
ICES REPORT 18-03

March 2018

Adaptive Mesh Refinement with an Enhanced Velocity
Mixed Finite Element Method on Semi-Structured Grids

using a Fully-Coupled Solver
by

Benjamin Ganis, Gergina Pencheva, Mary F. Wheeler

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Benjamin Ganis, Gergina Pencheva, Mary F. Wheeler, "Adaptive Mesh Refinement with an Enhanced
Velocity Mixed Finite Element Method on Semi-Structured Grids using a Fully-Coupled Solver," ICES REPORT
18-03, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, March
2018.

Adaptive Mesh Refinement with an Enhanced Velocity Mixed

Finite Element Method on Semi-Structured Grids using a

Fully-Coupled Solver

Benjamin Ganis∗† Gergina Pencheva∗ Mary F. Wheeler∗

March 26, 2018

Abstract

We describe a novel approach for performing adaptive mesh refinement using mixed finite
elements for flow in porous media applications. The enhanced velocity (EV) mixed finite element
method is used to construct a strongly flux-continuous velocity approximation between non-
matching subdomain grids. In this work, the original EV implementation was generalized to
allow interfaces in the interior of subdomains adjacent to inactive cells and to allow dynamic
adaptive mesh refinement (AMR). In the new implementation, subdomains with different spatial
resolutions are stacked on top of each other to produce a very general semi-structured grid.
The decomposition is non-overlapping, but now the subdomains can have holes, have ragged
edges, and be nested within each other. Several examples with adaptive mesh refinement are
demonstrated in two and three spatial dimensions; a priori indicators are used to adapt the
grid for a multiphase compositional flow model, and a posteriori indicators are used to adapt
the grid for a single phase flow model. Moreover, a new fully-coupled linear solver for the EV
method is also implemented in this work, which shows a dramatic reduction in the number of
Newton iterations versus the previously implemented nonlinear block Jacobi solver, especially
when systems have a strong elliptic component.

Keywords. adaptive mesh refinement; mixed finite elements; enhanced velocity method; semi-
structured grid; block-structured AMR, fully-coupled solver

1 Introduction

The enhanced velocity (EV) mixed finite element method was first introduced in [35] as a way
to model flow in porous media on non-matching multiblock grids. The basic idea is that a fluid
model is discretized using standard mixed finite element methods such as Raviart-Thomas (RT)
elements [30, 26] on non-overlapping subdomains. These subdomains have typically have structured
Cartesian grids, but their traces are allowed to be spatially non-conforming at subdomain interfaces.
Extra degrees of freedom for the normal fluxes are added (i.e., the velocity is enhanced) along the
subfaces of the intersection mesh, giving exact normal flux continuity between subdomains by
construction. This method is known to achieve element-wise local mass conservation throughout
the entire domain, including at spatial non-conformities, and it has been shown to be a convergent
scheme.
∗Center for Subsurface Modeling, The Institute for Computational Engineering and Sciences (ICES), The Univer-

sity of Texas at Austin, Austin, Texas, USA.
†Corresponding author, bganis@ices.utexas.edu.

1

The novelty of this paper describes how we have extended the EV mixed finite element method
in several important ways:

1. We pose the EV method on semi-structured grids such that the non-overlapping subdomains
may have holes, have ragged edges, and be nested within each other.

2. We incorporate adaptive mesh refinement (AMR) so that the spatial decomposition changes
dynamically at each time step.

3. We use a fully-coupled linear solver in the Newton iteration that is an improvement over the
previously used nonlinear block Jacobi solver.

Our parallel implementation in the IPARS (Integrated Parallel Accurate Reservoir Simulator) code
is demonstrated on both single phase slightly compressible flow and fully compositional multiphase
flow models. Figure 1 shows an admissible semi-structured grid that is possible with these new
extensions. Each subdomain is composed of a set of active elements from underlying Cartesian
grids that cover the entire domain. They are numbered such that each subsequent subdomain has
a finer mesh resolution and its underlying grid is evenly nested the preceding level. The union of
all subdomains covers the domain in a non-overlapping fashion. This grid can now change at every
time step.

[

3 Semi-Structured Grids

4 Adaptive Mesh Refinement Algorithms

5 A Fully-Coupled Solver

6 Numerical Examples

7 Conclusion

8 Acknowledgements

This work was supported by DOE grant FG02-04ER25617, NSF grant 1546553, and the
CSM industrial a�liates program.

References

[1] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15. Springer
Science & Business Media, 2012.

[2] S.G. Thomas and M.F. Wheeler. Enhanced velocity mixed finite element methods for
modeling coupled flow and transport on non-matching multiblock grids. Computational
Geosciences, 15(4):605–625, 2011.

[3] J.A. Wheeler, M.F. Wheeler, and I. Yotov. Enhanced velocity mixed finite element
methods for flow in multiblock domains. Computational Geosciences, 6(3):315–332,
2002.

4

[

3 Semi-Structured Grids

4 Adaptive Mesh Refinement Algorithms

5 A Fully-Coupled Solver

6 Numerical Examples

7 Conclusion

8 Acknowledgements

This work was supported by DOE grant FG02-04ER25617, NSF grant 1546553, and the
CSM industrial a�liates program.

References

[1] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15. Springer
Science & Business Media, 2012.

[2] S.G. Thomas and M.F. Wheeler. Enhanced velocity mixed finite element methods for
modeling coupled flow and transport on non-matching multiblock grids. Computational
Geosciences, 15(4):605–625, 2011.

[3] J.A. Wheeler, M.F. Wheeler, and I. Yotov. Enhanced velocity mixed finite element
methods for flow in multiblock domains. Computational Geosciences, 6(3):315–332,
2002.

4

[

3 Semi-Structured Grids

4 Adaptive Mesh Refinement Algorithms

5 A Fully-Coupled Solver

6 Numerical Examples

7 Conclusion

8 Acknowledgements

This work was supported by DOE grant FG02-04ER25617, NSF grant 1546553, and the
CSM industrial a�liates program.

References

[1] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15. Springer
Science & Business Media, 2012.

[2] S.G. Thomas and M.F. Wheeler. Enhanced velocity mixed finite element methods for
modeling coupled flow and transport on non-matching multiblock grids. Computational
Geosciences, 15(4):605–625, 2011.

[3] J.A. Wheeler, M.F. Wheeler, and I. Yotov. Enhanced velocity mixed finite element
methods for flow in multiblock domains. Computational Geosciences, 6(3):315–332,
2002.

4

[=

3 Semi-Structured Grids

4 Adaptive Mesh Refinement Algorithms

5 A Fully-Coupled Solver

6 Numerical Examples

7 Conclusion

8 Acknowledgements

This work was supported by DOE grant FG02-04ER25617, NSF grant 1546553, and the
CSM industrial a�liates program.

References

[1] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15. Springer
Science & Business Media, 2012.

[2] S.G. Thomas and M.F. Wheeler. Enhanced velocity mixed finite element methods for
modeling coupled flow and transport on non-matching multiblock grids. Computational
Geosciences, 15(4):605–625, 2011.

[3] J.A. Wheeler, M.F. Wheeler, and I. Yotov. Enhanced velocity mixed finite element
methods for flow in multiblock domains. Computational Geosciences, 6(3):315–332,
2002.

4

⌦1

⌦2

⌦3

⌦4

5

Figure 1: An example of a semi-structured grid comprised of the union of four non-overlapping
polygonal subdomains with different spatial resolutions.

We note that our concept of a semi-structured EV grid is more general than quadtree or octree
meshes [17], which are tree-based data structures that have been used in scientific computation
since the 1970’s for nonconforming local refinements of structured grids. The EV method is more
general because this mixed finite element technique is well-posed on grids with completely arbitrary
spatial non-conformities. Therefore, the refinement ratios between any two levels (i.e. subdomains)
in each spatial dimension need not be restricted to two. In fact, there may be different refinement
ratios between any two given grid levels. Moreover, an element of one refinement level may be
adjacent to any element of any other refinement level, so the meshes need not be graded, although
doing so gives a smoother solution. However in spite of this supported generality, the types of grids
used in the presented numerical examples are indeed special cases of quadtree and octree meshes,
upon which we pose mixed finite element methods to solve single and multiphase flow in porous
media.

