
ICES REPORT 18-22

November 2018

Multi-degree B-splines: Algorithmic computation and
properties

by

Deepesh Toshniwal, Hendrik Speleers, Rene■ R. Hiemstra, Carla Manni, Thomas J. R. Hughes

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Deepesh Toshniwal, Hendrik Speleers, Rene■ R. Hiemstra, Carla Manni, Thomas J. R. Hughes,
"Multi-degree B-splines: Algorithmic computation and properties," ICES REPORT 18-22, The Institute for
Computational Engineering and Sciences, The University of Texas at Austin, November 2018.

Multi-degree B-splines: Algorithmic computation and properties

Deepesh Toshniwala,∗, Hendrik Speleersb, René R. Hiemstraa, Carla Mannib, Thomas J. R. Hughesa

aInstitute for Computational Engineering and Sciences, University of Texas at Austin, USA
bDepartment of Mathematics, University of Rome Tor Vergata, Italy

Abstract

This paper addresses theoretical considerations behind the algorithmic computation of polynomial
multi-degree spline basis functions as presented in [23]. The approach in [23] breaks from the reliance
on computation of integrals recursively for building B-spline-like basis functions that span a given
multi-degree spline space. The gains in efficiency are indisputable; however, the theoretical robustness
needs to be examined. In this paper, we show that the construction of [23] yields linearly independent
functions with the minimal support property that span the entire multi-degree spline space and form
a convex partition of unity.

Keywords: Non-uniform degrees, Smooth splines, Linear independence, Algorithmic computation

1. Introduction

Polynomial splines are well-established tools in the areas of geometric modeling and computational
engineering analysis. Classically, given p ∈ Z≥0, a univariate spline is built by gluing together finitely
many pieces drawn from Pp, the vector space of polynomials of degree ≤ p, such that the pieces join
with specified orders of smoothness. The vector space of such splines is well-understood and a special
set of basis functions called B(asis)-splines can be built for the same [3, 15, 11]. B-splines can be
evaluated in a numerically stable manner and possess several properties (e.g., non-negativity, local
support, partition of unity) that make them indispensable for the tasks of geometric modeling and
design. On the other hand, B-splines also possess optimal approximation properties and are rapidly
becoming the tool of choice for performing engineering analysis within the framework of isogeometric
analysis [9]. Several multivariate generalizations of univariate B-splines have been formulated (e.g.,
tensor-product B-splines/NURBS [13, 14], T-splines [17, 2], THB-splines [7] and LR-splines [6]).

All spline constructions mentioned above assume a constant polynomial degree (in each parametric
dimension for multivariate splines) and focus only on local mesh-size adaptivity. This precludes local
polynomial-degree adaptive splines and is an inherently restrictive assumption. Indeed, relaxing the
requirement for a spline to have polynomial pieces of the same degree would be immensely powerful.
Such a flexible notion of splines would allow modeling complex geometries with fewer control points,
and the same would lead to more efficient engineering analysis. The introduction of univariate multi-
degree splines in the context of geometric modeling [18] and isogeometric analysis [23] was motivated
by this observation. However, the use of splines consisting of different degrees was already explored
earlier by [12] as an approximation tool.

A univariate multi-degree spline, as the name suggests, is built by gluing together finitely many
polynomial pieces of (possibly) different degrees with some specified orders of smoothness. This
notion clearly generalizes the aforementioned concept of constant degree splines. Furthermore, it can
be shown that there exists a set of basis functions that span the vector space of multi-degree splines
and possess the same properties that make B-splines useful for geometric modeling and engineering
analysis. These basis functions are called multi-degree B-splines or MDB-splines.

Mathematically, MDB-splines can be recursively defined by using integral relations [20, 19]. This
definition’s complexity makes it overly inefficient for practical purposes and several alternative evalu-
ation schemes have been proposed [18, 10, 23, 1]. However, most of these alternatives either restrict

∗Corresponding author
Email addresses: deepesh@ices.utexas.edu (Deepesh Toshniwal), speleers@mat.uniroma2.it (Hendrik

Speleers), rene@ices.utexas.edu (René R. Hiemstra), manni@mat.uniroma2.it (Carla Manni)

the choice of degrees [18] and orders of smoothness [10], or they need to solve several (small) linear
systems [1]. The exception is the approach proposed in [23] — the focus of this paper.

An efficient algorithmic evaluation of MDB-splines was proposed in [23]; a small Matlab toolbox
incorporating the same has been provided by [22]. Representing the smoothness (or continuity)
constraints satisfied by the polynomial pieces of a multi-degree spline in the form of a matrix, [23]
proposed an algorithm to explicitly build its nullspace (i.e., without solving any linear systems). Each
element of the nullspace is a multi-degree spline by construction, and [23] conjectured that the output
of their algorithm is, in fact, exactly the entire set of MDB-splines that span the multi-degree spline
space. The purpose of our paper is to prove this conjecture. A forthcoming paper [8] will focus
on extending the theoretical and algorithmic approach presented herein to the setting of generalized
Tchebycheffian splines.

In Section 2, the concept of multi-degree splines is rigorously defined and the similarities between
the properties of B-splines and MDB-splines is underscored. In particular, Section 2.3 collects proper-
ties of MDB-splines that can be found in published literature. Using these known properties, Section 3
derives some additional properties of MDB-splines. Section 4 starts off by giving an overview of the al-
gorithmic evaluation scheme proposed by [23] and, thereafter, uses the properties derived in Section 3
to conclusively demonstrate the correctness of the proposed algorithm. Specifically, Theorem 4.3 is the
main result of this paper and shows that the multi-degree splines built by the algorithm form a convex
partition of unity, are linearly independent, and span the entire multi-degree spline space. After pre-
senting an example (many more can be found in [23, 22]) and a brief note on efficient implementation,
we conclude the paper in Section 5.

2. Polynomial splines: B-splines and their generalization

In this section we present preliminary concepts about smooth polynomial splines defined on a
partition of an interval, Ω := [a, b] ⊂ R. In particular, we will allow the spline pieces to have different
polynomial degrees, thereby introducing the concept of multi-degree spline spaces. We also present a
set of basis functions for such spaces called multi-degree B-splines (or MDB-splines) and list some of
their properties. Classical B-splines are a special case of MDB-splines.

2.1. Polynomial splines
We start by partitioning the interval Ω into a finite number of points (called breakpoints) and

subintervals (called elements); the space of polynomial splines on Ω will be defined with respect to
this partition. Thereafter, we define degree and smoothness distributions on the partition.

Definition 2.1 (Breakpoints and elements). The m+ 1 strictly increasing real numbers xi, such that
a =: x0 < x1 < · · · < xm := b, will be called breakpoints that partition Ω. The breakpoints define the
intervals [xi−1, xi) for i = 1, . . . ,m, which will be called elements.

