ Jγ,m for any homogeneous linear form lγ
corresponding to a linear polynomial vanishing on γ. Then

dimRH0(I)m ≥ dimRH0(C)m .

Proof. For some m ≥ m + 1, consider a connected component of Ωm−m that does not intersect the
boundary. Then, there exists a vertex γ in this connected component such that, upon translating γ
to the origin without loss of generality, we can find (m+ 1) homogeneous linear forms lγ ,

lmγ =
∑

i+j=m

aijs
itj ,

such that the coefficient matrix [aij ] is full rank. This implies that we can find representatives in Jγ,m
of each of the (m+ 1) homology classes for degree m used in the proof of Proposition 5.7. �

Corollary 6.7. If the statement of sufficiency in Proposition 6.6 holds, then

dimRH1(I)m ≥
∑
τ∈
◦
T1

dimR Jτ,m −
∑
γ∈
◦
T0

dimR Jγ,m + dimRH0(C)m .

Remark 6.8. Equation (4.3) can be used to verify if the statement of sufficiency in Proposition 6.6
holds. One only needs to check if the dimension of Jγ,m changes after adding lmγ w

m−m to its set of

generators. In particular, let m ≥ m + 1 be the smallest degree for which γ ∈ Ωm−m belongs to a

connected component not intersecting ∂Ω, and let r = max{r(τ) : γ ∈ τ ∈
◦
T m−m1 }. Then, from

Equation (4.1), the statement of sufficiency will always be satisfied for such a γ if m ≥ 2r + 1.

7. Dimension of spline space

Our main results on the dimension of Sr∆m,m are collected here and have been obtained by com-
bining the results from previous sections. In the following sections, we will first use Theorems 3.2 and
3.3 in conjunction with the results in Sections 5 and 6 to provide bounds on the dimension of Sr∆m,m.
Subsequently, we will show that for m� 0 the dimension can be determined exactly.

7.1. Upper and lower bounds

Theorem 7.1.

0 ≤ dimR Sr∆m,m − χ (Q)m +

m∑
m=m+1

(m+ 1)Nm−m ≤
∑
γ∈
◦
T0

(
dimR Jγ,m − dimR J̃γ,m

)
.

Proof. The claim follows from the bounds provided in Corollary 6.4. �

Corollary 7.2. If dimR J̃γ,m = dimR Jγ,m for all γ, then equality holds in Theorem 7.1.

Theorem 7.3. If the statement of sufficiency in Proposition 6.6 holds, then

dimR Sr∆m,m ≥ χ (Q)m .

Proof. The claim follows from Proposition 6.6. �

It can be readily observed that, in the special case of uniform degrees, the upper and lower bounds
on the dimension of Sr0,m coincide with those presented in [14].
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7.2. Dimension formula for m� 0

It can be rigorously shown that the dimension of Sr∆m,m is stable for m � 0, but it requires
an alternate approach than the one summarized in Section 3. Specifically, instead of considering
the complex Q directly, we “break it up” into pieces that explicitly indicate the contributions that
different degree deficits have toward the dimension of Sr∆m,m. Doing so, we can prove the main result
of this section, Theorem 7.4.

Theorem 7.4.

dimR Sr∆m,m = χ (Q)m , m� 0 .

The proof of Theorem 7.4 follows from Lemmas 7.7 and 7.10. We start with a result that will help
detail when parts of H0(I) vanish in sufficiently high degree.

Lemma 7.5. For a triangle σ, let lτ1 , lτ2 , lτ3 be the homogeneous linear polynomials associated to its
edges τ1, τ2, τ3, respectively, where τ1 and τ2 meet at (0, 0). Additionally, let p ∈ S be a homogeneous
polynomial that does not vanish at (0, 0, 1), and consider a graded S-module M. Then, M vanishes in
sufficiently high degree if either of the following two conditions hold:

(a) some power of each of l1, l2 and p annihilate M,

(b) some power of each of l1, l2l3 and w annihilate M.

