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A special course on contemporary topics in computational sciences will be offered to survey several

developing areas at the foundation of predictive computational science and at the forefront of

research in the related areas. Topics include:

• Logical Probability Theory: The Cox-Jaynes theory of probability and its relation to Kol-

mogorov.

• Bayesian methods for model selection, calibration, validation, and uncertainty quantification.

• Information Theoretical Methods: Akaike Information Criteria and other methods for model

selection.

• Model Inadequacy: OPAL (the Occam Plausibility Algorithm), Gaussian Processes, Bayesian

networks, Deep Learning.

• Continuum Mixture theory and Phase-Field Methods, the general approaches for modeling

interacting heterogeneous media.

• Introduction to tumor growth modeling: multiscale models of living tissue, cellular behavior,

sub-cell models of signalling pathways and genomics.

• Applications in complex systems: molecular dynamics, multi-species biological systems and

other systems.
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Chapter 1

Predictive Computational Science:

Computer Predictions in the Presence of

Uncertainties

1.1 Introduction

Predictive computational science is the scientific discipline concerned with assessing the predictabil-

ity of mathematical and computational models of events that occur in our physical universe in the

presence of uncertainties in all of the factors that determine the reliability and scientific significance

of the prediction. Prediction is a fundamental mission of basic science. It is also the essence of

engineering, which is concerned with the application of science in the prediction at the performance

of engineered systems under design conditions: the overarching goal of engineering for centuries. It

is also at the core of medical science, which seeks to predict the outcome of therapies and medical

procedures.

What is a “science-based prediction”? Indeed, what is science? The word science is derived

from the Latin, scientia, meaning knowledge. Thus, the Oxford dictionary defines science as the

activity concerned with the systematic acquisition of knowledge: the enterprise that builds and

organizes knowledge in forming testable explanations and predictions about events that take place

or can take place, in the universe. Engineering and medicine are the activities concerned with the

application of scientific and practical knowledge for the benefit or needs of mankind.
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Exactly how knowledge is acquired is a subject debated for millennia. To Socrates and Plato (ca.

370 BC), humankind is endowed with pre-existing knowledge, knowledge that is already present

in our minds and is accessible to our intuitive powers. Aristotle had a quite different view; in

his Organon describing his six works on logics, he asserts that the acquisition of knowledge comes

through sensation and perception. Sensation referring to the use of one’s five senses to experi-

ence reality through empirical events and thus interpretation by the consciousness of the subject

acquiring knowledge. To this he adds perception, the recognition that the event has a sensation.

The term observation refers to the acquisition of information through one’s senses, or through

aids to one’s senses made possible by using instruments, all to either observe natural events or

events orchestrated in experimental setups. Aristotle was the father of logic – the science of rea-

soning, and he laid down the rules of deductive logic as the foundations of algebra and much of

mathematics.

Deductive reasoning, or deductive logic, began with the two-sided logic advanced by Aristotle. It

is embodied in a process of reasoning beginning with one or more general statements (axioms or

principles) and following the rules of logic to reach logical conclusions. It thus provides the for-

malisms for mathematics and mathematical proof. It (deduction) is sometimes called “top-down”

logic. It is infallible and not influenced by empirical observations. On the other hand, scientific

knowledge is based on inductive logic, the process of reasoning by generalizing or extrapolating

from initial information or hypotheses. Inductive logic is ”bottom up” logic, an open system in-

cluding domains of epistemic uncertainty, thus allowing a conclusion to be false.

Thus, from antiquity there came the notions that knowledge can arise from observations of natural

events or events manufactured in experiments, and through logical explanations of the cause of

events and hypotheses concerning the effects of certain actions on events taking place in the future.

But not all philosophers accepted these ideas.

Philosopher David Hume (1711-1776) launched the scientific philosophy of skepticism whereby

he asserted that knowledge can only the obtained through the study of empirical observations

and data. He thus rejected inductive logic as a means to gain knowledge: if inductive logic can

allow a possibly false conclusion, how can it be a source of knowledge? Fortunately, the great

theoretical scientists of the eighteenth, nineteenth, and twentieth centuries (Maxwell, Einstein,

Dirac, Boltzmann, ...) ignored this point of view and went on to vastly increase our knowledge of the

universe through miraculous advances in theoretical science. The paradox between experimental

evidence and scientific theory was more or less put to rest by the philosopher Karl Popper (1902-

ICES, Univ of Texas Austin Last modified: October 12, 2017 10
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1994) who introduced the principle of falsification. According to this principle, any scientific

claim, any hypothesis put forth as a possible scientific theory, cannot qualify as a scientific theory

unless it is possible that it be falsified, that is, it can possibly be disproved when new conflicting

information is acquired. Quite opposite to Hume, famous astronomer Arthur Eddington (1882-

1944) announced that ”one should never accept any experimental data that has not been confirmed

by theory” – an affront to Hume’s philosophy and an acknowledgment of the great advances in

theoretical physics made by his associate Paul Dirac, who discovered anti-matter through purely

theoretical arguments four years before it was observed experimentally. To the great probabilist

and physicist E.T. Jaynes (1922-1998), all knowledge is inductive; inductive logic must precede the

performance of meaningful experiments or the interpretation of observations of natural events.

Today it is generally recognized that knowledge is acquired through observation and theory, the

two classical pillars of science. These are the foundations of the scientific method, the body

of techniques for investigating phenomena and acquiring new knowledge based on observation

(empirical or measurable evidence) and theory (the foundation, testing, and modification of hy-

potheses based on inductive logic laid down to explain observed or perceived event).

Throughout this work, theory is presumed to be characterized by mathematical models or mod-

els derived from surrogate models that arise from simplifying and subjective assumptions. When

possible, such models are generally based on long-standing scientific principles complemented by

empirical laws, all expressed in mathematical constructions.

Modern scientific philosophy often recognizes a third pillar of science: computational science,

a new means of acquiring knowledge through computer simulations where experiments are impos-

sible or inadequate for the purpose at hand. There are countless examples in which computer

simulations based on models derived from accepted physical laws and empirical relationships, pro-

vide a path to knowledge.

These three cornerstones of predictive science; the collection and interpretation of observational

and experimental data, the creation and use of theory and models, and the use of computer simula-

tions, are by no means independent; they are intrinsically intertwined and inseparably connected.

Inductive logic precludes the design of experiments; theory and models underlie the design and

construction of instruments and measuring devices, and data and mathematical abstractions of

theoretical models form the foundation of computer simulations. All are fundamental to science-

based prediction.

ICES, Univ of Texas Austin Last modified: October 12, 2017 11
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Today, prediction in modern science and engineering stands at a threshold brought on by enor-

mous advances in computational methods and machines over the last two or three decades. On

one side of the threshold, we have growing expectations of quantitative predictions of physical re-

alities produced by computer simulations of events at the center of a long list of technological and

scientific grand challenges: climate change, effects of natural hazards, the behavior of biological

and biomedical systems, design of materials, aging civil infrastructures, and many more, all relying

heavily on computer predictions that form the basis for critical, often life-and-death decisions. On

the other side of this threshold is the realization that every step of the prediction process faces

sometimes overpowering uncertainties: uncertainties in observational data, in model selection, in

model parameters, and in the targets of prediction; the so-called quantities of interest.

The importance, indeed the urgency, to extend and enrich the processes of prediction to take such

uncertainties into account has gradually taken hold in scientific and mathematical research over

the last two decades, and particularly over the last decade, and a large and growing literature is

devoted to the subject (as representative, see [2, 3, 11–13, 78, 79, 81, 92, 109]). Predictive compu-

tational science embraces methods for recognizing and handling randomness in observational data,

model selection, model calibration, model validation, and verification of computational models in

the presence of uncertainties, and includes the developments of methods for solving the forward

prediction problem for quantities of interest, inverse problems in parameter identification, and

quantifying the uncertainty in the predictions. The well-worn acronym ”VV & UQ” (Validation,

Verification, and Uncertainty Quantification) is often thrown out to label the mission of computa-

tional predictive science.

This exposition is intended to present a broad view of the foundations of predictive computa-

tional science at a level accessible to researchers and practitioners interested in model reliability

and how it is determined when uncertainties in all of the components of prediction exist. The

presentation is necessarily based on theories of probability, statistics, information theory, with

meaningful applications drawn from cell biology, continuum physics, and molecular dynamics,

methods of mathematical statistics and probability and includes discussions of powerful methods

for model selection and for quantifying uncertainties in predictions of quantities of interest.

ICES, Univ of Texas Austin Last modified: October 12, 2017 12
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1.2 Mathematical Models

At the heart of predictive computational science is the idea of a mathematical model of a class

of physical events of interest, a mathematical abstraction of reality generally based on a combi-

nation of scientific principles and empirical laws. Mathematical models stand as surrogates or as

representatives of theories – the inductive hypotheses put forth to approximate perceived realities

and to provide the essential component in prediction of future events.

It is convenient (indeed, essential for our purposes) to consider mathematical models as representing

an abstract mathematical problem, such as the following: Given a vector θ and a domain S in

which the problem is posed, find a function u(θ, S) ∈ V such that,

A(θ, S;u(θ, S)) = 0 (1.1)

where A is a collection of operators (algebraic, differential, partial-differential, integral, ...), in-

cluding possibly constraints, θ ∈ Θ ⊂ Rk is a vector of model parameters taken from a parameter

space Θ, S is the scenario in which the problem is posed, and u(θ, S) is the solution of Equation

1.1 which belongs to a function space V for specific θ and S.

The notion of a scenario is a especial idea that refers to the features of the mathematical problem

which can be exactly specified, independent of parameters, such as the domain of the solution and

certain boundary-and initial conditions, the idea being that the same model may be used in sev-

eral different scenarios. For example, an elasticity model can be defined for several scenarios, each

consisting of collections of a material bodies of different shape and boundary conditions. We use

the term scenario interchangeably to refer to both the domains in which the mathematical model

(1.1) is solved and the actual physical environments in which experimental data are collected, or

in which the target quantities to be predicted reside. Later we will argue that it makes sense to

consider a hierarchy of scenarios, beginning with component or unit calibration tests in scenar-

ios Sc to initially adjust model parameters, then moving to more complex subsystem validation

scenarios Sv to test the accuracy with which model can predict observables (to see if the model

is “valid”), and then the prediction scenario Sp, involving the full physical system and model, in

which the forward problem (1.1) is solved to predict the Quantities of Interest (QoIs). A revealing

example of various scenarios emerges in models of biomedical systems in which in vitro data are

selected in lab experiments (e.g. cell proliferation in a petri dish supplied with concentration of

nutrients, or in vitro experiments with laboratory animals) and the models are there expected to

be validated using in vivo data collected through biopsies or emerging imaging techniques. These

ICES, Univ of Texas Austin Last modified: October 12, 2017 13
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are the calibration scenarios Sc (the in vitro experiments) and the validations scenarios Sv (the in

vivo experiments). The model may then be called upon to make an out-of-data prediction in the

prediction scenario Sp. We discuss these ideas in more detail in later lectures.

The model parameters θ are generally random vectors, and, thus, the solutions u(θ, S) are random

or stochastic functions. We elaborate on this fact in the next section. Equation (1.1), therefore,

describes an infinite class of models parametrized by θ. Equation (1.1) is called the forward prob-

lem as it describes a projection of data ”forward” into a prediction u(θ, S), which is the solution

of the forward problem.

Two fundamental issues come to light at this point:

1. There must exist solutions u(θ, S), to the forward problem for every θ ∈ Θ. This fact

leads to conditions on the space Θ of parameters. The solution will be an element of an

appropriate space V of generally random functions.

2. The goal of constructing and solving the model (1.1) is to compute specific quantities of

interest (QoIs), generally described as functionals Q on the space V containing the solution.

This calculation is to be made in the full prediction scenario, S = Sp, the full system in

which the model extrapolates all relevant information to predict an outcome beyond those

events available through the analysis of observational data:

Q : V → R : Q(u(θ, Sp)) = Q̄(θ), (1.2)

Q̄ being also a random function.

As we will emphasize later, the determination of the validity of the model (1.1) as a means of

predicting Q̄ of (1.2) must, by definition, involve determining the accuracy with which model

predictions agree with experimental data- the observations. These data must be collected in some

accessible experimental setting which corresponds to a model validation scenario Sv, in which

experiments are designed that can, hopefully, represent how well the model can predict the QoI.

Different scenarios Sc appear when we use experimental data to calibrate a model, that is to adjust

its parameters so that predicted responses for experimental measurements.

ICES, Univ of Texas Austin Last modified: October 12, 2017 14
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1.3 Sources of Uncertainty in Predictions

So what is the anatomy of scientific prediction within the context laid down thus far, and how do

we cope with the multitude of uncertainties in each step on the predictions process? We wish to

predict a specific reality in a possibly very complex scenario Sp using a computational model which

is based on a mathematical model of a real situation from which the target quantity of interest (the

QoI) can be specified. We must therefore select a model that we hope can deliver a sufficiently,

accurate estimate of the QoI and for which we have some confidence in its predictability. The

predictability of our model rests on knowledge gained through observation – and our access to

observational data – and our inductive hypotheses embodied in our selections of a model. The

model, in general will be characterized by a set of parameters which themselves are generally un-

known, and which at best involve uncertainties. Then we must discretize the mathematical model

to produce a computational model, a corruption necessary to render the model into a form that

can be processed by digital computers.

Collecting all these sources of uncertainty, and following, in part, the classifications plan of Terenin

and Draper (2015), we list the following sources of uncertainty in predictive computational science

and in making prediction of realities:

1. P-uncertainty. This is so-called systemic uncertainty – uncertainty about the appropriate

systems of reasoning or mathematical framework in which to study and quantify uncertainty

in a logically-consistent way (e.g. do we frame our predictive process in the language of

probability theory (if so, which one?)), possibility theory, fuzzy sets, Dempster-Shafer the-

ory, interval analysis ... which logical system produces a self-consistent way to deal with

uncertainty in prediction?

2. Y-uncertainty. This embodies uncertainty in observational data. All data recorded from

physical experiments can be polluted by experimental noise. How do we cope with uncer-

tainties in data?

3. M-uncertainty. One of the most elusive and important sources of uncertainty is the

selection of the mathematical model itself: M-uncertainty. We agree with the famous quote

of E.P.Box [1919-2013]: ”Essentially all models are wrong. Some are useful”. One of the

most important missions of model selection and validation processes is to identify such useful

models.

4. θ-uncertainty. Model parameter θ uncertainty, the uncertainty in parameter values or in

parametric families of distributions – a key source of uncertainty in predictive models.
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Figure 1.1: The Imperfect Paths to Knowledge and Prediction. A schematic of the
imperfect paths to knowledge that involve uncertainties in all phases of the process for gaining
knowledge and making predictions. [From Oden, Moser, and Ghattas, 2010 [80]]

5. h-uncertainty. This is uncertainty brought about by the discretization process that pro-

duces the computational model – ”h” representing an appropriate discretization parame-

ter. This uncertainty can sometimes be estimated a posteriori through error estimation or

bounded through a priori estimates or at least studied in some quantitative sense through

various verification processes.

The various paths to knowledge, made imperfect by the uncertainties discussed , are represented

symbolically in Figure 1.1.

In the remainder of these notes, we will systematically develop the machinery to study each of

these sources of uncertainty (except possibly h-uncertainty, which is covered in depth elsewhere and

which is a bit out of the scope of this exposition). The next two chapters focus on P-uncertainty

– which we resolve by adopting forms of probability theory. Parameter (θ) and model (M) uncer-

tainties are taken up in a chapter on statistical calibration, validation, and on information theory.

We describe algorithms for systematically addressing Y and θ uncertainties. Then we develop the
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foundations of model prediction, parameter sensitivity analysis, and discuss an introduction to

information theory and entropy methods. Then we consider several application areas where these

tools are applied to various problems in engineering, science, and medicine.
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Chapter 2

Probability Theory - A Review of the

Classical Frequentist Theory of

Kolmogorov

2.1 Introductory Comments

Some scholars cite the beginning of a systematic study of the idea of probability with correspon-

dence between de Fermat and Pascal in 1654. (e.g. Davis [1]). The theory was expanded and

formalized in the writings of Bayes in 1763 and Laplace in 1820 and onward, and advanced in the

works of Cournot in 1843 and Venn in 1820. However, to most of today’s circles in mathematics

and statistics, a mathematically rigorous theory of probability did not appear until the work of

Kolmogorov, beginning in 1933, which laid the mathematical foundations for the so-called fre-

quentist view of probability. This view is embedded in the language of measure theory, measurable

functions, and a view of the probability of an event as directly related to the frequency the event

will occur over infinitely many samples.

Other quite different notions and theorems, not as well known or established as Kolmogorov, began

to emerge in the 1930’s–early 1940’s in the work of deFinetti [1931-1933], on Bayesian inference

based on belief and betting odds, the so-called subjective probability theorem, and then came the

powerful logical probability of R.T. Cox in 1946, also based on Bayesian inference. Cox’s theory

was embraced by E.T. Jaynes and expanded and enriched in his treatise, Probability Theory: The

Logic of Science published in 2003. We refer to the latter as the Cox-Jaynes theory of probability.
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In the sections that follow in these notes we will review the Kolmogorov theory. The Cox-Jaynes

theory is taken up in Chapter 3.

2.2 Measure and σ-algebras

Let A be an arbitrary non-empty set. We wish to construct a mathematical abstraction of the

idea of size or volume of subsets of A, which we will call a measure on A: a real number assigned

to subsets of A. While it is natural to attempt to construct such a measure for every subset of A,

one can find counterexamples in which this is impossible: [the classical Vitali theorem confirms,

using the Axiom of Choice, that subsets of the real line are not (Lebesgue) measurable. Another

set-theoretic problem Kolmogorov encountered in using as a basis for measure spaces is that the

countable, or uncountable, infinite power set 2A is inappropriate for the assignment of measured

probabilities is embodied in the Von-Neumann Paradox in which one can partition in unit square

in R2 into a finite member of subsets, subject these subsets to an affine area-measuring map, and

end up with two unit squares of area 2 (c.f., Terenin and Draper 2015 [110])]. The introduction

of a σ-algebra, closed under countable union, intersection, and complementation set operations,

avoids this paradox. Thus, to define a meaningful notion of measure, we need to identify a smaller

collection of special subsets of A. The classA of subsets of A that qualifies, has two basic properties:

1) the class is closed under complementation and 2) countable unions of such sets belong to the

class:

1) ∅ ∈ A
2)B ∈ A ⇒ B′ = A/B = complement ofB ∈ A

3) A1, A2, ..., An, ... ∈ A ⇒
∞⋃
i=1

Ai ∈ A
(2.1)

A class of subsets of A with properties (2.1) is called a sigma-algebra or σ-algebra on A and the

member sets making up a σ-algebra are called measurable sets. The pair (A,A) where A is a set

and A is a σ-algebra on A is called a measurable space.

Example. Let A = {α, β, γ, δ}. The class of subsets, A = {∅, {α, β} , {γ, δ} , {α, β, γ, δ}} is a

σ-algebra on A, as complements of every set and unions belong to A.
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A measurable function is defined in the following way: if (A,A) and (B,B) are measurable spaces,

a function f : A → B is measurable iff ∀B ∈ B, f−1(B) ∈ A; i.e. the inverse image of every

measurable set is a measurable set.

Generated σ-algebra. Let C be any arbitrary class of subsets of a set A. There exists a unique

smallest σ-algebra that contains every set in C. This σ-algebra is called the σ-algebra generated by

C.
Example. Let A = {α, β, γ, δ}, C = {{α, β}. We construct sets of complements and unions of sets

in C to produce a σ-algebra. For instance,

(A|C)1 = {{α, β, γ, δ} , {γ, δ} , ∅, {α, β}} ,

(A|C)2 = {{α, β, γ, δ} , {α} , {β, γ, δ} , {β} , {α, β, δ} , {α, β} , ∅} ,

etc. The smallest of these is (A|C)1, which is therefore the σ-algebra generated by C.

Borel σ-algebras, A common class of measurable sets occur in Borel σ-algebras. If (X,X ) is a

topological space (a set X and a class of subsets X defining a topology on X), then the sets in X
are called open sets with respect to X . (They could also be defined as closed sets). A set in (X,X )

that can be formed from open sets in X through relative complementation, countable unions, and

countable intersection is a Borel set. The collection of all Borel sets is a Borel σ-algebra on X. It

is the smallest σ-algebra containing all open sets.

Measure. A function µ from a measurable space (A,A) into [−∞,+∞] is a measure iff

i) µ(A) ≥ 0 ∀A ∈ A

ii) µ(∅) = 0

iii) µ(
⋃
i∈I Ai) =

∑
i∈I µ(Ai) for every countable collection of pairwise disjoint sets {Ai}i∈I
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Measure Space. If (A,A) is a measurable space and µ is a measure, the triple (A,A, µ) is called a

measure space.

Probability Space. A measure space (A,A,P) with measure P(A) = 1 is called a probability space

and P is called a probability measure: (P : A → [0, 1]).

σ-finite Measure. If (A,A, µ) is a measurable space and µ(A) is finite, the space is said to be finite.

It is σ-finite if it can be partitioned into a countable union of sets with finite measure.

2.3 The Bochner Integral

• Let (A,A, µ) be a measure space.

• Let {Ai}i∈I be a set of disjoint sets in A

• Let

χAi(a) =

1 if a ∈ Ai
0 if otherwise

(2.2)

(χAi = the characteristic function of Ai).

• Let U be a Banach space with norm ||.||U

• Let {ui}i∈I be distinct elements of U

The finite sum

S(a) =
∑
i∈I

uiχAi(a) (2.3)

is called simple function.

• If µ(Ai) is finite when even ui 6= 0, then S(a) is said to be integrable and its integral in U

is defined as follows.

• Let Sn(a) =
∑n

i=1 uiχAi(a), then we can compute the sum in U :

n∑
i=1

uiµ(Ai) =

∫
A

Sn(a)dµ (2.4)
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Figure 2.1: Graphical description of a single function representing an approximation of the
Bochner integral of measurable function on a set A.

A measurable function f : A → U is Bochner integrable if there exists a sequence of integrable

simple functions Sn such that,

lim
n→∞

∫
A

||f − Sn||Udµ = 0 (2.5)

where the integral is the usual Lebesgue integral. Then the Bochner integral is,

lim
n→∞

∫
A

Sndµ =

∫
A

fdµ (2.6)
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2.4 The Radon-Nikodym Theorem

A function f is absolutely continuous with respect to a measure µ iff f is µ-integrable on a set A,

the integral over subsets B ⊂ A, and for any ε > 0 there exists a δ > 0 such that |
∫
B
fdµ| < ε

whenever µ(B) < δ. In the case of real-valued function f : [a, b] → R, f is absolutely continuous

with respect to Lebesgue measure if ∃g ∈ L1(a, b) such that

f(x) = f(a) +

∫ x

a

g(t)dt (2.7)

Thus, g = df/dx almost everywhere.

