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integral method for two-phase flows with insoluble

surfactant

Shih-Hsuan Hsu ∗ Jay Chu † Ming-Chih Lai ‡ Richard Tsai §

Abstract

We develop a coupled grid based particle and implicit boundary integral method for
simulations of three-dimensional interfacial flows with the presence of insoluble surfac-
tant. The grid based particle method (GBPM, Leung and Zhao [23]) tracks the interface
by the projection of the neighboring Eulerian grid points and does not require stitching
of parameterizations nor body fitted moving meshes. Using this GBPM to represent
the interface, the surfactant equation defined on the interface is discretized naturally
following a new volumetric constant-along-surface-normal extension approach (Chu and
Tsai [4]). We first examine our scheme to solve the convection-diffusion equation for
the problems with available analytical solutions. The numerical results demonstrate
second-order accuracy of the scheme. We then perform a series of simulations for the
interfacial flows with insoluble surfactant. The numerical results agree well with the
ones obtained in theory, and are comparable with other numerical works in literature.

Keywords: interfacial flow; insoluble surfactant; closest point extensions; grid based
particle method

1 Introduction

Surfactant is a chemical compound consisting of molecules with hydrophilic heads and hy-
drophobic tails. Surfactant adheres to the two-phase fluid interface and reduce the surface
tension. It plays an important role in many industrial applications such as pharmaceutical,
cosmetic, oil industries. The two-phase flow problems with surfactant draw a lot of atten-
tion, not only for the sake of its applications but also for the numerical point of interests. In
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order to predict the surfactant concentration on the fluid interface, it is necessary to solve
a convection-diffusion equation defined on the evolving interface. It is a challenging task
to accurately solve such type of problems that involve non-trivial moving interfaces embed-
ded in three dimensions. In this work, we propose a numerical method to solve the three
dimensional problem in an efficient and relatively simple fashion.

Solving PDEs on surfaces has been explored by many researchers for decades. Dziuk, El-
liott et al. developed a series of work to solve PDEs on surfaces by finite element approaches
[5, 6, 7]. The idea of the method is to approximate both surfaces and solutions on suitable
finite element spaces and formulate the PDEs in the weak form. Error analysis and optimal
convergence rate have been studied. We refer a review paper [8] for more detail. Other finite
difference methods based on surface front-tracking triangular meshes to solve the surfactant
equation in 3D have been developed in past years. Muradoglu and Tryggvason [18] used
the front-tracking method. They first wrote the equation in the integral form on each front
element and then converted the area integral of surface diffusion term into a line integral
using the mathematical identity. The scheme is in spirit an explicit finite volume method
to solve the surfactant convection-diffusion equation. De Jesus et. al. [19] used the implicit
finite volume method developed in [21] to solve the surfactant equation and applied to the 3D
two-phase flow with insoluble surfactant. Another front-tracking method uses the spherical
harmonics expansion to represent the surface with adopting re-parametrization techniques
to the surface meshes and corresponding surfactant concentration. Sorgentone and Tornberg
[34] used this approach and coupled with the boundary integral method for Stokes flow to
study surfactant-laden drop dynamics in 3D. While these front-tracking methods have the
advantage of keeping the conservation of local surfactant mass, the Lagrangian grid restruc-
turing or optimizing must be applied from time to time, and this increases the computational
overhead. Recently, Seol et al. [16] have developed an equi-arclength parametrization tech-
nique to automatically control the Lagrangian meshes so that the total surfactant mass is
conserved numerically. However, their scheme is limited to planar surfaces.

To avoid the difficulty of re-meshing process for surface representation, other embedding
methods based on solving the equations on Eulerian domains have been developed. The
main advantage of Eulerian embedding method to solve surface PDEs is no need to layout
the Lagrangian mesh that moves and conforms to the moving interface. Consequently, there
is no need to remesh nor discretize different versions of the surface PDEs on different patches
and ”glue” them together. A common approach for the Eulerian methods is to extend the
surface quantity (surfactant) and equations defined on the interface to a narrowband around
the surface and solve the extended PDEs in that narrowband by some simple and robust
finite difference methods. The level set method proposed by Xu and Zhao [36] and the
closest point method proposed by Ruuth and Merriman [30] belong to such category. Xu
and his collaborators also applied their method to simulate the interfacial flows with insoluble
surfactant [37] and soluble surfactant [38].

To track a moving surface, the implicit method such as level set method requires to solve
the Hamilton-Jacobi equation in the entire Eulerian domain. Rather than using the implicit
method, we here employ the grid based particle method (GBPM) proposed by Leung and
Zhao [23] for surface representation. The GBPM is a numerical method to track an evolving
surface which combines the advantages of the Lagrangian and Eulerian approaches. The
surface is represented by meshless and non-parametrized Lagrangian markers explicitly us-
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ing underlying Eulerian grid reference to avoid the re-meshing process for usual Lagrangian
tracking method. The same as traditional Lagrangian method, the surface evolution is cap-
tured by solving an ordinary differential equation on each marker, so that it is relatively
efficient for the same simulation time. In addition, the method can compute the projection
point and geometric quantities accurately by local polynomial approximations.