In order to drive any AMR procedure, it is necessary to have indicators that mark areas of
the domain for refinement or de-refinement. In practice this is done through the calculation of a
posteriori error indicators. In order to meet the aforementioned three goals, it is beyond the scope
of this paper to develop new a posteriori error indicators. We will therefore take the following
approach: As a proof of concept for the complex physics arising from a multiphase flow model, we

2

will employ a priori error indicators that determine grid refinement through advance knowledge
of the fine scale solution. For a simpler single phase flow model, we will employ a residual-based
a posteriori error indicator. For the necessary details of the fully compositional equation-of-state
multiphase flow model, the reader is referred to the recent work of [20] and the references therein
for the appropriate formulation using a two-point flux cell-centered finite difference scheme. The
compositional model is quite complicated, but since the model itself is not under study in this
paper, we omit the details for brevity. We reiterate that the focus of this paper merely on the
construction of the EV method on a new type of dynamic grid with a fully-coupled solver, which
is applicable to both a variety of flow models and a posteriori error indicators.

The analysis of a posteriori error indicators in the context of AMR is an active area of research
with a rich history that is highly dependent on the partial differential equations and finite element
methods under consideration. The textbooks [2] and [6] and their many references give a broad
overview of indicators and refinement strategies for a variety of applications and numerical schemes.
With respect to AMR applied to mixed finite element methods, we mention some specific works
here. In [24], a steady-state elliptic problem was studied with mixed hybrid finite elements, which
considered nonconforming refinements of rectangular Cartesian grids, as well as both conforming
and nonconforming local refinements of unstructured triangulations in two dimensions. In [7], a
Richard’s equation for partially saturated flow was considered with RT mixed finite elements on
conforming refinements of unstructured triangles. In [12], an analysis was performed using RT
mixed finite elements for an elliptic problem with homogeneous coefficients. In [37], the multiscale
mortar mixed finite element method was used to construct a posteriori error indicators for an
elliptic problem, whereby local refinements were utilized on a subdomain level. In [28], alternative
a posteriori indicators were constructed for the mortar method based on post-processing techniques
to give efficiency, as well as guaranteed upper and lower bounds on the errors. With respect to
recent work on quadtree and octree implementations, we note the useful p4est library [11], although
it is not employed in this work. An example of its utility is demonstrated in the recent work [15]
on AMR for a non-porous media two-phase equation-of-state flow for combustion applications.

We would also like to point out the many generalizations and extensions of the underlying mixed
finite element techniques that have been developed over many decades. The relationship between
the lowest order Raviart-Thomas (RT0) mixed finite element spaces on structured Cartesian grids
and the standard two-point flux cell-centered finite difference method (CCFD) has been established
since [31]. Here, CCFD was shown to be a special case of RT0 through the application of a special
quadrature rule. The so-called expanded mixed finite element methods have been developed to sup-
port full tensor permeability coefficients [5]. Mortar methods have been used to couple subdomains
with Lagrange multipliers since the seminal work of [23], followed up by a thorough multiscale
analysis in [4]. The EV method was formulated as an alternative to the mortar method in [35] with
an implementation based on a nonlinear block Jacobi solver. The mortar method was originally
formulated as an iterative interface problem, interface preconditioners were developed [29], and the
algorithm was also modified through the formulation of a multiscale basis [22]. The mortar method
was reformulated again as a fully-coupled global Jacobian system [18], which made this computa-
tional speed comparable to what was observed for the EV method. This fully-coupled construction
is done for the EV method in this paper for further improvement. More recently, similar velocity
elimination techniques have been used on distorted quadrilateral and hexahedral grids, whereby
other quadrature techniques have been applied to the BDM [9] or BDDF [8] mixed finite element
spaces in order to formulate the multipoint flux mixed finite element methods (MFMFE) [36]. The
MFMFE method has a strong similarity to the MPFA-O method [1], with the added benefit of
having a variational formulation enabling rigorous convergence analysis. Continuting work is ex-
tending the MFMFE method to nonconforming hexhedral grids using EV techniques [21] as well as

3

local flux [25] techniques. All of these methods began with a mathematical formulation on a simple
single phase flow model, but were then generalized more complicated multiphase flow models as in
[14, 19, 20]. Only modest success was made in adaptive mesh refinement, since subdomains were
statically placed in separate spatial locations. In this paper, the simple reconsideration of these
methods with semi-structured grids demonstrates that much more powerful AMR is possible in this
extensive body of work.

The format of our paper is as follows. In Section 2, we review the formulation of the EV method
and describe details of its implementation on semi-structured grids. In Section 3, we describe the
algorithms used for adaptive mesh refinement. In Section 4, we describe the fully-coupled linear
solver and its differences over the nonlinear block Jacobi solver. In Section 5, we give a variety of
numerical examples for two and three dimensions, single phase and compositional flow models, and
a priori and a posteriori based grid adaptivity. These adaptive results show a significant speedup
over a fine grid solution, while maintaining critical solution accuracy where it is needed. In Section
6, we give some concluding remarks.

2 The EV Method on Semi-Structured Grids

In this section, we review the formulation of the EV method for flow in porous media on non-
matching multiblock domains with a slightly compressible single phase flow model, similar to the
presentation in [34]. We note that the EV method has been implemented for several multiphase
flow models including fully compositional flow, but for simplicity in the presentation we describe it
for a single phase model. The novelty in this work is the extension of the EV method to dynamic
semi-structured grids.

Consider a time interval [0, T], along with a spatial domain, Ω ⊂ Rd, for d = 2 or 3, with
boundary ∂Ω and outward normal n. We assume the spatial domain is polygonal with edges
parallel to the Cartesian coordinate axes. It is decomposed into N non-overlapping subdomains
such that

Ω =

N⋃

k=1

Ωk, Ωk ∩ Ωl = ∅ when k 6= l. (1)

Pairs of subdomain interfaces are denoted by Γkl = Γlk = ∂Ωk ∩ ∂Ωl, the union of all interfaces are
denoted by Γ =

⋃
1≤k<l≤NΩ

Γkl, and interior subdomain interfaces are denoted by Γk = ∂Ωk ∩ Γ =
∂Ωk \∂Ω. We assume the subdomains Ωk have the same polygonal shape restriction as the domain,
but note they may have holes and be nested within each other. Furthermore, a single subdomain
may also be comprised of a union of non-contiguous polyhedra. To incorporate adaptive mesh
refinement, the spatial decomposition is allowed to change dynamically, but since it is always a
non-overlapping, the decomposition satisfies the property (1) at each point in time.

The model partial differential equations for slightly compressible single-phase flow through a
porous medium are given by

u = −K
µ
ρ (∇p− ρg) in Ω× (0, T], (2a)

∂

∂t
(φρ) +∇ · u = q in Ω× (0, T], (2b)

u · n = 0 on ∂Ω× (0, T], (2c)

p = p0 on Ω× {t = 0}. (2d)

The subsurface flow is characterized by Darcy’s law (2a) together with a conservation of mass
(2b). The primary unknowns are p(x, t) for fluid pressure and u(x, t) for the Darcy velocity. Given

4

data include the porosity φ(x), the mass flux source term q(x, t), the second order permeability
tensor K(x), the fluid viscosity µ, and the gravitational acceleration vector g. No-flow boundary
conditions are assumed in (2c), but we note the extension to more general boundary conditions is
straightforward. The initial condition (2d) is assumed to be under hydrostatic equilibrium. The
density, ρ = ρ(p), satisfies the slightly compressible equation of state,

ρ = ρrefec(p−p
ref), (3)

where ρref is the reference density at the reference pressure pref, and c is the fluid compressibility.
The nonlinearity of this model is mild, owing to the fact that c is small. The permeability tensorK is
assumed to be uniformly bounded and positive definite, i.e., there exist constants 0 < k0 ≤ k1 <∞
such that

k0‖ξ‖2 ≤ ξTK(x)ξ ≤ k1‖ξ‖2 ∀ξ ∈ Rd, ∀x ∈ Ω, (4)

where ‖ · ‖ is the Euclidean vector norm.
The functional spaces for the dual mixed weak formulation [10] of (2) are V = H(div; Ω) =

{v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)} and W = L2(Ω). The weak solution is a pair u ∈ V, p ∈ W such
that

(µρ−1K−1u,v)− (p,∇ · v)− (ρg,v) = 0, ∀v ∈ V, (5a)
(
∂(φρ)

∂t
, w

)
+ (∇ · u, w) = (q, w), ∀w ∈W, (5b)

where (·, ·) denotes the L2(Ω)-inner product.