Theorem. Let (A,A) be a measurable space and ν be a σ-finite measure on (A,A) that is

absolutely continuous with respect to a σ-finite measure µ on (A,A). Then there is a measurable

function f : A→ [0,∞) such that

ν(A) =

∫
A

fdµ (2.8)

In the general case covered by the theorem, f is written

f = dν/dµ (2.9)

and is called the Radon-Nikodym derivative.

Clearly,

ν(A) =

∫
A

dν =

∫
A

dν

dµ
dµ =

∫
A

fdµ (2.10)

A remarkable fact is that the Radon-Nikodym theorem fails to hold, in general, for Bochner

integrals defined on all Banach spaces. Those Banach spaces for which it does hold are said to

have the Radon-Nikodym property- which can be defined more precisely in the language of vector-

valued measures. The property does hold for reflexive spaces, including therefore all Hilbert spaces,

but does not hold for L1(Ω), L∞(Ω), where Ω is an open bounded domain in Rn.

The integral
∫
A
fdµ is an element of U . Thus, ||

∫
A
fdµ||U makes sense. Indeed, if f is integrable,

||
∫
A
fdµ||U ≤

∫
A
||f ||Udµ. For B ∈ A,

∫
B
fdµ is a vector-valued (U -valued) measure on A, which

is absolutely continuous with respect to µ.
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Random Variables

Let P be a probability measure on a measurable space (Ω,F). The sets in the σ-algebra F are

called events and P(A) (A ∈ F) is the probability of the event A.

Random Variable. Let (U,U) be another measurable space. A measurable function X : Ω→ U is a

U -valued random variable, the term random coming from the fact that P is a probability measure.

Its values in U are regarded as not known with certainty but only to within some probability. Since

X is measurable, the pre-image (or inverse image) of sets B in U are sets in F : X−1(B) ∈ F . If U

is a topological space, the σ-algebra on U can be taken to be the Borel σ-algebra (that generated

by the open sets in U). When U is the real line, X is called a real random variable or simply a

random variable. Then X : Ω→ R is a random variable if

{ω ∈ Ω : X(ω) ≤ r} ∈ F ∀r ∈ R . (2.11)

Here X−1((−∞, r]) = {ω ∈ Ω : X(ω) ≤ r}, arising from the fact that {(−∞, r] : r ∈ R} generates

a Borel σ-algebra on the real numbers.

Cumulative Distribution Function. The notion at a cumulative distribution function associated

with a random variable X provides a means for characterizing X while hiding the particular

probability space used to define X, recording only probabilities of various values of X. Consider

X : Ω → R. The event {ω ∈ Ω : X(ω) ≤ x} is the probability that X is smaller than x (x ∈ R),

written P(X ≤ x). Running these ranges over all x ∈ R gives the cumulative distribution function

(CDF) for X:

FX(x) = P(X ≤ x) (2.12)

The CDF thus characterizes X without specifically displaying Ω. (The image measure space can

be written (R,B, dFX)).

Functions of a Random Variable. Let X : ω → R be a real random variable and let g : R→ R be

a Borel measurable function. Since the composition of a measurable function is also measurable,

g(X) = Y is also a random variable on Ω. The CDF at Y is

FY (y) = P(Y ≤ y) = P(g(X) ≤ y). (2.13)
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If g−1 exists and is increasing,

FY (y) = P(X ≤ g−1(y)) = FX(g−1(y)). (2.14)

The random variable X maps the measure P to a measure dfX on R, in the sense that

P(a ≤ X ≤ b) =

∫ b

a

dFX = FX(b)− FX(a). (2.15)

In particular, the CDF has the properties:

• FX is right continuous on R,

• limx→∞ FX(x) = 1.

Probability Density. Let X : Ω→ U be a U -valued random variable and (U,U , µ) a measure space.

The variable X has a probability distribution measure XoP on (U,U). The density of X with

respect to µ is the Radon-Nikodym derivative

ρ =
dXoP
dµ

, (2.16)

by which we mean ρ is a measurable function such that∫
A

ρdµ =

∫
X−1(A)

dP = P(X ∈ A), (2.17)

∀A ∈ U . When (U, 2) = (R,B(R)) (B being the usual Borel σ-algebra), the CDF is

FX(x) =

∫ x

−∞
π(s)ds. (2.18)

Or, if π is continuous at x,

π(x) =
dFX(x)

dx
. (2.19)

The probability that values of X fall with the interval [x, x+ dx] can be interpreted as π(x).
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2.5 Summary of Basic Properties of a Probability in the

Kolmogorov-Measure Theory Setting

To sum up some basic probability properties, let (Ω,F ,P) be a probability space. The map

P : F → R+ (also written P : Ω→ R+) is a probability on F iff,

1. P(A) ≥ 0 (the probability of the “event” A is non-negative), ∀A ∈ F ,

2. ∀ pair of disjoint sets A and B in F , P(A ∪B) = P(A) + P(B),

3. P(Ω) = 1.

From these elementary axioms we can derive the following properties of a probability:

Theorem. If axiom 1− 3 hold, then:

i) P(A′) = 1− P(A) (A′ = A(c) = complement of A),

ii) P(∅) = 0.

iii) P(A) ≤ P(B) if A ⊂ B.

iv) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof. Property i) follows from the simple calculation,

P(Ω) = P(A ∪ A′) = P(A) + P(A′) = 1. (2.20)

Property ii), similarly, comes from the fact that

P(Ω) = 1 = P(Ω ∪ ∅) = P(Ω) + P(∅) = 1 + P(∅). (2.21)

Identity (iii) use the fact that

P(B) = P((B − A) ∪ A) = P(A) + P(B − A) ≥ P(A). (2.22)

To prove condition (iv), we note that

P(A) = P(A−B) ∪ (A ∩B)) = P(A−B) + P(A ∩B). (2.23)
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Thus,

P(A ∪B) = P
(
(A−B) ∪ (B − A) ∪ (A ∩B)

)
= P(A−B) + P(B − A)− P(A ∩B)

= P(A)− P(A ∩B) + P(B)− P(A ∩B) + P(A ∩B), (2.24)

and, therefore,

P(A ∪B) = P(A) + P(B)− P(A ∩B). (2.25)

�

2.5.1 Conditional Probability

What is the probability of an event A given that an event B has occurred? This is called the

conditional probability and is denoted

P(A|B) = the conditional probability. (2.26)

P(A|B) is the probability of A according to a new probability measure on the same sample space

such that the outcomes not in B have probability zero, and that is consistent with the probability

on the original space.

Theorem

P(A|B) =
P(A ∩B)

P(B)
. (2.27)

Proof : The “proof” of this relation is really just an observation of elementary properties of

sets. Suppose A and B are contained in the sample set Ω. Write P(A) = A/Ω to represent the

percentage of the probability of A of P(Ω), which is unity. Think of A/Ω as the area of a set A

in a Venn diagram with A in a unit circle Ω. Then P(B) = B/Ω and P(A ∩ B) = AB/Ω. Then

P(A|B) = AB/B = (AB/Ω)/B/Ω = P(A ∩B)/P(B).

Another way to prove Equation (2.27) is as follows: let ωi be a sample from Ω that falls in the

set B. Let Ω̃ = {ωi ∈ Ω : ωi ∈ B ⊂ B ∀ i}. Define F̃ = {C ∩B ∀ C ∈ F}. Then (Ω̃, F̃ , P̃) is a

new probability space. If P̄(Ω̄) = 1, we must have P̃ = P/P(B). Then P(A|B) = P(A∩B)/P(B). �

The usual probability of an event A can be regarded as a conditional probability, conditional on
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all possible events:

P(A) = P(A|Ω) = P(A ∩ Ω)/P(Ω) = P(A)/1. (2.28)

Bayes’ Rule (Bayes’ Theorem)

From (2.27), we immediately have:

P(A|B)P(B) = P(A ∩B) = P(B|A)P(A), (2.29)

therefore,

P(A|B) =
P(B|A)P(A)

P(B)
. (2.30)

This fundamentally important relation is called Bayes rule (or Bayes law or Bayes theorem). It

is one of the most important relationships in all of probability and mathematical statistics. This

interpretation evokes deep philosophical and basic revelations that will be taken up in later lectures-

particularly in Section 3.4 to follow.

Joint Probability. Given two events A,B ∈ F , the probability that A and B will occur jointly,

i.e., at the same time, it called the joint probability and is written P(A,B). If the events are

independent, then

P(A,B) = P(A)P(B) (2.31)

In general, the joint and conditional probabilities are related as follows:

P(A,B) = P(A|B)P(B) = P(B|A)P(B) . (2.32)

So P(A,B) = P(A ∩B).
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2.6 Probability Properties in Terms of Probability Densi-

ties

Throughout these lectures we will confine our attention to cases in which every real-valued random

variable X has a probability distribution GX a probability density function (pdf) π (or

sometimes πX for specificity), such that

GX(A) = P(X−1(A)),= P(X(a) ∈ A),=

∫
A

π(x)dx. (2.33)

Thus, π(x) (with dx = dµ(X)), is the Radon-Nikodym derivative of the measure µX with respect

to Lebesgue measure on Borel sets in: R. We write dGX/dx = π. If x is a realization of X, the

CFD of which is GX(x) = P(X)(ω ≤ x, ω ∈ Ω) and we write G(x) == GX(x) =
∫ x
−∞ π(x)dx. In

particular,

P(a ≤ x ≤ b) =

∫ b

a

π(x) dx , (2.34)

If the random variable takes on a countably infinite or finite numbers of discrete values, x1, x2, ...

then the probability of X = xi is determined by

πi = π(xi) = P({ω ∈ Ω;X(ω) = xi}) = P(X = xi), i = 1, 2, ... (2.35)

The distribution function is then,

G(x) =
∑

I(xi≤x)

π(xi). (2.36)

We will now lay out several key probability properties and relations that form the basic tools of

modern statistics and applied probability theory that are key to subsequent developments. We

begin with the expectation or first moment of X:

x̄ = E[X] =

∫
R
xπ(x) dx (2.37)

This is the mean of X, and the moment about the origin of the curve π(x):

x̄ (denoted sometimes µ) =

∫
R xπ(x) dx∫
R π(x) dx

. (2.38)
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The second moment about the mean is the variance,

V (X) = E
{

(X − [X])2)
}

=

∫
R
(x− x̄)2π(x) dx. (2.39)

The kth moment is obviously,

E
{

(X − x̄)k
}

=

∫
R
(x− x̄)kπ(x) dx . (2.40)

Other properties are listed as follows.

The joint probability density (of two random variable X and Y ) is π(x, y):

P {X ∈ A, Y ∈ B} = P
{
X−1(A) ∩ Y −1(B)

}
=

∫∫
A×B

π(x, y) dx d y . (2.41)

The variable X and Y are independent if,

π(x, y) = π(x)π(y) . (2.42)

The covariance of X and Y is the mixed central moment,

cov(X, Y ) = E {(X − x̄)(Y − ȳ)} = E {XY } − E[X]E[Y ] . (2.43)

and the correlation coefficient of X and Y :

corr(X.Y ) =
cov(X, Y )

σXσY
, (2.44)

where σX and σY are the standard deviations,

σX =
√
V (X) , σY =

√
V (Y ) . (2.45)

If cov(X, Y ) = 0, the variables are uncorrelated. If there are independent, they are uncor-

related (since E {(X − x̄)(Y − ȳ))} = E {(X − x̄)}E {(Y − ȳ)} = 0). They are orthogonal if

E {XY } = 0. Then E {X2}+ E {Y 2} = E {(X + Y )2}.

In correspondence with (2.27), the conditional probability densityπ(x|y) of X given Y is the

probability of X assuming Y is equal to its realization y; i.e., in the limit when Y assumes values
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in an interval shrinking to a single point y. We have

π(x|y) =
π(x, y)

π(y)
, π(y) 6= 0 . (2.46)

Again we have the symmetry

π(x|y)π(y) = π(y|x)π(x) = π(x, y) . (2.47)

This leads to Bayes rule in terms of probability densities:

π(x|y) =
π(y|x)π(x)

π(y)
. (2.48)

As we shall dwell on later, the pdf π(x) on the right-hand side of 2.48 is called the prior probabil-

ity; π(y|x) is the likelihood and π(x|y) is the posterior pdf. The denominator is a normalization

factor: π(y) =
∫
R π(y|x)π(x) dx, because we must have

∫
R π(y|x) dx = 1 for any y. The denomi-

nator π(y) is also called the evidence pdf.

These definitions are easily extended to n dimensions. For example, for vector-valued random

variables X = {X1, X2, ..., Xn}T , each component being a real-valued random variable. Then

π(x) = π(x1, x2, ..., xn), the joint pdf, and x̄i =
∫
R xiπ(x)π(x) dx1 dx2 ... dxn, 1 ≤ i ≤ n.

The covariance matrix is the n× n matrix,

cov(X) =

∫
Rn

(x− x̄)(x− x̄)Tπ(x) dx , (2.49)

(with i, j components
∫
Rn(xi − x̄i)(xj − x̄j)Tπ(x) dx , dx = dx1 dx2 ... dxn ).

For illustration purpose, we list some standard and common example of pdfs as follows.
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2.7 Examples of Probability Density Functions

We write these in the form of a likelihood: π(y|θ), Y ∈ y ≡ a realization of a random variable y

(often representing observational data) and θ, a vector of parameters.

1. Gaussian (or Normal) Distribution.

π
(
y|(µ, σ)

)
=

1√
2πσ

exp

(
− (y − µ)2

2σ2

)
, −∞ < y <∞. (2.50)

with µ = ȳ as the mean, and σ2 as the variance.

2. Cauchy Distribution.

π
(
y|(µ, τ 2)

)
=

1

π

τ

(y − µ)2 + τ 2
. (2.51)

3. Laplace Distribution.

π
(
y|(µ, τ)

)
=

1

2τ
exp

(
− |y − µ|

τ

)
. (2.52)

4. Poisson Distribution.

π
(
y|λ
)

=
λy

y!
e−λ, y = 0, 1, 2, 3, ... & 0 < λ <∞, (2.53)

E[y] = λ , V[y] = λ. (2.54)

5. Pearson’s Family of Distribution.

π
(
y|(µ, τ 2, b)

)
=

Γ(b)τ 2b−1

Γ(b− 1
2
)Γ(1

2
)

1[
(y − µ)2 + τ 2

]b . (2.55)

6. Weibull Distribution.

π
(
y|(λ, k)

)
=


k
λ

(
y
λ

)k−1

exp

(
− y

λ

)k
, y > 0

0, y > 0.

(2.56)

7. Exponential Distribution.

π
(
y|λ
)

=
1

λ
exp

(
− y

λ

)
. (2.57)
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8. Rayleigh Distribution.

π
(
y|σ
)

=
2

2σ

(
y√
2σ

)
exp

(
− y2

2σ2

)
. (2.58)

Many other examples could be cited. Most often, we do not know a pdf or its parameters and we

must determine it by solving a stochastic problem.

We note that when X is Gaussian, we write for shorthand,

X ∼ N
(
µ, σ2

)
, (2.59)

in which N stands for “Normal” distribution, µ is the mean, and σ2 is the variance. A Gaussian

X in Rn is,

π(x) =
1√

(2π)n det(Σ)
exp

(
− 1

2
(x− x̄)TΣ−1(x− x̄)

)
, (2.60)

where Σ is the covariance matrix.

In closing this section, we record some fundamental classical results in probability theory for future

reference. These include the central limit theorem and the law of large numbers.

The Central Limit Theorem

We note that:

Convergence in probability ⇒ convergence in distribution ⇒ convergence almost surely (a.s.).

Let X1,X2, ...,Xn be n real-valued random variables that are,

1. independent [ i.e., π(X1,X2, ...,Xn) =
∏n

i=1 π(xi) ], and

2. identically distributed [ i.e., drawn from the same distribution ],

each with expectation µ and variance σ2. Then the distribution of

Zn =
1√
nσ

(X1 +X2 + ...+Xn − nµ) (2.61)

converges to the distribution of a Gaussian random variable,

lim
n→∞

P(Zn ≤ x) =
1

2π

∫ ∞
−∞

exp

(
− x2

2σ2

)
dx. (2.62)
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Equivalently, if

Yn =
1

n

n∑
i=1

Xi, (average or mean), (2.63)

then, for large n,

Yn ∼ N (µ,
σ2

n
). (2.64)

The law of large numbers

Assume X1,X2, ...,Xn are i.i.d. random variables with finite mean µ. Then,

lim
n→∞

1

n

(
X1,X2, ...,Xn

)
= µ (2.65)

almost surely (with probability 1) the realization x1,x2, ...,xn converges to the mean µ.

In these definition, i.i.d. stands for independent and identically distributed sample.

We close with comments on different notions of convergence in probability spaces. In particular,

if X is random map from (Ω,F , µ) to a metric space (S, d), a sequence Xn of random variables,

1. converges in probability, Xn
P→ X, in a metric d if ∀ε > 0, µ(ω ∈ Ω : d(Xn, X(w)) > ε) → 0

as n→∞, or,

2. converges in distribution, Xn
d→ X, Ef(Xn) → Ef(X) as n → ∞, for every bounded

continuous function f , and,

3. converges almost surely, Xn → X, µ− a.s., if µ(ω ∈ Ω : limXn(w) = X(w)) = 1.
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Chapter 3

The Logical Theory of Probability of

R.T. Cox and E.T. Jaynes

3.1 Introduction

An alternative and quite different mathematical framework than Kolmogorov’s for developing a

theory of probability was begun by R.T. Cox in 1946 [31], expanded on in subsequent accounts

in 1961 [32] and 1979 [33], and enriched and extended by E.T. Jaynes in his treatise, Probability

Theory: the Logic of Science, published posthumously in 2003 [60]. A significant literature has

accumulated on this so-called subjective or logical theory of probability based on Bayesian infer-

ence, including works on the Bayesian approach to scientific reasoning by Howson and Urbach

[55], counter examples to Cox’s original examples of Halpern [49], “patches” (corrections) to the

theorem by Halpern [48], and alternate proofs and interpretations by Arnborg and Sjodin [10],

Knuth and Skilling [70], Zimmerrnan and Cremers [26], and Dupre and Tipler [38]. A “guide to

Cox’s Theorem” was provided by a comprehensive account of Van Horn [116], and a recent paper

by Terenin and Draper [110] is devoted to “rigorizing and extending the Cox-Jaynes derivation of

probability”. We provide in this chapter brief overview of Cox-Jaynes theory, drawing from Jaynes

[60], Van Horn [116] and Terenin and Draper [110].
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3.2 Plausible Reasoning

The notion of logical or CJ (Cox-Jaynes) probability begins with the concept of plausible reasoning.

The idea is that in science, and indeed, in every day life, we rarely have enough information to per-

mit deductive reasoning. Instead, we make plausible conclusions based on past experience. Certain

reasoning processes assess the plausibility of a proposition accepting that it may not be a certainty.

Thus, we regard the logical approach to scientific reasoning as one way of assessing the plausibility

of a proposition (as opposed to the frequency of an event) that can be true or false or that can be

assigned a degree of plausibility. The appropriate mathematical setting for such considerations is

that furnished by a Boolean algebra.

Propositional Boolean Algebra. A propositional Boolean algebra C consists of the six-tuple,

C ∼ {A,∧,∨,¬,0,1} (3.1)

wherein

• A = a finite or (countably or uncountably) infinite set of true propositions A,B, ....

• Two binary operations, ∧ and ∨, and a unitary operation ¬ on the propositions in A:

A ∧ B = the conjunction of A and B, meaning that both A and B are true. A ∨ B = the

disjunction of A and B, meaning that at least one of A and B is true (“A or B”)

¬A = A¬ = the negation of A, meaning A is false

• Two identity elements 0 and 1

all such that,

1) C is closed under countable applications of ∧ and ∨ and

2) For all propositions (A,B,C) ∈ A, the following five Boolean axioms hold:

Associative Laws

A ∧ (B ∧ C) = (A ∧B) ∧ C; A ∨ (B ∨ C) = (A ∨B) ∨ C
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Commutative Laws

A ∧B = B ∧ A ; A ∨B = B ∨ A

Identity Elements

A ∧ 1 = A ; A ∨ 0 = A

Complementation or Negation

A ∧ (¬A) = 0 ; A ∨ (¬A) = 1

Distributive Laws

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C).

The conjunction of two propositions, A∧B, is also written AB as their “product” and the disjunc-

tion, A∨B, written as their sum A+B, all in analogy with the (“two-valued”) algebra of numbers.

In this context, the Boolean algebra of propositions is said to follow the rules of Aristotelian logic.

The plausibility of a proposition A given that a proposition B is true is characterized by a real-

valued function pl(.|.) on pairs of propositions:

pl : A×A/0 → R+. (3.2)

Thus, pl(A|B) is the degree of plausibility of proposition A given that B is true. If B is true, A

becomes plausible, while evidence does not guarantee that A is true, but by observation of one or

more of its consequences gives confidence that A is plausible. Also, if, given B, A is more plausible

than C, we have pl(A|B) > pl(C|B). Other fundamental rules will follow.

Jaynes Example: From Jaynes [60]: suppose we state the proposition A ∼ “it will start raining

at 10:00 a.m. at the latest”, and B ∼ “the sky will become cloudy before 10:00 a.m”. Plausible

reasoning not only establishes whether a proposition is more or less plausible, it evaluates the

degree of plausibility in some way. For example the darkness of the clouds may suggest the degree
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of plausibility of rain. �

3.3 Logic and Philosophical Theories of Probability

Logic is the science of reasoning, an intellectual discipline with origins dating millennia, that pro-

vides the cornerstones to mathematics, science, and all forms of human knowledge.

As noted in Chapter 1, deductive logic or logical deduction is a form of reasoning from one or

more premises or axioms so as to deduce a logically certain conclusion. Deductive logic is said to

be “ top-down”, infallible and irrevocable when its conclusions are reached by following strict laws

of reasoning. Mathematics is a discipline founded on deductive logic – one lays down axioms and

definitions and then deduces their consequences following rules of logic.

Inductive logic, or “bottom-up” logic, represents a system of reasoning in which logical hypotheses

or explanations are put forth to explain observed events or phenomena. Inductive arguments are,

therefore, fallible – they can prove to be false when new infromation is acquired.