Petras and Ruuth [29] coupled a modified grid based particle method and the closest point
method to solve the convection-diffusion equation on moving surfaces. As with other closest
point methods, their approach requires an extra ”reinitialization” procedure at every time
step. The procedure involves the closest point projection and interpolation to enforce the
computed quantities being locally constant along surface normals. For systems with strong
reaction terms and interfaces with high curvature relative to the underlying grid, the ”non-
surface intrinsic” reactions computed by the method could influence the values computed on
the interface via the underlying diffusion. However, such nuances can be hard to observe if
the width of the narrowband is thin and the frequency of the ”reinitialization” sufficiently
frequent.

Recently Chu and Tsai [4] propose a framework to extend surface PDEs into a tubular
neighborhood in the embedding space. For a wide class of surface PDEs, the solutions of
the properly extended versions are naturally constant-along-surface-normal without the need
to enforce additional constraints. This saves some computation cost on interpolation and
provides better stability for resulted system. In this paper, we shall refer to this framework
as the IBIM framework. The term IBIM stands for Implicit Boundary Integral Method, which
is a general approach to formulate volumetric extensions of boundary integrals, see [14, 15] in
detail. For these above reasons, in this paper we develop a method using GBPM and IBIM
to solve the convection-diffusion equation on an evolving surface and apply to simulate the
three-dimensional interfacial flows with insoluble surfactant. The presented scheme enjoys the
advantages of those two methods and is competitively accurate and efficient. Furthermore,
this framework can be applied to electrohydrodynamic applications which require coupling
with boundary integral solvers for electric potential computations.

The rest of the paper is organized as follows. Immediately in Section 2, we present the
the governing equations that we solve numerically in this paper. The equations describe
an immiscible two-phase fluid in which the interface between the two phases are dynamic
and under the influence of surfactant. The numerical method includes two major coupled
components, one for evolving the fluid as well as the interface and the other for evolving the
surfactant concentration along the interface. These components are described in Section 3.
We then propose a coupled GBPM-IBIM scheme to solve the convection-diffusion equation
on an evolving surface and perform a series of numerical tests for accuracy in Section 4. In
Section 5, we present some numerical results computed by the proposed method for a few
three-dimensional test cases.

2 Interfacial flows with insoluble surfactant

In this section, we consider an incompressible two-phase flow in a fixed three-dimensional
domain Ω = Ω1 ∪ Ω2 where the interface Σ separates Ω1 (interior) from Ω2 (exterior) and is
a closed evolving surface. The interface is contaminated by an insoluble surfactant, which
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changes the surface tension accordingly. We further assume that the two fluids have matched
density and viscosity. Using the non-dimensionalization process described in [13], the gov-
erning equations in dimensionless form lead to the following single-fluid formulation as

∂u

∂t
+ u · ∇u +∇p =

1

Re
∆u +

1

ReCa
f , in Ω (1)

∇ · u = 0, in Ω u = ub, on ∂Ω (2)

f =
(
∇sσ − 2κσn

)
δ (d) , in Ω (3)

σ = 1− βΓ, on Σ (4)

DΓ

Dt
+ (∇s · u) Γ =

1

Pes
∆sΓ, on Σ (5)

∂X

∂t
= u(X, t), on Σ. (6)

Eqs. (1)-(2) are the Navier-Stokes equations in which u is the fluid velocity and p is the
pressure. The force f in Eq. (1) is the interfacial force that arises from the surface tension
σ, which consists of Marangoni force ∇sσ and capillary force 2κσn as shown in Eq. (3).
Here, δ is the Dirac delta function and d is the signed distance function to the interface, κ
is the mean curvature of Σ, with the convention of positive sign when the surface is convex.
The surface tension relating to the surfactant concentration is described by the Langmuir
equation of state [31]. We adopt the linear approximation Eq. (4) as in [17]. Equation
(5) is the convection-diffusion equation that governs the surfactant concentration along the
interface [32]. Equation (6) shows that the interface moves along with the local fluid velocity
determined by the Navier-Stokes equations. To complete the system, the above equations
(1)-(6) should be accompanied with suitable initial conditions.

There are four dimensionless numbers: the Reynolds number Re describing the ratio
between the inertial force and the viscous force, the capillary number Ca describing the
strength of the surface tension, the parameter β, 0 ≤ β < 1, measuring the sensitivity of
surface tension change to the surfactant concentration, and the surface Peclet number Pes
measuring the ratio of surfactant diffusion and convection effects along the interface.