2.1 Fully-Discrete Formulation with EV

To write the fully-discrete finite element discretization of (5a)–(5b), we first break the temporal
domain into discrete time steps 0 = t0 < t1 < . . . < tM = T , such that ∆tm = tm− tm−1, for which
we will employ the implicit backward Euler method. At each time step m, the non-overlapping
domain decomposition may change, so we add the subscript m to denote the subdomain Ωk = Ωk,m

at t = tm.
The spatial discretization uses the Raviart–Thomas mixed finite element spaces of lowest order

RT0 [30, 26] on rectangles (if d = 2) or bricks (if d = 3). Let Th,k be a static tensor-product
Cartesian grid that covers Ω with mesh resolution hk. Let Th,m,k be the dynamic subdomain
grid that is related to the static mesh Th,k, whereby its elements are either active or inactive at
time level m. We associate the global characteristic mesh width h = maxN

k=1(hk) in terms of the
subdomain with the coarsest resolution, and we order the subdomains k = 1, . . . , N from coarsest
to finest. At time level m, the global mesh is denoted Th,m =

⋃N
k=1 Th,m,k. The traces of subdomain

grids are spatially non-conforming at the dynamic interface Γm, and the dynamic discretization is
non-overlapping and completely covers Ω.

Let {x1, . . . , xd} denote an orthonormal coordinate system in a frame of reference. For each
active Cartesian element E ∈ Th,m, the RT0 spaces are defined as follows:

Vh,m(E) = {v = (v1, . . . , vd)T : vi = ai + bixi; ai, bi ∈ R, i = 1, . . . , d}
Wh,m(E) = {w = c : c ∈ R}.

On interior edges of subdomains and external boundaries, the velocity v ∈ Vh,m(E) is uniquely
determined by degrees of freedom corresponding to the normal components v · n at midpoints of

5

edges (or faces) of E, where n is the outward unit normal of ∂E. These normal flux degrees of
freedom are shared between neighboring elements in the same domain. The degree of freedom
uniquely determining the pressure w ∈ Wh,m(E) is a single constant corresponding to its value at
the center of E.

The basic idea of the enhanced velocity space V∗h,m ⊂ V is to introduce extra velocity degrees
of freedom on spatially non-conforming interfaces, in order to strongly enforce global mass conser-
vation. This is constructed such that one face centered normal flux degree of freedom exists on
each sub-face between any two neighboring elements belonging to neighboring finite element spaces
of different subdomains. See Figure 2 for diagrams for the degrees of freedom in both the RT0 and
EV spaces. In this picture, the coarse element adjacent to the non-conforming boundary has two

pressure

velocity (normal flux)

Figure 2: Degrees of freedom for velocity and pressure of the RT0 space for d = 2 on rectangles
(left) and the enhanced velocity space (right) near a non-conforming interface.

normal flux degrees of freedom on its left face, instead of the usual one degree of freedom per face
for elements on the strict interior of a subdomain mesh.

The formal definitions of the global finite element spaces are defined as follows. At each time
step, the global discrete pressure space is defined by

Wh,m = {w ∈ L2(Ω) : w|E ∈Wh,m(E), ∀E ∈ Th,m}.

No modifications are necessary to the pressure space of the global domain near non-conforming
interfaces, because it is comprised of discontinuous constants by construction. For each subdomain
k = 1, . . . , N , the usual RT0 velocity spaces are

Vh,m,k = {v ∈ H(div; Ωk,m) : v|E ∈ Vh,m(E), ∀E ∈ Th,m,k, and v · n = 0 on ∂Ω}.

As described in [35], the direct sum of these subdomain velocity spaces is not a finite dimensional
subspace of H(div; Ω), because the normal vector components do not match at the spatial non-
conformities on Γm. To construct the EV space, first define V0

h,m,k = {v ∈ Vh,m,k : v ·n = 0 on Γk}
to remove velocity degrees of freedom along the interface. Next discretize the interface into a regular
partition T Γ

h,m equal to the intersection of the traces of the non-conforming subdomain grids. When
subdomain grids have an evenly nested relationship, as employed in this work, the interface grid
T Γ
h,m is a subset of existing subdomain faces1. For any subdomain element E ∈ Th,m,k adjacent to

interface Γm, the interface grid T Γ
h,m may divide the boundary face into several parts, which can

subdivide the element E into several pieces, see e.g. the dashed line in Figure 2. For each of these
sub-elements, we define RT0 basis functions with normal component equal one on the interface
edge and zero on all other edges. We then define VΓ

h,m to be the span of all such basis functions.
Finally, the global discrete enhanced velocity space is defined as

V∗h,m = (V0
h,m,1 ⊕ · · · ⊕V0

h,m,N ⊕VΓ
h,m) ∩H(div; Ω).

1In general, the EV method can handle completely non-matching interfaces in which new face subdivisions are
introduced that do not belong to existing traces of subdomain grids, e.g. Figure 3 left.

6

For time stepsm = 1, . . . ,M , the fully-discrete solution is to find a sequence of pairs uh,m ∈ V∗h,m,
ph,m ∈Wh,m such that

(µρ−1
h,mK

−1uh,m,vh)− (ph,m,∇ · vh)− (ρh,mg,vh) = 0, ∀vh ∈ V∗h,m, (6a)
(

(φρ)h,m − Pm(φρ)h,m−1

∆tm
, wh

)
+ (∇ · uh,m, wh) = (q, wh), ∀wh ∈Wh,m, (6b)

where Pm : Wh,m−1 →Wh,m is a mass-preserving L2 projection operator that projects a piecewise
constant finite element function onto the adapted grid of the subsequent time level. Fluid com-
pressibility c > 0 leads to a nonlinear system, so it will be solved incrementally using Newton’s
method on each time step. In matrix form, let us call the fully discrete linear system for a Newton
step [

A B
∆tBT D

] [
δU
δP

]
= −

[
F
G

]
. (7)

For more details, this matrix notation follows the paper [18], except here we do not introduce
Lagrange multipliers into the linear system as in the multiscale mortar method. Residual equations
(6a) and (6b) correspond to vectors F and G respectively, and its Jacobian matrix of partial
derivatives gives the structure of matrix blocks A, B, and D.

Velocity elimination is performed on the matrix system for the EV mixed finite element method.
The first term in (6a) is evaluated using a trapezoidal-midpoint quadrature rule [31], which diago-
nalizes the A matrix. This gives a straightforward way to convert the indefinite saddle point system
into a non-symmetric positive definite system in terms of the pressure increment alone.

(
∆t BTA−1B −D

)
︸ ︷︷ ︸

J

δP =
(
G−∆t BTA−1F

)
︸ ︷︷ ︸

−R

(8)

The special case of the EV mixed finite element method with special quadrature and velocity
elimination yields a Jacobian matrix J and residual vector R that is equivalent to a cell-centered
finite difference (CCFD) scheme. In areas of the domain where the grid is spatially conforming,
this gives a standard two-point flux scheme with a 5-point or 7-point stencil when d = 2 or
d = 3, respectively. For areas of spatial non-conformity, this gives a two-point flux scheme with
unstructured matrix blocks, due to unstructured nature of the the enhanced velocity degrees of
freedom VΓ

h,m, in which one coarse element may interact with several finer elements through a
single face.

2.2 Extension to Semi-Structured Grids

In the conventional EV method that has typically been used from its initial development [35] until
present, three restrictions were present in the IPARS code framework: (1) interfaces were restricted
to be on the external boundaries of subdomains, (2) subdomains could not be nested within each
other, and (3) the decompositions were static in time.2 These restrictions are somewhat artificial,
because they have nothing to do with the EV method itself, but rather the design choices made in
the initial code implementation.

Figure 3 shows two typical decompositions that were possible under the previous implementa-
tion. The left figure shows three structured subdomains with different resolutions coming together
in a spatially non-conforming way. Due to the restrictions placed upon the code framework, the

2We note that restriction (3) has also been relaxed in the concurrent work of [3, 33] in a separate Matlab research
code.

7

subdomains had to be placed “side-by-side”. This meant when local refinements were needed in
the interior of the domain, it needed to be broken up into many logically structured pieces. The
right figure shows five subdomains were necessary to handle a single area of mesh refinement.
Due to these artificial restrictions, if many areas of local refinement were needed, the number of
subdomains necessary in the previous implementation quickly became untenable.

Figure 3: Two examples of decompositions possible under the previous EV implementation where
interfaces were restricted to external subdomain boundaries. Colors represent subdomains.

In this work, we have made changes to the code framework to relax the above three arbitrary
assumptions that were placed upon the IPARS code framework. More specifically, structured
subdomain grids are now allowed to have inactive cells, such that other subdomains may have
active cells in these vacant areas, see Figure 1. From this point of view, the subdomains are placed
“on top” of each other, and each subdomain is associated with its own mesh refinement level. We
define this as a semi-structured grid. This enables adaptive grid refinement in any part of the
domain with a minimal number of subdomains and greater ease of use. It also allows the method
to accurately resolve complex solution features such as moving fronts and domain features such as
fractures and channels. These refinement techniques can be driven with error estimation.