While deductive logic is absolute and infallible, it is independent of observation or experiment and,

therefore, provides no way to test the validity of the axioms on which it is based. Inductive logic,

on the other hand, can never be used to absolutely prove a scientific theory.

According to Jaynes [60], all knowledge is inductive. In deductive reasoning, if A and B are el-

ements or propositions, one writes A ⇒ B to mean if A is true, B is logically deduced from A.

According to Jaynes, in almost all situations, “we do not have the right kind of information to

allow this kind of deductive reasoning. In the formal logic of plausible reasoning A ⇒ B means

only that A and B have the same “truth value”.

If A and B are true propositions, a proposition C which is a function f of A and B, (C = f(A,B))

can be either true or false. Since A and B take on values [TT, TF, FT, FF], there are 16 logical

functions: f(T, T ) = T, f(T, T ) = F, ... etc. A logical function of n propositions as 2n function

values. One can therefore construct truth tables analogous to theory elementary logic of operations

on real numbers, to cover possible truth values of such logic functions.
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Plausible reasoning not only establishes whether a proposition is more or less plausible, it evaluates

the degree of plausibility in some way (e.g. the darkness of the clouds may suggest the plausibility

of rain). Examples of the Boolean algebra of propositions are:

A,B,C, ... = propositions = unambiguous, simple, definitive, statements that are either true or

false (two- valued, Aristotelian logic )

As noted earlier, conjunction“cojoins” two prpositions into a “logical product”:

A ∧B = AB (both A and B are true)

Disjunction, called the “logical sum”, “disjoins” two propositions,

A ∨B = A+B (at least one of A and B are true)

Negation describes “denial”,

¬A ≡ A is false

We understand equality and identity of proposition as

A = B (A and B are equal in truth (or “truth value”))

A ≡ B (A and B are equal by definition)

Some properties:

A ∨ ¬A = a necessary (or logical) truth (A is either true or false),

A ∧ ¬A = a necessary (or logical) falsehood (A is true and false),

¬A ∧B = AB is false,

¬A ∧ ¬B = both A and B are false,

if C = A ∧B, then ¬C = ¬A ∨ ¬B,

if D = A ∨B, then ¬D = ¬A ∧ ¬B.

These properties are recognized as analogous to elementary set properties with A,B,C,D sets,

AB = A∪B, A+B = A∩B, Ā = A′, etc. A⇒ B (A implies B) does not assert that either A or
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B is true, it means A∧B̄ (A and (B is false)) is false or Ā∨B (either A is false or B is true) is true.

Technically, propositional statement of Boolean algebras in symbolic logic follow rules similar to

ordinary algebra, with values 0 or 1, and no operations other than conjunction (multiplication)

and disjunction (addition). To understand true logical meaning of some functional (called a logic

function) relationship among proposition, we use the rules just stated to construct truth tables

similar to those encountered in constructing the foundations of algebra of numbers. In two-valued

logic, any proposition has a truth value of 0 or 1, with a true proposition being assigned 1 and a

false proposition 0. Two propositions are equal if they have the same truth value.

For example, consider the compound propositions A = ¬(B ∧ C) (the negation of B ∧ C) and

D = ¬B ∨ ¬C. The truth value of these two logic functions is established by a truth table of the

following form:

a) b) c) d)

B C B ∧ C ¬(B ∧ C)

T T T F

T F F T

F T F T

F F F T

Column d) describe the truth value of A = ¬(B ∧ C). Now look at A′ = ¬B ∨ ¬C and the truth

table:

e) f) g) h)

B ∨ C ¬B ∨ C ¬B ∧ ¬C ¬B ∨ ¬C
T F F F

T F F T

T F F T

F T T T

Thus the proposition B′ = ¬B ∨ ¬C (column h) has the same truth value as A′, (column d), so

A′ and B′ are logically equal, they have the same truth value. This is one of many examples of

propositional logic that can be derived from straightforward applications of elementary Aristotelian
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logic. Other examples can be found in the book of Jaynes [60], in the book on Mathematics and

Plausible Reasoning by G. Polya [86]; a summary can be found in the text of Gregory [45].

3.4 Van Horn’s Guide to Cox’s Theorem

It is informative to follow a few arguments given by Van Horn in his guide to Cox’s Theorem [116].

There are two central notions:

1) the state of information X summarizes the information one has on what is called the

“atomic proposition Λ”, those that cannot be decomposed into other propositions. These atomic

propositions form the basis for the state of information X.

2) the plausibility of a proposition A ∈ A, given the state of information X, is a number

pl(A|X). The state of information obtained from A by adding the additional information that X

is true; thus written (AX) or (A|X).

We may now lay down several assumptions. In the notation inspired by Van Horn; there are five

“rules Ri”:

R1. The plausibility pl(A|X) of A given X is a single non-negative real number. Moreover

there exists a number T (the plausibility of a known true propositions) such that pl(A|X) ≤ T .

We say that X is consistent if there is no proposition A for which both pl(A|X) and pl(¬A|X) = T

(are true).

R2. Plausibilities are consistent with so-called propositional calculus, in the sense that the

following hold:

1) if A⇔ A′, meaning that “A⇔ B” is a tautology, (meaning a fundamental truth in formal

logic), then pl(A|X) = pl(A′|X).

2) if A is a tautology, then pl(A|X) = T .

3) pl(A|B,C,X) = pl(A|(B ∧ C), X).
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4) if X is consistent and pl(¬A|X) < T , then A, X is also consistent.

R3. There is a non-increasing function S such that pl(¬A|X) = S(pl(A|X)) for all A and

consistent X.

R4. (Universality) There exists a nonempty set Y◦ that is a dense subset of (S(T ), T ). Thus,

for real numbers a, b, c ∈ Y◦ there is a consistent X and three atomic propositions A1, A2, A3 such

that a = pl(A1|X), b = pl(A2|A1, X) and c = pl(A3|A2, A1, X).

Rules R1-R4 are set up to establish more or less commonsense properties of properties of the

plausibility of a proposition. R1 establishes the reasonable notion that real numbers can be used

to represent degrees of plausibility, and that larger numbers represent higher degrees of plausi-

bility, T being the real numbers, representing the plausibility of a known true propositions. The

idea that for a given state of information X, two plausibilities A and B are equally plausible or

one is more plausible than the other, is an assumption of universal comparability. The idea is not

without some controversy. Some (e.g. Shafer [102]) propose that a “two-dimensional” logic may be

called for, in which both the “degree of belief” of a proposition as well as the belief in its negation

is justified. Jaynes [60] and Van Horn [116], among others, provide strong arguments in favor of R1.

For R2, we simply demand that if two propositions are equivalent, we can use them interchange-

ably, and that the plausibility of any proposition known to be a tautology should be assigned a

value reflecting this knowledge. Condition 3) in R2 is obvious, and in 4), if we cannot say with

certainty that the negation ¬A of A is true, there remains the fact that A may be true and, then,

cannot contradict assertion on ¬A.

In R3 (Negation), we demand that A and ¬A are opposite answers to the same question: if A

is known to be true, then ¬A is false pl(A|X) and pl(¬A|X) cannot vary independently in two-

dimensional Aristotelian logic.

In R4, the goal is to lay down rules that enable plausible reasoning to fall under a universal system

of logic applicable to any problem domain in which meaningful propositions can be formulated,

allowing the range of the set of allowed plausibilities to be dense in (S(T ), T )). Van Horn [116]

comments that Halpern [48] argues that R4 is problematic as it cannot be satisfied on finite do-

mains, an assertion Van Horn discounts. We return to this point later.
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Conjunction: The Product Rule of Plausibilities. We now come to the centerpiece of Cox’s

theorem, the conjunction or product rule for propositions: given consistent X and the conjunction

A ∧ B = AB of two propositions conditioned on X, what can be said about the relationship of

pl(A∧B|X) with the plausibilities pl(A|B,X) and pl(B|X)? A systematic list of arguments leads

to the following:

R5. Given S(T ) and a tautology T , there exists a continuous function F : [S(T ), T ]2 → [S(T ), T ],

strictly increasing on (S(T ), T ], such that

pl(A ∧B|X) = F
[
pl(A|B,X), pl(B|X)

]
(3.3)

for any A, B and consistent X.

The establishment of (3.3) follows some surprisingly intuitive arguments. They begin with writing

down all the combinations of A, B, and X that pl(A∧B|X) could be a function of (omitting “pl”

temporarily, for simplicity), they are (A|X), (B|X), (A|B,X) and (B|A,X) and all combinations

of these numbers, 15 in all. Because A ∧ B = B ∧ A, only 9 of these survive. Van Horn [116],

following Tribus [111], rules out as many of these as possible:

1) (A ∧B|X) = F [(A|X)]

2) (A ∧B|X) = F [(A|BX)]

3) (A ∧B|X) = F [(A|X), (A|BX)]

4) (A ∧B|X) = F [(A|BX), (B|AX)]

5) (A ∧B|X) = F [(A|X), (B|X)]

Remarkably, all five of these candidates lead to a contradiction and can, therefore, be discarded.

For example, in 1), if A is a tautology (a fundamental truth), and B is a “atomic” proposition, then

A∧B is equivalent to B and (A|X) = T , so S(T ) = (B|X). But X can always be chosen to make

(B|X) any value in Y◦. So we have a contradiction. 1) cannot, therefore hold. Similarly, in 3), for

instance, if A is a tautology and B is any atomic proposition, then S(T ) = (B|X), a contradiction.

Similar arguments can be made for all these candidates leaving only four possibilities out of the

original 15:

I) (A ∧B|X) = F [(A|BX), (B|X)],
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II) (A ∧B|X) = F [(A|B,X), (B|X), (A|X)],

III) (A ∧B|X) = F [(A|B,X), (B|X), (B|A,X)],

IV) (A ∧B|X) = F [(A|B,X), (B|X), (B|A,X), (A|X)].

Van Horn refers to the arguments of Tribus [111] who claims that III) and IV) can be ruled out

because “they cannot avoid dealing with plausibility expressions that involve some inconsistent

state of information X = Y , and hence an unavoidable ambiguity”. Also, rule II) is eliminated for

certain similar reasons, leaving only I). But Van Horn asserts that “there is really no compelling

reason for choosing any one of the four remaining candidates”. He leans toward I) as the other

candidates merely add additional conditions to those used in I) and because Jaynes [60] provides

an intuitive argument in support of I).

Assuming I) holds, next consider the plausibility A∧B∧C|X), X being consistent. Applying rule

I), with “B” now replaced by (B ∧ C), gives

(A∧ (B ∧C)|X) = F [(A|(B ∧C), X), ((B ∧C)|X)] = F [(A|B,C,X), F [(B|C), X), (C|X)]] (3.4)

Now use the equivalent grouping of the propositions on the left-hand side:

((A ∧B) ∧ C|X) = F [((A ∧B)|C,X), (C|X)] = F [F [(A|B,CX), (B|C,X)](C|X)] (3.5)

But A∧ (B ∧C) = (A∧B)∧C, so the functions derived in (3.4) and (3.5) must coincide. Setting

x = (A|B,C,X),

y = (B|C,X), and

z = (C|X),

where x, y, z ∈ [0, T ], we are looking for a function F that for numbers x, y, z is such that,

F (x, F (y, z)) = F (F (x, y), z) . (3.6)

Since F is continuous and is dense, this relation holds for all x, y, z ∈ [0, T ]. This property of

denseness is fundamental to Cox’s theorem. The fact that “∧” is associative ensures that F is

associative, which limits choices for F to be “isomorphic to multiplication”. A little inventory:
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if we can find any function F satisfying (3.6), then, by rule I), we will have determined how the

“product” A ∧B, conditional on X, depends on (A|BX) and (B|X). Thus, we establish (3.3).

Equation (3.6) is called the associativity equation; it is an example of a functional equation. Such

equations are studied in the book of Aczel [1], where the following theorem can be found.

Aczel’s Theorem. Let f : (a, b]2 → (a, b] be a continuous, strictly increasing function in both

arguments a and b, with a, b ∈ R and a < b, and suppose that for all x, y, z ∈ (a, b],

f(x, f(y, z)) = f(f(x, y), z).

Then there exist a continuous, strictly increasing function g such that

g(f(x, y)) = g(x) + g(y)

for all x, y ∈ (a, b]. �

Now set f = F ; a = S(T ), b = T and define a real-valued, continuous, increasing, and non-negative

function w = w(x) on (S(T ), T ] such that

lnw(x) = g(x), x ∈ [S(T ), T ].

with w(S(T )) the limit as x→ S(T ). We then must have by continuity

w(F (x, y)) = w(x)w(y),

for x, y ∈ [S(T ), T ]. Thus, for every A,B ∈ A and consistent X, we have

w
(
(A ∧B|X)

)
= w

(
(A|B,X)

)
w
(
(B|X)

)
. (3.7)

The function w thus suggests that conditioned probabilities obey a “product rule” similar to prob-

abilities (e.g. P(A ∪B) = P(A|B)P(B), now conditioned on information X).

A final step for the product rule calls upon the fact that,

w(S(T )) = 0, w(T ) = 1, and 0 < w(x) < 1 for S(T ) < x < T.
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A proof of this assertion is given in [116]. Briefly, it involves the observation that for any proposition

A, consistent X, and tautology D,

w
(
(A|X)

)
= w

(
(D ∧ A|X)

)
= w

(
(D|A,X)

)
w
(
(A|X)

)
= w(T )w

(
(A|X)

)
,

so dividing by w
(
(A|X)

)
gives w(T ) = 1 and, therefore, w(x) < 1 for x < T . The proof

that w(S(T )) = 0 follows from contradiction: assume otherwise and consider A1, A2 ∈ A and

x ∈ Y◦. If w(S(T )) = y > 0, then 0 < z < 1 and z <
√
z < 1, w−1(z) < x < w−1(

√
z). If

(A1|X) = (A1, A2|X) = x, w
(
(A1 ∧ A2|X)

)
= w2(x) < z = w(S(T )), so (A1 ∧ A2|X) < S(T ), a

contradiction.

So we can add to 3.7, the condition that the monotone continuous function satisfying 3.7 must

also satisfy,

0 ≤ w(x) ≤ 1, (3.8)

with w(x) = 0 when x is impossible and w(x) = 1 when x is certain.

Disjunction: The Sum Rule for Plausibilities. The aim of the sum or disjunction rule for plau-

sibilities defined on pairs of propositions is to establish a relationship involving the plausibility of

a proposition A, conditioned on consistent X, and its negation ¬A conditioned on X. Full details

can be found in Van Horn’s guide [116] and in the paper of Paris [84]. It suffices here to point

out that a similar thread of logic as that in the conjunction relations lead again to a functional

equation of the form,

yS(
x

y
) = S(x)S(S(y)/S(x)) (3.9)

for all 0 < x ≤ y < 1, where

yS(
x

y
) = p(¬A ∧B|X)

S(y) = p((A ∨ ¬B) ∧ (¬A ∨ ¬B)|X)

S(x) = p(¬A ∨ ¬B|X),

p(x) = w(x)m, m = − log(2)/ logw(α), and α is a fixed point of a map such that S(A|X) = (¬A|X)

for all A and consistent X. From these relations, it possible to show that,
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wm
(
¬A|X

)
+ wm

(
A|X

)
= 1 , (3.10)

for positive m. This is known as the sum rule. We note that the product rule 3.7 can be equally-well

be written,

wm
(
(A ∧B|X)

)
= wm

(
(A|BX)

)
wm
(
(B|X)

)
,

for positive m. For whatever m we choose, we can set,

pl(x) = wm(x).

Collecting all of the results laid down thus far, we arrive at the following version of Cox’s theorem:

Cox’s Theorem as given by Van Horn.

Given that rules R1 - R5 hold, there exists a continuous, strictly increasing function pl :

A×A\0→ R+ such that for every A and B ∈ A and consistent X,

1) pl(A|X) = 0 iff A is known to be false, given the information X.

2) pl(A|X) = 1 iff A is known to be true given the information X.

3) 0 ≤ pl(A|X) ≤ 1.

4) pl(A ∧B|X) = pl(A|X) pl(B|A,X)

5) pl(¬A|X) = 1− pl(A|X).

Because of the commutative property, A ∧B = B ∧ A, assertion 4 in Cox’s theorem implies that,

pl(A|X)pl(B|AX) = pl(B|X)pl(A|BX), (3.11)

which is recognized as the Bayes rule, provided we interpret the plausibilities as probabilities.

The five properties laid dawn in Cox’s theorem are formally the rules of probability theory, stated

in terms of plausibilities. As pointed out by Van Horn, “any system of plausible reasoning that

is not isomorphic to probability theory must necessarily violate one of the requirements” (in the

theorem). So “set-theoretic probability then becomes a model theory for our logic”. We may thus
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interpret states of information to be probability distributions, with AX understood to be “the

probability distribution obtained from X by conditioning the set of values for which A is true”.

Henceforth, we refer to the Cox-Jaynes plausibilities as probabilities in the spirit of those covered

in the previous chapter.

Property 4) sets the Cox-Jaynes theory apart, in a sense, from frequentist theory, featuring con-

ditional probability and Bayes’ rule as central property of the theory. The existence of the Kol-

mogorov set - theoretic framework of probability, which involves the same rules, proves that these

rules are not contradictory, the primary difference being that in Cox theory, conditional probability

now is the fundamental measure. In the Kolmogorov theory described earlier, all probabilities are

conditioned on the choice of the sample set Ω, as indicated in equation (2.28) in section 2.5.1.

3.5 The Terenin-Draper Account of Cox’s Theorem and

Cox-Jaynes Probability

Terenin and Draper [110] provide a detailed account of the structure and different philosophical

issues underlying major probability theories, particularly Kolmogorov’s set-theoretic theory based

on frequentist definition of probability and the Cox-Jaynes theory based on the notions of plausible

reasoning. Some key aspects of their arguments are summarized in the following paragraphs:

1) In Jaynes, Logic of Science, he insists that the framework of his theory is established for

only finite sets of propositions (generally meaning it can be applied to statistical models with only

a finite numbers of parameters), with “extensions to countably infinite sets permitted only when

this is the result of a well-defined and well-behaved limiting process from a finite set”. Terenin

and Draper show this position is “overly cautious”. The Van Horn proof also does not assume the

sets of propositions are necessarily finite.

2) Ternin and Draper claim that Van Horn’s notion of state of information is defined at a

non-rigorous level, making it hard to evaluate. They go on to “rigorize” the statement and proof

of Cox’s theorem.

3) They invoke Stone’s Representation Theorem [108], which they interpret to establish that
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“every Cox-Jaynes propositional Boolean algebra (A,∧;∨,¬, 0,1) is isomorphic to a Kolmogorov

set-theoretic space (F ,∪,∩, ()̇c, ∅,Ω).

4) They invoke the conditions of sequential continuity for non-empty (or true) B:

a) if A1 ⊆ A2 ⊆ A3 ⊆ ... such that Ai ↗ A, then P(Ai|B)↗ A|B

b) if A1 ⊇ A2 ⊇ A3 ⊇ ... such that Ai ↘ A, then P(Ai|B)↘ A|B

5) They provide a extension of the σ-algebra to resolve the requirement of denseness in

the range of the probability function P; specifically, for any subset M of R, they define S =

[minM,maxM ] and ΩE (= the extension of the sample set Ω) = Ω×S, and FE (= the extension

of the σ-algebra F) = F ⊗ B(S), B(S) being the Borel σ-algebra on S. One then can define the

extended probability function PE : FE ×FE ∅ → S that satisfies all of the axioms for probabilities

(plausibility) including the product rule and the sum rule. They justify that this density property

“defeats” the counterexample of Halpern [49]. Further details can be found in [110].

Example Application

We close this chapter by showing that several of the elementary properties of frequentist probabil-

ity can be deduced from the Cox-Jaynes theory with a few straightforward arguments. We again

call upon Jaynes [60] for these arguments. The first case we mention is the notion of exclusivity.

Given a set of propositions; say A1, A2, A3, Given B, what is the probability (plausibility) that at

least one is true? that is, pl(A1 + A2 + A3|B)? By the sum rule,

pl(A1 + A2 + A3|B) = pl(A1 + A2|B) + pl(A3|B)− pl((A1 + A2)A3|B). (3.12)

But (A1 + A2)A3 = A1A3 + A2 + A3. Applying the sum rule again, we get,

pl(A1 + A2 + A3|B) = pl(A1|B) + pl(A2|B) + pl(A3|B)

− pl(A1A2|B)− pl(A1A3|B)− pl(A2A3|B)

+ pl(A1A2A3|B). (3.13)

Let the Ai be mutually exclusive (evidence B implies that no two can be true simultaneously).
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Then,

pl(AiAj|B) = pl(Ai|B)δij. (3.14)

Then the last four terms vanish (e.g., if only B implies A1, A2 is true , pl(A2A3|B) = 0 =

pl(A1A3|B) and pl(A1A2|B) + pl(A1A2A3|B) = 0). Then for three mutually exclusive proposi-

tions,

pl(A1 + A2 + A3|B) =
3∑
i=1

pl(Ai|B), (3.15)

or, for n such propositions,

pl(A1 + A2 + ...+ Am|B) =
m∑
i=1

pl(Ai|B) , 1 ≤ m ≤ n . (3.16)

If in addition to being mutually exclusive, the propositions are also exhaustive, meaning that B

stipulates that one and only one can be true (Jaynes [60], p.38), then for m = n, pl(A1 +A2 + ...+

Am|B) = 1 and equation (3.16) implies that,

n∑
i=1

pl(Ai|B) = 1 . (3.17)

Now let {A1, A2, ..., An} be a collection of n mutually exclusive and exhaustive propositions and

B evidence on these propositions. A simple argument can be made that if B is indifferent between

all of the propositions, then pl(Ai|B) = pl(Aj|B) for 1 ≤ i, j ≤ n. Then from Equation 3.17,

pl(Ai|B) =
1

n
1 ≤ i ≤ n . (3.18)

Thus, we arrive at a classical result directly analogous to the frequentist approach.

3.6 Summary Comments

Among conclusions that can be drawn from the developments outlined in this chapter are the

following:
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• The Cox-Jaynes theory of logical probability, based on the notions of plausible reasoning

and on plausibilities defined on propositional Boolean algebras, is a self-consistent theory,

equivalent to the Kolmogorov theory, but structured in a framework in which conditional

probability is the primitive concept. In this sense, there is no P-uncertainty if this theory of

probability is employed to deal with uncertainties.