Proof. For either part of the claim, let K be the ideal generated by the three polynomials given; it
can be verified that

√
K = (s, t, w). Since K must contain a power of its radical (S is Noetherian),

(s, t, w)K ⊂ K, K ∈ Z≥0, and thus M vanishes in sufficiently high degree. �

As mentioned earlier, let us now consider an alternate approach toward characterization of the
homology of Q. To do so, we first need some additional notation. First, we define the (shifted) ideal
L[i](−j) for 0 ≤ i ≤ ∆m+ 1 as below,

L[i](−j) :=

{
0 , i = ∆m+ 1

wiS(−i− j) , 0 ≤ i ≤ ∆m
.

Next, for � ∈ T2 ∪ T1 ∪ T0 we define

S�,‖i‖ := S�/(S� ∩ L[i]) , J�,‖i‖ := J� · S�,‖i‖ ,

S�,[i] := S�,‖i‖ ∩ L[i−1] , J�,[i] := J� · S�,[i] , (7.1)

where, as usual, Jσ := 0 for all σ ∈ T2. We then define the complex Q[i] as

⊕
σ∈T2

[σ]Sσ,[i] ⊕
τ∈
◦
T1

[τ]Sτ,[i]/Jτ,[i] ⊕
γ∈
◦
T0

[γ]Sγ,[i]/Jγ,[i] 0 ,

and the complex Q‖i‖ as

⊕
σ∈T2

[σ]Sσ,‖i‖ ⊕
τ∈
◦
T1

[τ]Sτ,‖i‖/Jτ,‖i‖ ⊕
γ∈
◦
T0

[γ]Sγ,‖i‖/Jγ,‖i‖ 0

The following result follows directly from these definitions.

Lemma 7.6. The following is a short exact sequence of complexes,

0 Q[i] Q‖i‖ Q‖i−1‖ 0 .

Notice that Q‖∆m+1‖ = Q. Furthermore, it can be readily checked that Q‖0‖ is identically zero.
Therefore, from Lemma 7.6, Q can be studied by studying the complexes Q[i], i = 1, 2, . . . ,∆m + 1.
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We do so by analyzing the following short exact sequence of chain complexes for each 1 ≤ i ≤ ∆m+1.

0 0

I[i] : 0 ⊕
τ∈
◦
T1

[τ]Jτ,[i] ⊕
γ∈
◦
T0

[γ]Jγ,[i] 0

C[i] : ⊕
σ∈T2

[σ]Sσ,[i] ⊕
τ∈
◦
T1

[τ]Sτ,[i] ⊕
γ∈
◦
T0

[γ]Sγ,[i] 0

Q[i] : ⊕
σ∈T2

[σ]Sσ,[i] ⊕
τ∈
◦
T1

[τ]Sτ,[i]/Jτ,[i] ⊕
γ∈
◦
T0

[γ]Sγ,[i]/Jγ,[i] 0

0 0

(7.2)

Note that the morphisms above are obtained in the obvious way by composing the (restrictions of) ∂
with quotient maps. Also note that, owing to quotients by L[i] in Equation (7.1), some of the faces,
edges and vertices will not contribute to the complexes in Equation (7.2). In fact, it can be readily
verified that only the active triangulation T i−1 will participate in the above.

Now, the short exact sequence of complexes in Lemma 7.6 implies the long exact sequence

0 H2

(
Q[i]

)
H2

(
Q‖i‖

)
H2

(
Q‖i−1‖

)
H1

(
Q[i]

)
· · · H0

(
Q‖i−1‖

)
0

∂̂i (7.3)

with ∂̂1 ≡ 0, and

χ (Q)m = χ
(
Q‖∆m+1‖

)
m

=

∆m+1∑
i=1

χ
(
Q[i]

)
m
.

Furthermore, it can be easily shown (in manners completely analogous to the proofs of Propositions
5.4 and 5.7) that Assumption 3.1 implies that for all 1 ≤ i ≤ ∆m+ 1,

H1(C[i])m = 0 , H0(C[i])m = (m− i+ 2)N i−1. (7.4)

Then, all of the above, in conjunction with the long exact sequence of homology implied by Equation
(7.2), directly yield the following result.