The refinement ratios between any two consecutively numbered subdomains rk, for k = 1, . . . , N−
1, are defined such that if Ωk has a n1× . . . nd grid, then Ωk+1 has a rk ·n1× . . . rk ·nd grid. In the
special case when rk = 2, for k = 1, . . . , N − 1, this construction is similar to a quadtree or octree
mesh [17] in two or three spatial dimensions. However, the semi-structured grids in the EV con-
struction are more general than quadtree meshes in several ways: (1) the refinement ratios can be
any integer rk ≥ 2, (2) the refinement ratios may be different such that rk 6= rl is allowed for k 6= l,
and (3) the meshes need not be graded, as Γkl 6= ∅ is allowed for levels |k − l| > 2. These gen-
eralizations are possible, because the EV method can easily handle any type of arbitrary spatial
non-conformity between elements.

Recall Figure 1 that shows an example of an admissible spatial decomposition using a semi-
structured grid with four refinement levels. This grid has been refined to resolve the sharp gradient
of a saturation front caused by a radial flow pattern around a fluid injection source. The first
subdomain Ω1 has a 10 × 10 grid, and the others are refined by a factor of 2 in each dimension,
leading to Ω4 having a 80× 80 grid. Each subdomain contains inactive cells (not shown) to create
vacant areas where other subdomains may have active regions. The subdomains are polyhedral in
shape but not necessarily contiguous, as observed in Ω2 and Ω3. The mesh was graded so that
subdomain Ωk is only adjacent to subdomains Ωk−1 or Ωk+1, but note this is not a requirement by
the EV method. We reiterate that property (1) is always satisfied.

3 Adaptive Mesh Refinement Algorithms

The main goals of this paper are to generalize the EV method to semi-structured grids, to demon-
strate dynamic adaptive mesh refinement, and to improve the solver of the resulting systems.

8

However, in order to drive any dynamic grid refinement procedure, it is necessary to utilize some
type of error indicator. As discussed in Section 1, the literature is extensive but oftentimes highly
specific to physical models and numerical methods. Please note that it is beyond the scope of this
paper to formulate new error indicators; the numerical examples serve as proofs of concept for the
stated goals. These examples employ two types of error indicators: a priori and a posteriori. The
former assumes prior knowledge of a fine scale solution and the latter does not. Figure 4 shows
high-level flow charts for the two types of refinement algorithms.

a priori refinement algorithm a posteriori refinement algorithm

SOLVE
nonlinear

problem on
fine grid

compute
indicator
(fine grid)

adapt grid
(current time)

upscale
previous

solution to
adapted grid

SOLVE
nonlinear

problem on
adapted grid

visualize,
output

solution

upscale
current

solution to
fine grid

continue to
next time step

restore fine
grid

SOLVE
nonlinear

problem on
adapted grid

compute
indicator

(adapted grid)

visualize,
output

solution

adapt grid
(next time)

upscale
current

solution to
adapted grid

continue to
next time step

Figure 4: Flow charts for the two types of refinement algorithms used in this work.

In the a priori refinement algorithm given in Figure 4 (Left), on any given time step, we first
solve a fine scale problem.3 The fine scale solution is used to compute one or more indicator
functions. At locations where indicator functions exceed given thresholds, elements are marked
to be on the finest level, and the mesh is graded to be gradually coarsened in unmarked regions.
After constructing this adaptive grid, the solution from the previous time step is projected onto the
adapted grid, and the nonlinear problem is resolved on the same time step. The adaptive solution
is projected back onto the fine grid in preparation for the next time step. In this way, the fine scale
solution was only determined to construct the indicator itself.

In the a posteriori refinement algorithm given in Figure 4 (Right), we start with a current
adapted grid that was determined from the previous time step, and solve the nonlinear problem.
An error indicator is computed on the current adapted grid in order to mark cells that exceed
refinement or de-refinement thresholds. From one adaptive grid to the next, an element may move
up or down one refinement level. This procedure could potentially be iteratively performed several
times within a given time step, but in this work it is only performed once. Hence, indicators
computed on the current adapted grid will determine the adapted grid of the subsequent time step.
Unlike the previous refinement algorithm, this is the type of method that should drive a realistic
AMR procedure when it is employed in practice.

Algorithmic flow charts for marking cells from indicator functions and constructing the adaptive
grids on each time step are given in Figure 5. For parallel considerations, places where interprocess
communication is necessary to populate ghost layers are marked UPDATE. Note the a priori
case starts with an indicator on the fine grid and marks cells to belong to the finest level where
thresholds are exceeded. Areas of fine grid are completely determined by the computation of the
current indicator, and are independent of adaptive grid used at the previous time step. In contrast,
the a posteriori case starts with an indicator on the current adaptive grid, and makes decisions on
how to refine or de-refine individual cells from one adaptive solution to the next. Each algorithm
finishes with a loop to grade the mesh, to improve solution quality by enforcing smooth changes in

3Please note, one would never employ the a priori refinement method in practice, because it is computationally
more costly than the fine scale problem, while giving a less accurate solution. Nevertheless, it serves an important
purpose: to demonstrate the quality and efficiency of the EV solution on a predetermined adaptive semi-structured
grid, while decoupling it from the complex issue of finding a good a posteriori indicator.

9

refinement levels between neighboring cells.

a priori grid construction a posteriori grid construction
algorithm algorithm

Given indicator η on fine grid

Assign elements where |η| > TOL to finest level L.

Make finest level consistent.

FOR levels j = L-1,…,2

Assign elements neighboring level (j+1)
to level j.

End FOR

Assign any remaining elements to coarsest level 1.

Done

UPDATE

UPDATE

UPDATE

Given indicator η on adaptive grid

Move elements where |η| > REFINE_TOL
from level j to level min(j+1,L).

Move elements where |η| < COARSEN_TOL
from level j to level max(1,j-1).

FOR levels j = L-1,…,2

Assign elements neighboring level (j+1)
to level j.

End FOR

UPDATE

UPDATE

Done

Figure 5: Flow charts for adaptive grid construction for the two refinement techniques.

There are several other considerations that must be taken into account in the reservoir simulator
when the grids are adaptively refined. All state variables must be appropriately upscaled/downscaled
using the L2-projection operator Pm from one grid to the next. In multiphase equation of state
compositional models, flash calculations must then be reinitialized to maintain mass conservation
between components. Since grid adaptivity changes the number of degrees of freedom in the finite
element method, the linear system must be reordered such that each row corresponds to the current
set of active elements. More specifically to the EV method, the transmissibility factors between
any two elements that have been adapted must be recalculated.

Details of the L2-projection Pm : Wh,m−1 → Wh,m are as follows. For any scalar function
qh ∈Wh,m−1, the projection operator is defined by

∫

Ω
(qh − Pmqh)w = 0, ∀w ∈Wh,m. (9)

The finite element function qh is a piecewise constant function on the grid Th,m−1 and its projection
Pmqh is a piecewise constant function on the grid Th,m. Under the assumption that the grids are
nested, upscaling and downscaling operations have decoupled local support, so a global linear
system is not necessary to solve. Moreover, using midpoint quadrature, (9) reduces to a volume-
weighted arithmetic average for the case of upscaling, and a direct copy of coarse to fine values for
the case of downscaling. As shown in Figure 6, the upscaling case on the left gives the formula
x = 1

n

∑n
i=1wixi = 1

16(x1 + x2 + x3 + x4) + 1
4(x5 + x6 + x7), and the downscaling case on the right

gives xi = x, for i = 1, . . . , n.
Finally, we briefly comment on the parallelism and data structures that we have employed in

this work. It is important to note that every element’s processor ownership is completely unrelated
to its subdomain ownership. In our current implementation, we have made the choice to decompose
the global problem to evenly divide the elements in underlying coarsest subdomain Th,k=1 amongst
the processors. Since subdomain grids are nested in our semi-structure grid, any regions of local
refinement will inherit their processor ownership from their corresponding coarse element in which
they belong. This is shown in Figure 7 (left), where colors correspond 8 different processors. This

10

Slide 12 | Ben Ganis | AMR with semi-structured enhanced velocity GS17

Algorithm: Upscaling

•  Upscaling: simple weighted arithmetic average.

•  Downscaling: copy coarse value to fine elements.