Definition 2.2 (Degree distribution). The map p : {1, . . . ,m} 7→ Z≥0 will be called a degree distri-
bution.

Definition 2.3 (Smoothness distribution). The map r : {0, 1, . . . ,m − 1,m} 7→ Z≥−1 such that
r(0) = r(m) = −1 will be called a smoothness distribution.

Using the above notation, we can define a space of polynomial splines on (a subdomain of) Ω. The
non-negative integer pi := p(i) will be used to specify the polynomial degree on the ith element while
the integer ri := r(i) will be used to specify the order of smoothness across the ith breakpoint. Let
Pp be the vector space of polynomials of degree ≤ p.

Definition 2.4 (Multi-degree spline space). Given degree and smoothness distributions, we define a
polynomial spline space on [xi, xj), 0 ≤ i < j ≤ m, as

S(i, j) := Srp(i, j) :=

{
[xi, xj)

f−→ R : f
∣∣
[xk−1,xk)

∈ Ppk , i < k ≤ j , and

Dr
−f(xk) = Dr

+f(xk) , i < k < j , 0 ≤ r ≤ rk
}
.

(1)

The space S := S(0,m) will be called a multi-degree spline space.
2

The spline space S is our main object of study and the spaces S(i, j) will be useful for the same.
Note that all spaces in (1) are defined on a half-open interval. Since the domain of interest, Ω, is a
closed interval, we assume that the extension S to Ω is defined by taking the limit from the left at
the right end point b.

Before proceeding, we place the following mild compatibility assumption on the degree and smooth-
ness distributions; this assumption will be in effect for the rest of the paper.

Assumption 2.5 (Degree-smoothness compatibility). For all 1 ≤ i ≤ m− 1, ri ≤ min{pi, pi+1}.

Given Assumption 2.5, the dimension of S(i, j) can be cleanly determined using classical arguments;
see [5] for a proof, for example. A non-classical proof using the rank-nullity theorem is provided in
Appendix A for the sake of completeness. The following result presents the associated dimension
formula and uses the definitions

θ(i, j) :=

j∑
k=i+1

(pk + 1) , φ(i, j) :=

j−1∑
k=i+1

(rk + 1) , ν(i, j) := θ(i, j)− φ(i, j) . (2)

Lemma 2.6.

dim (S(i, j)) = ν(i, j) .

When considering the space S, we will denote n := ν(0,m). It should be observed that the above
result signifies that all continuity constraints satisfied by S(i, j) are linearly independent and thus
decrease the dimension of a fully discontinuous piecewise-polynomial space as fast as possible.
Remark 2.7. In Assumption 2.5, the choice of ri = min{pi, pi+1} is especially interesting. Assuming
pi ≤ pi+1, this choice implies that the polynomial f |[xi−1,xi) is completely specified by the polynomial
f |[xi,xi+1). Specifically, the value and first pi derivatives of the latter at xi completely determine the
former. In turn, this implies that when ri = pi = pi+1, the restriction f |[xi−1,xi+1) is a polynomial of
degree pi.

2.2. B-splines
Before we examine properties of S in full generality, we consider the special choice of a constant

degree distribution such that the space reduces to the well-understood space of B-splines.
Let m ∈ N, p := p ∈ Z≥0, and let r be a smoothness distribution. Then, S is the space of B-splines

of polynomial degree p, i.e.,

S =

{
[a, b)

f−→ R : f
∣∣
[xk−1,xk)

∈ Pp , 1 ≤ k ≤ m , and

Dr
−f(xk) = Dr

+f(xk) , 0 < k < m , 0 ≤ r ≤ rk
}
.

The evaluation of the B(asis)-splines that span S can be done in a rather efficient manner by using
the well-known Cox–de Boor recursion formula. First, we define the B-spline knot vector t as

t := [t1, t2, . . . , tn+p+1] := [x0, . . . , x0︸ ︷︷ ︸
p−r0 times

, x1, . . . , x1︸ ︷︷ ︸
p−r1 times

, . . . , xm−1, . . . , xm−1︸ ︷︷ ︸
p−rm−1 times

, xm, . . . , xm︸ ︷︷ ︸
p−rm times

] ,

and initiate the recursion by defining

Ni,0(x) :=

{
1 , if ti ≤ x < ti+1 ,

0 , otherwise .

Thereafter, the recursion proceeds for 0 < q ≤ p,

Ni,q(x) :=
x− ti
ti+q − ti

Ni,q−1(x) +
ti+q+1 − x
ti+q+1 − ti+1

Ni+1,q−1(x) .

These relations can be used to build the B-splines Ni := Ni,p that span S. Observe that only convex
combinations of lower-degree B-spline evaluations are needed for evaluating higher-degree B-splines,
thus making the recursion numerically stable.

B-splines are a special basis for the constant degree spline space. They possess a myriad of
properties that make them useful for geometric modeling and engineering analysis. Some of theses
properties are listed below and their proof can be found in, e.g., [3, 15, 11].

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Bernstein–Bézier polynomials

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) B-splines

Figure 1: On Ω = [0, 1], the figures (a) and (b) show the B-splines corresponding to the data chosen in
Examples 2.9 and 2.10, respectively. Breakpoints in both figures are displayed as filled disks. In
the special case where m = 1, as in (a), the B-splines are polynomials and are called the Bernstein–
Bézier polynomials.

Proposition 2.8 (B-spline properties).

(a) Local support: Ni(x) = 0 for x /∈ [ti, ti+p+1].

(b) Non-negativity: Ni(x) > 0 for x ∈ (ti, ti+p+1).

(c) End-point smoothness: Ni is exactly Cαi smooth at ti and exactly Cβi smooth at ti+p+1, where
αi := p−max{j ≥ 0 : ti = ti+j} − 1 and βi := p−max{j ≥ 0 : ti+p+1 = ti−j+p+1} − 1.

(d) Partition of unity:
∑n
i=1Ni(x) = 1 for all x ∈ [a, b).

(e) Basis: {Ni : i = 1, . . . , n} are linearly independent and span the space S.

Example 2.9 (Bernstein–Bézier polynomials). Let Ω = [0, 1], m = 1, p = 2. Then, the spline space S
is simply the space of quadratic polynomials on [0, 1] and the corresponding B-splines are simply the
Bernstein–Bézier polynomials of degree 2; see Figure 1(a) where the B-splines have been plotted.