Lemma 7.7.

dimR Sr∆m,m − χ (Q)m =

∆m+1∑
i=1

dimRH0

(
I[i]

)
m
− dimRH0

(
C[i]
)
m
− dimR im ∂̂i,m .

Proof. The proof follows from the above developments since the exact sequence from Lemma 7.6
implies that

dimR Sr∆m,m =

∆m+1∑
i=1

dimRH2

(
Q[i]

)
m
− dimR im ∂̂i,m .

�

Therefore, to show Theorem 7.4, we only need to prove that the right hand side in Lemma 7.7
vanishes for m � 0. This is done by showing that for m � 0 the map from H0

(
I[i]

)
m

to H0

(
C[i]
)
m

in the long exact sequence of homology implied by Equation (7.2) is an isomorphism. This will, in
particular imply that both H1

(
Q[i]

)
m

and H0

(
Q[i]

)
m

vanish (from Equation (7.2)) and, therefore,

im ∂̂i,m vanishes (from Equation (7.3)). First, we constructively demonstrate the existence of certain
vertex orderings; Lemma 7.8 is a specialized form of [21, Lemma 3.3].
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Lemma 7.8 (Specialized form of Lemma 3.3 from Schenck and Stillman [21]). Let Ω′ ⊂ R2 be a
simply connected region and consider its triangulation T ′. Then, there exists a total order on T ′0 so
that for a vertex γ there exist k vertices γ1, . . . , γk ∈ lk(γ) such that γj ≺ γ, j = 1, . . . , k, and all
edges γjγ have different slopes. The integer k depends on the position of γ as below:

(a) k ≥ 2 for all γ ∈
◦
Ω′;

(b) k ≥ 1 for all but one γ ∈ ∂Ω′.

Corollary 7.9.

(a) There exists a total order on T0 = T ∆m
0 such that, for each γ ∈

◦
T ∆m

0 , there exist γ1, γ2 ∈ lk(γ)
such that γ1, γ2 ≺ γ and the edges, γγ1 and γγ2 have different slopes.

(b) For 0 ≤ i ≤ ∆m− 1, denote the jth connected component of Ωi with Ωij.

• If Ωij intersects ∂Ω, there exists a total order on T i0,j such that, for all γ ∈
◦
T i0,j, there is an

edge τ = γγ1, γ1 ≺ γ.

• If Ωij does not intersect ∂Ω, there exists a total order on T i0,j such that, for all but one

γ ∈
◦
T i0,j, there exists an edge τ = γγ1, γ1 ≺ γ.

Proof. Part (a) and the second bullet in part (b) follow from Lemma 7.8, so we only need to prove
the first bullet. Denote with Di

j(γ, ∂) the smallest number of edges in T i1,j that connect γ in the

interior of Ωij to a vertex on ∂Ω. If Di
j(γ, ∂) = k > 0 then there exists at least one adjacent vertex

γ′ ∈ T i0,j such that Di
j(γ
′, ∂) = k − 1 and γγ′ is an edge in T i1,j . Order the vertices in T i0,j such

that if Di
j(γ, ∂) > Di

j(γ
′, ∂) then γ � γ′. For a fixed k, the ordering of the vertices in the set

{γ : Di
j(γ, ∂) = k} relative to each other does not affect the claim. �

We will now prove the claimed isomorphism H0(I[i])m ∼= H0(C[i])m for m � 0 by generalizing
the results presented in [21] to the present setting. We will use Lemma 7.5 and Corollary 7.9 for the
same. Most importantly, this will imply that unlike [21] the 0-homology of I[i] will, in general, not
have finite length for 1 ≤ i ≤ ∆m.

Lemma 7.10.

H0(I[i])m ∼= H0(C[i])m , m� 0 .

Proof. For i = ∆m+ 1, we are in the usual uniform degree setting in Equation (7.2). In this case, it
was shown in [21, Lemma 3.2] that H0(I[i]) vanishes in sufficiently high degree. Additionally, we know
from Equation (7.4) that H0(C[i])m = 0. Therefore, in the following we will assume 1 ≤ i ≤ ∆m.