@

@t
(⇢�) + r · u = q, in ⌦⇥ (0, T]

u = �K⇢

µ
(rp � ⇢g)

p

�

q

u

K

µ

c

g

⇢(p) = ⇢refecp

x =
1

n

nX

i=1

wixi

xi = x, for i = 1, . . . , n

4

@

@t
(⇢�) + r · u = q, in ⌦⇥ (0, T]

u = �K⇢

µ
(rp � ⇢g)

p

�

q

u

K

µ

c

g

⇢(p) = ⇢refecp

x =
1

n

nX

i=1

wixi

xi = x, for i = 1, . . . , n

4

x1 x2

x3 x4

x5

x6 x7

x

x

x1 x2

x3 x4

x5

x6 x7

x = (1/16)*(x1 + x2 + x3 + x4) + (1/4)*(x5 + x6 + x7)

x1 = x x2 = x x3 = x x4 = x

x5 = x x6 = x x7 = x

Slide 12 | Ben Ganis | AMR with semi-structured enhanced velocity GS17

Algorithm: Upscaling

•  Upscaling: simple weighted arithmetic average.

•  Downscaling: copy coarse value to fine elements.

@

@t
(⇢�) + r · u = q, in ⌦⇥ (0, T]

u = �K⇢

µ
(rp � ⇢g)

p

�

q

u

K

µ

c

g

⇢(p) = ⇢refecp

x =
1

n

nX

i=1

wixi

xi = x, for i = 1, . . . , n

4

@

@t
(⇢�) + r · u = q, in ⌦⇥ (0, T]

u = �K⇢

µ
(rp � ⇢g)

p

�

q

u

K

µ

c

g

⇢(p) = ⇢refecp

x =
1

n

nX

i=1

wixi

xi = x, for i = 1, . . . , n

4

x1 x2

x3 x4

x5

x6 x7

x

x

x1 x2

x3 x4

x5

x6 x7

x = (1/16)*(x1 + x2 + x3 + x4) + (1/4)*(x5 + x6 + x7)

x1 = x x2 = x x3 = x x4 = x

x5 = x x6 = x x7 = x

Figure 6: Illustrations of upscaling (left) and downscaling (right) procedures for piecewise constant
finite element functions on nested grids.

type of parallel decomposition is the easiest to implement, because no interprocess communication is
necessary during the upscaling procedure. However, if areas of local refinement are highly localized
to just a few processors, then the computational load may become unbalanced in both matrix
assembly and linear solve operations. A more ideal solution would be to attempt to balance the
number of elements in the current adaptive grid of every time step, but this would come with
its own costs and complications. Several software packages implement a variety of dynamic load
balancing techniques for adaptive grids, such as ParMetis [32].

3 3 3 3
3 3
3 3

3 3

3 3
2

1

1 2 2

2 3 3
3 3

=
level variablegrid

Figure 7: Illustrations of parallel processor decomposition based on the coarsest grid (left) and
dense data structures based on the finest grid (right).

Our proof-of-concept of dynamic adaptive mesh refinement using semi-structured grid for the
enhanced velocity method was implemented in the legacy research code IPARS. To represent cell-
centered scalar data and unknowns, this code currently relies upon dense grid memory allocation
for each underlying subdomain that is performed once upon problem initialization. Obviously, this
design choice did not anticipate being employed for changing the problem discretization at runtime.
As a result, there is currently a great deal of memory that is pre-allocated, but wasted due to the
presence of many inactive elements in each underlying subdomain. To mitigate unused memory
proliferation, we allocate dense storage for the finest grid only. Adaptively refined finite element
scalar functions can then be stored on the finest level using appropriate strides, as shown in Figure
7 (right). Again, a more ideal solution is a completely sparse storage format for the exact number
of active elements and ghost layers on any given time step, which would be resized during upscaling
and downscaling. Just like dynamic load balancing, the reshuffling and sorting of sparse memory
structures would come with its own overhead and a multitude of techniques.

Remark 3.1. In future work, there are plans to rewrite the code framework to take advantage of
both dynamic load balancing and sparse memory allocation techniques, in combination with future
studies on adaptive mesh refinement in both space and time.

11

4 A Fully-Coupled Solver

The previous EV implementation used a nonlinear block Jacobi solver, whereby the Jacobian ma-
trix on each Newton step assumed a decoupled block diagonal form, where each matrix block
corresponds to one subdomain. This was achieved by dropping any matrix entries off the block
diagonal corresponding to the interaction between elements of different subdomains. In this form,
mass conservation is still achieved at each time step (residual calculations are unchanged in the
inexact Newton method), but the number of nonlinear iterations required gets larger as the model
becomes more elliptic with less fluid compressibility.

Our new implementation includes an improved fully-coupled Newton solver, which does not
artificially force the Jacobian matrix to be in block diagonal form. On the interface Γ, entries
corresponding to interface flux terms are constructed a nested loop, which first loops over all
elements EA of a subdomain Ωk near an interface Γkl, then loops over all elements EB of the
neighboring subdomain Ωl that are adjacent to EB across Γkl. Denote the pressure DOF pA in EA

and pB in EB. Let ROW (·) be the function that assigns each degree of freedom its own row or
column in the linear system for the Newton step. Here, contributions are summed to the Jacobian
entry at (ROW (pA), ROW (pB)) and to the residual vector entry at ROW (pA). This Jacobain
entry is in an unstructured part of the matrix, as opposed to flux entries in the interior of the
subdomains, which have a regular stencil. This entry was neglected in the nonlinear block Jacobi
method, but is present in the fully-coupled Newton solver. The same residual contributions are
calculated in both methods.

nz = 7740

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 2000

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 8: Jacobian matries for the nonlinear block Jacobi solver (left) and the fully-coupled solver
(right) for the semi-structured grid in Example 5.1 at the final time step.

In Figure 8, we show the resulting Jacobain matricies for a 4 subdomains case with 8136 elements
at a given time step. On the left we show the block diagonal sparsity pattern in the nonlinear block
Jacobi method, and on the right we show the sparsity pattern of the fully-coupled Jacobian matrix
with entries that couple the subdomains. Blue matrix blocks have a 5-point stencil for d = 2, red
matrix blocks are unstructured, and lines delineate the subdomain block diagonal structure. In the
previous nonlinear block Jacobi solver, only the blue entries were formed, totaling 7740 nonzero
entries. In the new fully-coupled Newton solver, both blue and red entries are formed, totaling
9740 nonzero entries.

12

4.1 Fully-Coupled Solver Performance

Our fully-coupled solver uses the HYPRE library [16] to solve system (8) with an algebraic multigrid
(AMG) preconditioned GMRES linear solver. With the single phase slightly compressible flow
model, we compare the performance of the previous nonlinear block Jacobi solver with the new
fully-coupled Newton solver for the EV method.

To conduct the study, we fix a problem with domain Ω size 25× 1000× 500 [ft3]. It is evenly
divided into N = 2 side-by-side subdomains with uniform 5× 10× 10 and 7× 13× 13 grids. Initial
pressure is p0 = 2000 [psi], and there two vertical wells in a quarter five-spot pattern, with one
pressure specified injector at a bottom hole pressure (BHP) of 3000 [psi] and one pressure specified
producer at a BHP of 1000 [psi] in opposite corners. Wells are implemented with a Peaceman
model [27] to calculate the source function q. Other model parameters include permeability K =
diag(1, 20, 10) [md], porosity φ = 0.2, viscosity µ = 2 [cp], fluid density ρref = 56 [lb/ft3], time
step size ∆t = 1 [day], final time T = 100 [days], and no gravity term. Figure 9 shows a typical
simulated pressure at the final time.

Figure 9: Example for comparing solver performance of nonlinear block Jacobi versus fully-coupled
solvers.

Table 1 compares six cases. The first three cases use the nonlinear block Jacobi method and
fluid compressibilities c = {1E-4, 1E-5, 0} [1/psi]. As fluid compressibility decreases c → 0, the
second order PDE changes from transient parabolic type to steady-state elliptic type. For this
reason, only a single time step is taken for the incompressible case c = 0. The last three cases
use the fully-coupled solver with the same three compressibilities. We report the average number
of linear iterations per newton step, the average number of Newton iterations per time step, the
total runtimes for a single processor test, and the speedup of the fully-coupled solver versus the
nonlinear block Jacobi solver.

Solver Compressibility Lin./Newt. Newt./Time Runtime Speedup

Nonlinear Block 1E-4 9.00 16.46 8.886
Jacobi 1E-5 11.06 39.98 23.041

0 12.00 627.00 3.835

Fully-Coupled 1E-4 9.00 3.26 1.988 (4.47x)
1E-5 11.65 2.16 1.526 (15.1x)
0 12.00 2.00 0.330 (11.62x)

Table 1: Comparison of results with nonlinear block Jacobi and fully-coupled solvers for various
fluid compressibilities for the given problem.