3 Components of the proposed method

We first introduce some notations usef in the paper. Assume Σ to be a C2-closed surface in
R3. For any small ε > 0, we define an ε-narrowband of Σ as

Tε := {x ∈ R3 : min
y∈Σ
|x− y| < ε}. (7)

The closest point mapping PΣ : Tε 7→ Σ is then given by

PΣ(x) = arg min
y∈Σ

|x− y|. (8)

The closest point map PΣ is well-defined on Tε, provided ε ∈ (0, κ−1
∞ ), where κ∞ is an upper

bound of the curvatures of Σ.
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3.1 The Grid Based Particle Method for tracking the interface

The Grid Based Particle Method (GBPM) [23] is a numerical method to track an evolving
surface using Cartesian grids. The main idea is to represent the surface by meshless and
non-parametrized Lagrangian particles and to compute the geometric information by local
parametrization with suitable polynomial approximations. Every Lagrangian particle is in
fact the closest point of some Cartesian grid node lying inside a thin narrowband around the
surface. Given that the underlying Cartesian grid resolves the surface well, this approach
provides a quasi-uniform point cloud sampling of the surface. The surface position is then
updated by moving the particles according to some given velocity which this step is exactly
as in the traditional Lagrangian method. After each time step, the surface is ”resampled” in
the sense that a new set of Lagrangian particles closest to the Cartesian grid nodes within
the narrowband is constructed via interpolation of the old set of Lagrangian particles. In
addition, GBPM provides a natural way to compute the geometric information accurately
which is essential for IBIM. We will describe more details about IBIM in the following section.

Throughout this paper, we use the GBPM to track the surface motion and compute the
corresponding geometric quantities, such as the principle curvatures, that are used in later
computation. A brief numerical algorithm at each time step is outlined as follows.

1. Initialization. Collect all grid points x that are within Tε as defined before. The
surface Σ is represented by the closest points to surface of grid points in Tε, that is,
Σ = {PΣ(x) : x ∈ Tε}.

2. Evolving surface. Evolve the surface by solving the advection equation at each
Lagrangian particles in Σ.

3. Resampling surface. After the evolution, those Lagrangian particles are no longer
to be closest points so we need to compute the new closest points to the surface for
each grid points in Tε by performing some local polynomial reconstruction.

4. Updating the computational tube. We first activate the grid points that are
neighbors of the computational tube and find their corresponding closest points. Then
we deactivate the grid points that have the distance to the surface larger than the
given tube radius ε and obtain the new computational tube domain Tε. As a result,
this yields a new closest point representation of the surface Σ.

The original GBPM in [23] used the tube radius ε = 1.1∆x ∼ 1.5∆x to track the surface
motion. However, due to the bi-cubic interpolation used in the closest point based methods
for solving surface PDEs (including the method used in this paper), one needs to use nar-
rowbands with larger radius. In [30], Ruuth and Merriman gave an estimated tube radius
for interpolating the degree p of Lagrange polynomial in d-dimensional space as

ε =

√
(d− 1)

(
p+ 1

2

)2

+

(
1 +

p+ 1

2

)2

∆x.

For instance, the interpolation of degree 3 polynomial in three-dimensional space leads the
tube radius of ε = 4.1∆x which is about two times larger than the one used in the standard
GBPM.
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In the resampling step, the inaccurate polynomial fitting occurs frequently when the grid
point has a large distance from surface. In the standard GBPM, these grid points are simply
removed from Tε, i.e. grid point deactivation. Recently, Petras and Ruuth [29] proposed
a modified GBPM using an osculating circle and sphere reconstruction to replace the local
polynomial reconstruction when grid point deactivation occurs. However, this approach
degrades the computing accuracy of the closest points and evaluations of geometric quantities.

In order to preserve the desired accuracy of the closest points and geometric quantities,
we use the least squares polynomial fitting for local reconstruction of the surface throughout
this work. Notice that, the inaccurate polynomial fitting occurs when the chosen particles
in local reconstruction are insufficient. We can simply increase the number of candidates for
choosing particles to solve the issue. Figure 1 illustrates the local reconstruction using two
different regions of neighboring grid points. It shows by enlarging the chosen region, the local
reconstruction is more accurate. In our numerical experiments, we use the region of ε + ∆x
for choosing particles in local reconstruction. We also modify the way to obtain geometric
quantities. In the standard GBPM [23], the first and second fundamental forms are computed
from local polynomials to approximate both the mean curvature and the Gaussian curvature
at the closest point of the surface. Instead of computing fundamental forms, we evaluate
the principal curvatures ki first. Then the principle directions ti can be obtained from the
eigenvectors corresponding to the eigenvalue ki of the shape operator which is given by the
Weingarten equations.

3.2 The Implicit Boundary Integral Method for solving surface
PDEs

The Implicit Boundary Integral Method (IBIM) is a general framework for developing nu-
merical methods for a class of integro-differential operators on non-parametrically defined
surfaces or curves in Rn, for instance implicit surfaces defined by level set method or closest
point mapping, see e.g. [14, 15, 4]. The main idea is to extend the operators via the closest
point map to the surfaces. By replacing surface gradient ∇s and surface divergence ∇s·
by Euclidean gradient and divergence with suitable tensor coefficients, the method admits
solutions which are constant along the surface normals, if the initial data has the same prop-
erty. This property provides an equivalence between solution computed in a thin narrowband
around the surface and the solution to the intrinsic surface PDEs. The discretization of the
extended PDEs can be done in Cartesian grids with finite difference or finite element schemes.
We briefly illustrate the method in this subsection.