Example 2.10 (B-splines and extraction matrix). Let Ω = [0, 1], m = 3, x1 = 1/4, x2 = 2/3, p = 2
and r = 1. Then, the spline space S is spanned by n = 5 quadratic B-splines; see Figure 1(b) where
the B-splines have been plotted. For a B-spline Ni shown in Figure 1(b), the restriction of Ni to any
element [xj−1, xj) in the domain is a quadratic polynomial and therefore can be expanded in terms
of the quadratic Bernstein–Bézier basis on [xj−1, xj). Then, denoting the Bernstein–Bézier basis on
element [xj−1, xj) with Bk,j , 1 ≤ k ≤ 3, we can express the B-splines Ni as


N1

N2

N3

N4

N5

 =


1 0 0 0 0 0 0 0 0

0 1 5
8

5
8 0 0 0 0 0

0 0 3
8

3
8 1 4

9
4
9 0 0

0 0 0 0 0 5
9

5
9 1 0

0 0 0 0 0 0 0 0 1





B1,1

B2,1

B3,1

B1,2

...
B3,3


.

The 5× 9 matrix on the right hand side is called an extraction operator following terminology intro-
duced in [4, 16]. Intuitively, this matrix extracts smooth B-splines from fully discontinuous Bernstein–
Bézier polynomials.

4

2.3. Multi-degree B-splines
It turns out that, in general, a basis for the spline space S in the setting of non-constant de-

gree distributions cannot be computed using a simple formula akin to the Cox–de Boor recursion.
Nonetheless, there does exist a more complex approach for recursively building a basis for the space
S. While this approach is not suitable for practical implementations, it can be rigorously established
that the basis functions it produces are B-spline-like, i.e., they possess the same properties that make
B-splines useful for a myriad of applications. This section presents a discussion focused on these basis
functions and collects results from published literature [20, 1].

Consider the space S when p is not forced to be a constant degree distribution. As before, we will
denote with N1, . . . , Nn the multi-degree B(asis)-splines or MDB-splines that span S. We first need
to define some additional notation. Following [5, 1], the two MDB-spline knot vectors u and v are
defined as

u := [u1, u2, . . . , un] := [x0, . . . , x0︸ ︷︷ ︸
p1−r0 times

, x1, . . . , x1︸ ︷︷ ︸
p2−r1 times

, . . . , xm−1, . . . , xm−1︸ ︷︷ ︸
pm−rm−1 times

] ,

v := [v1, v2, . . . , vn] := [x1, . . . , x1︸ ︷︷ ︸
p1−r1 times

, . . . , xm−1, . . . , xm−1︸ ︷︷ ︸
pm−1−rm−1 times

, xm, . . . , xm︸ ︷︷ ︸
pm−rm times

] .
(3)

It can be verified that ui < vi and ui ≤ vi−1 for all i. Note that in the special case of a constant
degree distribution p = p, the two MDB-spline knot vectors u and v relate to the B-spline knot vector
t as follows:

ui = ti, vi = ti+p+1, i = 1, . . . , n.

We will refer to u as the left MDB-spline knot vector and to v as the right MDB-spline knot vector.
With p := maxi pi, the MDB-splines Ni := Ni,p are recursively defined. The MDB-spline Ni,q,

0 ≤ q ≤ p is supported on the interval [ui, vi−p+q] and can be evaluated at x ∈ [xj , xj+1) ⊂ [ui, vi−p+q]
as follows:

Ni,q(x) :=


1 , xj ≤ x < xj+1 and q = p− pj+1 ,∫ x

−∞

[
Ni,q−1(y)

di,q−1
− Ni+1,q−1(y)

di+1,q−1

]
dy , q > p− pj+1 ,

0 , otherwise ,

where

di,q :=

∫ ∞
−∞

Ni,q(y) dy ,

and we used the convention that if di,q = 0 then∫ x

−∞

Ni,q(y)

di,q
dy :=

{
1 , x ≥ ui ,
0 , otherwise .

The significant complexity of the above recursion compared to the Cox–de Boor recursion can be
readily appreciated.

As mentioned earlier and as suggested by the name “MDB-splines”, even in the general setting
of non-constant polynomial degree distributions, the functions Ni possess the same properties as B-
splines do. These are presented in Proposition 2.11 below and use the knot vectors u and v, as well
as the vectors α and β defined next. The meaning of the vectors u,v,α and β is elucidated by
Proposition 2.11. Let ιu, ιv : {1, . . . , n} → {0, . . . ,m} be maps such that

ui = xιu(i) , vi = xιv(i) ,

and define the vectors α and β as

α := [α1, α2, . . . , αn] , αi := pιu(i) −max{j ≥ 0 : ui = ui+j} − 1 ,

β := [β1, β2, . . . , βn] , βi := pιv(i)−1 −max{j ≥ 0 : vi = vi−j} − 1 .
(4)

It should be observed that, by definition, αi and βi are bounded from below by rιu(i) and rιv(i),
respectively, and from above by pιu(i) − 1 and pιv(i)−1 − 1, respectively. The following properties of
MDB-splines can be deduced from the recursive evaluation scheme above; see, e.g., [1].

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2: On Ω = [0, 1], the figures (a) and (b) show the MDB-splines corresponding to the data chosen in
Example 2.12. Breakpoints in both figures are displayed as filled disks.

Proposition 2.11 (MDB-spline properties).

(a) Local support: Ni(x) = 0 for x /∈ [ui, vi].

(b) Non-negativity: Ni(x) > 0 for x ∈ (ui, vi).

(c) End-point smoothness: Ni is exactly Cαi smooth at ui and exactly Cβi smooth at vi.

(d) Partition of unity:
∑n
i=1Ni(x) = 1 for all x ∈ [a, b).

(e) Basis: {Ni : i = 1, . . . , n} are linearly independent and span the space S.

Note that item (c) of Proposition 2.11 implies that the MDB-spline Ni does not present any super-
smoothness at the end points, i.e., it is not Cαi+1 smooth at ui and not Cβi+1 smooth at vi. When
comparing Proposition 2.11 with Proposition 2.8, it is clear that MDB-splines are a natural extension
of classical B-splines.

Example 2.12 (MDB-splines). Let Ω = [0, 1], m = 4, (x1, x2, x3) = (1/4, 1/2, 3/4), (p1, p2, p3, p4) =
(3, 1, 5, 4). If we choose (r1, r2, r3) = (−1,−1,−1), then the above recursive definition of MDB-splines
yields the splines in Figure 2(a). Alternatively, if we choose (r1, r2, r3) = (1, 1, 3), then MDB-splines
shown in Figure 2(b) are obtained. Note that the MDB-splines in Figure 2(a) are equal to Bernstein–
Bézier basis functions on each element.

Sums of subsets of MDB-splines can be used to define the notion of transition functions in the
following manner,

Ti :=

n∑
j=i

Nj . (5)

Transition functions are elements of S and, following Proposition 2.11, are non-trivial only on [ui, vi−1),
i.e., Ti is identically 0 on [a, ui) and 1 on [vi−1, b). Furthermore, it follows from the above definition
that Ti is Cαi smooth at ui and Cβi−1 smooth at vi−1. The following result from [1] will be useful for
proving additional properties of MDB-splines in Section 3.