A clear trend is observed when using the nonlinear block Jacobi solver. As fluid compress-
ibility decreases, the average number of nonlinear iterations per time step increases greatly. The

13

worst-case scenario for nonlinear block Jacobi is the incompressible case with an average of 627
nonlinear iterations per time step. It performs the worst in this case because the neglected Jaco-
bian matrix entries prohibit the instantaneous global transfer of information necessary to solve a
purely elliptic problem. The nonlinear iteration still converges to the correct solution as an inexact
Newton method with the correct residual. For fully-compressible problems (e.g. with a gas phase),
information propagates more locally and the nonlinear block Jacobi approximation requires fewer
inexact Newton iterations.

In the fully-coupled case, the number of nonlinear iterations per time step is very low, compara-
ble to an analogous conforming single domain problem. The best-case scenario for the fully-coupled
solver is the incompressible case, where Newton iterations are minimal. The number of linear it-
erations per Newton step is seen to increase slightly with the fully-coupled solver because it has
more nonzero matrix entries and portions of unstructured matrix blocks. This causes the AMG
preconditioner to perform slightly worse, but overall the cost of solving one fully-coupled linear sys-
tem is roughly the same as the block Jacobi system in terms of both runtime and linear iterations.
The most important factor influencing runtime is the increased number of nonlinear iterations per
time step, which directly translates into significant speedups for the fully-coupled solver over the
nonlinear block Jacobi method in these three cases.

5 Numerical Examples

The following four numerical examples will demonstrate the new AMR techniques with the EV
method on semi-structured grids. The first three numerical examples will use a multiphase compo-
sitional equation of state flow model, and will therefore employ the a priori refinement algorithm
and corresponding upscaling technique. For specific details on the multiphase compositional flow
model, we again refer the reader to [20]. The first example is a homogeneous 2D case, the sec-
ond example is a highly heterogeneous 2D case, and the third example is a homogeneous 3D case
with mesh refinement in three spatial directions. In the fourth numerical example, we switch to
the simpler slightly compressible single phase flow model in order to demonstrate the a posteriori
refinement algorithm using a straightforward residual based error indicator. Our convention is that
x-component represents the depth dimension in a right-handed coordinate system. All examples
incorporate the effects of gravity, and start from a hydrostatic initial condition.

5.1 Compositional flow, a priori refinement, homogeneous 2D case

The first two numerical examples share the same geometry, whereby the domain Ω has aerial size
of 1600 × 1600 [ft2]. The top of the domain resides 8000 [ft] deep and has 5 [ft] thickness. It is
considered a 2D problem because each subdomain is 1 element deep. In the aerial plane, there are
N = 4 refinement levels (i.e. subdomains) consisting of uniform grids ranging from 20× 20 on Ω1

to 160 × 160 grid on Ω4. Adaptive time stepping is used which starts at ∆t = 0.01 [days], has a
time step multiplier of 1.1, has a maximum time step of ∆t = 0.1 [days], and has a minimum time
step of ∆t = 1.e-5 [days]. The final simulation time is T = 20 [days]. There are no-flow boundary
conditions.

The compositional model is configured as a three phase oil-water-gas system (subscripts o, w, g)
with several hydrocarbon components. The water phase is slightly compressible. Hydrocarbon
components are miscible within fully compressible oil and gas phases, with the phase behavior
determined by flash calculations using a cubic Peng-Robinson equation of state. Hence, the model
allows mass transfer of hydrocarbon components between oil and gas phases, but the water com-
ponent only exists in the water phase. The model is isothermal with a reservoir temperature of

14

160◦C. Inputs include known functions for relative permeability and capillary pressure that depend
upon phase saturations. A zero diffusion-dispersion tensor is assumed.

The initial conditions are water saturation sw(0) = 0.2, gas saturation sg(0) = 0.0, and oil
pressure po = 2000 [psi]. The water phase properties are compressibility cw = 3.3e-6 [1/psi],
viscosity µw = 0.7 [cp], and reference pressure pw,ref = 0 [psi]. Standard densities are ρw,ref =
62.4 [psi], ρo,ref = 56.0 [psi], and ρg,ref = 0.04228 [psi]. The composition of the reservoir has
6 components, named C1, C3, C6, C10, C15, and C20. For the sake of brevity, please refer to
[20]; Table 3 contains compositional model parameters and binary interaction coefficients, and
Figure 3 contains tables for relative permeabilities and capillary pressures. Rock compressibility is
cr = 5e-6 [1/psi]. The initial reservoir composition is 60% C6 and 40% C20.

In Example 5.1, the absolute permeability is a scalar K = 50 [md] and the porosity is φ = 0.3.
Wells are placed in five-spot pattern, with four injectors in the centers of the four quadrants and
a producer in the center of the domain. The injection wells are for the water phase at a specified
BHP of 4000 [psi] and the production well specifies a BHP of 2000 [psi]. These conditions generate
a water flood example, where no gas is present throughout the entire simulation. The injected
water displaces the resident oil phase, which results in production at the center well. Because of
the homogeneous reservoir properties, transient water saturation fronts expand outward from the
four injection wells in radial patterns.

To capture a sharp water saturation front in our AMR simulation, the a priori error indicator
is chosen to be |∆sw| > 0.05, whereby an element is marked to belong to the finest refinement
level whenever its fine scale saturation compared any of it’s neighboring elements’ saturations
exceeds the given threshold. Surrounding unmarked elements are then graded as described in
Figure 5 (Left), and then the given time step is then resolved with the adaptive grid as described
in Figure 4 (Left). During this process, upscaling and downscaling of all necessary state variables
are performed as described in Figure 6. Snapshots of the corresponding dynamic AMR grids for
the 20 [day] compositional EV simulation are presented in Figure 10.

Figure 10: From left to right: AMR grids for Example 5.1 at t = 0.1, t = 3, and t = 20 [days].

To show the quality of the solution, we zoom in on the upper left injection well in Figure 11
to show the final water saturation with the AMR solution versus a solution obtained with a more
expensive static fine grid. The choice of indicator allowed the AMR solution to resolve a sharp
saturation front in close agreement with the fine scale solution. Note that we enforced elements
containing wells to belong to the finest level in the adaptive solution, to minimize recalculations of
well parameters, thereby limiting some de-refinements behind the saturation front. The values of
the six hydrocarbon component concentrations show similar agreement between AMR and fine scale
solutions near the injection wells. Figure 12 shows a comparison of the final oil pressure obtained
between the AMR and fine scale solutions. Since the indicator only refined near the saturation
front, larger differences are observed in the pressure field where the AMR grid is coarser.

In Figure 13 (Left) we report the number of number of elements used in the AMR solution

15

Figure 11: Final water saturation for Example 5.1 near one injection well with the AMR solution
(left) versus a fine scale solution (right).

Figure 12: Final oil pressure for Example 5.1 with the AMR solution (left) versus a fine scale
solution (right).

versus time as a percentage of the total number of elements used in a fixed fine scale solution
grid. For indicator based on gradient of water saturation in this 2D homogeneous case, the AMR
solution only required at most 11.38% of the number of elements required in a fine scale simulation.
Due to the fewer number of unknowns, this had a direct impact on the runtime required for the
linear solver. For a single processor simulation, the total runtime spent solving linear systems was
90.17 [sec] for the fine scale problem, and was reduced to 9.61 [sec] for linear solver runtime on
the AMR grid, a speedup factor of 9.38x. In Figure 13 (Right), we compare an output quantity
of interest between the AMR and fine scale solutions, namely the cumulative oil production in the
center well. This homogeneous 2D case showed a very good match, differing by only 0.47% at
t = 20 [days].

time [day]
0 5 10 15 20

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of elements in adaptive grid / fine grid

time [day]
0 5 10 15 20

c
u

m
u

la
ti
v
e

 o
il

p
ro

d
u

c
ti
o

n
 [

s
tb

]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

AMR
fine scale

Figure 13: In Example 5.1, number of elements used in the AMR solution (left), and comparison
of cumulative oil production (right).

16

5.2 Compositional flow, a priori refinement, heterogeneous 2D case

Example 5.2 has the same 2D geometry and same compositional model parameters as described
in Example 5.1. The differences in this example are that the permeability and porosity fields are
highly heterogeneous, and that pairs of injection and production wells are placed at opposite ends
of three high permeability channels. The fine scale heterogeneous permeability and porosity data
was assembled on the 160 × 160 fine grid by concatenating properties from layers 37, 38, and 39
of the SPE10 dataset [13] as shown on a logarithmic scale in Figure 14. Harmonic upscaling was
used to generate the coarser permeability levels, and arithmetic upscaling was used to generate the
coarser porosity levels. Injection and production well locations are indicated on the finest level with
blue and brown arrows, respectively. The initial conditions and BHP specified well conditions also
match Example 5.1. Adaptive time stepping parameters are kept the same, but the final simulation
time is T = 80 [days].

Figure 14: In Example 5.2, fine scale heterogeneous permeability was upscaled to generate proper-
ties on the three coarser levels.