For any function f defined on Σ, we define its normal extension f on Tε by f(x) =
f(PΣ(x)) for any x ∈ Tε. It can be shown that for any f ∈ H1(Σ), we have

∇sf(PΣ(x)) = A∇f(x), for all x ∈ Tε, (9)

where A(x;µ) = A0(x) + µA1(x). Here, A0(x) is the scaling tensor, A1(x) is an extra term
to make the matrix tensor A non-degenerate, and µ is any real number. Two matrix tensors
are calculated by

A0(x) :=σ−1
1 t1 ⊗ t1 + σ−1

2 t2 ⊗ t2,

A1(x) :=n⊗ n,
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(a)

(b)

Figure 1: The local cubic polynomial reconstruction (dashed curve −− ) for the surface (solid

curve −) using Lagrangian markers (red circles ◦) inside the square region centered at x. (∗) and

(�) are the closest points to x on the surface and reconstruction surface, respectively. The right

column are the zoom-ins of Figure (a) and (b), respectively. Figure (a) and (b) use different sizes

of regions for reconstruction. This comparison shows that the accuracy of local reconstruction can

be improved by enlarging the interpolation region.

where t1, t2 are the two orthonormal tangent vectors corresponding to the directions that
yield the principle curvatures of Σ, n is the unit normal vector of Σ, σ1 and σ2 are two largest
singular values of DPΣ, where DPΣ(x) is the Jacobian matrix of PΣ(x) [15].

Similarly, we can extend the surface divergence for a vector field F defined on Σ to Tε by

(∇s · F)(PΣ(x)) = J−1∇ · (JAF(x)), for all x ∈ Tε, (10)

where J is the Jacobian that comes from the change of variables by the closest point mapping
and can be computed by J = σ1σ2. In the present GBPM surface representation, we can
simply compute those singular values by σi by σi(x) = 1+d(x)ki(PΣ(x)) directly, where d(x)
is the signed distance between x and PΣ(x), and ki(PΣ(x)) is the corresponding principal
curvature at the surface. In particular, the surface Laplacian of f can be extended to Tε by
simply substituting the surface gradient of f defined in Eq. (9) into

∆sf(PΣ(x)) = J−1∇ · (JA2∇f(x)), for all x ∈ Tε.
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To deal with Neumann boundary condition on ∂Tε, a local interpolation strategy is used
to close the system. We project the ghost grid points outside of Tε into it along the normal
direction and interpolate the projected position by nearby inner grid points. It can be shown
the closure is second-order accurate and stable for parabolic equations. See [4] for detail.

3.3 The coupled scheme for interfacial flows

In the following, we describe our proposed numerical scheme for solving Eqs. (1)-(6). We
assume the computational domain to be a rectangular domain Ω = [a, b] × [c, d] × [e, f ].
Within this domain, a uniform lattice grid with mesh width h is employed. The velocity
components u, v and w are defined at usual staggered MAC grid [11] as

(xi−1/2, yj, zk) = (a+ (i− 1)h, c+ (j − 1/2)h, e+ (k − 1/2)h),

(xi, yj−1/2, zk) = (a+ (i− 1/2)h, c+ (j − 1)h, e+ (k − 1/2)h),

(xi, yj, zk−1/2) = (a+ (i− 1/2)h, c+ (j − 1/2)h, e+ (k − 1)h).

The pressure p is defined at the cell center labelled as

(xi, yj, zk) = (a+ (i− 1/2)h, c+ (j − 1/2)h, e+ (k − 1/2)h).

Notice that, the Cartesian grid points used by GBPM to represent the interface and by IBIM
for solving surfactant concentration are all chosen at cell center points x = (xi, yj, zk).

Let ∆t be the time step size, and n be the time step index. At the beginning of each time
step n, the fluid velocity un, the interface position Xn, and the surfactant concentration Γn

are all given. More precisely speaking, in the GBPM framework, the interface position Σn

are those projection points of the grid points x = (xi, yj, zk) within the narrowband Tε so
that the signed distance function d and the mean curvature κ of the interface can be easily
obtained. The time advancement of one time step can be summarized as follows.

1. Compute the surface tension and interfacial force

σn = 1− βΓn, fn =
(
A∇σn − 2κnσnnn

)
δh(d

n),

directly at each grid point x in the neighborhood of interface Σn. Notice that, all
the surface geometric quantities in the above equation are evaluated at corresponding
closest point X = PΣ(x). Since the force fn is defined at the cell center point x, we
need to further interpolate the value at the corresponding staggered grid point used in
the following Navier-Stokes solver.

2. Solve the Navier-Stokes equations using the second-order accurate projection method
proposed in [10] to update the new velocity un+1.

3u∗ − 4un + un−1

2∆t
+ 2 (un · ∇h) un −

(
un−1 · ∇h

)
un−1 +∇hp

n

=
1

Re
∆hu

∗ +
fn

ReCa
, u∗|∂Ω = ub,

∆hp
∗ =

3

2∆t
∇h · u∗,

∂p∗

∂n
|∂Ω = 0,

un+1 = u∗ − 2∆t

3
∇hp

∗, ∇hp
n+1 = ∇hp

∗ +∇hp
n − 2∆t

3Re
∆h(∇hp

∗).
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3. Move the interface by GBPM and solve the surfactant concentration equation by IBIM
with Strang splitting technique [35] as

Γn+1 = A∆t/2Bn+1/2A∆t/2Γn, (11)

whereA represents the simple transport operator and B represents the discrete convection-
diffusion operator for the surfactant concentration. The complete numerical details are
given in the following Section 4.