Lemma 2.13 (End-point conditions uniquely determine transition functions). For ui < vi−1, let
T := Ti

∣∣
[ui,vi−1)

and let j := ιu(i) and k := ιv(i− 1). Then, T ∈ S(j, k) is uniquely determined by the
following end-point smoothness conditions:

• Dr
+T (ui) = 0 , 0 ≤ r ≤ αi, and

• Dr
−T (vi−1) = δ(r, 0) , 0 ≤ r ≤ βi−1,

6

where δ(r, 0) is the Kronecker delta. The above end-point smoothness conditions are linearly indepen-
dent. Furthermore,

Dαi+1
+ T (ui) 6= 0 6= D

βi−1+1
− T (vi−1) .

Proof. We reproduce the proof of T ’s uniqueness from [1] for completeness and because similar ideas
will be used later in the proof of Lemma 3.2. From Lemma 2.6 and by definition of α and β, it can
be verified that

dim (S(j, k)) = ν(j, k) = αi + βi−1 + 2 . (6)

Thus, the dimension of the space is equal to the number of interpolation conditions. Furthermore,
the following choice of interpolation nodes properly interlaces with the breakpoints of S(j, k) [5],[

xj , . . . , xj︸ ︷︷ ︸
αi+1 times

, xk, . . . , xk︸ ︷︷ ︸
βi−1+1 times

]
,

thus making the interpolation problem well posed. That is, the αi+1 interpolation conditions satisfied
by T at ui are linearly independent of the βi−1 + 1 interpolation conditions it satisfies at vi−1, and T
is uniquely determined by them.

The statement of non-vanishing (αi + 1)th right derivative (resp., (βi−1 + 1)th left derivative) of T
at ui (resp., vi−1) follows from Equation (5) and Proposition 2.11, item (c); see [1]. �

Finally, we reproduce without proof a special case of the knot insertion result from [1]. For the
same breakpoints and degree distribution, the following result relates a smoother set of MDB-splines
to one that is of lower regularity.

Lemma 2.14 (Knot insertion). Given breakpoints xi and a degree distribution p, let r and r̂ be
smoothness distributions, both compatible with p (see Assumption 2.5), such that for some 1 ≤ i ≤
m− 1,

r̂j =

{
rj , j 6= i ,

rj + 1 , j = i .

With S := Srp(0,m) and Ŝ := S r̂p(0,m), denote the respective MDB-splines with Ni, i = 1, . . . , n, and
N̂i, i = 1, . . . , n− 1. Then, there exist constants 0 ≤ γj,1, γj,2 ≤ 1, j = 1, . . . , n− 1, such that

N̂j = γj,1Nj + γj,2Nj+1 .

Furthermore, with u, v, û and v̂ defined in the way described before, and î := max{l : ιv̂(l) = i}, the
following hold:

(a) γj,1 = 1 for 1 ≤ j ≤ î,

(b) γj,2 = 1 for î+ r̂i + 2 ≤ j ≤ n− 1, and

(c) γj,2 + γj+1,1 = 1 for 1 ≤ j ≤ n− 2.

3. Some more properties of MDB-splines

In Section 2.3, we presented a specific collection of results on MDB-splines that can be found in
published literature. In the current section, we improve upon this by using the results from Section 2.3
to prove certain additional properties of MDB-splines. In particular, the following will help provide
an alternative characterization of MDB-splines and underscore their uniqueness. These characteristics
will be used later in Section 4 to develop a rather efficient evaluation algorithm for them. We start
by presenting a direct implication of Lemma 2.13.

Corollary 3.1 (Transition functions are not super-smooth). For ui < vi−1, let T := Ti
∣∣
[ui,vi−1)

and let j := ιu(i) and k := ιv(i − 1). Consider a breakpoint xl ∈ (xj , xk) = (ui, vi−1) and let
rl < min{pl, pl+1}. Then, T is Crl smooth at xl but not Crl+1 smooth.

7

Proof. We proceed by contradiction. Let T be Crl+1 smooth at xl. Then, T is an element of the spline
space Ŝ(j, k) := S r̂p(j, k) where r̂ is obtained from r by adding 1 to the lth entry. However, using

(6) we have dim
(
Ŝ(j, k)

)
= dim (S(j, k))− 1 = αi + βi−1 + 1, thereby implying an over-constrained

interpolation problem for the end-point smoothness conditions that T must satisfy. This contradicts
Lemma 2.13 and therefore implies the claim. �

Lemma 3.2 (Minimal support property). For 0 ≤ i ≤ n, let j := ιu(i) and k := ιv(i). Let f ∈ S(j, k)
vanish αi + 1 times at ui and βi + 1 times at vi. Then, f = cNi for some c ∈ R.

Proof. The proof is similar to that of Lemma 2.13. From Lemma 2.6 and by definition of α and β, it
can be readily verified that

dim (S(j, k)) = ν(j, k) = αi + βi + 3 .

We can impose ν(j, k) linearly independent interpolation conditions on this space and get a unique
solution. We choose the points[

xj , . . . , xj︸ ︷︷ ︸
αi+1 times

, (xj + xk) /2, xk, . . . , xk︸ ︷︷ ︸
βi+1 times

]
as the interpolation nodes, and it can be verified that they properly interlace with the breakpoints
of S(j, k) [5], thus proving that the αi + 1 interpolation conditions satisfied by f at ui are linearly
independent of the βi + 1 interpolation conditions it satisfies at vi. Therefore, the dimension of the
space spanned by elements of S(j, k) that satisfy the end-point interpolation conditions is equal to
1. The claim follows immediately since, from Proposition 2.11, Ni ∈ S(j, k) satisfies the end-point
interpolation conditions. �

Corollary 3.3 (MDB-splines are not super-smooth).

(a) Let j := ιu(i) and k := ιv(i). Consider a breakpoint xl ∈ (xj , xk) and let rl < min{pl, pl+1}.
Then, Ni is Crl smooth at xl but not Crl+1 smooth.

(b) Consider a breakpoint xi such that ri < min{pi, pi+1}, and define i′ := max{l : ιv(l) = i}. Then,
Ni′ , Ni′+1, . . . , Ni′+ri+1, Ni′+ri+2 are the only MDB-splines that are Cri smooth at xi but not
Cri+1 smooth.

Proof.

(a) The proof is analogous to that of Corollary 3.1 and shows that f ≡ 0 is the unique spline in
S(j, k) which satisfies the same end-point smoothness conditions as Ni and is super-smooth
across xl.