• “Every natural extension of Aristotelian logic with uncertainties is Bayesian” (c.f. [60]).
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Chapter 4

Statistical Calibration and Validation of

Parametric Models.

4.1 Introduction

Recall that in Chapter 1 we introduced in equation (1.1) the notion of an abstract mathematical

model defining a forward problem with a solution u = u(θ, S) depending on parameters θ ∈ Θ

and set in a scenario S for a problem A(θ, S;u(θ,S)) = 0. Now we return to this setting and

consider the question of predictability of such models in the presence of uncertainty-addressing the

principal sources of uncertainty described in Section 1.3: P , M, Y , θ, and h uncertainty.

We dispense with P uncertainty immediately. We argued in Chapter 3 within the framework

of Cox-Jaynes probability theory (and equivalently, Kolmogorov theory), that there is no P-

uncertainty and that every natural extension of Aristotelian logic in the presence of uncertainties is

Bayesian [110]. We will therefore employ tools and also concepts from the equivalent Kolmogorov

theory when convenient.

This leaves us with M, Y , θ, and h uncertainties. In [110], it is stated that “all uncertainty in

probabilistic models is (therefore) the result of model specification: either via the parameters (θ-

uncertainty), or via the structure of the model itself (M-uncertainty)”. We add to this uncertainty

in the data (Y-uncertainty) and, since we are interested in computational models obtained through

discretization of mathematical models, h-uncertainty as well.
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This latter area, h-uncertainties, is in the realm of model verification and is either an issue of code

verification, requiring such things as documentation, version control, benchmarks, etc., or solution

verification, which is a matter of mathematically-based a posteriori, error estimation. These topics

fall outside the scope of this exposition and will not be considered further.

That leaves us with M, Y , and θ uncertainties. M-uncertainty is a deep and challenging subject

involving the study of model selection, model inadequacy, and the complicated interaction of un-

certainties in the model with those in data and parameters. We take up this important subject

after first looking at Y and θ uncertainty, later in the chapter. First, we address Y and θ, begin-

ning with their appearance in Bayes’ rule, where one finds naturally the push and pull of the two

classical pillars of science: observation – with uncertain data y ∈ Y , and theory, represented by

models with uncertain parameters θ ∈ Θ.

Thus, from Bayes’ rule, we covert to probability densities π, and from the rule P(A|B) =

P(B|A)P(A)/P(B), we let B represent the observational data y for scenario S and A represent

the model parameters θ, leading to

π(θ|y, S) =
π(y|θ, S)π(θ|S)

π(y|S)
, (4.1)

where π(θ|S) is the prior density of parameters θ ∈ Θ for science S, π(y|θ, S) is the likelihood,

π(θ|y, S) is the posterior density, and π(y|S) is the evidence. Since
∫

Θ
π(θ|y, S) dθ = 1 for all y

in the space Y of observational data and for all scenarios S (Sc, the calibration scenarios, Sv the

validation scenarios, and Sp the prediction scenario), then the evidence must be the marginalization

of the numerator,

π(y|S) =

∫
Θ

π(y|θ, S)π(θ|S) dθ. (4.2)

Here y = (y1,y2, ...,yn) ∈ Ys ⊂ Rn, and it is understood that (4.2) holds for every scenario S, the

data y being different in each.
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4.2 Data Uncertainty: Experimental Noise

Bayes’ rule (4.1) embraces all of the pillars of science drawn upon to acquire (or increase) one’s

knowledge: observations, characterized by observational data y ∈ Y ; theory, mathematical rep-

resentation of hypotheses founded on inductive logic put forth to explain observed events – as

represented by mathematical models, and computations needed to evaluate the resulting distri-

butions. To the statistician, models are represented by the likelihood, π(y|θ, S), θ representing

specific features of the model and π(y|θ, S), the probability distribution for data given θ, for any

scenario S; the outcome, π(θ|y, S) is the result of the information in the data and the predictability

of the model. To the scientist or engineer, the model is reached after a process of using the solution

of the forward problem to evaluate the observations available to the models. These predictions of

y of the models are quantities d(θ, S) which rarely coincide with the recorded observations y.

Let us consider the problem of using model (4.1) for a given scenario S to predict the value of

some physical entity. The target prediction could be, for example, the temperature at a point in

a turbine engine, the volume fraction of cancer cells in a sample of human tissue, the maximum

von-Mises stress in a machine part, or the time-to-failure of a steel shaft in an aircraft engine. Such

quantities are rarely deterministic. A fundamental assumption in classical mathematical statistics

is that the physical entity we wish to predict with model (4.1) in any particular scenario S is

determined by a stochastic law (the “true” structure of the entity) characterized by a probability

distribution G with density g. The structure of g (or G) is available to us only through samples

taken from a set of experiments, the experimental observations y, which are generally corrupted

by experimental noise ε (or experimental errors), since no measuring device is perfect. The obser-

vations y are realizations of a random variable Y .

But the observational data we record is not the truth; rather it is some function f of the true

density g and of unknown experimental errors ε, often called the experimental noise:

y = f(g, ε) (4.3)

(or the so-called stochastic extension Y = f(G, E)).

To go further, we must assume (or construct) an appropriate form of f and propose a probability

distribution pnoise(ε) for ε. These constitute a noise model. The construction of an appropriate

noise model for observational data is often a challenging endeavor requiring detailed information
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on the measurement processes and instrumentation. This may often mean we must construct a

new parametric model of g, knowing very little about the “truth”. But there are approaches, some

discussed later in this chapter, of constructing approximations of g that may improve in accuracy

as the new data is acquired. These approximations involve new parameters, not the parameters θ

of the model of the forward problem – sometimes called hyper-parameters. Methods for estimating

these parameters and enhancing our approximation of g are discussed later (e.g., section 4.8).

In the majority of statistics applications, the most common noise model is the additive model,

g + ε = y, (4.4)

showing an additive correction to the truth is what is observed; the noise distribution pnoise(ε) is

often assumed to be Gaussian. The extra parameters in the definition of pnoise()̇ may be added to

the model parameters to produce the total parameters vector θ. If we have n samples of g, (4.4)

is replaced by: gi + εi = yi, i = 1, 2, ..., n.

4.3 Model Inadequacy

Suppose we have solved the forward problem and that we use the solution u(θ, S) to compute the

model prediction of gi. Let di(θ, S) denote the model prediction of gi for parameters θ and scenario

S. Since the model∗ is imperfect, there is modeling error γi(θ, S), also assumed for convenience

to be additive:

gi − di(θ, S) = γi(θ, S), 1 ≤ i ≤ n. (4.5)

γi(θ, S) is referred to as model inadequacy or model form error or model bias.

In analogy with (4.4), relation (4.5) can be thought of as part of a model for model error, to

possibly be complemented with the introduction of an assumed probability distribution pmodel(θ, S)

for γi(θ, S) (see, e.g. [15, 65, 66]).

It is unfortunate, and possibly a surprise to some, that one can never compute the reality gi!

The best we can know about gi is through the imperfect data yi and imperfect model prediction

di(θ, S). Eliminating gi from (4.4) and (4.5) gives

∗We reproduce here, the discussions in OBF [79]
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εi + γi(θ, S) = yi − di(θ, S), 1 ≤ i ≤ n, yi ∈ YS, θ ∈ Θ. (4.6)

That is, the total error, experimental noise and model error, is the difference between the obser-

vational data yi and model prediction di(θ, S) for parameters θ ∈ Θ and scenario S. We remark

that in much of the literature does not recognize these two distinctly different forms of error.

A common theme in classical statistics, particularly frequentist statistics which we will discuss

briefly in sections 4.4 and 4.5, is that the “true” distribution is contained in the probability

distributions pnoise(ε) and pmodel(θ, S) accessible by the parametric model that defines the predic-

tion d(θ, S). This is equivalent to assuming that there exists a (magic) parameter θ∗ such that

γ(θ∗, S) = 0, 1 ≤ i ≤ n; i.e., the exact prediction can be derived by the model. Such models are

said to be “correct” or “well-specified”; otherwise, they are misspecified. It is no surprise that most

models are indeed misspecified – no parameters exist that produce the truth. Many fundamental

questions arise about such misspecified model such as how close they can approximate the truth

and if, while inadequate and misspecified, are they still sufficiently accurate to be used to make

important predictions. This fundamental point brings us to recall once again the famous statement

of George E. P. Box [21, 22]: “essentially all models are wrong, but some are useful”. Finding such

useful models is the mission of model validation processes.

4.4 Frequentist and Fisherian Approaches

Statistics can be defined as the discipline concerned with the classification study, and interpretation

of data in accordance with probability theory. Depending on the probability theory selected,

general approaches to statistics in contemporary statistical thinking are: 1) the frequentist approach

and 2) the Bayesian approach (and there are several variants of each of these).

Broadly speaking, the frequentist approach to statistics is generally thought of as one based on

the Kolmogorov interpretation of probability in which any given event or experiment is considered

as one of an infinite sequence of possible repetitions of the same experiment, each producing

independent results. The probability of an event is thus, the frequency with which the event is

expected to be observed over infinite samples. To the frequentist, the underlying model parameters

remain constant during the repeatable process. It, therefore, makes sense to seek the value of

the parameters that best describe observations or samples. For this later reason, a fundamental

frequentist approach, referred to as the Fisher approach [41] or the maximum likelihood approach,

or the “Fisherian” approach, is put forth for determining the parameter that enables the model to
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deliver the best characterization of the true target distribution.

The maximum likelihood approach focuses on determining the true unknown probability distribu-

tion (here, the pdf or probability density function) g that generated the observational data y ∈ Y ,

for some scenario S, through samples y = {y1,y2, · · · ,yn} of g. It is often postulated that g

belongs to a family PΘ of probability densities π(y,θ),

g ∈ PΘ = {π(y,θ),θ ∈ Θ} (4.7)

generally characterized by a conditional probability density π(y|θ) (or π(y|θ, S)) for observational

data y (and scenario S). The likelihood is such that, with the parameter θ given, the model gives

the probability of those outcomes y.

According to the great statistician R. A. Fisher [41], “The likelihood that any parameter should

have any assigned value is proportional to the probability that, if this were true, the totality of all

observations should be that observed.” Fisher pointed out that likelihood and probability are of

an “entirely different nature” [43]. So if θ is assigned a value, the probability of y being observed

is a conditional probability, π(y|θ),

Suppose that the samples yi are independent and identically distributed (“i.i.d.”); then the joint

distribution of the sample is
∏n

i=1 π(yi|θ), viewed as a function of θ only. This results in what is

called the likelihood function:

Ln(θ) =
n∏
i=1

π(yi|θ) = π(y1,y2, · · · ,yn|θ) (4.8)

the latter equality holding for independent samples. It is customary to work with the more man-

ageable log-likelihood function,

ln(θ) =
n∑
i=1

log π(yi|θ) = log π(y1,y2, · · · ,yn|θ). (4.9)

One common approach to defining a likelihood function begins with the relation (4.6) of total

error (noise and model inadequacy) and the difference between observations and forward problem

prediction di(θ, S). One introduces arguments that the probability density pµ of the total error

pnoise plus pmodel (or more often, just the experimental noise) is known in terms of additional
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parameters µ. Then the likelihood is given by,

pµ(y − d(θ, S)) = π(y|θa) (4.10)

where θa is the parameter vector augmented with the parameters µ defining pµ and, for simplicity,

we omit writing the likelihood as also conditional on the scenario S, the parameter µ, being the

hyper-parameter.

We remark that the assumption of additive noise embodied in (4.4) tacitly assumes that the noise

and the parameters are independent. If this is not the case, we must determine a conditional density

of the noise, pnoise(ε|θ), and then π(y|θ) = pnoise(yi−di(θ, S)|θ). The “noise model” pnoise(ε) need

not be based on the assumption of additive noise, but can be a more complex relation of the type

y = f(d(θ), ε), f being referred to as the noise model. See, e.g., [64].

As noted earlier, the goal is often to find the parameter θ̂ ∈ Θ that maximizes the likelihood of a

model. The maximum likelihood estimator, or MLE, is thus defined by

θ̂(y) = argmax
θ∈Θ

[log π(y|θ)] , y ∈ Y . (4.11)

We remark, as will be discussed more fully later, that the sequence of MLEs, under specific

conditions on the likelihood, converges (in distribution) to a normal distribution with a covariance

matrix equal to the inverse of the Fisher information matrix, I1(θ),

I1(θ) =

∫
Y
π(y|θ)

∂ log π(y|θ)

∂θ

∂ log π(y|θ)T

∂θ
dy, (4.12)

= varEθ
[
∂ log π(y|θ)

∂θ

]
,

= −Eθ
[
∂2 log π(y|θ)

∂θ∂θT

]
,

where var(·) is the variance and Eθ is the expected value with respect to π(y|θ). We write this as

the limit,
1√
n

(
θ̂n − θ

)
→ d ∼ N (0, I−1

1 (θ)) (4.13)

where θ̂n is the MLE for n i.i.d. observations and we write θ̂n → θ̂ and N (µ,Σ2) denotes the

normal distribution with mean µ and standard deviation Σ.

Of special significance is parameter θ∗ weighted by the truth g as the expected value, defined by,
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θ∗(y) = argmax
θ∈Θ

Eg [log π(y|θ)] . (4.14)

This parameter arises when we consider information content in various densities Eg being the ex-

pected value with respect to g.

The Kullback-Leibler divergence between two probability distributions with densities p and q is

defined by

DKL(p ‖ q) =

∫
p(x) log

p(x)

q(x)
dx, (4.15)

which can be expanded to give,

DKL(p ‖ q) = −H(p) +H(p, q), (4.16)

where H(p) is the Shannon information entropy,

H(p) = −
∫
p(x) log p(x)dx, (4.17)

and H(p, q) is the cross entropy,

H(p, q) = −
∫
p(x) log q(x)dx. (4.18)

We discuss information theory, information entropy and the maximum entropy principle in the

next chapter.

If g is the “true” distribution, as discussed earlier, the DKL(g ‖ π(·,θ)) is a measure of the

information lost by assuming the likelihood π(·|θ) is the true distribution,

DKL(g ‖ π(·,θ)) =

∫
g(y) log

g(y)

π(y|θ)
dy (4.19)

= −H(g) +H(g, π(·|θ)). (4.20)

The parameter θ∗ of (4.14) is defined as minimum of the expected value of log-likelihood weighted
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by the truth g:

θ∗ = argmin
θ∈Θ

DKL(g ‖ π(·,θ))

= argmin
θ∈Θ

H(g, π(·,θ))

= argmax
θ∈Θ

Eg[log π(·,θ)]. (4.21)

If the model is well specified, then g(y) = π(y|θ0) and θ∗ = θ̂.

In the language introduced in the previous section, if (4.7) holds, the model is well specified,

but if there does not exist a parameter θ such that g is in PΘ, the model is misspecified. For

a misspecified model, the best one can hope for is to determine the parameter θ∗ in (4.21) that

minimizes the DKL “distance” from the model predictions to the truth g, but the truth is unknown.

One fundamental question is whether or not the maximum likelihood estimates θ̂n for n i.i.d data

samples do indeed converge in some sense to θ∗ as n → ∞? It can be shown that under special

assumptions on the likelihood functions [67, 68], the θ̂n do indeed converge to θ∗ in the sense of

distributions and 1√
n
(θ̂n − θ̂) → N (0, V (θ∗)) where V is called the sandwich matrix [42, 67, 68]

depending on the Ln(θ) and, approximately, V (θ∗) = V (θ̂).

4.5 Principles of Bayesian Model Calibration and Valida-

tion

Let us now depart from the frequentist world and venture into the world of Bayesian inference and

logical probability. Bayes’ rule (4.1) provides a powerful framework to bring together all of the

pillars of scientific knowledge: beginning with a specifications of prior knowledge of probability of

parameters (the prior), and laying down the probability of observational data for given parame-

ters provided by a model (the likelihood), we then compute the posterior distribution to upgrade

one’s knowledge of the parameters of the system. Once upgraded, use the best information of the

parameters in hand to solve the forward problem (e.g. (1.1)), to obtain an informed prediction of

a physical event (or quantity) of interest.

The goal is to determine the validity of a given model (or a set of models) as a means for predicting

an event, given only certain observational data and incomplete prior information on model param-
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Figure 4.1: The prediction “pyramid”. A symbolic representation of the hierarchy of scenar-
ios and observational data, beginning with unit calibration scenario: Sc delivering data yc, then
validation scenario: Sv with data yv, and finally the full prediction scenario Sp with the target
QoI. The “pyramid” is actually a tetrahedron with the hidden face representing the never seen
reality we attempt to predict.

eters. It is informative to consider a hierarchy of scenarios, each with different observational data,

beginning with calibration scenario, moving to validation scenario, and then to the full prediction

scenario to predict the QoI, as depicted symbolically in the prediction pyramid shown in Figure

4.1.

We propose the following rules and principles for the model validation process.

1. Quantities of Interest: It is necessary (and fundamental) to specify precisely the intended

purpose of the model and the specific quantities of interest (QoIs) that we want to predict. A

given mathematical model may be acceptable for one QoI and not another. It is unreasonable

(indeed, illogical) to expect a model to be able to predict all features of the behavior of a

complex physical system. The target prediction will generally be a probability distribution

(or system of probability distributions) describing an event in a complex scenario we call Sp,

the prediction scenario, which rarely pertains to observable events (since the Sp may involve

predictions of systems that do not yet exist, as in engineering design).

2. Calibration: we subscribe to the philosophy of E. T. Jaynes [59], who said :

“ The essence of ‘honesty’ and ‘objectivity’ demand that we take into account all of the

evidence we have and not just some arbitrary chosen subset of it”

We can apply this idea to model calibration, the tuning of model parameters so that the

model predictions agree with experiments on simple component tests. These calibration

tests are performed in calibrations scenarios Sc.
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3. Validation: Model validation is generally defined as a process designed to estimate the

accuracy with which a model can predict QoIs based on the accuracy it can predict actual

experimental observations. The validation experiments must involve experimental scenarios,

denoted Sv, designed to depict the influence of QoIs on subsystems of the full prediction sce-

narios Sp. The use of the word “accuracy” here is of fundamental importance. To determine

model validity one must choose a metric to measure the distance between model predictions

in Sv and experimental observations, manifested in validation data yv. In addition, one must

specify the tolerance that this measure of error must meet if the model is deemed to be

“valid” (or technically “not valid”, since additional information could always falsify a model

originally thought to meet tolerances).

In summary, we follow these principles and rules:

1) We identify QoIs, Q, in the full model scenario Sp and seek appropriate measures of

distributions or densities π(Q) and their uncertanty content.

2) Before the validation experiments are performed, we calculate initial pdfs defining model

parameters in calibration experiments performed on component units of the systems in

experimental scenarios Sc.

3) We construct validation experiments set up in scenario Sv involving subsystem models

of Sp and we identify (subjectively) an appropriate metric d and tolerance γtol so that

the validity of the model for prediction can be declared (or rejected) if d(prediction,

experimental observation) ≤ γtol (or > γtol).

It is clear that a critical and fundamentally important step in the above validation process is the

design of validation experiments that adequately inform the model of the QoIs, the selection of a

validation metric, and the (often subjective) step of selecting tolerances.

The process is implemented through the following Bayesian-statistical inverse calculations:

a) Choose a prior π(θ) for calibration scenario Sc.

b) Collect calibration data yc and update (initialize) the parameters via Bayes’s rule,

π(θ|yc, Sc) =
π(yc|θ, Sc)π(θ)

π(yc|Sc)
. (4.22)

c) Use the calibration posterior as a prior for the validation experiments involving validation

data yv:
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π(θ|yv,yc, Sv, Sc) =
π(yv|θ,yc, Sc, Sv)π(θ|yc, Sc)

π(yv|yc, Sv)
. (4.23)

d) With the parameters determined by the validation tests, solve the validation forward problem

(A(θ, Sv;u(θ, Sv)) = 0) and determine the accuracy with which the model predicts validation

observables:

d (d(θ, Sv),yv) ≤ γtol . (4.24)

Here d(·, ·) is the metric chosen to measure the accuracy of the validation predictions (we re-

mark that other measures of differences between pdfs can be used that are not true “metrics”

such as the DKL(· ‖ ·)-divergence, which is not symmetric).

e) If model satisfies the validity criterion, solve the full forward problem, A(θ, Sp;u(θ, Sv)) = 0,

on Sp and compute the QoI, π(Q). Determine uncertainty inherent in π(Q).

How do we quantify uncertainty in the prediction π(Q)? There are many ways to answer this

question. The calculation of the mean and/or the variance of π(Q) or higher moments provide

quantification of uncertainties in π(Q). The uncertainty content given by the information entropy

H(π(Q)) = −
∫
π(Q(y)) log π(Q(y))dy is also a measure. We discuss this in more detail in Chapter

5.

Several major issues emerge:

• How do we compute the priors?

• In general, not all parameters influence the QoI; which parameters are relevant and which

have negligible influence on the target predictions?

• What rules do we follow in designing the validation tests?

• How do we choose validation metrics and tolerances?

• How do we solve the forward problem?

• How do we solve the statistical inverse problems (4.22) and (4.23)?

• Most importantly, for given data y in various scenarios, how do we choose the best models

among sets of possible models?

We take up these questions in the chapters to follow.
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4.6 Confidence Intervals versus Credible Intervals

Another difference in philosophy and interpretations of frequentist and Bayesian approaches is in

the notion of confidence interval in frequentist methods and credible interval in Bayesian.

In the former, if θ represents the true unknown parameter, and we are p% confident it lies between

bounds α(y) and β(y),

α(y) ≤ θ ≤ β(y),

then [α(yi),β(yi)], i = 1, 2, ..., n are called confidence intervals, where i indicates the number of

experiments performed. This means that the true unknown value of the parameter will surely fall

within the confidence interval in p% of n repetitions of the experiment, if the experiment were

repeated n times.

In the corresponding Bayesian approach, we have the posterior distribution π(θ|y), p% of which

may fall between α and β,

π
(
α(y) ≤ θ ≤ β(y)

)
=

p

100
.

In this case, the interval is called the credible interval. The difference in these two concepts often

arises in studies of the asymptotic behavior of estimates as n→∞.

4.7 Examples: Optimization, Least-Square Misfit, and

Bayesian Learning

We describe in this section some rather standard but fundamentally important examples of calculat-

ing posteriors of statistical inverse problem (for the parameters θ) involving minimum-least-square

formulations, along with some very important observations on asymptotic behavior of Bayesian

methods in cases in which the number n of data samples becomes arbitrary large.