As mentioned in the remarks immediately following Equation (7.1), only the cells contained in
active triangulation T i−1 will contribute to Equation (7.2). We will prove the claim by showing that,
for m � 0, H0(I[i])m surjects onto H0(C[i])m and that dimRH0(I[i])m is bounded from above by

(m− i+ 2)N i−1 = dimRH0(C[i])m. We will use Equation (?) below,

m� 0⇒ dimR
(
Jγ,[i]

)
m

= dimR
(
L[i−1]/L[i]

)
m

= m− i+ 2 . (?)

Upper bound. It is sufficient to analyze a particular connected component of Ωi−1; let us denote it
with Ωi−1

j . Consider vertex γ ∈ Ωi−1
j and an arbitrary f ∈ Jγ,[i]; [γ]f is an element of H0(I[i]). If

γ ∈ ∂Ω then, by previously defined convention, [γ] = 0. Order the vertices of Ωi−1
j as in Corollary

7.9(b).
Let γ belong to a face σ ⊂ Ωi−1

j with edges τ1 = γγ1, τ2 = γγ2 and τ3 = γ2γ1, and assume that
γ � γ1. Then, in H0(I[i]), and with r := max{r(τ2), r(τ3)}, we have

[γ]flr(τ1)+1
τ1 = [γ1]flr(τ1)+1

τ1 , [γ]flr(τ2)+1
τ2 = [γ2]flr(τ2)+1

τ2 , [γ1]flr(τ3)+1
τ3 = [γ2]flr(τ3)+1

τ3

[γ]flr+1
τ2 lr+1

τ3 = [γ1]flr+1
τ2 lr+1

τ3 ,

where the fourth relation has been derived from the second and the third. Therefore, if powers of lτ1
and lτ2 lτ3 annihilate [γ1]Jγ1,[i] in H0(I[i]), they will also annihilate [γ]Jγ,[i]. Furthermore, by definition,
any multiple of w will annihilate [γ]Jγ,[i]. Now, from Corollary 7.9(b), we also know the following:
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γ1

γ2

γ3

γ4

γ5

(a) T (1)

γ1

γ2

γ3

γ4

γ5

(b) T (2)

Figure 3: Two triangulations containing a single interior vertex. Perturbing the interior vertex of the trian-
gulation in (a) yields the triangulation in (b); see Example 8.1.

• If Ωi−1
j ∩ ∂Ω 6= ∅ then such a γ1 exists for all γ ∈

◦
Ωi−1
j .

• If Ωi−1
j ∩ ∂Ω = ∅ then such a γ1 exists for all but one γ ∈

◦
Ωi−1
j = Ωi−1

j .

Using Lemma 7.5(b), the contribution from Ωi−1
j to H0(I[i])m will vanish if, for all γ ∈

◦
Ωi−1
j ,

[γ]Jγ,[i] vanishes in H0(I[i]) in sufficiently high degree. Then, from the above reasoning and Equation
(?), we see that the upper bound for this contribution is n where

n =

{
0 , Ωi−1

j ∩ ∂Ω 6= ∅
m− i+ 2 , Ωi−1

j ∩ ∂Ω = ∅
.

Lower bound. From Equation (?), following the same reasoning as in the proof of Proposition 6.6
and Remark 6.8, H0(I[i])m will contain representatives of all homology classes from H0(C[i])m when
m� 0. This implies that the map from H0(I[i])m to H0(C[i])m in the long exact sequence of homology
implied by Equation (7.2) is a surjection. Combining this with the upper bound, the claim follows. �

8. Examples

In this section we consider examples of non-uniform degree spline spaces on triangulations and
compute bounds on their dimension using Sections 4 and 7. In particular, we present configurations
where the upper and lower bounds coincide and thus equal the exact dimension. All of the following
computations have been verified using Macaulay2.