(b) The MDB-splines Ni′+1, . . . , Ni′+ri+1 all contain xi in their interior and so are not super-smooth
there from part (a). The claim for Ni′ and Ni′+ri+2 follows from the exact end-point smoothness
conditions satisfied by them; see Proposition 2.11.

�

The following are the three main results of this section that will help us prove mathematical
soundness of the evaluation algorithm from [23].

Lemma 3.4. Consider a breakpoint xi such that ri < min{pi, pi+1}, and define i′ := max{l : ιv(l) =
i}. Then, the following equality holds for i′ ≤ k ≤ i′ + ri + 2 only if k = i′ + ri + 2,

Dri+1
−

 k∑
j=i′

Nj

 (xi) = Dri+1
+

 k∑
j=i′

Nj

 (xi) .

8

Proof. Since N1, . . . , Ni′−1 and Ni′+ri+3, . . . , Nn are all Cri+1 smooth at xi, by the partition of unity
and local support properties we obtain

Dri+1

i′+ri+2∑
j=i′

Nj

 (xi) =

{
1 , ri = −1 ,

0 , ri ≥ 0 .
(7)

Let us now assume that the equality in the claim holds for some i′ ≤ k ≤ i′ + ri + 2. Then, from
Equation (7) we obtain,

Dri+1
−

i′+ri+2∑
j=k+1

Nj

 (xi) = Dri+1
+

i′+ri+2∑
j=k+1

Nj

 (xi) ,

⇔ Dri+1
−

 n∑
j=k+1

Nj

 (xi) = Dri+1
+

 n∑
j=k+1

Nj

 (xi) ,

⇔ Dri+1
− Tk+1(xi) = Dri+1

+ Tk+1(xi) ,

where we have again used the super-smoothness of Ni′+ri+3, . . . , Nn at xi. The above implies that the
transition function Tk+1 is Cri+1 smooth at xi. From Corollary 3.1, however, Tk+1 must be Ti′+ri+3

as none of Ti′+1, . . . , Ti′+ri+2 are super-smooth at xi. �

Corollary 3.5 (Super-smooth linear combinations). Consider the setup in Lemma 3.4, and define
the vector ĉ := [ĉ1, . . . , ĉri+3]T by

ĉj := Dri+1
− Ni′+j−1(xi)−Dri+1

+ Ni′+j−1(xi) .

Then, none of the ĉj are zero and, moreover,
∑q
j=1 ĉj is zero for 1 ≤ q ≤ ri + 3 only if q = ri + 3. In

particular, if there exist constants fj such that
∑q2
j=q1

fj ĉj = 0, 1 ≤ q1 < q2 ≤ ri + 3, then the linear
combination

∑q2
j=q1

fjNi′+j−1 is Cri+1 smooth at xi.

Proof. This is a direct consequence of Lemma 3.4. �

Corollary 3.6 (Knot insertion). Consider the setup in Lemma 2.14. Let ηj,1, ηj,2, 1 ≤ j ≤ n− 1, be
constants such that

(a) ηj,1 = 1 for 1 ≤ j ≤ î,

(b) ηj,2 = 1 for î+ r̂i + 2 ≤ j ≤ n− 1, and

(c) ηj,2 + ηj+1,1 = 1 for 1 ≤ j ≤ n− 2,

and define functions Ñi, i = 1, . . . , n− 1, using the relations

Ñj := ηj,1Nj + ηj,2Nj+1 .

If Ŝ 3 Ñi, i = 1, . . . , n− 1, then Ñi = N̂i for all i, and 0 ≤ ηj,1 = γj,1, ηj,2 = γj,2 ≤ 1.

Proof. From the premise, each Ñj is supported on [ûj , v̂j] and satisfies the same end-point smoothness
conditions as N̂j = γj,1Nj+γj,2Nj+1. Indeed, the end-point smoothness of both N̂j and Ñj is dictated
by that of Nj at the left end and Nj+1 at the right end. Thus, Lemma 3.2 implies that the Ñi must
be scalar multiples of the N̂i. In particular, since the N̂i are linearly independent, so are the Ñi.

The above, therefore, implies that the Ñi must be exactly equal to the N̂i since the N̂i form a
partition of unity and, by definition of the constants ηj,1, ηj,2, so do the splines Ñi. �

9

4. Algorithmic evaluation of MDB-splines

In this section we provide a short overview of the construction presented in [23] (see also [22]) for
building multi-degree spline functions, Mi, that span, at least, a subspace of S. Spoiler: actually, they
are completely equivalent to the basis functions Ni from the last section and, therefore, span the full
space and are linearly independent; this will be shown in Theorem 4.3.

Suppose we are looking to construct spline functions that lie in S. For each of the elements
[xi−1, xi), i = 1, . . . ,m, we can build the pi + 1 unique Bernstein–Bézier basis functions Bj,i, j =
1, . . . , pi + 1, that span Ppi on [xi−1, xi). For each i, extending the functions Bj,i outside [xi−1, xi) by
0, let us relabel them as

Bθ(0,i−1)+j := Bj,i , j = 1, . . . , pi + 1 . (8)

Next, arrange these relabeled basis functions in a single vector B of length θ(0,m). It can be easily
verified that the basis functions {Bj : j = 1, . . . ,θ(0,m)} coincide with the MDB-splines that span
S−1
p (0,m). Then, our objective is to construct a matrix H — in the spirit of the extraction matrix

in Example 2.10 — of size n× θ(0,m) such that S ⊇ span{M1, . . . ,Mn} where,

M := HB . (9)

As mentioned above, ifH is taken to be an identity matrix thenM = B and they will span the space
S−1
p (0,m). In order to create a set of basis functions that span S, we

(a) build continuity constraints at all interior breakpoints according to the chosen smoothness dis-
tribution r, and

(b) construct rows of H as suitable elements in the nullspace of those constraints.

Section 4.1 outlines the construction of continuity constraints while Section 4.2 presents a sparse
nullspace construction. Finally, Section 4.3 proves the equivalence of Mi and Ni.

4.1. Continuity constraints at the ith breakpoint
For 1 ≤ i ≤ m− 1 let Ki,− be a matrix of size (pi + 1)× (ri + 1), whose jth column is given by,[

0 · · · 0 Dj−1
− Bθ(0,i)−j+1 (xi) · · · Dj−1

− Bθ(0,i) (xi)
]T

, (10)

and let Ki,+ be a matrix of size (pi+1 + 1)× (ri + 1), whose jth column is given by,[
−Dj−1

+ Bθ(0,i)+1 (xi) · · · −Dj−1
+ Bθ(0,i)+j (xi) 0 · · · 0

]T
. (11)

Using these matrices, we can build the matrixKi of size θ(0,m)×(ri+1) which contains all constraints
required to enforce Cri smoothness at xi. This matrix is defined row-wise in the following manner:

1. the (θ(0, i− 1) + k)th row of Ki is equal to the kth row of Ki,−,

2. the (θ(0, i) + k)th row of Ki is equal to the kth row of Ki,+, and,

3. all other rows of Ki are identically zero.