Two AMR simulations are performed in Example 5.2 using two different a priori error indicators:

• Indicator #1 is the condition |∆sw| > 0.01.

• Indicator #2 is are the conditions |∆sw| > 0.01 or |∆po| > 10 [psi].

Snapshots of the corresponding dynamic AMR grids with both indicators are presented in Figure
15. The reason we have chosen to use a second indicator is due to the extreme heterogeneity. The
evolving velocity fields of each fluid phase are important to advect saturations and concentrations
within preferential pathways, as transient fronts are not expected to expand from injection sources
in radial patterns. Since the first indicator is solely focused on resolving the sharp saturation front,
it fails to sharply resolve velocity fields away from the front, which paradoxically has a negative
effect on predicting where that front should evolve. Conversely, the second indicator marks many
more cells because it also tries to better resolve locations with sharp gradients in oil phase pressure.
This better predicts phase velocity fields for advection, but it is more costly as there are clearly
more areas of refinement. Figure 16 shows a comparison of oil pressure fields at an early time of
t = 10 [days]. The AMR solution with Indicator #1 has a much less accurate pressure field away
from the saturation front, while Indicator #2 more closely matches the fine scale pressure. Figure
17 shows plots of the final water saturation field. As a direct consequence of having better velocity
fields on which to advect the saturation fronts, the AMR solution #2 more closely matches the
fine scale saturation field compared to AMR solution #1. The bottom row of this figure shows a
closeup view of the grid around the production well in the upper-right corner of the domain. AMR
solution #1 over-predicted how far the front has traveled, while AMR solution #2 more closely
matched the front to the fine scale solution.

17

Figure 15: From left to right: AMR grids for Example 5.2 at t = 10, t = 40, and t = 80 [days]. The
top row shows the AMR solution with Indicator #1 and the bottom row shows the AMR solution
with Indicator #2.

Figure 16: From left to right: comparison of oil pressure fields at t = 10 [days] for fine scale, AMR
with Indicator #1, and AMR with Indicator #2 solutions.

Figure 17: From left to right: comparison of water saturation at t = 80 [days] for fine scale, AMR
with Indicator #1, and AMR with Indicator #2 solutions. Top row shows the entire domain, and
bottom row shows the grid near the upper right production well.

18

In Figure 18 (Left) we report the number of number of elements used in both AMR solutions
versus time as a percentage of the total number of elements used in a fixed fine scale solution grid.
AMR solution #1 used at most 30.21% of the number of fine scale elements, while AMR solution
#2 consistently used closer to the maximum of 69.48% of the number of fine scale elements. We ran
this simulation with 4 processors. For linear solver runtime, the fine grid took 159.91 [sec], AMR
solution #1 took 108.64 [sec], and AMR solution #2 took 272.70 [sec]. This meant AMR solution
#1 was 1.47x faster than the fine scale, while AMR solution #2 was 0.59x slower than the fine
scale. It is possible that better solver parameters could improve these results, or that for this fully-
compressible model the nonlinear block Jacobi solver might outperform the fully-coupled solver.
In Figure 18 (Right), we compare an output quantity of interest between the two AMR solutions
versus the fine scale solution, namely the cumulative oil production in the upper right production
well. For the heterogeneous 2D case, AMR solution #1 had an error of 43.51% and AMR solution
#2 had an improved error of 21.96% at t = 80 [days], but with additional computational cost.

time [day]
0 20 40 60 80

n
u

m
b
e

r
o
f

e
le

m
e

n
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of elements in adaptive grid / fine grid

AMR 1
AMR 2

time [day]
0 20 40 60 80

c
u

m
u

la
ti
v
e

 o
il

p
ro

d
u

c
ti
o

n
 [

s
tb

]

0

2000

4000

6000

8000

10000

12000

14000

AMR 1
AMR 2
fine scale

Figure 18: In Example 5.2, number of elements used in the two AMR solutions (left), and compar-
ison of cumulative oil production at the upper right well(right).

5.3 Compositional flow, a priori refinement, homogeneous 3D case

Example 5.3 again has homogeneous reservoir properties, but demonstrates that local refinements
are possible in the EV method in three dimensions. The reservoir domain Ω has size 20× 1600×
1600 [ft3] at a top depth of 8000 [ft] deep. In this case there are N = 4 refinement levels consisting
of uniform grids ranging from 2×20×20 on Ω1 to 16×160×160 grid on Ω4. Time step parameters
follow the preceding two examples, and the final simulation time is T = 20 [days]. There same
five-spot well pattern is used as Example 5.1, with vertical wells completed through the entire
reservoir depth at the same specified BHP.

The a priori error indicator used is |∆sw| > 0.5 to resolve a sharp water saturation front.
Figure 19 shows the AMR solution at several time steps with transparent grids on the left half
of the domain with opaque water saturation iso-surfaces shown. As the saturation front sweeps
out from the injection wells, the grids are adaptively refined in all three dimensions. The bottom
row of the figure shows a vertical cross-sectional view, making it clear that refinements are also
happening in the depth dimension. Note there is slightly more refinement at the bottom of the
domain compared to the top, because of gravitational effects on the fluid density.

Figure 20 shows the maximum number of elements used in the 3D AMR solution was at most
8.71% of the number of fine scale elements, and that the error in cumulative oil production was
1.20% for the 3D AMR solution versus the fine scale solution at t = 20 [days]. The simulation

19

Figure 19: From left to right: transparent AMR grids with water saturation iso-surfaces for near
the two injection wells in the left half of the domain for Example 5.3 at t = 0.1, t = 3, and
t = 20 [days]. Bottom row shows a vertical cross-sectional view at t = 20 [days].

was run with on single processor. The linear solver had a runtime of 1536.3 [sec] for the fine scale
problem versus a runtime of 85.6 [sec] for the AMR problem, giving a speedup factor of 18x. As
expected, the computational efficiency of AMR improved 3D versus 2D, albeit for a homogeneous
problem.

0 5 10 15 20

time [day]

0

0.2

0.4

0.6

0.8

1

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

Number of elements in adaptive grid / fine grid

0 5 10 15 20

time [day]

0

1

2

3

4

5

6

7

c
u

m
u

la
ti
v
e

 o
il

p
ro

d
u

c
ti
o

n
 [

s
tb

]

10
4

AMR

fine scale

Figure 20: In Example 5.3, number of elements used in the AMR solution (left), and comparison
of cumulative oil production (right).

5.4 Single phase flow, a posteriori refinement, homogeneous 2D case

In the final example, we apply a simple residual-based a posteriori error indicator to a slightly
compressible single phase flow problem. The 2D domain, discretization, permeability, porosity,
and well pattern match Example 5.1. The single phase model parameters are reference density
ρref = 56 [lb/ft3], fluid viscosity µ = 2 [cp], and fluid compressibility c = 1.e-5 [1/psi]. In this
example we have a uniform time step ∆t = 0.01 [days] and a final simulation time T = 20 [days].

The a posteriori error indicator used is related to the normalized nonlinear residual of the
weak form. We note that a Newton method can make the nonlinear residual arbitrarily small

20

on any given grid, but that a “good” error will be distributed evenly throughout the domain, an
observation also noted by others [6]. The basic idea is that the grid will be adapted whenever there
are spikes in the normalized nonlinear residual. Other possible error indicators are ones based upon
the nonlinear residual of the strong form, or a quantity related to the curvature of the solution. We
reiterate that the goal of this paper is not in the development of new error indicators, but just to
demonstrate that our new AMR procedure can successfully be driven by a posteriori procedures.
Unlike the previous three examples, the elements are successively marked for refinement using the
algorithm given in Figure 5 (Right), the refinement algorithm used is described in Figure 4 (Right).
The downscaling procedure used is described in Figure 6, and no de-refinement (i.e. upscaling) is
performed in this example.

Figure 21: From left to right: AMR grids for Example 5.4 at t = 0.1, t = 1, t = 4, and t = 20 [days].
Top row shows AMR grid, middle row shows AMR solution pressure, bottom row shows fine scale
solution pressure.