It is also possible to express the smoothness condition in Lemma 2.6 in terms of relations between
Bernstein–Bézier coefficients [12] and to assemble the relations in a matrix of constraints. Doing
so for the entire triangulation, the null space of the full matrix of constraints can be numerically
computed. The dimension of this null space will equal the dimension of Sr∆m,m. The computed null
space can also be utilized to build non-uniform degree splines on triangulations. We have extended a
Matlab codebase written for uniform degree splines by the authors of [6] for performing the above
steps. Example 8.5 utilizes splines built in this manner. An analogous but more efficient approach
was adopted in [28] for building univariate non-uniform degree splines by explicitly constructing a
sparse null space of the matrix of constraints without solving any linear systems.

Example 8.1. Consider the triangulations shown in Figure 3; they contain a single interior vertex
γ5. Assume that we are interested in the degree deficit and smoothness distributions

∆m : γ1γ2γ5 = σ1 7→ 1 , γ2γ3γ5 = σ2 7→ 0 , γ3γ4γ5 = σ3 7→ 0 , γ4γ1γ5 = σ4 7→ 1 ,

r : γ1γ5 = τ1 7→ 1 , γ2γ5 = τ2 7→ 1 , γ3γ5 = τ3 7→ 2 , γ4γ5 = τ4 7→ 1 .

Then, Corollary 7.2 applies and we can compute the dimension of the associated spline space exactly
for all m; see the table below.
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γ1 γ2

γ3γ4

γ5

γ6

Figure 4: A mesh T (3) containing two interior vertices but no interior edge connecting them. The dimension
of spline spaces on this triangulation can be computed exactly; see Example 8.2.

γ6

γ7
γ5

γ3

γ4

γ2

γ1

Figure 5: A mesh T (4) containing three interior vertices. In Example 8.3(a), an ordering of the vertices can
be found such that the lower and upper bounds specified by Theorem 7.1 coincide, thus yielding the
exact dimension.

m 2 3 4 5

dimR Sr∆m,m(T (1)) 4 9 17 30

dimR Sr∆m,m(T (2)) 3 7 16 29

Example 8.2. Consider the triangulation T (3) shown in Figure 4 containing two interior vertices that
are not connected to each other. Assume that we are interested in the degree deficit and smoothness
distributions

∆m : γ1γ2γ5 = σ1 7→ 3 , γ1γ5γ4 = σ2 7→ 3 , γ2γ4γ5 = σ3 7→ 2 , γ2γ6γ4 = σ4 7→ 1 ,

γ2γ3γ6 = σ5 7→ 0 , γ6γ3γ4 = σ6 7→ 0 ,

r : γ1γ5 = τ1 7→ 0 , γ2γ5 = τ2 7→ 0 , γ4γ5 = τ3 7→ 0 , γ2γ4 = τ4 7→ 1 ,

γ2γ6 = τ5 7→ 2 , γ4γ6 = τ6 7→ 2 , γ3γ6 = τ7 7→ 3 .

Again, from Corollary 7.2 we can exactly compute the spline space dimension for all degrees.

m 3 4 5 6

dimR Sr∆m,m(T (3)) 2 8 20 38

Example 8.3. Consider the triangulation T (4) shown in Figure 5 and let r(τ) = 1 for all τ ∈
◦
T1.

Let the degree deficit distribution be

∆m(σ) =

{
∆mσ , σ = γ5γ6γ7

∆m′σ , otherwise
.
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γ1 γ2 γ3 γ4 γ5 γ6

γ7 γ8 γ9 γ10 γ11

γ12 γ13 γ14 γ15

γ16 γ17 γ18

γ19 γ20

γ21

γ22

γ23

γ24

γ25

γ26

γ27

γ28

γ29

γ30

γ31

γ32

γ33

γ34

γ35γ36

Figure 6: A uniform triangulation T (5) of a parallelogram-shaped domain. We compute the dimension of the
space of C2 smooth splines on this mesh in Example 8.4.