It can be easily verified that for a row vector f such that fKi = 0, the spline defined by fB is
going to be Cri smooth across xi. Therefore, once all the matrices Ki have been assembled, the only
remaining step is the construction of H such that its rows span their collective left-nullspace. The
matrix H is a multi-degree spline extraction or an MDB-spline extraction, and we employ Algorithm
1 below for its construction. Algorithm 1 is a more efficient implementation of the one proposed in [23]
and has been reproduced from [22]. Aside from efficiency, both algorithms produce exactly equivalent
functions.

10

Algorithm 1 Computation of H (Section 4.1)

1: H ← identity matrix (size : θ(0,m)× θ(0,m))
2: for i = 1 : m− 1 do
3: L←HKi

4: for j = 1 : ri + 1 do
5: H ← sparse nullspace of jth column of L
6: H ←HH
7: L←HL
8: return H

Algorithm 2 nullspace of ĉ (Section 4.2)

1: Ĥ ← 0 (size: (q − 1)× q)
2: Ĥ(1, 1)← 1
3: for i = 1 : q − 2 do

4: Ĥ(i, i+ 1)← − ĉiĤ1(i, i)

ĉi+1

5: Ĥ(i+ 1, i+ 1)← 1− Ĥ(i, i+ 1)

6: Ĥ(q − 1, q) = 1

7: return Ĥ

4.2. Sparse nullspace construction
Algorithm 1 utilizes Algorithm 2 for building a sparse left-nullspace of a given column from the

continuity constraints matrix. The latter algorithm’s functioning, motivated by the minimal support
property of MDB-splines (Lemma 3.2; also see [3, 23]), can be explained as follows for a given column
vector ĉ.

Let ĉ = [ĉ1, . . . , ĉq]
T , ĉi 6= 0, 2 ≤ q ∈ N; we will call ĉ the constraint vector. The matrix Ĥ built

by Algorithm 2 can be explicitly represented as

Ĥ =


1 h1

h1
. . .
. . . hq−2

hq−2 hq−1

 ,

with hi := −
∑i
j=1 ĉj/ĉi+1 and hi := 1 − hi =

∑i+1
j=1 ĉj/ĉi+1 = −(ĉi+2/ĉi+1)hi+1. The next two

lemmas outline some properties that the above definition endows upon the matrix Ĥ depending on
the properties of the constraint vector ĉ. These properties will be useful for proving the equivalence
between spline functions Mi and multi-degree basis functions Ni in Theorem 4.3.

Lemma 4.1. The following statements hold.

(a) The rows of Ĥ are in the left-nullspace of ĉ, i.e., Ĥĉ = 0.

(b) If
∑q
j=1 ĉj = 0, then hq−1 = 1.

(c) If
∑i
j=1 ĉj = 0 ⇒ i = q, then Ĥ has full rank, its rows span the left-nullspace of ĉ, and all

hi, hi 6= 0.

Proof. Properties (a) and (b) hold by construction and can be easily verified. For Property (c), note
that if

∑i
j=1 ĉj = 0 ⇒ i = q, then either

∑i
j=1 ĉj 6= 0 for all i, or only

∑q
j=1 ĉj = 0. In both cases,

none of the hi, hi are zero and the full rank of Ĥ follows. �

Next, consider a column vector c = [0, ĉ, 0]T obtained by padding the vector ĉ with qA and qB
zeros above and below, respectively. Define the block diagonal matrix H as,

H =

IA Ĥ
IB

 ,

11

where IA and IB are identity matrices of size qA and qB , respectively, and Ĥ is as defined above.

Lemma 4.2. The following statements hold by construction.

(a) The rows of H are in the left-nullspace of c, i.e., Hc = 0.

(b) If Ĥ has full rank, then H has full rank and its rows span the left-nullspace of c.

Proof. The proof follows directly from Lemma 4.1. �

4.3. Equivalence of Ni and Mi

The algorithmic construction summarized in this section thus far is highly intuitive and holds
a big advantage over others in [20, 19, 21, 1]. Indeed, it does not rely on indirect or expensive
methodologies (such as solutions of linear systems, or recursive computations of global integrals, for
example) for building splines in S. Instead, a sparse nullspace of the continuity constraints is explicitly
and efficiently built; each row of this nullspace represents a smooth multi-degree spline by construction.

That said, [23] did not conclusively pin down properties of the splines Mi in the multi-degree
setting. In particular, their linear independence and non-negativity were not established. Since
violation of these properties may make Mi unsuitable for applications in geometric modeling and/or
engineering analysis, we examine them in the following and show that the spline functions Mi are
exactly the same as the MDB-splines Ni.

Theorem 4.3.

(a) With the continuity constraints built as in Section 4.1, all entries of the extraction matrix H
output by Algorithm 1 lie in [0, 1].

(b) With M := HB, the identity Mi = Ni holds for all i = 1, . . . , n. In particular, {Mi : i =
1, . . . , n} are linearly independent, span the space S, and form a convex partition of unity.

Proof. Notice that the matrix H computed as per Algorithm 1 always has dimensions (q − 1) × q
for some 2 ≤ q ∈ N. Let us index all the rectangular H built during the course of Algorithm 1
according to their order of appearance; this coincides with the order in which continuity constraints
at breakpoints xj are resolved. Doing so, we can express the output H as,

H = Hφ(0,m)Hφ(0,m)−1 · · ·H1 ,

where H1 has size (θ(0,m)− 1)× θ(0,m), and φ(0,m) is the total number of continuity constraints.
From Lemma 2.6, the dimension of H is n× θ(0,m). Then, to prove the claim we need to show that
all Hk, k = 1, . . . ,φ(0,m), have full rank; we proceed by induction.

Let us consider a sequence of smoothness vectors,

−1 =: r0 < r1 < r2 < · · · < rφ(0,m) := r ,

where rk1 < rk2 if for all j = 1, . . . ,m−1, rk1j ≤ r
k2
j , with strict inequality holding for just one j. If the

kth continuity constraint resolved during Algorithm 1 corresponds to imposition of Cr
k
l smoothness

at the lth breakpoint, 1 ≤ l ≤ m− 1, we define the entries of rk using rk−1 as

rkj = rk−1j + δ(j, l) , j = 1, . . . ,m− 1 ,

with δ(j, l) denoting the Kronecker delta.

Induction hypotheses. For 1 ≤ k ≤ φ(0,m),

(H.a) The matrix Hk has full rank.