4.7.1 Least-Square Misfit

A standard example that permits a comparison of certain aspects of the frequentist and bayesian

approaches involves the case in which the likelihood is given by:

π(ys|θ, s) ∝ exp

{
−1

2
‖ys − d(θ, S)‖2

Σ

}
(4.25)
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where ‖ · ‖2
Σ = ( · )TΣ−1( · ), Σ = [Σij] being the n × n covariance matrix. In some cases, Σ is

simply σ2I (Σij = σ2δij), σ
2 being the variance, which can be added to θ as an additional parameter.

If d(θ, S) is linear in θ, the likelihood in (4.25) is Gaussian; otherwise, it is non-Gaussian.

Let d(θ, S) be linear: d(θ, S) = Gθ, G being a p× p matrix. Then the MLE is

θ∗ = (GTσ−1G)−1GTσ−1y. (4.26)

If the prior π(θ) is also Gaussian, the posterior becomes

π(θ|y, S) ∝ exp

{
−1

2
S(θ)

}
, (4.27)

where S(θ) is the misfit function,

S(θ) = ‖yi − di(θ, S)‖2
Σ + ‖θ − θ0‖2

Σprior
, (4.28)

Σprior being the covariance matrix of the prior density and ‖θ−θ0‖2
Σprior

= (θ−θ0)TΣ−1
prior(θ−θ0),

θ0 being a reference parameter vector. The prior is seen to provide a Tikhonov-type regularization

of the misfit S(θ). The vector,

θ∗∗ = arg max
Θ

π(θ|y, S) (4.29)

is called the Maximum A Posterior estimate (MAP) for scenario S. We note that for uniform

priors, MAP = MLE.

4.7.2 Bayesian Learning

One of the most interesting aspects of the Bayesian approach is so-called Bayesian learning. Sup-

pose a single observation y1 is recorded. Beginning with a prior π(θ), we update θ throughout the

calculation of the posterior:

π(θ|y1) ∝ π(y1|θ)π(θ). (4.30)

When new additional data y2 is attained, the posterior becomes the prior for another posterior

update:

π(θ|y1,y2) ∝ π(y2|θ,y1)π(θ|y1). (4.31)

Continuing in this way, we “learn” more about θ with each new observation,
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π(θ|y1,y2, · · · ,yn) ∝ π(y2|θ,y1)π(θ|y1)× π(θ|yn−1)

=

(
n∏
i=1

π(yi|θ)

)
π(θ) (4.32)

Given the sequence y1,y2, · · · ,yn, we can use the posterior in (4.32) as a prior, but if we consider

the samples to be i.i.d., then the same prior must be retained.

A fundamental question arises is what is the limiting posterior distribution attained as n → ∞?

The answer to this question is captured by Bernstein–von Mises theorem for the case in which

the model is correctly specified and the likelihood is sufficiently smooth [19, 118]). This is also

called the Bayesian Central Limit Theorem. Suppose that y1,y2, · · · ,yn are i.i.d. samples from a

probability density g(y|θ), θ ∈ Θ ⊂ Rp. Suppose π(θ) is a prior density and denote by π(yn|θ)

the likelihood, π(yn|θ) =
∏n

i=1 π(yi|θ). Let both π(θ) and π(yn|θ) be twice differentiable near θ̂,

the MLE, which is assumed to exist. Then, for large n and commonly satisfied assumptions, the

posterior density

π(θ,yn) =
π(yn|θ)π(θ)

π(yn)
, (4.33)

converges, in distribution, as n→∞, to the normal distribution

N (θ̂, Î(θ̂)−1), (4.34)

where Î(θ̂) is the Fisher information matrix of (4.12).

4.8 Gaussian Processes: Tools to Build Models of Noise

and Model Inadequacies

At some steps in the processes of formulating the Bayesian inference problem we encountered

the need to contemplate new parametric models, outside models relevant to the principal forward

problem, to approximate such entities as experimental noise or model inadequacy. The idea of

Gaussian processes provides a popular and often powerful approach for constructing such models.

In this section we present a brief introduction to this subject.

ICES, Univ of Texas Austin Last modified: October 12, 2017 69



J. Tinsley Oden Lecture Notes Fall 2016

Stochastic or Random Process. A stochastic or random process is a collection of random

variables X = {X(t); t ∈ I} defined on an underlying probability space (Ω,F ,P), I being an

index set and the values of X lying in some “state space” Y . In general, one selects a finite

number n of trial points {x1,x2, ...,xn} ∈ In and the process generates a probability distribution

{X(x1), X(x2), ..., X(xn)} for which we compute probabilities P[X(x1), X(x2), ..., X(xn)]. Thus,

a stochastic process can be characterized by a function f(X) of a random variable X and, for any

set of sample or trial points {xi}ni=1, a corresponding set of probabilities

{P(X(x1)),P(X(x2)), ...,P(X(xn))} .

Gaussian Process. A Gaussian process (or GP) is a random process in which any finite number

of random variables have a joint probability distribution that is Gaussian.

So here we think of a real Gaussian process as being defined by random variables represented by

the value of a function f(x) at the location of a point x (e.g. x ∈ Rm, or x = t, a particular time

value). Since every Gaussian distribution is completely specified by its mean and covariance, a

Gaussian process f(x) is defined by its mean function m(x) and its covariance function k(x,x′):m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ].
(4.35)

It is customary to use the following notation for such a process (Rasmussen and Williams, 2006

[91]).

f(x) ∼ GP(m(x),k(x,x′)). (4.36)

The great utility of Gaussian processes resides in their so called marginalization property : since all

distributions at any sample point are, by definition, Gaussian, any enlargement of sample points

taking the process outside the initial sample wetset must also be Gaussian, and any such larger

sample will not change the distribution of the smaller sample set. This subtle property, also called

the consistency property, becomes clear in the basic Gaussian extension described below.

The Consistency or Marginalization Property of GPs. The fundamental consistency or

marginalization property of GPs is embodied in the following theorem.
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The GPs Theorem. Let y1 and y2 be two random variables with joint Gaussian probability

distribution

(y1,y2) ∼ N
([
a

b

]
,

[
A B

BT C

])
. (4.37)

Then

y1 ∼ N (a,A) (4.38)

and

(y1|y2) ∼ N
(
a−BC−1(y2 − b),A−BC−1BT

)
. (4.39)

proof : It is understood that y1 is associated with a density π(y1) equal to the marginalization∫
π(y1,y2) dy2. The conditional probability (4.39) follows the evaluation of,

π(y1|y2) =
π(y1,y2)

π(y2)
(4.40)

being Gaussian, making use of the Gaussian distribution equation: if f = {f1, f2, ..., fn}T , and

f ∼ N (m,Σ), then,

π(f) = (2π)−n/2|Σ|−1/2 exp

{
−1

2
(f −m)TΣ−1(f −m)

}
. (4.41)

�

The joint density is,

π(y1,y2) =
1√

2π|Σ|
exp

(
− 1

2
Γ(y1, y2)

)
where,

Γ(y1, y2) =
{

(y1 − a)T (y2 − b)T
}[ A B

BT C

]−1 [
y1 − a
y2 − b

]
= (y1 − a)TA′(y1 − a) + 2(y1 − a)TB′(y2 − b) + (y2 − b)TC ′(y2 − b)

where

A′ =
(
A−BC−1BT

)−1

B′ = −A−1B
(
C −BTA−1B

)−1
=
∼
B
T

C ′ =
(
C −BTA−1B

)−1
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Thus, with some algebra, one has,

Γ(y1, y2) = N (b,C)N (µ,Σ′)

where,

µ = a−BC−1(y2 − b)
Σ′ = A−BC−1BT .

Then,

π(y1|y2) = π(y1, y2)/π(y2)

= N (b,C)N (µ,Σ′)/N (b,C)

= N (µ,Σ′)

= N (a−BC−1(y2 − b),A−BC−1BT ) ,

which was asserted. �

The Gaussian Process Response Surface. We use the GP framework to construct response

surfaces. The idea is this: Let Y (x) denote a random field for which realizations

{y(x1),y(x2), ...,y(xm)}

are given, and {x1,x2, ...,xm} being training points (xi ∈ Rn) (or ‘input points’ or ‘control points’

). Then the training set is

D = {(xi,y(xi), i = 1, 2, ...,m} . (4.42)

We represent y by a GP:

y ∼ GP
(
ψT (x)β,Σ), (4.43)

where

ψT (x)β =

q∑
i=1

ψi(x)βi = m(x) = the mean function, (4.44)

(also called the “trend”), ψi(x) are appropriate basis functions, β a vector of coefficients, and Σ is
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the covariance matrix, which is any symmetric, positive semi-definite matrix. Commonly, we take

Σij = k(xi, xj)

= λ0 exp

{
−1

2

d∑
k=1

(xki − xkj )2

lk

}
+ λ1 + λ2δij (4.45)

Here λ0, lh, λ1 and λ2 are parameters, with

λ0 = a measure of precision of variance (an amplitude of a covariance envelope),

lk = characterization of flatness of covariance,

λ1 = a bias “latent value”, and,

λ2 = a regularization.

By adjusting values of the parameters, we can conceivably manipulate the shape and flatness of

the covariance between sample points in D.

Given the GP (4.43), the predicted output y∗ = y(x∗) at a point outside the training set D,

(x∗,y∗) /∈ D, is, according to (4.39),

(y∗|y) = GP(E((y∗|y)),Σ∗), (4.46)

where,

E(y∗|y) = ψT (x)β − k(x∗,x)K−1(y −m)

Σ∗ = k(x∗,x∗)− k(x∗,x)K−1k(x,x∗)
(4.47)

and,

K = k(x,x). (4.48)

Clearly, m(x) = ψT (x)β.

The new parameters ω defining the GP are called hyperparameters, e.g.

ω = (β, λ0, {lk}dk=1 , λ1, λ2). (4.49)
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Figure 4.2: Illustration of a 1-dimensional data set fit by a GP with noise-free data points, y(x)
anchoring the curve at input points x and the variance defined through chains of hyperparameters.

Figure 4.2 shows a conceptualization of a GP representation over a one-dimensional input set. On

the left, we see a collection of prior pdfs. The use of five input or training points anchor the output

function y(x) at points y(xi) on the mean curve, m(x), as shown. The shape of the covariance be-

tween these points is fashioned by adjusting the covariance parameters. The factorization rule can

be used to update function values π(y(x1),y(x2), ...,y(xm)) =
∏m

i π(y(x1))π(y(x2)), ..., π(y(xm)).

Model Inadequacy and Validation using Gaussian Processes.

We close this section with an example of the use of GPs to represent model inadequacy and to

also account of experimental noise, following Bayarri, Berger, Paulo, Sachs, and Cafeo (2007) [15].

Let yR(x) denote the truth or reality of a physical entity at point x ∈ Rn (denoted g earlier), and

let yM(x,θ) denote the model prediction of this field at x (denoted d(θ) earlier) . Then the model

inadequacy γ (= γi(θ, S) of 4.5) is

γ(θ,x) = yR(x)− yM(x,θ). (4.50)

Here θ is the parameter vector of the forward prediction problem. Let yF (xi) denote the “field

data” at xi in a set of test points {x1,x2, ...,xm} (denoted yi earlier). Thus, for a additive model,
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yF (xi) = yR(xi) + εFi (4.51)

where εFi is experimental noise. To complete the noise model, we assume εFi is i.i.d. and

εFi ∼ N (0, 1/λF ). (4.52)

Thus,

yF (xi)− yM(xi,θ) = γ(θ,xi) + εFi (4.53)

We next introduce priors for the key pdfs:

π(θ), π(λF ), and

π(γ) ∼ GP(ψT (x)β,Σγ)
(4.54)

with hyperparameters ωj = (βγ, λ
γ
0 , {lγk}

dγ
k=1 , λ

γ
1 , λ

γ
2). The posterior update is,

π(θ, λF , γ|yF ) ∝ f(yF |θ, λF , γ)π(θ, λF , γ), (4.55)

with f being a multivariate normal distribution. The model output is,

yM ∼ GP(ψT (x)β,Σγ). (4.56)

Computing the Hyperparameters.

One popular method to estimate the hyperparameters ω is to use the MLE:

ωMLE = arg max
ω

π(y|x,ω), (4.57)

where,

π(y|x,ω) ∝
∏
k

exp

{
−1

2

(
yF − ym(ω,x)

)2

/σ2

}
, (4.58)
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with yF = yM + ε, ε ∼ N (0, σ2I). A common approach is to use the marginal likelihood,

∂

∂ωj
log π(y|x,ω) = 0

=
1

2
yTΣ−1 ∂Σ

∂ωj
Σ−1y − 1

2
trace (Σ−1 ∂K

∂ωj
). (4.59)

The full Bayesian uses the posterior,

π(θ,ω|yF ) ∝ π(yF |θ,ω)π(θ,ω). (4.60)

In implementing this GP updates, Bayarri et al. (2007) [15] describe an MCMC process starting

with the posterior,

π(θ, λF ,γ(ωγ)|yF ) ∝ f(yF |θ, λF ,γ(ω))π(θ, λF ,γ)

≈ yF − yM(xi,θ)− εFi , (4.61)

where the outputs
{
θ(i), λF (i),yM(x,θ(i)),γ(i)(x)

}
are sampled and all quantities of interest can

be estimated from these samples.

The prediction of reality yF (x) at a new set of training points DFNEW are drawn from the predictive

posterior distribution, π(yRNEW |yF ,yM) where yR = yM + γ, determined from,

yRNEW ∼
1

N

N∑
k=1

(y
M(k)
NEW + γ

(k)
NEW ), (4.62)

where y
M(k)
NEW and γ

(k)
NEW are drawn from the joint posterior. Then, yRNEW is the “new” prediction

of the reality. Variance and tolerance bounds (credible intervals) can be computed approximately

from these calculations.
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Chapter 5

Information Theory and the Principle of

Maximum Entropy

5.1 Introduction

Apart from Bayesian approaches, but very much complementary to them, are the methods and

concepts underlying information theory and the concept of information entropy. Introduced in the

landmark papers of Claude Shannon in 1948 [104], information theory provides a rational approach

to quantifying and understanding the information content in a probability distribution (or a digital

signal). When enriched by the observations and works of E.T. Jaynes [60], well-defined measures

of uncertainty in information or in probability emerge that are fundamentally important in many

applications, including the rational construction of priors and in Bayesian approaches to inverse

problems, such as image reconstruction and pattern recognition. We partake on a brief journey

into the subject in the present chapter. More detailed accounts of this subject can be found in the

original paper of Shannon [104] and the books of Jaynes [60], Gregory [45], Klir [69], Cover and

Thomas [30], and the notes of Carter [27].

5.2 An Elementary Look at Information

Let us first address the problem of defining a meaningful measure of the information content in a

probability density p. As a measure of information, some common-sense conventions and proper-

ties might be the following:
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We consider a random experiment with n sampled outputs: with probabilities p1, p2, ..., pn, re-

spectively and with each pi > 0. We wish to construct a measure of the information obtained

by observing a particular pi. Such an information measure should also be related to the uncer-

tainty in pi which we also want to quantify. We propose that the information I has the following

common-sense properties:

I : (0, 1]→ [0,∞) (I(p) ≥ 0)

I(pi = 1) = 0 (there is no information in a certain probability)

I(p) should behave properly for joint, independent outcomes. In particular, if the outcomes of

n experiments is denoted pi (∈ Nn) and the outcomes of another m independent experiments

is qi (∈ Nm) then the joint outcome should be pi ·qj ∀i ∈ Nn and j ∈ Nm. The “anticipatory”

information (c.f., Klir [69]; Carter [27] ) of the joint outcome will such be the sum of the

individual outcomes:

I(pi · qj) = I(pi) + I(qj) (5.1)

Equation (5.1) is referred to by some authors (e.g. Klir [69]) as a Cauchy equation, the solution of

which is a class of functions I defined for all α ∈ (0, 1] by,

I(a) = c logb a

where c is an arbitrary constant, b is a distinct constant 6= 1. Since I(·) must be decreasing on

(0, 1] and log(·) is increasing, c must be negative. By scaling so that I(1
2
) = 1 and choosing c = −1,

we get

I(a) = − logb a, (5.2)

or, for probability pi of outcome i,

I(pi) = − logb pi = logb(
1

pi
) (5.3)

We remark that the property (5.2) and hence (5.3), follows from (5.1), or more generally from

properties of continuous real-valued functions g : (0,∞) → R with the property that g(x1x2) =

g(x1) + g(x2). Indeed, from this one shows that g(xn) = ng(x) and, by continuity, g(xα) = αg(x),

α > 0. Setting x = a reveals that g(aα) = αg(a) or g(a)−1g(aα) = α. This shows that g(a)−1g(x)

is a left inverse of ax. A straightforward argument shows that g(0) is also injective and, therefore,
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that g(a)−1g(x) = the inverse of ax = loga x, so that

g(x) = g(a) loga x .

Setting I(·) = g(·), a, g(a) = 1, and a = b yields (5.2).

Example. If we take b = 2, the units of information are called bits. Carter [27] notes the example

of flipping a fair coin to give heads H or tails T with probability p = 1/2. The information is

I(p) = − log2(1/2) = 1 bit. For n flips I(pn) = − log
(
(1/2)n

)
= n log(2) = n bits. �

5.3 A First Look at Information Entropy

The above properties will prove useful in determining the connection between information content

in a pdf and its “entropy”. For a discrete probability distribution p = {p1, p2, ..., pn}, we will define

the information entropy H(p) as the real number,

H(p) = −
n∑
i=1

pi log pi (5.4)

where the logarithm can be selected for any base b. We generally take b = 2. Exactly why (5.4)

is a meaningful definition of information entropy will be taken up in section 5.5 where we present

Shannon’s theorem and arguments as to why this property is a fundamental measure of uncertainty

content in a probability distribution.

Consider a situation in which we are given a set of n quantities {a1, a2, ..., an} with corresponding

probabilities {p1, p2, ..., pn}, each ai sampled independently of the others. It is natural to ask: what

is the average amount of information we get from each ai?

From entity ai, we get information,

I(pi) = − log(pi) = log(1/pi) .

In a run of N observations, we see around Npi occurrences of ai. Thus, in the N independent
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observations, we get total information of,

I =
n∑
i=1

Npi log(
1

pi
) .

Then, the expectation (mean) value of the information is I/N , or,

E[I(p)] = 〈I(p)〉 = −
n∑
i=1

pi log(pi) = H(p),

We have shown that the entropy of a probability distribution is the expectation value of the infor-

mation of the distribution:

E[I(p)] = 〈I(p)〉 = H(p) . (5.5)

5.4 The Maximum Entropy Principle

Gibb’s Inequality. A simple inequality attributed to J. Williard Gibbs has to do with the rate

of increase of ln(x), x ∈ R, compared to the function y(x) = x − 1. Since (ln(x))′ = 1/x, the log

function is tangent to y(x) at x = 1. Since ln(x) is concave for x > 0, we have

ln(x) ≤ x− 1 (5.6)

with equality holding only when x = 1. This is the Gibb’s inequality. �

A classical application of Gibb’s inequality arises when we consider the relative entropy of two

probability distributions say p = {p1, p2, ..., pn} and p = {q1, q2, ..., qn}; pi, qi ≥ 0, and
∑

i pi =∑
i qi = 1. Their Kullback-Leibler divergence (or relative entropy) is,

DKL(p||q) =
n∑
i=1

pi log
pi
qi
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−DKL(p||q) = −
n∑
i=1

pi log
pi
qi

= ≤
n∑
i=1

pi

(
1− qi

pi

)
=

n∑
i=1

(qi − pi)

= 0, (5.7)

from Gibb’s inequality. Therefore,

DKL(p||q) = −H(p) +H(p, q) ≥ 0 . (5.8)

where H(p, q) is the cross entropy, H(p, q) = −∑n
i=1 pi log qi. Next, given a probability distribution

{p1, p2, ..., pn}, we compute the difference,

H(p)− log(n) = −
n∑
i=1

pi log pi − log(n)

=
n∑
i=1

pi log(
1

pi
)− log(n)

n∑
i=1

pi

=
n∑
i=1

pi(log(
1

pi
) + log(

1

n
))

=
n∑
i=1

pi log(
1/n

pi
) (5.9)

But, from the Gibbs inequality (5.6), this latter sum is less than or equal to zero, the equality

holding only when pi = 1/n. Thus,

0 ≤ H(p) ≤ log(n) (5.10)

The entropy H(p) is zero only when one of the pi’s is one and all others are zero (then the average

information 〈I(p)〉 = 0) and H(p) = log(n), its maximum, only when all of the probabilities have

the same value, 1/n; i.e. all events are equally likely.

We are thus led to a fundamental properties of the entropy of a probability; The Maximum Entropy

Principle:
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Let X = {x1,x2, ...,xn} be a set of points in Rm and pi = p(xi) denote the probability of an

event at xi. Let Pn =
{

(p1, p2, ..., pn)
∣∣pi ∈ [0, 1],

∑
i pi = 1

}
be the set of all probability dis-

tributions on X with n components. Then of all p ∈ Pn, the one that maximizes the entropy

defines the information content E[I(p)] and quantifies the uncertainty in the information.

5.5 Mutual Information

In Shannon’s theory of information, the following situation is considered: a “source” supplies a

stream of data {a1, a2, ..., an} = A which are enclosed and sent through a channel, possibly then

disturbed by noise, and then received by a receiver which is supposed to decode and derive infor-

mation from the sequence. The channel is (ignoring noise) capable of carrying data {c1, c2, ..., cr},
so encoding is accomplished by a function,

f : A→ C∗ , C∗ = set of finite strings of data from C.