(a) Let ∆mσ = 1 and ∆m′σ = 0. Then, upon ordering the vertices as γ7 � γ6 � γ5, it can be
verified that Jγ = J̃γ for all γ. Using Corollary 7.2 we can compute the spline space dimension
exactly for all m.

m 2 3 4 5

dimR Sr∆m,m(T (4)) 4 15 34 61

(b) Let ∆mσ = 0 and ∆m′σ = 1. Then, there is no ordering of the vertices for which the upper
and lower bounds coincide in Theorem 7.1. Assuming that we order them as γ7 � γ6 � γ5, the
table below presents the computed upper and lower bounds, as well as the exact spline space
dimension.

m 2 3 4 5 6 7

dimR Sr∆m,m(T (4)) (exact) 3 7 19 39 68 105

dimR Sr∆m,m(T (4)) (estimated) [0, 3] [5, 7] [18, 20] [39, 41] [68, 70] [105, 107]

In the above table, following Remark 6.8, the lower bound has been estimated using Theorem 7.3
except for m = 2. As can be observed, the dimension coincides with the lower bound (= χ (Q)m)
for all m ≥ 5; cf. Theorem 7.4.

Example 8.4. Let us consider the uniform triangulation T (5) shown in Figure 6. Assume that we
are interested in building a spline space such that the degree and smoothness distributions are

∆m : σ 7→ ∆mσ , σ′ 7→ ∆mσ′ ,

r : τ 7→ 2 ,

for all interior edges τ ∈
◦
T1 and such that σ is one of the faces contained in the regions bounded by

either {γ36, γ30, γ27} or {γ6, γ3, γ18}; σ′ is allowed to be any face outside of these two regions. The
dimensions of Sr∆m,m can computed exactly using the interior vertex ordering given below,

(γ7, γ19) � (γ12, γ16) � (γ24, γ13) � (γ8, γ17, γ23, γ25) � (γ9, γ14, γ28, γ29) � (γ10, γ32) ,

where vertices contained inside a given set of parentheses can be ordered in any manner with regards
to each other.
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(a) (mσ ,mσ′ ) = (5, 5) (b) (mσ ,mσ′ ) = (7, 7)

(c) (mσ ,mσ′ ) = (2, 5) (d) (mσ ,mσ′ ) = (2, 7)

Figure 7: Using the spline spaces analyzed in Example 8.4, we approximate the surface shown in Figure 1(b)
using a least squares projection. The approximated surfaces are shown above, and the color schemes
correspond to the absolute value of their pointwise distance from the exact surface.

(∆mσ,∆mσ′ ,m) (0, 0, 5) (0, 0, 7) (3, 0, 5) (5, 0, 7)

dimR Sr∆m,m(T (5)) 187 547 66 192

Example 8.5. For the setup used in Example 8.4, consider the problem of approximating the surface
shown in Figure 1(b). It can be intuited that employing non-uniform degree splines for approximation
of the surface may be more efficient than using uniform degree splines. By building spline spaces
corresponding to all the different degree configurations considered in Example 8.4, we approximate
the surface using a discrete least-squares projection. The results are shown in Figure 7(a,b) for the
uniform degree configurations and 7(c,d) for the non-uniform degree configurations.

9. Conclusions

For the purposes of both geometric modeling and isogeometric analysis, spline spaces allowing
polynomial degree adaptivity will lead to new classes of local refinement. This paper presents first
steps toward the development of a theory underlying spline spaces with such flexibility. Focusing
on the setting of degree adaptive splines on triangulations, we have presented combinatorial upper
and lower bounds on their dimension. These bounds generalize previous approaches [3, 8, 14] that
considered the setting of uniform degree splines.

Several future extensions of the theory are possible. A first direction could focus on the estimation
of dimension for refinement patterns such that H1(C) 6= 0. Another direction of practical and theo-
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retical interest is the case of supersmoothness across vertices as was noted in [18]. From the point of
view of applications, a good set of basis functions (locally supported, non-negative, partition of unity,
well conditioned etc.) needs to be constructed. While it is not known if such basis functions exist
or how to build them, studying spline spaces over locally subdivided triangulations (in the spirit of
Clough-Tocher/Powell-Sabin refinements) may lead to constructions that are sufficiently flexible for
both geometric modeling and isogeometric analysis. The above considerations will form part of future
research endeavors which will focus on formulation of constructive approaches.
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