(H.b.1) All entries of Hk := HkHk−1 · · ·H1 lie in [0, 1].

(H.b.2) The spline functions Mi,k defined using the extraction Hk := HkHk−1 · · ·H1 are equal to
the MDB-splines spanning Srkp (0,m).

12

Base step. When k = 1, a C0 smoothness constraint is resolved at some breakpoint. The correspond-
ing constraint vector is simply [0, ĉ, 0]T with ĉ = [1, −1]T . It is easy to see that Ĥ computed using
Algorithm 2 takes the form Ĥ = [1, 1]. Therefore, by Lemma 4.2, H1, defined using this Ĥ, has
full rank and hypothesis (H.a) is satisfied. Moreover, from the structure of H1 and Corollary 3.6,
the Mi,1 defined by it are equal to the MDB-splines spanning Sr1p (0,m) and hypotheses (H.b.1) and
(H.b.2) are satisfied.

Induction step. Assume that both the induction hypotheses are satisfied for some k > 1. This implies
that, from Corollary 3.5, the smoothness constraint to be resolved at step k + 1, [0, ĉ, 0]T , is such
that ĉ satisfies the last condition of Lemma 4.1. This implies, as above, that the corresponding matrix
Ĥ computed using Algorithm 2 is of full rank. Again, from the structure of Hk+1 and Corollary 3.6,
the Mi,k+1 are equal to the MDB-splines spanning Srk+1

p (0,m) and hypotheses (H.b.1) and (H.b.2)
are satisfied. �

Example 4.4. Consider again the setup in Example 2.12. Then, for the choice of (r1, r2, r3) =
(−1,−1,−1), there are no continuity constraints imposed at any of the interior breakpoints, and
therefore the MDB-splines are simply equivalent to the Bernstein–Bézier basis on each element. Al-
ternatively, for the choice of (r1, r2, r3) = (1, 1, 3), we can compute the constraint matrices to be,

[
K1,−

K1,+

]
=



0 0

0 0

0 −12

1 12

−1 4

0 −4


,

[
K2,−

K2,+

]
=



0 −4

1 4

−1 20

0 −20

0 0

0 0

0 0

0 0


,

[
K3,−

K3,+

]
=



0 0 0 0

0 0 0 0

0 0 0 −3840

0 0 320 11520

0 −20 −640 −11520

1 20 320 3840

−1 16 −192 1536

0 −16 384 −4608

0 0 −192 4608

0 0 0 −1536

0 0 0 0



.

Using these constraint matrices as the inputs, the matrix H computed using Algorithm 1 is given
below,

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 18
23

18
23

3
23

3
23 0 0 0 0 0 0 0 0 0 0

0 0 0 5
23

5
23

20
23

20
23 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 4
7

9
28

5
28

5
28 0 0 0 0

0 0 0 0 0 0 0 0 0 3
7

159
322

135
322

135
322

15
46 0 0 0

0 0 0 0 0 0 0 0 0 0 17
92

1445
4508

1445
4508

1105
2254

85
147 0 0

0 0 0 0 0 0 0 0 0 0 0 4
49

4
49

9
49

62
147 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

It can be verified that the rows ofH are in the nullspace of the constraints, and multiplying the above
matrix with the Bernstein–Bézier basis functions in Figure 2(a) yields the MDB-splines in Figure 2(b).

Therefore, instead of using the complicated recursive definition for evaluating the MDB-splines
Ni, we can simply evaluate the Bernstein–Bézier basis functions on each element (using Cox–de Boor
recursion) and linearly combine them using the matrix H.

4.4. A brief note on efficient implementation
The previous sections demonstrate how Algorithm 1 can be used to explicitly build an extraction

operator that specifies how Bernstein–Bézier basis functions of different polynomial degrees can be

13

linearly combined to yield MDB-splines. This piecewise-polynomial approach is quite general and in
most practical cases may be an overkill. Unless one wishes to work with a “checkerboard” degree
distribution, pi will not always be different from pi+1. However, if pi = pi+1, then instead of adopting
the algorithmic construction we can:

(a) simply build a B-spline basis of degree pi on the segment [xi−1, xi+1) using Cox–de Boor recursion
(see Section 2.2), and

(b) combine the B-spline basis on [xi−1, xi+1) with the Bernstein–Bézier basis on elements [xi−2, xi−1)
and [xi+1, xi+2) using Algorithm 1.

The above suggests an alternate formulation and implementation of Algorithm 1 by shifting the
perspective from a “piecewise polynomial” approach to a “piecewise B-spline” approach. Such a
reformulation would proceed in the following manner.

(a) Partition {1, . . . ,m} into maximal sets Ji := {mi−1 + 1,mi−1 + 2, . . . ,mi}, 1 ≤ i ≤ e, such that

• m0 := 0, me := m,

• j, k ∈ Ji ⇒ pj = pk.

(b) Build constant degree B-splines of degree pj , j ∈ Ji, on σi :=
⋃
j∈Ji [xj−1, xj) using Cox–de Boor

recursion.

(c) Build continuity constraints at the breakpoint xmi
where B-splines on σi and σi+1 meet.

(d) Explicitly build the nullspace of the constraints using Algorithm 1.

The above reformulation leaves the function of Algorithm 1 essentially invariant, but allows one
to reuse existing efficient implementations of constant degree B-splines for the purpose of building
MDB-splines. This point of view was adopted in [23, 22] and we refer the reader to those papers
for the corresponding details. In particular, [22] also provides a Matlab toolbox incorporating this
reformulated implementation of MDB-splines.

5. Conclusion

We have analyzed the algorithmic evaluation of univariate MDB-splines proposed by [23] and
have rigorously proved its correctness. That is, we have shown that the evaluation scheme from [23]
produces linearly independent spline functions that span the entire multi-degree spline space S, form a
convex partition of unity, and have the minimal support property. The evaluation scheme also allows
for an efficient implementation of MDB-splines by leveraging existing B-spline implementations. A
small Matlab toolbox demonstrating this feature can be found in the material accompanying [22].

Acknowledgments

D. Toshniwal and T.J.R. Hughes were partially supported by the Office of Naval Research (Grant
Nos. N00014-17-1-2119, N00014-17-1-2039, and N00014-13-1-0500), and by the Army Research Office
(Grant No. W911NF-13-1-0220). C. Manni and H. Speleers were partially supported by the Mission
Sustainability Programme of the University of Rome Tor Vergata through the project IDEAS (CUP
E81I18000060005) and by the MIUR Excellence Department Project awarded to the Department of
Mathematics, University of Rome Tor Vergata (CUP E83C18000100006); they are members of Gruppo
Nazionale per il Calcolo Scientifico – Istituto Nazionale di Alta Matematica.