We denote,

li = |f(ai)| = length of strings in C∗ encoding data symbol ai

Given a probability measure of the source, let P (ai) denote the prior estimate that the unit ai

will be sent next through the channel. Its information is then I(P (ai)) = − log(P (ai)). But

suppose we observe a signal bj, so that our estimate of the probability is revised to P (ai|bj), with

new information I(P (ai|bj)) = − logP (ai|bj). The mutual information is defined as the change in

information (due to new data) and is denoted I(ai; bj):

I(ai; bj) = I(P (ai))− I(P (ai|bj)) = log(
1

P (ai)
)− log(

1

P (ai|bj)
) = log(

P (ai|bj)
P (ai)

) (5.11)

The following properties follow easily:

I(ai; bj) = I(bj; ai)

I(ai; bj) = log(P (ai|bj)) + I(ai)

I(ai; bj) ≤ I(ai)

 (5.12)

If ai and bj are independent, P (ai|bj) = P (ai)P (bj) and I(ai; bj) = 0.
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Generalization. Now we allow noise in the channel:

A = {a1, a2, ..., an} = input stream

B = {b1, b2, ..., bm} = output stream

Channel Characterization P (ai|bj)

The average mutual information over all symbols is,

I(A; bj) =
∑
i

P (ai|bj)I(ai; bj)

I(ai;B) =
∑
j

P (ai|bj)I(ai; bj)

 (5.13)

and,

I(A,B) =
∑
i

P (ai)I(ai;B)

= I(B,A)

=
∑
i

∑
j

P (ai|bj) log(
P (ai|bj)
P (ai)P (bj)

) (5.14)

Denoting the total entropies and conditional entropies as,

H(A) =
n∑
i=1

P (ai) log(1/P (ai)) (5.15)

H(B) =
m∑
k=1

P (bk) log(1/P (bk)) (5.16)

H(A|B) =
n∑
i=1

m∑
j=1

P (ai|bj) log(1/P (ai|bj)) (5.17)

H(A,B) =
n∑
i=1

m∑
j=1

P (ai, bj) log(1/P (ai, bj)) (5.18)

Then,

H(A,B) = H(A) +H(B|A) (5.19)

H(A,B) = H(B) +H(A|B) (5.20)
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Moreover,

I(A;B) = H(A) +H(B)−H(A,B)

= H(A)−H(A|B)

= H(B)−H(B|A) (5.21)

5.6 Shannon’s Theorem

It is often asserted that the information entropy H(p) is the only meaningful measure of uncertainty

and information in probability theory. More rigorous developments that support this assertion can

be found in the original paper of Shannon [104], in the treatise of Jaynes [60], the descriptive

exposition of Klir [69], and other works. Without providing full details, we summarize the basic

axioms underlying the theorem following [69].

Axiom 1. When a zero component is added to a probability distribution, the quantity of

uncertainty should not change: H(p1, p2, ..., pn) = H(p1, p2, ..., pn, 0).

Axiom 2. H(·) is a continuous function of all of its arguments, H(p) = H(p1, p2, ..., pn).

Axiom 3. Uncertainty is invariant under permutation π of the probability components:

H(p1, p2, ..., pn) = H
(
π(p1, p2, ..., pn)

)
π(p) being a permutation of p.

Axiom 4. The maximum uncertainty is obtained when all probability components are equal

to 1/n:

H(p1, p2, ..., pn) ≤ H(
1

n
,

1

n
, ...,

1

n
) .

Axiom 5. The uncertainty of any joint probability must not exceed the sum of the uncertain-

ties of the corresponding marginal distributions ([[69]; p.73]): i.e. given a joint probability

distribution pij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

H(p11, p12, ..., p1m, p21, p22, ..., p2m, ..., pn1, pn2, ..., pnm) ≤

H
( m∑
j=1

p1j,
m∑
j=1

p2j, ...,
m∑
j=1

pmj
)

+H
( n∑
i=1

pi1,
n∑
i=1

pi2, ...,
n∑
i=1

pim
)
.
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Axiom 6. We have for joint probability piqj, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

H(p1q1, p1q2, ..., p1qm, p2q1, p2q2, ..., p2qm, ..., pnq1, pnq2, ..., pnqm) =

H(p1, p2, ..., pn) +H(q1, q2, ..., qm) .

Thus, the uncertainty of a joint probability should equal the sum of uncertainties of the

corresponding marginal distributions.

Axiom 7. The uncertainties of probabilities with components equal to 1/n (as in Axiom

4) should increase with increasing n.

Axiom 8. A probability distribution must have the branching property : toA = {x1, x2, ..., xs}
and B = {xs+1, xs+2, ..., xn}, then,

H(p1, p2, ..., pn) = H(pA, pB) + pAH
( p1

pA
,
p2

pA
, ...,

ps
pA

)
+ pBH

(ps+1

pB
,
ps+2

pB
, ...,

pn
pB

)
.

Axiom 9. H(1
2
, 1

2
) = 1 if the units of H are to be bits.

Shannon’s theorem is then:

Theorem 5.2. The only functional H on Pn that satisfies the axioms listed above is the Shannon

entropy, H(p) = −∑n
i=1 pi log pi. �

Details of the proof can be found in Klir [69] or, in slightly different forms of the axioms, in Jaynes

[60] and, of course, Shannon [104].

5.7 Example: Entropy of the Uniform Distribution

Let U be a uniform random variable, that is, U takes on some constant values in a bounded domain

D ⊂ Rn, with volume (or measure) |D| <∞ (see Figure 5.1). The corresponding density is,

π(x) =
1

|D| , a ≤ x ≤ b ,

meaning that for any x in [a, b], the same probability, 1/(b− a), occurs. The entropy of U is:

H(U) = log(|D|) .
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Figure 5.1: A m-dimensional example of uniform distribution over a domain D.

The question arises, how uncertain is the random variable U? The answer is that the entropy of

any other random variable X (call it H(X) for now) will always be smaller than H(U):

H(X) ≤ H(U) .

The uniform distribution (or, for instance, the uniform prior πprior(x) = const.) is thus the distri-

bution of maximum uncertainty (or, as some say, maximum ignorance).

Considerably more information is contained in the case in which the mean µ and the variance σ2 of

a distribution are known. Then, the correct distribution π(x) must maximize the entropy subject

to appropriate constraints; i.e.,

π(x) = arg max
π

H(x)

= arg max
π

{∫
π(x) log π(x) dx

}
subject to the constraints, ∫

π(x) dx = 1 ,∫
xπ(x) dx = µ ,∫

(x− µ)2π(x) dx = σ2 .
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Constructing a Lagrangian functional Υ defined by the entropy and Lagrange multiplier times

these constraints, we easily solve the constrained maximization problem and establish that the

solution to the maximization problem is,

π(x) = exp

{
−1

2

(x− µ
σ

)2
}
,

a Gaussian, as probably expected.

This process of computing prior distributions by maximizing the entropy subject to constraints was

introduced by Jaynes [58] in 1968 and used by him to generate priors for very general situations

in which some a priori information is known about the variable x (generally, in our applications

x = θ, the parameters). We examine Jaynes’ approach more thoroughly in the next section.

5.8 Maximum Entropy Priors: The General Solution for

Maximum Entropy with Linear Constraints

An important application of the maximum entropy principle for constructing prior distributions

when some statistical information is known, was developed by Jaynes [58] and described later in

his book Probability Theory: The Logic of Science [60]. This section reviews the basic ideas.

Consider a real-valued variable x about which we have n propositions {A1, A2, ..., An}. We have

prior information I about x that takes on values {x1, x2, ..., xn} corresponding to the respective

propositions. The probabilities pi that we assign to the possibilities xi form the set {p1, p2, ..., pn}.

Next, suppose we have a set of m functions of x, fk(x), 1 ≤ k ≤ m < n. We want to prescribe the

expectations of the fk relative to the probability distribution {p1, p2, ..., pn};

〈fk(x)〉 =
n∑
i=1

pifk(xi) = Fk (5.22)

where Fk are given numbers. Thus, given the Fk, and given the xi. we wish to find the probabilities

pi which has maximum entropy, subject to the relevant constraints, including
∑

i pi = 1. This leads

to the problem of finding critical points of the functional,
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Υ(p, λ0, λ1, ..., λm) = H(p)− λ′0(1−
n∑
i=1

pi)−
m∑
k=1

λk(Fk −
n∑
i

pifk) (5.23)

where λ′0, λ1, ..., λm are Lagrange multipliers and fk = fk(xi). We have,

n∑
i=1

[
∂H(p)

∂pi
δpi − λ′0δpi +

m∑
k=1

λkfkδpi

]
= 0

∀δpi. Since H(p) = −∑i pi log pi, ∂H/∂pi = − log pi − 1,

log pi − 1− λ′0 +
m∑
k

λkfk = 0,

or,

pmaxi = pi = exp(λ0 −
m∑
k=1

λkfk) (5.24)

where λ0 = λ′0 + 1. Returning to the constraints:

1 =
n∑
i=1

pi = exp
[
− λ0

n∑
i

exp(−
m∑
k=1

λkfk)
]

At this point, we introduce the partition function

Z(λ1, λ2, ..., λm) =
n∑
i

exp(−
m∑
k=1

λkfk) , (5.25)

so,

λ0 = logZ . (5.26)

Returning to (5.19), we have,

Fk =
n∑
i

exp[logZ −
m∑
k=1

λkfk(xi)]
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which we recognize as,

Fk = − ∂

∂λk

(
logZ(λ1, λ2, ..., λm)

)
(5.27)

which determines the λk as functions of the given Fk. The maximum entropy is,

Hmax = −
n∑
i=1

pmaxi log pmaxi

where pmaxi is given by (5.24). Thus,

Hmax = λ0 +
m∑
k=1

λkFk. (5.28)

We can now assert that H attains its maximum if and only if pi = pmaxi ,

pi =
1

Z
exp[−

m∑
k=1

λkfk(xi)] . (5.29)

One significance of problem (5.22) is this: if we know certain properties of a distribution,

such as its mean, moments, or other features Fk, then we construct the prior which fits these

constraints and which maximizes the entropy.

Examples

The canonical examples of application of this process are two cases:

1. The mean of the distribution µ is known:

∑
i

pixi = 〈x〉 = µ,

then, maximizing H(p) subject to the constraints
∑

i pi = 1 and
∑

i pixi = µ leads to the

exponential density,

π(x) =
1

µ
exp

{
−x
µ

}
.
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2. If, in addition, the variance is known,∑
i

pi(xi − 〈x〉)2 = σ2,

then, as indicated earlier, the maximum of H(p) is attained at the Gaussian density,

π(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
.

Covariance and Other Properties. Several other properties of the prior can be derived from

the maximum entropy theory and the solution (5.24) (or (5.29)). Details can be found in Jaynes

[60]. Among these, we mention the relation:

∂〈fk〉
∂λj

=
∂〈fj〉
∂λk

=
∂2 logZ(λ1, λ2, ..., λm)

∂λj∂λk
(5.30)

Given the canonical distribution (5.29), one may ask how the mean values 〈fk(x)〉 are correlated

with each other? The departures from the mean determine the covariance,

Cjk = 〈(fj − 〈fj〉)(fk − 〈fk〉)〉 = 〈fjfk〉 − 〈fj〉〈fk〉 (5.31)

From (5.30), it can be seen that,

Cjk = −∂〈fj〉
∂λk

= −∂〈fk〉
∂λj

(5.32)

Thus, the (negative of) the second derivatives of the log of the partition function determine the

covariance of fj and fk in our distribution.

The Continuous Case. In the case the probability density is a continuous function p = p(x),

we face the problem that −
∫
p log(p)dx is not invariant under a change of variable x→ y(x), and

hence is not an acceptable definition of entropy. To correct this, we introduce (following Jaynes

[60] p. 375) an invariant measure m(x) defined as the limit of discrete points xi, i = 1, 2, ..., n, in,

say an interval [a, b]:

lim
n→∞

1

n
(N = no. of points m(a, b)

def
=

∫ b

a

m(x)dx), (5.33)
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or
1

m(xi)
= lim

n→∞
[n(xi+1 − xi)].

Then one can argue that the continuous information measure is

H(p) = −
∫
p(x|I) log

p(x, I)

m(x)
dx , (5.34)

with I the prior information. In many accounts on entropy, the role of m(x) is ignored and one

simply sets m(x) = 1 in (5.34), as was done in earlier sections of this chapter.

The “continuous version” of problem (5.19) is, given Fk, k = 1, 2, ...,m and the functions fk, find

the probability distribution p(x) such that∫
p(x|I)fk(x)dx = Fk, 1 ≤ k ≤ m . (5.35)

In this case, the solution to the maximum entropy problem is

p(x, I) = Z−1(λ1, λ2, ..., λm)m(x) exp[λ1f1(x) + λ2f2(x) + ...+ λmfm(x)] . (5.36)

5.9 The Tan Bui Thanh Lemma: Entropy as a path to

Bayes

A interesting observation on the connection between maximum entropy and Bayes’ theorem was

made by Tan Bui Thanh [24]. Let us look at two optimization problems that are designed to

produce the optimal choice of a posterior density πpost, given data y and a likelihood function

πlike = π(y|x).

First, let us choose πpost to minimize the relative entropy (the DKL divergence) between a density

π and a given prior, πprior. Then,

πpost = arg min
π

∫
π(x) log

π(x)

πprior(x)
dx

= arg min
π

DKL(π||πprior) , (5.37)
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subject to the constraints,

∫
π(x) dx = 1 and π(x) ≥ 0 . (5.38)

Second, let us choose, for given data y and likelihood πlike(y|x), a posterior πpost that minimizes

the mean-square error:

πpost = arg min
π

∫
π(x)||y − d(x)||2Σ dx

= arg min
π

{
−
∫
π(x) log πlike(y|x) dx

}
(5.39)

To attempt to satisfy requirement of (5.37) and (5.39), one consider a “compromise” functional

and optimization problem,

πpost = arg min
π

{
DKL(x||πprior)−

∫
π(x) log πlike(y|x) dx

}
,

subject to the constraints (5.38).

Remarkably, appending Lagrange multipliers to the constraint, and solving the constrained mini-

mization problem leads to the following solution:

πpost(x|d) =
πlike(d|x)πprior(x)∫
πlike(d|x)πprior(x) dx

, (5.40)

which, remarkably, is Bayes’ rule. Thus, Bayes’ rule is optimal for computing the posterior under

the condition laid down above.
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Chapter 6

Monte Carlo Methods: MCMC and

Sensitivity Analysis

6.1 Introduction

Some basic issues are, as yet, unaddressed in our study of Bayesian inference and statistical cal-

ibration and validation. First and foremost, how do we numerically evaluate the influence of the

posterior distributions arising from the Bayes rule on key quantities of interest? This issue of

numerically evaluating Bayes’ rule was a principal contributing factor to the long dormant period

in which the importance of Bayesian approaches was largely ignored by the statistics community.

Secondly, there is the question of what model parameters appreciably affect the quantities of inter-

est in a computer simulation? Specifically, in almost every application of interest, the quantities of

interest (QoIs) which are the target centerpiece of the prediction, are not influenced by the choice

of some, often many, values of the model parameters. This begs the question: of all the parameters

in a given model, and given a QoI, which parameters can be eliminated, because variations in them

have negligible effect on the values of the QoIs?

Remarkably, both of these questions can be addressed with great efficiency using Monte Carlo

methodologies. Monte Carlo methods represent a broad class of computational algorithms that

rely on repeated random samples of a function to obtain numerical representations of values of the

function over its domain.

The term ‘Monte Carlo’ was used by the earlier inventors and users of the idea, in analogy with
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gambling with random bets at the Monte-Carlo casino in Monaco. It was introduced by atomic

bomb scientists, Nicholes Metropolis and Stanislaw Ulam in 1949, Metropolis et al. in 1953 [75],

and with further improvements by Wilfred Hastings in 1970 [52]. The basic idea involves solving

deterministic problems using a probabilistic analogy.

The most common Monte-Carlo algorithm is that associated with integration of a function f(x)

over a domain Ω,
∫

Ω
f(x)dx. There the idea is to introduce a set X of randomly selected points

X = {x1, x2, ..., xn} in Ω and approximate the integral with the sum,∫
Ω

f(x)dx ≈ |Ω| 1
n

n∑
i=1

f(xi) , (6.1)

|Ω| being the volume of Ω. In actual applications, it is sufficient to employ a pseudo-random set

of sample points. The error is O(1/√n):

Var

(∫
Ω

f(x)dx− |Ω|1
n

n∑
i=1

f(xi)

)
=

1

n

{
n∑

i=1

f2(xi)− [
1

n

n∑
i=1

f(xi)]
2

}
(6.2)

In the applications of Bayes’ rule of interest here, the goal is to use Monte-Carlo sampling of a

distribution to trace out its variation over its domain, as opposed to integrating a posterior over

that domain. Thus, we have, for example, the posterior probability density πpost(θ|y, S) – denoted

πpost(θ) for simplicity – and we generate a sequence of samples from πpost(θ) by randomly selecting

parameter value θi in the domain, dom πpost. The challenge is to develop a systematic strategy

to sample all (or a sufficient number) of values to fully represent the structure of πpost. This, we

accomplish by following a random walk over the contours of the surface which is defined by a

Markov chain, described in Section 6.2. An example of such an approximation of the surface is

given in Figure 6.1.

As to sensitivity analysis, the idea is to find out how the QoI, or an appropriate surrogate value

Y , varies when specific parameters of a model take on random incremental variations. Ideally, we

want to know how large are the variations in the QoI due to variations in the parameters. The

parameter sensitivities are thus related to the numbers,

|∂Q(u(θ, S))

∂θi
| , 1 ≤ i ≤ n , θi ∈ θ ∈ Θ . (6.3)

Unfortunately, such sensitivity calculations are often very computationally intensive and do not

provide a useful measure of parameter sensitivity. Instead, we are led to surrogate measures of
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Figure 6.1: The structure of a posterior distribution πpost(θ) depending on the parameters θ =
(x, y) constructed by computing samples along a random walk, starting at θ = (−9,−9).

output dependency on the parameter, say Y = Y (θ), and to numerical methods which compute

the sensitivity of Y (θ) to perturbations in model parameter θ. We describe such sensitivity mea-

sures and calculations advocated by Saltelli [97] and others later in this chapter. As mentioned

earlier, these sensitivity calculations employ Monte-Carlo methodologies.

In this chapter we provide an introduction to Monte-Carlo sampling methods underlying the

famous and powerful MCMC methods (Markov-Chain Monte Carlo Methods) and later variance-

based Monte-Carlo sampling methods of sensitivity analysis for model sensitivities.

6.2 Markov Chains

We must build a representation of the structure of the surface of probability density such as πpost(θ)

by using a on Monte Carlo sampling of a process that traces out a path connecting the random

sample points x in a way that can cover the domain of the function as the number of samples is

increased. Such a sampling can be performed by a Markov chain, which is a sequence of random

variables generated by sampling along paths in the function domain called a chain. The Markov

Chain is a random process that traverses from one “state” to another in such a way that they create

a “chain” through a state space in which the predicted distribution on the next state in a chain

of probabilities depends only on the current state and not on the events or their probabilities that
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produces them. Such a “memoryless-ness” property is called a Markov property. In applications

of interest here, we pick an initial point in, say, Rn, and create a random walk, a path through the

space, guided by a set of decision rules.

In a more formal setting, a Markov chain can be considered to be a sequence of random variables

X, Y, Z accessed by a process in a certain order, X → Y → Z such that the conditional probability

of Z depends only on Y and is independent of X. The joint probability (mass) can be thus written,

π(x, y, z) = π(z|y, x)π(y|x)π(x)

= π(z|y)π(y|x)π(x)

= π(z|x, y)π(x|y)

⇒ π(x, z|y) = π(x|y)π(z|y) . (6.4)

The memoryless property shows that no processing of information about step Y can increase the

information at Y about information at X (written in terms of mutual information as I(X, Y ) ≥
I(X,Z)). See [30].

6.3 Markov Chain Monte Carlo

The challenge in applying Monte Carlo sampling is to limit the number of samples in regions of

the domain of the integrand where the integrand is very small. A process for tracing out the

random walk along a chain that selects directions in which the highest probability of capturing

meaningful values of the integrand is the goal of the Markov Chain Monte Carlo (MCMC) strategy.

Suppose that we want to map out and explore the structure of a posterior density πpost(θ)

(= π(θ|y, S)), through a series of trial points θk on a Markov chain starting at an initial value θ0 of

the parameters θ, and designed to have the Markovian property; that each new sample θ(k+1) does

not depend on the earlier samples, beyond θ(k−1). The new value θ(k+1) depends on the previous

sample θk through a transition probability p(θ(k+1),θ(k)) that is designed to make the path and

samples generate all of the posterior.

A first step is to pick a proposal (conditional) distribution q(θ∗|θ(k)) that gives the value θ∗ of

the k + 1 step, given the kth value θ(k). The density q can be of any form, such as multivariate

Gaussian with mean equal to the current sample θ(k). The density then decreases with distance

away from θ(k), the current sample.
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Secondly, we must decide if we accept the candidate sample θ∗. We do this on the basis of the

Metropolis ratio,

r =
πpost(θ

∗)

π(θ(k))
× q(θk|θ(∗))

q(θ∗|θ(k))
. (6.5)

If the proposal distribution is symmetric, then the second factor is 1. If not, and r ≥ 1, we set

θ(k+1) = θ∗. If r < 1, we accept θ∗ with probability r, this latter step is done with by sampling a

random variable U from the uniform distribution U(0, 1). If U ≤ r, we set θ(k+1) = θ∗; otherwise,

θ(k+1) = θ(k).

This second step is captured by the acceptance probability α(θ∗,θ(k)), defined by,

α(θ∗,θ(k)) = min(1, r) = min

(
1,
πpost(θ

∗)q(θ(k)|θ∗)
πpost(θk)q(θ∗|θ(k))

)
(6.6)

Thus,

θ(k+1) =

θ∗ with probability min
{

1, α(θ∗,θ(k))
}

θ(k) with probability 1−min
{

1, α(θ∗,θ(k))
}
.

(6.7)

This version of MCMC is called the Metropolis-Hastings algorithm. It is used as a basis for many

popular statistical sampling programs, and, in particular, the code QUESO [87] of Prudencio and

Schultz [89] is employed in calculations in later chapters.

6.4 Parameter Sensitivity Analysis

As noted earlier, it is frequently the case that QoIs or experimental observations are not sensitive

to changes in certain model parameters. Since computational cost and complexity may strongly

depend on the number of parameters appearing in a model, any rational process that leads to the

reduction in the number of relevant parameters is regarded as very valuable. This fact has led

to the development of several effective methods for parameter sensitivity analysis, represented in

the work of Sobol in 1990, 1993, 2007 [105–107], Homma and Saltelli (1996) [54], and the book of

Saltelli [97], as well as Saltelli et al. (2009, 2010) [95, 96, 98], and Saltelli and Sobol (1995) [99]. It

must be appreciated that parameter sensitivity depends on the particular QoI; parameter changes

may strongly affect some QoI-values but not affect at all other choices of QoIs.

The setting for parameter sensitivity analysis is this: for a given parametric model involving a set
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of parameters θ = {θ1, θ2, ..., θm}, select an output function Y (θ) that represent a principal output

of interest. The output function is thus a surrogate for the QoI, and indeed, when feasible, one

can select Y (θ) to be the QoI: Y (θ) = Q̃(θ) = Q(u(θ, Sp)), Sp being the prediction scenario. The

goal is to measure the sensitivity of Y (θ) to changes in components of θ.