The numerical results are summarized as follows. From left to right, the four columns of Figure
21 present the numerical solution at simulation times t = 0.1, t = 1, t = 4, and t = 20 [days].
The first row of this figure shows the AMR grids, and how they were adapted to the a posteriori
indicator based upon the normalized nonlinear residual at each time step. The second row shows
the resulting pressure solution in the five-spot well test. The third row shows the results of a fine
scale simulation that was run with a static uniform 160 × 160 grid. As the plots show, the AMR
solution is in close agreement with the fine scale solution. A snapshot of the a posteriori indicator is
shown in Figure 22 (left), with the height dimension the value of the indicator. Whenever the peaks
of this surface exceed a threshold, those grid elements are refined by one level for the subsequent
time step. In Figure 22 (right), we report the number of elements used in the adaptive solution as
a percentage of the total number of elements in the fine scale. Since there was no de-refinement
in this scheme, the curve is monotone increasing, and has a maximum value of 32.75%. The AMR

21

and fine scale simulations were run on a single processor. Linear solver runtime decreased from
138.76 [sec] in the fine scale example to 50.52 [sec] in the AMR solution. Since the fine scale
solution is completely decoupled from the a posteriori AMR solution, we report that setup time for
the linear systems decreased from 40.32 [sec] in the fine scale to 16.31 [sec] in the AMR solution.

0 5 10 15 20

time [day]

0

0.2

0.4

0.6

0.8

1

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

Number of elements in adaptive grid / fine grid

Figure 22: In Example 5.4, a snapshot of the normalized nonlinear residual-based a posteriori error
at t = 1 [days] (left), and the number of elements used in the AMR solution (right).

6 Conclusions

In this work, we have formulated the enhanced velocity mixed finite element method on a new type of
semi-structured grid for multiple models describing both single and multiphase flow in porous media.
We have also generalized the method to support dynamic adaptive mesh refinement, and applied
refinement and upscaling algorithms using a priori and a posteriori based error indicators. We
have also implemented a fully-coupled solver that forms unstructured matrix blocks corresponding
to the direct interactions of elements belonging to different subdomains. We have demonstrated
the fully-coupled solver requires fewer nonlinear iterations and computational runtime versus the
nonlinear block Jacobi method, especially for flow models with a strong elliptic character. We
have also demonstrated that posing the EV method on semi-structured grids gives an easy way to
enable powerful local refinement that can accurately and efficiently capture transient flow features.
Ongoing research is combining these adaptive mesh refinement techniques in concert with fracture
propagation and geomechanics, with space-time methods to allow local time stepping, and in the
development of better a posteriori error indicators.

Acknowledgements

This work was supported by DOE grant FG02-04ER25617, NSF grant 1546553, the CSM industrial
affiliates program, and the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under Award Number DE-SC0001114.

References

[1] I. Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids.
Computational Geosciences, 6(3-4):405–432, 2002.

22

[2] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis,
volume 37. John Wiley & Sons, 2011.

[3] Y. Amanbek, G. Singh, M. F. Wheeler, and H. van Duijn. Adaptive numerical homogenization
for upscaling single phase flow and transport. Technical report, The University of Texas at
Austin, 2017. ICES Report 17-12.

[4] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov. A multiscale mortar mixed finite
element method. Multiscale Modeling & Simulation, 6(1):319–346, 2007.

[5] T. Arbogast, M. F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences. SIAM Journal on Numerical Analysis,
pages 828–852, 1997.

[6] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations.
Birkhäuser, 2013.

[7] M. Bause and P. Knabner. Computation of variably saturated subsurface flow by adaptive
mixed hybrid finite element methods. Advances in Water Resources, 27(6):565–581, 2004.

[8] F. Brezzi, J. Douglas, R. Durán, and M. Fortin. Mixed finite elements for second order elliptic
problems in three variables. Numerische Mathematik, 51(2):237–250, 1987.

[9] F. Brezzi, J. Douglas, and L. D. Marini. Two families of mixed finite elements for second order
elliptic problems. Numerische Mathematik, 47(2):217–235, 1985.

[10] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15. Springer
Science & Business Media, 2012.

[11] C. Burstedde, L. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–
1133, 2011.

[12] C. Carstensen and R. Hoppe. Error reduction and convergence for an adaptive mixed finite
element method. Mathematics of Computation, 75(255):1033–1042, 2006.

[13] M. A. Christie and M. J. Blunt. Tenth SPE comparative solution project: a comparison of
upscaling techniques. SPE Reservoir Evaluation & Engineering, 4(4):308–317, 2001.

[14] M. Delshad, X. Kong, R. Tavakoli, S.A. Hosseini, and M. F. Wheeler. Modeling and simulation
of carbon sequestration at cranfield incorporating new physical models. International Journal
of Greenhouse Gas Control, 18:463–473, 2013.

[15] F. Drui, A. Fikl, P. Kestener, S. Kokh, A. Larat, V. Le Chenadec, and M. Massot. Experi-
menting with the p4est library for amr simulations of two-phase flows. ESAIM: Proceedings
and Surveys, 53:232–247, 2016.

[16] R. Falgout and U. Yang. HYPRE: A library of high performance preconditioners. Computa-
tional Science, ICCS 2002, pages 632–641, 2002.

[17] R. Finkel and J. Bentley. Quad trees a data structure for retrieval on composite keys. Acta
Informatica, 4(1):1–9, 1974.

23

[18] B. Ganis, M. Juntunen, G. Pencheva, M. F. Wheeler, and I. Yotov. A global jacobian method
for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific Com-
puting, 36(2):A522–A542, 2014.

[19] B. Ganis, K. Kumar, G. Pencheva, M. F. Wheeler, and I. Yotov. A global jacobian method
for mortar discretizations of a fully implicit two-phase flow model. Multiscale Modeling &
Simulation, 12(4):1401–1423, 2014.

[20] B. Ganis, G. Singh, and M. F. Wheeler. A parallel framework for a multipoint flux mixed
finite element equation of state compositional flow simulator. Computational Geosciences,
21(5-6):1189–1202, 2017.

[21] B. Ganis, M. F. Wheeler, and I. Yotov. An enhanced velocity multipoint flux mixed finite
element method for darcy flow on non-matching hexahedral grids. Procedia Computer Science,
51:1198–1207, 2015.

[22] B. Ganis and I. Yotov. Implementation of a Mortar Mixed Finite Element Method using a
Multiscale Flux Basis. Comput. Methods Appl. Mech. Engrg., 198(49-52):3989–3998, 2009.

[23] R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element methods
for elliptic problems. In First International Symposium on Domain Decomposition Methods
for Partial Differential Equations, pages 144–172, 1988.

[24] R. Hoppe and B. Wohlmuth. Adaptive mixed hybrid and macro-hybrid finite element methods.
Acta Math. Univ. Comenianae, 67(1):159–179, 1998.

[25] K. Lipnikov, M. Shashkov, and I. Yotov. Local flux mimetic finite difference methods. Nu-
merische Mathematik, 112(1):115–152, 2009.

[26] J.-C. Nédélec. Mixed finite elements in R3. Numerische Mathematik, 35(3):315–341, 1980.

[27] D.W. Peaceman. Interpretation of well-block pressures in numerical reservoir simulation with
nonsquare grid blocks and anisotropic permeability. SPE Journal, 23(3):531–543, 1983.

[28] G. Pencheva, M. Vohralik, M. F. Wheeler, and T. Wildey. Robust a posteriori error control and
adaptivity for multiscale, multinumerics, and mortar coupling. SIAM Journal on Numerical
Analysis, 51(1):526–554, 2013.

[29] G. Pencheva and I. Yotov. Balancing domain decomposition for mortar mixed finite element
methods. Numer. Linear Algebra Appl, 10:159–180, 2003.

[30] P. Raviart and J. Thomas. A mixed finite element method for 2nd order elliptic problems.
Mathematical Aspects of Finite Element Methods, pages 292–315, 1977.

[31] T. Russell and M. F. Wheeler. Finite element and finite difference methods for continuous
flows in porous media. In The Mathematics of Reservoir Simulation, pages 35–106. SIAM,
1983.

[32] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning of
adaptive meshes. Journal of Parallel and Distributed Computing, 47(2):109–124, 1997.

[33] G. Singh, Y. Amanbek, and M. F. Wheeler. Adaptive numerical homogenization for non-
linear multiphase flow and transport. Technical report, The University of Texas at Austin,
2017. ICES Report 17-13.

24

[34] S. Thomas and M. F. Wheeler. Enhanced velocity mixed finite element methods for modeling
coupled flow and transport on non-matching multiblock grids. Computational Geosciences,
15(4):605–625, 2011.

[35] J. Wheeler, M. F. Wheeler, and I. Yotov. Enhanced velocity mixed finite element methods for
flow in multiblock domains. Computational Geosciences, 6(3):315–332, 2002.

[36] M. F. Wheeler, G. Xue, and I. Yotov. A multipoint flux mixed finite element method on
distorted quadrilaterals and hexahedra. Numerische Mathematik, 121(1):165–204, 2012.

[37] M. F. Wheeler and I. Yotov. A posteriori error estimates for the mortar mixed finite element
method. SIAM Journal on Numerical Analysis, 43(3):1021–1042, 2005.

25