A. Dimension of S(i, j)

Proof of Lemma 2.6. Recall that Pp is the vector space of polynomials in variable x of degree ≤ p,
with Pp := 0 for p < 0. For breakpoint xk let p̂k := max{pk, pk+1} and define

Jk :=

{
(x− xk)rk+1Pp̂k−rk−1 , i < k < j ,

Pp̂k , otherwise .

14

The vector space Jk contains multiples of the polynomial (x − xk)rk+1 in Pp̂k when i < k < j, and
its dimension is

dim (Jk) =

{
p̂k − rk , i < k < j ,

p̂k + 1 , otherwise .

Then, using Taylor’s formula, the smoothness of a spline f ∈ S(i, j) at the breakpoint xk, i < k < j,
can be interpreted as the condition

f |[xk−1, xk) − f |[xk, xk+1) ∈ Jk .

Therefore, the spline space S(i, j) can be interpreted as the kernel of the linear map ∂,
j
⊕

k=i+1
Ppk

∂−→
j
⊕
k=i
Pp̂k/Jk ,

where Pp̂i/Ji = Pp̂j/Jj = 0, and ∂ is obtained by composing the map ∂ (specified below) with the
natural quotient map,

∂ =



−1
1 −1

1
. . .
. . . −1

1

 .

We will prove the dimension formula for S(i, j) using the above setup along with the rank-nullity
theorem. Specifically, we will show that ∂ is a surjection, thereby implying that

dim (S(i, j)) = dim
(
ker ∂

)
,

= dim

(
j
⊕

k=i+1
Ppk

)
− dim

(
im ∂

)
,

= dim

(
j
⊕

k=i+1
Ppk

)
− dim

(
j
⊕
k=i
Pp̂k/Jk

)
,

= θ(i, j)− φ(i, j) = ν(i, j) .

To see that ∂ is a surjection, consider the following element of ⊕jk=i Pp̂k/Jk for some i < l < j,(
0, · · · , 0, fl, 0, · · · , 0

)
. (12)

We will show that the above is the image of an element of ⊕jk=i+1 Ppk . Denoting the degree of a
polynomial h with deg h, for any polynomials h and g we can find h̃ and g̃ such that h = h̃g + g̃ and
deg g̃ ≤ min{deg g − 1,deg h}. Therefore, we can express the polynomial fl in the form

fl = f̃l(x− xl)rl+1 − gl+1 , (13)

where deg gl+1 ≤ min{pl, pl+1} from Assumption 2.5. Therefore, in the quotient Pp̂l/Jl, the poly-
nomial fl is equivalent to −gl+1 ∈ Ppl+1

. Furthermore, it is clear that, with fl+1 := −gl+1, we
have (

0, · · · , 0, gl+1, 0, · · · , 0

)
∂7−→
(

0, · · · , 0, fl, − fl+1, · · · , 0

)
. (14)

Then, we repeat the process laid out in Equations (12)–(14) for the index l + 1 instead of l, and so
on. The resulting recursion will necessarily terminate at the following element (if not earlier),(

0, · · · , 0, gj

)
∂7−→
(

0, · · · , 0, fj−1, 0

)
because, by definition, Jj = Pp̂j and therefore fj := −gj is zero in the quotient Pp̂j/Jj . The above
shows that(

0, · · · , 0, gl+1, gl+2, · · · , gj
)

∂7−→
(

0, · · · , 0, fl, 0, · · · , 0

)
.

The claim of surjectivity follows, thus completing the proof. �
15

References

[1] C. V. Beccari, G. Casciola, and S. Morigi. On multi-degree splines. Computer Aided Geometric Design, 58:8–23,
2017.

[2] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. Analysis-suitable T-splines are dual-compatible. Computer
Methods in Applied Mechanics and Engineering, 249–252:42–51, 2012.

[3] C. de Boor. A Practical Guide to Splines, Revised Edition. Springer-Verlag, 2001.
[4] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element data structures based

on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87:15–47, 2011.
[5] B. Buchwald and G. Mühlbach. Construction of B-splines for generalized spline spaces generated from local ECT-

systems. Journal of Computational and Applied Mathematics, 159:249–267, 2003.
[6] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally refined box-partitions. Computer Aided

Geometric Design, 30:331–356, 2013.
[7] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for hierarchical splines. Computer

Aided Geometric Design, 29:485–498, 2012.
[8] R. R. Hiemstra, T. J. R. Hughes, C. Manni, H. Speleers, and D. Toshniwal. A Tchebycheffian extension of

multi-degree B-splines: Algorithmic computation and properties. In preparation, 2018.
[9] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.
[10] X. Li, Z. J. Huang, and Z. Liu. A geometric approach for multi-degree splines. Journal of Computer Science and

Technology, 27:841–850, 2012.
[11] T. Lyche, C. Manni, and H. Speleers. Foundations of spline theory: B-splines, spline approximation, and hierarchical

refinement. In T. Lyche et al., editors, Splines and PDEs: From Approximation Theory to Numerical Linear
Algebra, volume 2219 of Lecture Notes in Mathematics, pages 1–76. Springer International Publishing AG, 2018.

[12] G. Nürnberger, L. L. Schumaker, M. Sommer, and H. Strauss. Generalized Chebyshevian splines. SIAM Journal
on Mathematical Analysis, 15:790–804, 1984.

[13] L. Piegl and W. Tiller. The NURBS Book, Second Edition. Springer-Verlag, 1997.
[14] D. F. Rogers. An Introduction to NURBS: With Historical Perspective. Morgan Kaufmann, 2001.
[15] L. L. Schumaker. Spline Functions: Basic Theory, Third Edition. Cambridge University Press, 2007.
[16] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R. Hughes. Isogeometric finite element data

structures based on Bézier extraction of T-splines. International Journal for Numerical Methods in Engineering,
88:126–156, 2011.

[17] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs. ACM Transactions on Graphics,
22:477–484, 2003.

[18] T. W. Sederberg, J. Zheng, and X. Song. Knot intervals and multi-degree splines. Computer Aided Geometric
Design, 20:455–468, 2003.

[19] W. Shen and G. Wang. A basis of multi-degree splines. Computer Aided Geometric Design, 27:23–35, 2010.
[20] W. Shen and G. Wang. Changeable degree spline basis functions. Journal of Computational and Applied Mathe-

matics, 234:2516–2529, 2010.
[21] W. Shen, G. Wang, and P. Yin. Explicit representations of changeable degree spline basis functions. Journal of

Computational and Applied Mathematics, 238:39–50, 2013.
[22] H. Speleers. Computation of multi-degree B-splines. Preprint, arXiv:1809.01598, 2018.
[23] D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes. Multi-degree smooth polar splines: A framework

for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
316:1005–1061, 2017.

16