6.4.1 Morris’s Method of Elementary Effects

A popular method of parameter sensitivity analysis is that of Morris [77] as the method of ele-

mentary effects. The principal ideas behind the method are listed as follows,

1. We identify an output function Y (θ) = Y
(
[θ1, θ2, . . . , θn]

)
which is an output model of the

QoI and is a function of the n-dimensional vector of parameters θ.

2. We rescale each parameter θi to the unit interval [0, 1].

3. We consider an n-dimensional hypercube, Ωn = [0, 1]n which we partition into pn cells, p

being an integer number > 2, such that each parameter domain [0, 1] is partitioned into bins

θi ∼ [0, 1] ∼ [0, 1
p−1

, 1
p−2

, . . . , 1]. These bins [ 1
p−i ,

1
p−i−1

] contain sample points from which

Monte Carlo samples of θi will be selected. The bins are called the levels of the cube.

4. We introduce a sampling distribution πi for each θi, πi possibly denoting a prior density, or

simply a uniform distribution assigned to all θi, i = 1, 2, . . . , n.

5. We next choose a small number δ, for instance δ = p/2(p − 1), p ≥ 2, and we compute the

elementary effect EEi as the difference approximations,

EEi =
Y (θ1, θ2, . . . , θi + δ, θi+1, . . . , θn)− Y (θ)

δ
, 1 ≤ i ≤ n. (6.8)

The EEi’s thus represent the change in the output due to a δ-perturbation in each parameter

θi.

6. We now compute EEj
i of the output for random (Monte Carlo) samples taken from each

bin. If the parameter distribution is not uniform, we sample quantiles in [0, 1] deriving input

values from the inverse of the cumulative distribution function.

7. Now we must traverse through the hypercube doing sample paths, called trajectories, con-

sisting of paths of n+ 1 orthogonal steps through Ωn defined as follows:

(a) Select a random starting point θ(1)
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(b) If θi denotes a set of unit coordinate vectors on the axes of the hypercube, select a new

vector θ(2) differing from θ(1) in its ith component by δ:

θ(2) = θ(1) ± eiδ,

with + or − taken such that θ(2) ∈ Ω.

(c) Continuing in this manner,

θ(3) = θ(2) ± ejδ

we finally get,

θ(n+1) = θ(n) ± ekδ.

This defines a trajectory r through Ωn.

8. Next, we compute the elementary effects sensitivities and variances over r trajectories,

µi =
1

r

r∑
j=1

EEj
i , (6.9)

σ2
i =

1

r − 1

r∑
j=1

(EEj
i − µi)2 , (6.10)

with µi being a mean sensitivity and σ2
i a variance at the ith parameter sensitivity (over r

trajectories). A common indication of the sensitivity assigned to parameter i is,

µ∗i =
1

r

r∑
j=1

|EEj
i | . (6.11)

By laying out the numbers µ∗1, µ
∗
2, ..., µ

∗
n, we are able to estimate the relative sensitivity of the

output to changes in the parameters. When a measure µ∗k is regarded as very “small” according to

some preset tolerance, that parameter can be eliminated or set equal to a deterministic constant,

this latter choice being sometimes made when sensitivities of other parameters are correlated with

those of θi. We note that the sensitivity measures µi, σ
2
i and µ∗i depend on the number r of

trajectories. Presumably, these measures should converge to constants as r →∞. Some examples

of such calculations are given in Chapter 10.
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Figure 6.2: An illustration of a 2-dimensional hypercube (n = 2) with p = 6 levels, δ = 3/5, and
a trajectory r along n+ 1 = 3 sampling points: θ(1), θ(2), θ(3).

6.4.2 Variance-Based Sensitivities

A popular measure of parameter sensitivity in the variance-based sensitivity advocated in several

papers and books (e.g. Cukier et al (1973) [35], Sobol (1993) [106], Saltelli et al (2000) [97]).

As in the case of the elementary effects measures, we construct a n-dimensional unit hypercube

Ωn = {θ, 0 ≤ xi ≤ 1, i = 1, 2, ..., n} and generate random (Monte Carlo) samples of the uncertain

inputs θ1, θ2, ..., θn from some prescribed distribution (generally uniform or Gaussian). Let θ∼i

denote the parameters vector which excludes the ith component of θ,

θ∼i = (θ1, θ2, ..., θi−1, θi+1, ..., θn)T

We denote by Vi(y|θ∼i) the variance of the Monte Carlo sample of Y evaluates at θ∼i and by

Eθ∼i [Vi(y|θ∼i)] the average over all such variance. Then the variance-based sensitivity of θi is

defined by

ST i =
Eθ∼i [Vi(y|θ∼i)]

V (Y )
(6.12)

where V (Y ) is the variance of the output function.

Generally, it is convenient to regard the output as being defined by a square- integrable function

f(θ) defined on the n-dimensional hypercube Ωn. Then, to derive (6.12) or alternative sensitivity
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measure, one begins with the so-called Hoeffding decomposition of f [105, 106] and the conditional

expectations E(Y |θi) to derive the following decomposition of the output variance:

V (Y ) =
∑
i

Vi +
∑
j

∑
j>i

Vij + · · ·+ V12···m, (6.13)

where

Vi = V (fi(θi)) = Vθi(Eθ∼i(Y |θi)),
Vij = V (fij(θi, θj)),

= Vθiθj(Eθ∼i(Y |θi, θj))− Vθi(Eθ∼i(Y |θi))− Vθj(Eθ∼j(Y |θj)). (6.14)

Here Vθi(Eθ∼i(Y |θi)) and Eθ∼i(Y |θi, θj) are first-order effects, Vθiθj(Eθ∼i(Y |θi, θj)) are joint effects

of the pair (θi, θj) on V , etc. Complete details can be found in [54]; see also the appendix in [39].

For so-called non-additive models, Y depends on the interaction between different parameters θi

and θj (i 6= j). Then we divide (6.14) by V (Y ) forming sensitivity indices Si, Sij, · · · , S1,2,··· ,m

yielding ∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+ S1,2,··· ,m = 1 . (6.15)

The total effective index can be derived from this property and (6.12); i.e.,

STi =
Eθ∼i(Vθi(Y |θi))

V (Y )

= 1− Vθi(Eθ∼i(Y |θi))
V (Y )

. (6.16)

The total effect sensitivity STi measures the total contributions to the output variation in parameter

θi. Straightforward algorithms based on Monte Carlo sampling for computing such indices are

discussed in [94–96, 98]; see a slightly amended version in [39].

The process of using such sensitivity measures to eliminate irrelevant parameters involves comput-

ing STi ’s for each parameter θi ∈ θ, and removing from the list of parameters those for which the

index is sufficiently small (e.g. for which STi/maxjSTj < 0.1).

6.4.3 Scatter Plots

A generally convenient and often inexpensive qualitative way to visualize the sensitivity of outputs

to parameter variations is through scatter plots, which involve clouds of points showing an output
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(a) (b)

Figure 6.3: Parameters may have a significant influence on the output. The uniform distribution
in b) suggests an insensitivity of the outputs to the parameters.

Y (θ) plotted against randomly chosen values of each parameter in a model. Examples are shown

in Figure 6.3. The idea is to take random (Monte-Carlo) samples of a uniform distribution of a

parameter θi and plot the corresponding Y (θi)-values over a two-dimensional domain. A param-

eter is considered to have a possibly important influence on Y (θ) if the cloud exhibits a distinct

pattern. A uniform cloud, or a cloud close to zero, suggests that the sensitivity of the output to

changes in that particular parameter is small.

6.4.4 Design of Validation Experiments

The calculation of parameter sensitivities can provide an important tool in assessing the effec-

tiveness of the design of the validation experimental scenario Sv. When feasible, one computes

parameter sensitivities for the output functions Y (θ) set equal to the QoI, Q(θ), in the full pre-

diction scenario Sp. One then recomputes the sensitivity for a proposed validation scenario with

Y (θ) set equal to the validation observables. If the validation sensitivities are not in good agree-

ment with those for the full prediction scenario, then the validation experiments are ineffective

and cannot determine parameters that inform the prediction of the QoI. Such comparisons of Sp

and Sv sensitivities provides a powerful indication of the effectiveness of the design of the valida-

tion experiments. In the same vein, comparing Sc and Sp sensitivities can also provide insight in
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designing calibration experiments.

6.4.5 An Algorithm for Sensitivity Indices

Returning to (6.12), a Monte Carlo scheme to compute the indices with a reduced computational

cost of evaluating multi-dimensional integrals is presented here, due to Faghihi in Farrell et al. [39]

and inspired by [97]. The principal sets are:

1. Generate two N × k independent sampling matrices, A and B, where each row is a sample

point in the hyperspace of k dimensions. N is called a base sample with respect to the

probability distributions of the input variables.

2. Define a matrix Di formed by all columns of A except the ith column, which is from B.

3. Compute the model outputs for all the matrices (i.e., N × 1 vectors of model output):

YA = f(A) ; YB = f(B) ; YDi = f(Di)

4. The total-effect of indices can be estimated by,

STi ≈ 1−
1
N

∑N
j=1 Y

(j)
A Y

(j)
Di
−
(

1
N

∑N
j=1 Y

(j)
A

)2

1
N

∑N
j=1 Y

(j)
A Y

(j)
A −

(
1
N

∑N
j=1 Y

(j)
A

)2 (6.17)

Relation (6.17) can be obtained by substituting the Monte Carlo estimators,

Vθ∼i
[
Eθi(Y |θ∼i)

]
≈ 1

N

N∑
j=1

Y(j)
A Y

(j)
Di
− E2(Y ), (6.18)

along with,

VY = E(Y 2)− E2(Y ) =
1

N

N∑
j=1

Y(j)
A Y

(j)
A −

( 1

N

N∑
j=1

Y(j)
A

)2
, (6.19)

into (6.12).
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6.4.6 An Example: Coarse-Grained Models of Atomistic Systems

An example of the use of variance-based sensitivity analyses is found in comparison of parameter

sensitivities for coarse-grained molecular models of atomistic systems in thermodynamic equilib-

rium.

We know that all matter in our universe is made up of essentially indivisible objects called atoms

which make up the material universe in which we live. Atoms are characterized according to their

number of electrons, atomic mass, number of neutrons, etc., and are tabulated in the well-known

Periodic Table of modern chemistry and physics; there being some 118 distinct atomic structures

currently known. In classical models of atomic systems discussed here, atoms are considered to

be point masses in motion due to the action of forces, and their locations with respect to a fixed

origin is given by the generalized coordinate vectors r, i = 1, 2, . . . , n, with n being the number of

atoms. We denote by pi, the momentum vector associated with i. The motion of such an atomistic

system is governed by Hamilton’s equations,

ṙi = +
∂H

∂pi
, ṗi = −∂H

∂ri
, (6.20)

with 1 ≤ i ≤ n, and the Hamiltonian H,

H(r,p) =
∑
i

pi · pi
2mi

+ V (r) (6.21)

where mi is the mass of particle i and V (r) = V (r1, r1, . . . , rn) is the force potential. A typical

model for the potential V (·) (employed, for example, in the Molecular Dynamics code LAMMPS

[85]) is of the form,

V (r) = Vbond(r) + Vangle(r) + Vdihedral(r) + Vnon−local(r) + Vcoulomb(r) , (6.22)

where

Vbond(r) =

Nb∑
i=1

1

2
kri(ri − r0i)

2 , (6.23)

Vangle(r) =
Na∑
i=1

1

2
kθi(θi − θ0i)

2 , (6.24)

Vdihedral(r) =

Nd∑
i=1

4∑
n=1

Vni

2
[1 + (−1)n−1 cos(nφi)] , (6.25)
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Vnon−local(r) =

Nnl∑
i=1

∑
j>i

4εij

[(
σij
rij

)α
−
(
σij
rij

)β]
, rij ≤ rc , (6.26)

Vcolumb(r) =

Nq−1∑
i=1

Nq∑
j>i

4ε0

[
qiqj
rij

]
. (6.27)

Here Vbond represents, in general, covalent bonds between atoms with bonding constants kri, Vangle

is the potential energy due to change in angles between successive bonding lengths between atoms,

the dihedral angle φi between consecutive links, Vnon−local denotes Lennard-Jones type potentials,

generally with α = 6, β = 12 or perhaps α = 6, β = 9, and Vcoluomb is the coulomb potential for

discrete charges qi and qj at coordinates ri and rj, respectively, with rij = ||rj−ri||. Here in (6.23)

and (6.24), r0i and θ0i are the original coordinate parameters assumed to be given in the initial con-

figuration of the system, φi in (6.25) is a torsional degree of freedom, and ||·|| is the Euclidean norm.

In most molecular dynamics (MD) applications, the momentum vectors are equated to the New-

tonian momentum, pi = miṙi, and (6.20) reduces to (generally huge) system of nonlinear second-

order differential equations describing a Newtonian model for the AA system. Because of the

enormous size and complexity of such systems, it is standard practice to construct coarse-grained

(CG) approximations of the system, obtained by aggregating groups of atoms into N super atoms

or molecules, thereby dramatically reducing the size of the model. This results in a large classM
of models with the atom coordinates replaced by molecular coordinates RI, I = 1, 2, ..., N << n,

and with a force potential of the same form, but with constants,

θ = {KRi, R0i, Kθi, VNi, εii, σij} , 1 ≤ i ≤ N , (6.28)

wherein we ignore coulomb-charge effects.

A major problem with this very classical and often used process of coarse graining is that a given

AA configuration, which we assume is the truth to simplify the analysis, can be segregated into

many possible CG configurations, as indicated in the map G : AA→ CG illustrated in Figure 6.4,

and for each choice of a CG model, then are numerous choices of force potential, each choice with

different sets of parameters.

In Farrell et al [39], this problem was taken up for specific applications involving modeling the

stretching of a polyethylene chain, in constant volume and temperature (T = 100K), consisting of

12 “beads” (molecules) with two carbon atoms per bead. The model involved 12 parameters, each

assigned a uniform distribution:
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Figure 6.4: (a) Coarse-graining of an all-atom system; (b) different choices of AA-to-GC map G;
(c) different choices of intermolecular force fields V, for each map G. (From Farrell et al. (2015)
[39])
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Figure 6.5: Bar charts illustrating the results of the sensitivity analysis using total sensitivity
indices for the deformation of the polyethylene chain using 20, 000 Monte Carlo samples of the
parameter space. (From Farrell et al. (2015) [39])

R0 ∼ U(0.1, 5) , KR ∼ U(0.1, 90)

θ0 ∼ U(80, 100) , Kθ ∼ U(0, 15)

V1 ∼ U(−1, 1) , V2 ∼ U(−1, 1)

V1 ∼ U(−1, 1) , V2 ∼ U(−1, 1)

σ ∼ U(0.05, 7) , ε ∼ U(0.01, 5)

The goal is to estimate the total sensitivity indices for each parameter with respect to the output

function,

Y (θ) = 〈V (θ, G1)〉 − 〈V (θ, G2)〉 ,

where G0 denotes the initial configuration of the chain and G is the map defining the configurations

attained by applying a force to one end of the chain while keeping the other end constrained.

We use (6.12) to compute the total sensitivities of each of these 12 parameters. Results are

presented in Figure 6.5 which is reproduced from that in [39]. Scatter plots of some parameters

are given in Figure 6.6. From these results, we observe that the sensitivities of the dihedral

parameters are much smaller than those of other parameters, and we conjecture that by omitting

them altogether, the values of the output Y (θ) will not appreciably change. To confirm the
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Figure 6.6: Scatterplots illustrating a quantitative sensitivity analysis for the polyethylene chain
using 40, 000 Monte Carlo samples of the parameter space. The observable is the change in potential
energy as the chain is deformed. (From Farrell et al. (2015) [39])
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Figure 6.7: Comparison between the kernel density estimates of the change in potential energy
resulting from the deformation of a polyethylene chain for the cases when dihedral and angle
parameters are excluded from calculations. Results show 500 Monte Carlo samples of the parameter
space. (From Farrell et al. (2015) [39])

ICES, Univ of Texas Austin Last modified: October 12, 2017 109



J. Tinsley Oden Lecture Notes Fall 2016

conjecture, we compute the same output functions except that the dihedral parameters are omitted.

Figure 6.7 shows the results of these different models: 1) the full model with covalent bonds, angles,

dihedrals, and Lennard-Jones terms; 2) the model without dihedrals (i.e., only with bonds, angles,

and LJ term; and 3) the model with bonds, dihedral, and LJ terms. We observe that by eliminating

the parameters with lowest sensitivities (the dihedrals), the distributions of the output is essentially

unchanged.
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Chapter 7

Model Selection and OPAL, the Occam

Plausibility ALgorithm

7.1 Introduction

At this point, we have considered Bayesian and Entropy-Information theoretic approaches to ad-

dress several of the major sources of uncertainty, including P-uncertainty in Chapters 2 and 3 and

Y and θ uncertainties in Chapters 4 and 5. What remains is one of the most important problems in

predictive science: M-uncertainty, the uncertainty in the selection of the centerpiece of prediction,

the model used to make the prediction. For many years, the community of scientist and engineers

were taught that model selection was the province of experienced practitioners who had earned

the privilege of selecting mathematical models based on divine-given judgment, discounting that

the models selected often delivered poor predictions of the observed events. Or more commonly,

very classical models of mechanics and physics were morphed and distorted and ultimately used to

model events far outside the original domains of the textbook models. In the meantime, the statis-

tics world was concerned about model selection and methods to guide selection, but most of the

time only in a limited sense of calculating likelihoods for regression calculations or low-dimensional

approximations.

In more recent times, the theory and methodology of model selection has taken strides forward

with the advent of modern computing capabilities and modern algorithms for implementing meth-

ods based on Bayesian inference and information theory. In this chapter, we describe two classes

of methods for model selection, one based on Bayesian ideas involving the notion of posterior

model plausibilities, and the other based on frequentist notions, information theory, and relative
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entropy. According to Chow (1981) [28], the Bayesian approach is motivated by the work of

Jeffreys (1939,1961,1998) [61–63] and revived in more recent work of Beck and co-workers (Beck

and Yuen, 2004; Beck, 2010; Beck and Taflanidis, 2013 [16–18]) and others (Farrell et al., 2015;

Prudencio and Schulz, 2012 [39, 89]) while the frequentist follows the work of Akaike (1974, 1976,

1977, 1998 [4–7]) and its various generalizations (Hurvich and Tsai, 1989; Lebreton et al., 1992;

Schwartz, 1978 [56, 72, 101]). A readable account of these latter approaches is found in Burnham

and Anderson (2002) [25] and in Konishi and Kitagawa (2008) [71].

In the sections that follow, we introduce the theory of posterior model plausibilities and we outline

an introduction to the information-theoretic and frequentist methods of Akaike and others. We

then describe a general framework for model selection and model validation embodied in OPAL –

the Occam Plausibility ALgorithm – introduced and implemented in [35] and [79], which brings

together most of the tools and concepts presented thus far: model calibration, validation, parameter

sensitivity, model plausibility, model inadequacy, and prediction of the QoIs.

7.2 Bayesian Model Plausibilities

Let us suppose that we have in hand a set of m parametric models Pi(θi), 1 ≤ i ≤ m, each with its

own set of parameters θi ∈ Θi, describing a manifestation of the forward problem (1.1) for a scenario

S. Suppose further that we have acquired a set of observational data y = {y1,y2, · · · ,yn} ∈ YS
and that for each model and parameter set and a prior π(θj|S) is specified. The next step is to

simply write down Bayes’ rule (4.1), this time acknowledging that we actually have additional

conditional information, namely that the model Pj(θj) is known and that it belongs to the setM:

π(θj|y,Pj,M, S) =
π(y|θj,Pj,M, S)

π(y|Pj,M, S)
π(θj|Pj,M, S), 1 ≤ j ≤ m. (7.1)

Here we have merely rewritten (4.1) acknowledging additional prior knowledge (and, thus, we have

applied Jaynes’ principle of taking into account “ all of the evidence we have and not just some

arbitrary chosen subset of it.”)

The key term of interest in (7.1) is surprisingly the evidence, the denominator on the right-hand-

side of (7.1). More that just a normalization factor, it is the marginalization of the numerator,

π(y|Pj,M, S) =

∫
Θj

π(y|θj,Pj,M, S)π(θj|Pj,M, S)dθj, 1 ≤ j ≤ m. (7.2)
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Examining the left-hand-side of (7.2), we observe that it may be interpreted as a new likelihood

function for a discrete version of the Bayes rule over the set of m modelsM [18, 28, 88]. We thus

compute its posterior, for each model j, denoted ρj:

ρj = π(Pj|y,M, S) =
π(y|Pj,M, S)π(Pj|M, S)

π(y|M, S)
, 1 ≤ j ≤ m. (7.3)

The prior model plausibilities, π(Pj|M, S), in the case of m equally plausible models, may be

simply set equal to 1/m. The denominator, π(y|M, S) is treated as a normalizing factor.

The numbers ρj are the posterior plausibilities of the set M of mathematical models and the

densities π(Pj|M, S) are the prior model densities. Choosing the denominator π(y|M, S) so as to

normalize the set of discrete probability components, we have

m∑
j=1

ρj = 1. (7.4)

The model (or models) in M with plausibility (plausibilties) ρk (ρk ≥ ρj, 1 ≤ j ≤ m) is deemed

the most plausible in the set M for the given data y in scenario S.

7.2.1 Frequentist Approaches: The Akaike Information Criterion

Methods for model selection based on likelihood theory typical of frequentist arguments can be

derived using the notion of information lost when a given model deviates from the “true” distri-

bution of the QoI or other observables. These are the Akaike methods or their generalizations,

initiated in the 1974 paper of [4] and expanded in subsequent work [5–7]. The idea behind these

approaches begins with the notion of a true distribution g = g(y),y ∈ YS, defining the target

prediction, and a set M of models {P1(θ1),P2(θ2), · · · ,Pm(θm)} each defined by their respective

likelihood probabilities π(y|θj, S), 1 ≤ j ≤ m. The information lost Ij(g, π) when the model Pj is

used to approximate the truth is given by the DKL-divergence,

Ij(g, π) = DKL(g ‖ π(·|θj, S))

=

∫
YS
g(y) log

g(y)

π(y|θj, S)
dy(

or
n∑
i

gi log gi/πi for the discrete case

)
, 1 ≤ j ≤ m. (7.5)

For each model Pj, this loss is minimized by choosing the parameters θj to be the MLE (recall
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(4.11) θ̂(y) = argmax
θ∈Θ

log π(y|θ, S)). Choosing such an MLE in (7.5) and averaging over the

samples x and y in YS, gives the number

Aj = ExEy

[
log(π(x|θ̂j(y), S))

]
=

∫
YS

∫
YS
g(x)g(y) log π(x|θ̂j(y), S)dxdy, 1 ≤ j ≤ m. (7.6)

The numbers Aj represent the information lost when model Pj (namely π(x|θ̂j(y), S) is used to

approximate the truth g, x and y in (7.6) being independent random samples taken from the same

distribution.