4 Approximation of the convection-diffusion equation

on an evolving surface

In this section, we elaborate the numerical details in Eq. (11) and introduce a coupled GBPM
and IBIM to solve the convection-diffusion equation on an evolving surface. Here, we assume
the closed surface Σ(t) can be immersed in a fixed three-dimensional domain Ω. It is de-
formable and moving with a given velocity u (or obtained from the Navier-Stokes equations
in previous section) as

dX

dt
= u(X, t) on Σ(t). (12)

Along this evolving surface Σ(t), the surfactant concentration follows the convection-diffusion
equation

DΓ

Dt
+ (∇s · u) Γ =

1

Pes
∆sΓ on Σ(t), (13)

where D
Dt

is material derivative, ∇s and ∆s = ∇s · ∇s are the surface gradient and surface
Laplacian defined as before.

Since the surface is tracked explicitly by the closest points in the GBPM setting, we
denote Σn the set of closest points used for surface representation at the time level n∆t,
and the function Γ defined at Σn denoted by Γn. Instead of solving the convection-diffusion
equation (13) directly, we adopt the Strang splitting technique [35] to solve the equation. We
first write the equation into the simple transport equation

DΓ

Dt
= 0, (14)

and the convection-diffusion equation

∂Γ

∂t
+ (∇s · u) Γ =

1

Pes
∆sΓ. (15)

The Strang splitting consists of the following three steps:

Step 1: Solve Eq. (14) by GBPM with one half of time step.

First, we update the new surface position Σn+1/2 and obtain the value of surface function
Γ̂n = A∆t/2Γn at Σn+1/2 by GBPM which involves the surface moving, re-sampling and
interpolation presented in Section 3.1.
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Step 2: Solve Eq. (15) by IBIM with one time step.

We decompose the velocity into the tangential and normal components as u = ut + un.
Then, the surface divergence of velocity can be rewritten as

∇s · u = ∇s · ut + (u · n)κ, (16)

where κ = ∇s ·n is the mean curvature of the surface. Applying the IBIM to Eq. (15),
we obtain the embedding equation in Tε

∂Γ

∂t
+
(
J−1∇ · (JAut) + (u · n)κ

)
Γ =

1

Pes
J−1∇ · (JA2∇Γ).

Then we use Crank-Nicolson scheme for the time integration and second-order central
difference for the spatial discretization to update the surface function Γ̂n+1 as

Γ̂n+1
ij − Γnij

∆t
+

1

2

(
J−1∇h · (JAut) + (u · n)κ

)
(Γ̂n+1

ij + Γnij)

=
1

2Pes
J−1∇h · (JA2∇h(Γ̂

n+1
ij + Γnij)).

In short, the above scheme can be written as Γ̂n+1 = Bn+1/2Γn.

Step 3: Solve Eq. (14) by GBPM with one half of time step.

We repeat the procedure in Step 1 by using Σn+1/2 and Γ̂n as the initial conditions and
update the new surface position Σn+1 and function Γn+1 by Γn+1 = A∆t/2Γ̂n+1.

4.1 Numerical results

In order to validate the proposed numerical scheme, we perform a series of tests to check
if our algorithm is correct for benchmark problems. Throughout this section, we choose a
uniform Cartesian mesh h = ∆x = ∆y = ∆z and compute the corresponding L∞, L1 and L2

errors using the following formulas

‖eh‖∞ = max
xi∈Tε

eh(PΣ(xi)), (17)

‖eh‖1 =

∫
Tε

eh (PΣ(x)) δh (d (x)) J(x)dx, (18)

‖eh‖2 =

(∫
Tε

e2
h (PΣ(x)) δh (d (x)) J(x)dx

) 1
2

, (19)

where the error eh(PΣ(x)) = |Γ(PΣ(x)) − Γh(PΣ(x))| is defined on those grid points within
the narrowband Tε. Here, d(x) is the signed distance function obtained from GBPM, and
δh(x) is the discrete delta function defined by

δh(x) =

{
1

4h
+ 1

4h
cos πx

2h
if −2h < x < 2h

0 otherwise
(20)
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Table 1: The errors and their convergent rates for an expending circle case at t = 0.5.

h ‖eh‖∞ rate ‖eh‖1 rate ‖eh‖2 rate
1/10 2.46×10−4 – 3.42×10−3 – 7.94×10−4 –
1/20 5.98×10−5 2.04 8.39×10−4 2.03 1.95×10−4 2.03
1/40 1.48×10−5 2.02 2.06×10−4 2.02 4.81×10−5 2.02
1/80 3.69×10−6 2.00 5.13×10−5 2.01 1.19×10−5 2.00
1/160 9.26×10−7 2.00 1.28×10−5 2.00 3.00×10−6 2.00

Note that, the integrals in Eq. (18)-(19) are approximated by the trapezoidal rule on Cartesian
grid points within Tε. The details for computing integrals over a curve or surface via closest
point mapping can also be found in [15].

In the following, we consider the convection-diffusion equation (13) on the cases of 2D
curves and 3D surfaces where the motions of curves and surfaces are known in priori. For
simplicity, we set the surface Peclet number Pes = 1.

Example 1: A 2D expanding circle

Although the description of the present scheme is based on 3D formulation, the method can
be applied to 2D in a simpler manner. As the first test, we follow the example given in [9] by
considering the interface as a unit circle with velocity field u = 5n. Therefore, the interface
is an expanding circle and can be represented by r(t) = 1 + 5t. The function

Γ(x, y, t) = e
4

5r(t)
xy

r3(t)

satisfies the exact solution of Eq. (13) with initial condition Γ(x, y, 0) on the unit circle. The
solutions are computed up to time t = 0.5 with time step size ∆t = h/5. The numerical
errors and their convergence rates for different mesh widths are shown in Table 1. One can
see that the numerical results show second-order convergence clearly.

Example 2: A 2D unit circle under simple shear flow

In this test, we consider a unit circle under simple shear flow u = (y, 0). Thus, the interface
evolves to a slanted ellipse of the form

Σ(t) =
{

x(θ, t) =
(

cos(θ) + t sin(θ), sin(θ)
)
, 0 ≤ θ ≤ 2π

}
.

Along the interface Σ(t), we set the function Γ(θ, t) = e−t cos(θ) as the exact solution of
Eq. (13) with an extra source function g defined by g = DΓ

Dt
+ (∇s · u) Γ −∆sΓ. Again, the

initial interface is a unit circle with initial condition Γ(θ, 0). The solutions are computed up
to time t = 1 with time step size ∆t = h/2. We set the largest mesh width h = 1/40 to make
sure that the closest point mapping is well-defined in Tε during computations. The numerical
errors and their convergence rates are shown in Table 2 which shows the clean second-order
convergence as well.
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Table 2: The errors and their convergent rates for the convection-diffusion equation under
the simple shear flow at t = 1.

h ‖eh‖∞ rate ‖eh‖1 rate ‖eh‖2 rate
1/40 2.02×10−4 – 5.14×10−4 – 2.32×10−4 –
1/80 4.61×10−5 2.13 1.23×10−4 2.06 5.51×10−5 2.07
1/160 1.15×10−5 2.01 3.05×10−5 2.01 1.36×10−5 2.02
1/320 2.86×10−6 2.01 7.61×10−6 2.00 3.40×10−6 2.00
1/640 7.16×10−7 2.00 1.90×10−6 2.00 8.50×10−7 2.00

Table 3: The errors and their convergent rates for the convection-diffusion equation on the
expending sphere at t = 0.5.

h ‖eh‖∞ rate ‖eh‖1 rate ‖eh‖2 rate
1/10 6.25×10−4 – 1.45×10−2 – 2.30×10−3 –
1/20 1.54×10−4 2.02 3.56×10−3 2.02 5.74×10−4 2.00
1/40 3.83×10−5 2.01 8.84×10−4 2.01 1.42×10−4 2.01
1/80 9.63×10−6 1.99 2.21×10−4 2.00 3.57×10−5 2.00

Example 3: A 3D expanding sphere

In this example, we consider the case of an expanding sphere with the velocity u = 2n. Thus,
the expanding sphere can be written in terms of radius function r(t) = 1 + 2t. Along the
surface, we define the function

Γ(x, y, z, t) = e1/r(t) z

r2(t)
,

which is the exact solution of Eq. (13) with the initial condition Γ(x, y, z, 0) on the unit
sphere. The solutions are computed up to the time t = 0.5 with time step size ∆t = h/2.
The numerical errors and their convergence rates are shown in Table 3 which again show
clean second-order convergence for different norms too.

Example 4: An oscillating ellipsoid

In this test, we consider the case of an oscillating ellipsoid developed in [6],

Σ(t) =

{
x = (x, y, z) :

x2

a2(t)
+ y2 + z2 = 1

}
,

where a(t) =
√

1 + sin (t)/4, and associated velocity field u =
(
a′(t)
a(t)

x, 0, 0
)

. More generally,

the oscillating ellipsoid has the parametric form

x(θ, φ, t) =
(
a(t) sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
,
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Table 4: The errors and their convergent rates for the convection-diffusion equation on the
oscillating ellipsoid at t = 4.

h ‖eh‖∞ rate ‖eh‖1 rate ‖eh‖2 rate
1/10 1.35×10−4 – 5.29×10−4 – 1.61×10−4 –
1/20 2.62×10−5 2.37 1.30×10−4 2.02 4.14×10−5 1.96
1/40 6.12×10−6 2.10 3.20×10−5 2.03 1.03×10−5 2.01
1/80 1.45×10−6 2.08 7.92×10−6 2.02 2.55×10−6 2.01

where 0 ≤ θ < π and 0 ≤ φ < 2π. The exact solution is defined by Γ(θ, φ, t) = a(t) sin2(θ) cos(φ) sin(φ)
on the interface Σ(t) and an extra source term g = DΓ

Dt
+ (∇s · u) Γ −∆sΓ is added so that

the surface function Γ satisfies Eq. (13). The solutions are computed up to the time t = 4
with time step size ∆t = h. The numerical errors and their convergence rates are shown in
Table 4 which confirms the desired second-order convergence again.

5 Numerical results on interfacial flows

5.1 An ellipsoid droplet in quiescent flow

As a first test, we consider an ellipsoid droplet with the interface Σ(0) = {x2 + y2/(1.6)2 +
z2/(0.4)2 = 1} immersed in a quiescent flow initially. The computational domain Ω =
[−4, 4] × [−4, 4] × [−4, 4] with mesh size h = 1/32, and the time step size ∆t = h/4. The
initial surfactant concentration is set to be Γ0 = 1 along the interface. The dimensionless
numbers are chosen as Re = 0.1, Ca = 0.1, β = 0.6, and Pes = 1. The computations are up
to time t = 4. Since the surfactant is insoluble, the total surfactant mass must be conserved
along the interface. Meanwhile, the fluid is incompressible, so the total volume of the droplet
must be conserved theoretically as well. The total surfactant mass M(t) and total volume of
the droplet V (t) can be computed by

M(t) =

∫
Ω

Γ (PΣ(x)) δh (d (x)) J(x)dx, V (t) =

∫
Ω

(1−Hh (d (x))) J(x)dx,

where the smoothing delta function δh is defined in Eq. (20) so the corresponding smoothing
Heaviside function is

Hh(x) =


0, if x ≤ −2h
x
4h

+ 1
2π

sin πx
2h
, if −2h < x < 2h

1, if x ≥ 2h.

Fig. 2(a) shows the relative error of total surfactant mass EM = |M(t)−M0|
M0

while Fig. 2(b)

shows the relative error of total droplet volume EV = |V (t)−V0|
V0

. Here, M0 and V0 are the
initial total surfactant mass and total droplet volume, respectively. One can immediately see
that the relative error of total surfactant mass is less than 0.1% and the one of total droplet
volume is less than 0.05% up to time t = 4. This confirms that our present GBPM-IBIM
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Figure 2: Relative errors of (a) total surfactant mass and (b) droplet volume.

method preserves the total surfactant mass and droplet volume quite well without performing
any re-scalings during the computation.

In order to see the influence of surfactant on the interfacial behaviors, it is natural to
compare the droplet dynamics between the clean interface (no surfactant) by choosing β = 0
and the one with surfactant. Fig. 3 shows the time evolutionary plots of the droplet at
different times for the cases of clean interface (top, β = 0) and the one with surfactant
(bottom, β = 0.6). Since the surfactant reduces the surface tension, the retreating force of
the contaminated droplet is significantly weaker than the one of without surfactant. As a
result, the contaminated interface lags the drop oscillatory motion than the clean one; see
the comparisons at t = 0.25, 0.5, 1.5. Nevertheless, at final time t = 4, both drops evolve
to the same spherical equilibrium shape eventually. This can also be confirmed by checking
the time evolutionary surface area as shown in Fig. 4 (a), where the steady surface area is
As = 4πr2

s = 4π(3V0
4π

)2/3. One can also see in Fig. 4 (b) that the minimum and maximum
values of the surfactant concentration converge to the equilibrium value Γs = A0/As, where
A0 is the initial surface area of the droplet.

Figure 3: The time evolutionary plots of droplet in a quiescent flow.

5.2 Effect of capillary number

In this test, we study the effect of capillary number on the droplet dynamics under simple
shear flow. We put a unit spherical droplet in the center of the computational domain Ω =
[−4, 4]× [−8, 8]× [−4, 4] initially and apply the uniform boundary condition u = (0, z, 0) at
z = ±8. The mesh width is h = 1/16, and the time step size is ∆t = h/4. The initial surface
concentration is chosen to be uniformly distributed Γ0 = 1. The dimensionless numbers
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Figure 4: (a) The time evolutionary surface area plots for both clean and contaminated inter-
faces. (b) The time evolutionary plots of minimum and maximum surfactant concentrations
along the contaminated interface.

are chosen as Re = 1, β = 0.1, P es = 1 but we vary the capillary number Ca = 0.2, 0.3
and 0.4. It is known from previous numerical studies such as [24, 17] that as the capillary
number increases, the droplet is elongated more so the deformation becomes larger. One can
measure the deformation by the factor D = L−B

L+B
, where L and B are the lengths of major and

minor axis of the droplet, respectively. Fig. 5 shows the droplet morphology together with
surfactant concentration at different times for three different capillary numbers. One can see
that for smaller capillary number Ca = 0.2, 0.3, the droplet tends to be in equilibrium shape
after t = 6 while the one with Ca = 0.4 elongate more even after t = 12. These droplet
behaviors have been confirmed by the time evolutionary plots of the deformation factor as
shown in Fig. 6.

Figure 5: The droplet morphology together with surfactant concentration at different times
for Ca = 0.2, 0.3, 0.4.

5.3 Comparison with small deformation theory

As shown in previous test, we know that the droplet under shear flow tends to become an
equilibrium shape when the capillary number is small. Therefore, we can compare the present
numerical results with the ones obtained from the small deformation theory [33, 24] in which
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Figure 6: The time evolutionary plots of the deformation factor for Ca = 0.2, 0.3, 0.4.

the drop deformation is assumed to be small (smaller Ca) and the surfactant concentration
is assumed to be nearly uniform. In such case, the deformation factor is given by

D =
5

8

35 + 4ε

20 + 2ε

Ca

1− β
, (21)

where ε = Pesβ
Ca

.
In this simulation, the computational domain setup is the same as the previous test while

we choose smaller Reynolds number Re = 0.01 and Peclet number Pes = 0.1. Fig. 7 (a) shows
the deformation factor D versus the capillary number for the present simulations and the
theoretical results obtained from the relation (21). One can immediately see that the present
results agree with the theoretical ones pretty well for the cases of β = 0 (clean interface) and
β = 0.5 (contaminated interface with surfactant) when the capillary number is below 0.2. In
addition, one can confirm again that given the same capillary number, the deformation for
the case of with surfactant β = 0.5 is larger than the one of without surfactant.

When the droplet is in equilibrium, the shape does not change and the major axis will
align with flow direction and forms an inclination angle θ (the angle between the major axis
and the shear flow direction). The flow inside the droplet is rotational. In [3], for the case of
the droplet without surfactant, the authors derived the relation between the angle and the
capillary number as

θ =
π

4
+

35

32
Ca. (22)

Fig. 7 (b) shows the inclinational angle θ versus the capillary number Ca for the present
simulations and the theoretical results obtained from Eq. (22). Again, one can see that our
numerical results are in a good agreement with the theoretical ones for the case of β = 0.
Meanwhile, from this figure, one can also see that at given capillary number, the inclinational
angle for the case of with surfactant β = 0.5 is greater than the one of without surfactant
β = 0.
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Figure 7: (a) The deformation factor versus the capillary number for the present simulations
and theoretical results in Eq. (21). (b) The inclinational angle versus the capillary number
for the present simulations and theoretical results in Eq. (22).

5.4 Effect of elasticity number

In this test, we study the effect of elasticity number β on the droplet under shear flow. The
computational setup is same as the second test except we fix the dimensionless numbers
Re = 1, Ca = 0.2, P es = 1 and vary the elasticity number β = 0, 0.3, 0.5. From the equation
of state Eq. (4), we can see that as β increases, the surface tension reduces more which results
larger deformation. This is exactly the case as we can see from Fig. 8 in which the droplet
morphology together with surfactant concentration at different times for β = 0, 0.3, 0.5 are
plotted. One can see that for smaller elasticity number β = 0, 0.3, the droplet tends to be in
equilibrium shape after sometime while the one with β = 0.5 still elongate even after t = 12.
These droplet behaviors have been confirmed again for the time evolutionary plots of the
deformation factor as shown in Fig. 9.

Figure 8: The droplet morphology together with surfactant concentration at different times
for β = 0, 0.3, 0.5.
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Figure 9: The time evolutionary plots of the deformation factor for β = 0, 0.3, 0.5.

5.5 Effect of Peclet number

As a last test, we study the effect of surface Peclet number Pes on the droplet under shear
flow. The computational setup is same as the second test except we fix the dimensionless
numbers Re = 1, Ca = 0.2, β = 0.28 and vary the Peclet number Pes = 0.1, 1, 10. As
mentioned earlier, the Peclet number represents the relative importance between surfactant
convection and diffusion in the droplet interface dynamics, so a larger Peclet number indicates
the convection is more dominated. Since the initial surfactant concentration is uniformly
Γ0 = 1 along the interface, the larger Peclet number makes the surfactant distribution more
profound as shown in Fig. 10 where the value range of surfactant concentration becomes
larger as Pes increases. This results in larger droplet deformation as the Peclet number
increases which is confirmed in Fig. 11.

Figure 10: The droplet morphology together with surfactant concentration at different times
for Pes = 0.1, 1, 10.
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Figure 11: The The time evolutionary plots of the deformation factor for Pes = 0.1, 1, 10.

6 Conclusion

In this paper, we develop a coupled grid based particle and implicit boundary integral method
for simulations of three-dimensional interfacial flows with the presence of insoluble surfactant.
We use splitting scheme to handle the moving interface as well as the surfactant density that is
being convected along. We compared our numerical simulations to some problems for which
the analytical solutions are available. The comparison shows that the proposed method
obtains the second-order convergence rate as grid refines. For complicated problems, such as
a droplet in shear flow, our simulation results highly coincide with theoretical behavior. We
plan to generalize the proposed method and code to study droplet dynamics in the presence
of surfactant under a DC electric field. As we mentioned in the introduction, our proposed
method can be used easily to compute electric potentials involving dielectric droplets in
electrohydrodynamic applications.
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