The idea of using the Aj, or computable approximations of them, as measures of model goodness

was proposed in [4]. To reduce the calculation of measures such Aj to a practical means for model

comparison, several simplifying but generally acceptable assumptions can be introduced. These

include the assumption that the log-likelihood is twice continuously differentiable with respect to

the parameters, that a truncated Taylor expansion of the log-likelihood can be used to approximate

its variation over Θ, that a large enough sample {y1,y2, · · · ,yn} is taken that asymptotic properties

valid as n→∞ hold, and that the sequence of MLEs θ̂j(n) taken for sample size n converge to the

DKL-minimizer θ∗j . Under such assumptions, the number Aj can be replaced by the computable

Akaike Information Criteria,

AICj(y) = −2 log
(
π(y|θ̂j, S)

)
+ 2kj, 1 ≤ j ≤ m, y ∈ YS (7.7)

where kj is the number of parameters in model Pj, the best model in M being that with the

smallest AICj(y).

Akaike Weights

In applications of the AIC, the actual AICj values are of little use; what one wishes to determine

are the relative merits of various models as measured by the relative criteria,

∆j = AICj − AICmin , 1 ≤ j ≤ m . (7.8)

The best model among the set of all models has a relative value ∆∗ = ∆min = min{∆j}mj=1.

It is useful to transform the AIC relative values ∆j into a model probability by setting them

proportional to (minus one-half of) a log-likelihood: log πlikej ∝ (−∆j/2). Then we can define the
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model probabilities by the Akaike weights:

Wj =

exp

(
− 1

2
∆j

)
∑m

k=1 exp

(
− 1

2
∆k

) . (7.9)

Clearly,
m∑
k=1

Wk = 1 . (7.10)

The weight Wj is clearly the weight of evidence in favor of P , and the highest corresponds to the

best model.

Generalizations of the AIC have been proposed by several investigators. For example, the

“second-order” AIC for small sample size has been proposed by [56],

AICcj(y) = −2 log (π(y|θj, S))

+ 2kj +
2kj(1 + kj)

n− kj − 1

= AICj(y) +
2kj(1 + kj)

n− kj + 1
, (7.11)

n being the sample size. Still another measure has been proposed by [72] for case in which data is

“overdispersed.” Then, instead of AICj(y) of (7.7), one uses

QAICj(y) = −2 log
[
π(y|θ̂, S)/Ĉ

]
+ 2kj (7.12)

where Ĉ is the ratio of the chi-squared statistic χ2 and its number of degrees of freedom. A small-

sample version of this estimator, QAICcj(y), analogous to (7.11), can be obtained by replacing

AICj(y) in (7.11) with QAICj(y). See [25] for additional details.

7.3 The OPAL Algorithm: Adaptive Model Selection and

Model Validation

The Occam Plausibility Algorithm (OPAL), introduced in [39] and described in [79] (from which

the present account is extracted), provides a systematic adaptive approach to statistical model

calibration and validation that brings together several of the methodologies discussed earlier while

ICES, Univ of Texas Austin Last modified: October 12, 2017 115



J. Tinsley Oden Lecture Notes Fall 2016

also providing an approach to address and resolve the elusive problem of model inadequacy. The

name is understandingly derived from Occam’s Razor, the “principle” that one should use the

“simplest” theory or model among competing models that leads to the same prediction. In OPAL,

the simplest model in a class of possible models is defined as that with the fewest parameters, but

other measures of simplicity or complexity could be used.

The algorithm involves the following steps.

1. Initialization. A set M of possible models is identified for predicting the QoI:

M = {P1(θ1),P2(θ2), · · · ,Pm(θm)}, (7.13)

each model having its own parameter space (θk ∈ Θk). The models in M may be closely

related, some sharing the same parameters.

2. Sensitivity Analysis. Parameter sensitivities in each model class P(θj) are computed

using techniques such as those described in Chapter 6 for the prediction scenario Sp. Using

an appropriate tolerance, only those model classes are retained that contain parameters to

which the output is sensitive, as indicated by the relative value of the sensitivity measures;

models containing parameters to which the output is insensitive are eliminated, resulting in

a reduced set M̄ of model classes,

M̄ = {P̄1(θ1), P̄2(θ2), · · · , P̄l(θl)}, l ≤ m. (7.14)

3. Occam Categories. The models in M̄ are next partitioned according to the number of

parameters in each. These are referred to as the Occam categories, with the models containing

the smallest number of parameters designated category 1, those in the next higher number

category 2, and so forth. We therefore produce a collection of subsets, M̄1,M̄2, · · · ,M̄N ,

with models in set M̄k containing exactly k parameters, 1 ≤ k ≤ N . By our interpretation

of Occam’s Razor, models of category k are simpler or less complex than those of category

l > k.

4. Calibration. All of the models in the category 1 set M̄1 are next calibrated using Bayes

rule (4.1) for a specified calibration scenario Sc resulting in calibrated Category 1 models,

M̄∗
1 ∼ {P∗1 (θ∗1),P∗2 (θ∗2), · · · ,P∗k(θ∗k)}, k < l. (7.15)

5. Plausibility Calculation. We next calculate Bayesian posterior plausibilities ρ∗j , 1 ≤ j ≤ k,

of the Category 1 model in (7.15) (recall (7.3)). The most plausible model (or models) is
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identified as model P∗j such that

ρ∗j ≥ ρ∗i , 1 ≤ i ≤ k. (7.16)

6. Validation Step. With the most plausible and simplest model now identified, we move to a

validation scenario Sv, update the parameters using Bayes’ rule (4.1), and solve the forward

problem in Sv to determine the model predictions of the Sv experimental observations. We

emphasize that the design of the validation experiments is of paramount importance in that

the accuracy with which the model agrees with validation observational data should indicate

the accuracy with which the QoI is predicted in Sp.

Let qv(y) be the probability density of the validation observational data y = yv and πv(y,θ
∗∗)

be the model-generated density approximating qv obtained using the validation-updated pa-

rameters, denoted θ∗∗. Many different metrics can be used at this point to measures the

accuracy with which πv(y,θ
∗∗) approximates qv. Also, for a given metric, an accuracy toler-

ance γ = γtol must be specified to assess if the distance between predictions and measurements

is small enough to deem the model valid. A natural way to compare predictions and data

in the presence of uncertainties is to employ the DKL-divergence, in which case the model is

said to be valid if

DKL (qv ‖ πv(y,θ∗∗)) ≤ γtol, (7.17)

with y = yv and,

DKL(qv ‖ πv(y,θ∗∗)) =

∫
Sv

qv(y) log
qv(y)

π(y,θ∗∗)
dy. (7.18)

It is sometimes more meaningful to use the normalized measure, DKL/H, H being the

Shannon entropy, so that a valid model is such that DKL/H ≤ γtol. We emphasize that

other measures (“metrics”) could be used.

7. Iteration or Solution. If the model is valid, e.g., if (7.17) holds, we use the validated

model in scenario Sp with parameter θ∗∗ and solve the forward problem for the QoI. If no

model in this category is valid, we return to step 1, now setting M = M̄2, the models of

Category 2, and repeat steps 2 through 5 until a valid model is determined. The process is

terminated when one model is identified that passes the validation criterion such as (7.17).

If no models in the original set M are valid, the modeler must enlarge and enrich the set of

models until(if possible) a set containing a valid model can be identified.

Several remarks are in order:
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Remark 1 A flow chart indicating the path followed in implementing OPAL is given in Figure

7.1.

Remark 2 In each calculation in the calibration step, Step 4, a prior pdf must be identified. These

can often be determined using the maximum entropy based methods discussed in chapter 5.

Remark 3 Several tolerances must be set in implementing OPAL. These include a tolerance to

judge which parameters can be ignored on the basis of the level of sensitivity of the QoI exhibits to

their changes. Also, the tolerance γtol defining a valid model for given measures of accuracy of the

validation prediction must be specified.

Remark 4 As a cautionary note, even though a sensitivity measure of a parameter may be small,

the posterior values may be ‘correlated’ with others so that its influence on the QoI may be negli-

gible. Then we may assign a constant, deterministic value to that parameter and then retain the

corresponding model in the set M.

Remark 5 The plausibilities are computed for the calibration scenario as the calculation of plausi-

bilities for validation scenarios is rarely feasible owing to their computational complexity. In some

cases, however, it is conceivable that validation data could be used to determine model plausibili-

ties.Then model validity may be clearly connected to model plausibility for data yv in Sv.

Remark 6 A frequentist version of OPAL can easily be envisioned in which Bayesian updates are

replaced with MLE calculations and Bayesian plausibilities are replaced by model selection methods

based on such measures as the Akaike Information Criterion.

Remark 7 As noted earlier, the use of the number of parameters of a model as a measure of its

simplicity in the sense of Occam’s razor, is only one of several approaches to delineate Occam

categories. Other measures, such as computational complexity, operation counts of calibration and

validation algorithms, number of model dependent variables, etc., could be used as a basis for

partitioning M into categories.
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START
Identify a set of possible models

M = {P1(θ1), . . . ,Pm(θm)}

?
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?
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yes
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no

6

SENSITIVITY ANALYSIS
Eliminate models with parameters to
which the model output is insensitive

M 7→ M̄ = {P̄1(θ̄1), . . . , P̄l(θ̄l)}, l ≤ m

OCCAM STEP
Choose model(s) in lowest Occam

category

M∗ = {P∗1 (θ∗1), . . . ,P∗k(θ∗k)}, k < l

Identify new set of possible
models

M = {P1(θ1), . . . ,Pm′(θm′)}

CALIBRATION STEP
Calibrate all models in M∗

PLAUSIBILITY STEP
Compute plausibilities and identify
most plausible model P∗j such that

ρ∗i ≤ ρ∗j , 1 ≤ i ≤ k

ITERATIVE OCCAM STEP
Choose model(s) in next Occam category

that also include parameters from
previously most plausible model

M∗ = {P∗1 (θ∗1), . . . ,P∗k(θ∗k)}, k = k′ < l

VALIDATION STEP
Submit P∗j to validation test
• Update parameters

• Compute observable

Is P∗j valid?

yes

no Does P∗j have the most parameters in M̄?

Use updated parameters θ∗j in forward problem to predict QoI

Figure 7.1: Flowchart for OPAL, the Occam-Plausibility Algorithm [39, 79].
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Chapter 8

Introduction to Cell and Cancer Biology

8.1 Introduction

One of the most challenging and important areas of predictive science is predictive medicine, partic-

ularly the prediction of the emergence and growth of cancer in living organisms and the prediction

of the outcomes of various therapies. In Chapters 9 and 10 ahead of us, we will describe applica-

tions of the theory and methods discussed in the chapters preceding this one to the prediction of

the growth or decline of cancer in living organisms, including methods and philosophy underlying

the development of multiscale models of tumor growth.

To set the stage for these developments, it is important to review basic and even elementary facts

about cell biology, mainly to record basic definitions, to review the ideas of the cell cycle, protein

synthesis, sub-cellular signaling pathways and the cellular-level events that are thought to lead to

cancer. This is the goal of this chapter. We begin with an introductory discussion of DNA, and

travel through the remarkable phenomena of protein synthesis and cell cycles, to an introductory

discussion of the emergence and growth of cancer.

8.2 DNA: Deoxyribonucleic Acid

Within the nuclei of the cells of living organisms there resides DNA, or deoxyribose nucleic acid, a

long molecule consisting of two single-stranded molecule chains intertwined to form a double helix.

The DNA molecule provides the genetic code that governs the growth, function, reproduction, and

development of almost all living organisms. To understand the structure and the fundamental role

of DNA, a review of some aspects of elementary chemistry is warranted.
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The basic building block of a DNA strand is the so-called deoxyribose sugar unit, a molecule con-

sisting of five carbon atoms and one oxygen atom, covalently bonded as shown Figure 8.1. A

covalent bond is a generally strong intermolecular bond in which one or more pairs of electrons

are shared by atoms to complete their outer shell. The sugar units are called nucleotides ; they

are attached to a sequence of phosphorous-based molecules, called the phosphodiester linkage or

phosphate molecules, consisting of a phosphorous atom and four oxygen atoms; that forms the

backbone of the strand, beginning with a number 3 carbon in the sugar unit and terminating with

a number 5 carbon (or vice versa). This molecule is shown in Figure 8.2.

Chromosomes

Each DNA molecule in a human cell, when stretched out, would be ∼ 2× 10−19 meters wide and

2 meters long, about 200, 000 times longer than the typical size length-scale of a cell. Yet, in

each human cell, the DNA is packed into a single tiny structure called a chromosome, containing

millions of base pairs. The DNA is itself packed around proteins called histones which are twisted

into a packing structure, ultimately forming the chromosomes. Histones may be thought of as

spools around which DNA strands are twisted to allow a secondary packing structure within the

primary structure that forms the chromosome. These are depicted in Figure 8.3.

Every human has 46 chromosomes, 23 from each parent, arranged in 22 pairs of a matching

chromosomes and a pair of sex chromosomes determining sex: the X and Y chromosomes; XX for

female, XY for male.

The collection of all genes in the 46 chromosomes is called the human genome.

The phosphate backbone connects the sugar units into repeated molecules called nucleotides, shown

in Figure 8.4, which expose the radicals to inner connections to so-called base-acid molecules. For

each DNA molecule, two such long strands are intertwined into a helix connected by four of these

base acids denoted T , A, C, G: T for thymine, A for adenine, C for cytosine, and G for guanine.

The chemical compositions of these molecules is shown in Figure 8.5 and the helical strands are

shown in Figure 8.6 and 8.7. The base pairing is strongest between A and T , and C and G; i.e. A

complements T , and C complements G. The A and G molecules form receptors for the T and C

molecules, the former are called pyrmides and the latter are called purines. Thus, A can only pair

with T and G can only pair with C as shown symbolically in Figure 8.8.

The result of these pairings is the two nucleotide chains, oriented in opposite directions, as shown

in Figure 8.6, and famously called the DNA double helix. The chemical composition of the helix

is illustrated in Figure 8.7. The base acids are connected on the interior of the helix (A to T , C to
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Figure 8.1: Deoxyribose Sugar Unit. A molecule consisting of an oxygen atom, five carbon atoms
numbered 1-5, side hydrogen atoms, with the carbons connected through covalent bonds. Three
free radicals are indicated by the symbol X. Oxygen, with atomic number 8, has 6 electrons in
its outer orbital: Carbon, with atomic number 6, has 4 outer-orbital electrons. The 3− and 5
free radicals connect the unit to the phosphodiester linkage, or backbone. The inside free radical
provides a site for connecting the unit to the base nucleic acids (A,G,T,C).
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Figure 8.2: The Phosphodiester Linkage. The phosphodiester linkage or backbone of a DNA
strand, consists of a phosphorus atom P covalently bonded to oxygen atoms, which are bonded to
carbon atoms in the sugar unit. Phosphorus, with atomic number 15, is highly reactive, with 5
electrons in its outer orbital.

Figure 8.3: A chromosome consisting of tightly packed DNA strands, with center called a cen-
tromere, spread out to reveal a secondary packing structure in which strands are wrapped around
protein “spools” called histones.

ICES, Univ of Texas Austin Last modified: October 12, 2017 124



J. Tinsley Oden Lecture Notes Fall 2016

Figure 8.4: Segment of strand of DNA.
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Figure 8.5: The four base nucleotides.
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G, T to A, G to C) by hydrogen bonds, relatively weak molecular bonds illustrated in Figure 8.9.

Figure 8.6: The DNA double helix.
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Figure 8.7: Summary of the chemical composition of the double helix.
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Figure 8.8: Acid base pair and hydrogen bonds inside the double helix.

Figure 8.9: Hydrogen bonds. In covalently bonded molecules, such as H2O, electrons shared by
covalent bonds congregate away from the hydrogen atoms leaving a small positive charge away
from the hydrogen atom and a small negative charge around the donor (e.g. oxygen or nitrogen).
The negatively charged protein of one molecule is attracted to the positively charged end, creating
a hydrogen bond.
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8.3 The Cell

The cell is the basic biological unit of all known living organisms; the smallest unit of life that can

replicate itself independently. The cell consists of a gel-like substance, called the cytoplasm (as the

material of which it is comprised, is called cytosol) all enclosed in a thin bilayer cell membrane,

with internal structures called organelles. The cytoplasm is often colorless and about 80% water.

Inside the cell is the cell nucleus, which is an organelle also enclosed in a membrane, called nuclear

membrane. A cell with a well-defined nucleus that is separated from the cytoplasm by its membrane

is called a eukaryote. The chromosomes reside in the cell nucleus (See figure 8.10).

Through a remarkable process, to be now described, the information imbedded in these base-pair

sequences is translated into the creation of new molecules, called proteins, through a multi-step

process. The sequence is thus said to provide a code for manufacturing certain specific proteins

that perform fundamental functions in the process of life in organisms.

The segment of the DNA that provides code for a single protein is called a gene. The human

genome contains 50, 000 to 100, 000 genes dispersed through the 46 chromosomes. This transcrip-

tion of base-pair information requires that the DNA unravel itself to release the coded information

and then heal itself to replicate again the parent DNA molecule.

Replication of DNA
For the DNA molecule to replicate, three steps are required:

1. Unwinding: Special enzymes break the hydrogen bonds and the DNA strands unwind, that

is, bases become unpaired, a process called cleavage of the DNA. (Figure 8.13)

2. Pairing: Free nucleotides pair with free basis on separated strands.

3. Joining: Complementary bases pair with covalent bonds linking them together: polymeriza-

tion (aided by enzyme polymerase).

8.4 RNA: Ribose Nucleic Acid

In the nucleus of a cell, another molecule emerges during the replication process that, like DNA,

consists of a long chain of nucleotides linked by sugar phosphate bonds. These are key differences

between these molecular chains and DNA:
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Figure 8.10: A sketch of the eukaryotic cell and its major components The length l is, on average,
around 10 microns, or 10× 10−6 meters, which is 10, 000 nanometers. There are about 1013− 1014

cells in a human, and around 350 different types of cells.

1. The sugar molecule contains one more oxygen atom than the deoxyribose molecule of DNA,

and is simply called ribose (Figure 8.11).

2. Because the sugar molecule differs from deoxyribose, the base nucleotide is different; the

T -base Thymine of DNA is replaced by a new base U for Uracil.

3. The chain consists of only one strand instead of two.

4. These chains are much shorter than DNA.

These chains are called RNA molecules – the Ribose Nucleotide Acid (Figure 8.12).

The coding region of a gene is transcribed into a copy of the DNA sequence called RNA, a molecule

similar to a single strand of DNA. The information “enclosed” in the DNA molecule enables the

cell to synthesize proteins.
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Figure 8.11: Ribose, a single strand with a phosphate backbone and a ribose sugar element.

8.5 Transcription

As the DNA unravels during replication, the information it carries decoded and translated into the

single-strand RNA molecule. This process is called transcription. The basic steps are as follows:

1. An enzyme RNA polymerase joins the ribonucleotides together to form the RNA strand.

Only a part of the DNA is transcribed to an RNA strand (unlike replication, where all of

the DNA is copied).

The “length” of DNA transcribed into an RNA molecule is defined as a gene.

2. One gene can be transcribed to one RNA strand and another gene can be transcribed to

another strand, and a single gene may be transcribed thousands of times.

3. The newly made RNA moves out of the nucleus and into the cytoplasm of the cell. This

RNA is then called a messenger RNA or mRNA.

4. A set of three adjacent bases in an mRNA molecule is called a codon. Since there are 4 bases,

there exist 43 = 64 ways to combine 4 bases into a 3 letter codon. In the protein synthesis

stage of the cell cycle, each of these 64 codons forms one of 20 acid molecules, called amino

acids, plus 3 so-called stop codons. Several different codons may specify the same amino

acid. The 64 resulting amino acids and their corresponding three-base codons are displaced

in Table 8.1.
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Figure 8.12: The RNA nucleotide molecule, consisting of the base Uracil U , and the ribose sugar
unit.
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Figure 8.13: The process of DNA replication: a) unwinding b) pairing, and c) polymerization,
producing an exact replica of the DNA molecule.
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Figure 8.14: DNA Transcription: During unwinding of the DNA helix, so-called ribonucleotides
pair with separated DNA bases creating a new row of bases linked to a single RNA strand, leaving
as a result, the perfectly preserved DNA and a new RNA molecule.
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Table 8.1: The Standard RNA Genetic Code

Codon Amino Acid Codon Amino Acid Codon Amino Acid Codon Amino Acid

UUU PHE CUU LEU AUU ILE GUU VAL
UUC PHE CUC LEU AUC ILE GUC VAL
UUA LEU CUA LEU AUA ILE GUA VAL
UUG LEU CUG LEU AUG MET/START GUG VAL
UCU SER CCU PRO ACU THR GCU ALA
UCC SER CCC PRO ACC THR GCC ALA
UCA SER CCA PRO ACA THR GCA ALA
UCG SER CCG PRO ACG THR GCG ALA
UAU TYR CAU HIS AAU ASN GAU ASP
UAC TYR CAC HIS AAC ASN GAC ASP
UAA STOP CAA GLN AAA LYS GAA GLU
UAG STOP CAG GLN AAG LYS GAG GLU
UGU CYS CGU ARG AGU SER GGU GLY
UGC CYS CGC ARG AGC SER GGC GLY
UGA STOP CGA ARG AGA ARG GGA GLY
UGG TRP CGG ARG AGG ARG GGG GLY

According to Table 8.1, only one codon codes for each of the following amino acids: MET (START

amino acid), TRP, two codons code for each of the amino acids: ASN, ASP, CYS, GLN, GLU,

HIS, LYS, PHE, TYR, three codons code for amino acid ILE, and three are STOP (nonsense)

codons, four codons code for each of the amino acids: ALA, GLY, PRO, THR, VAL. There is no

amino acid with five codons.Six codons code for each of the amino acids: ARG, LEU, SER.

8.6 Protein Synthesis Steps

The cell is essentially a protein factory in which information encoded in the DNA is transcribed to

the RNA molecules and transmitted to the messenger RNA (the mRNA) which caries the coded

information into the cytoplasm of the cell. This is facilitated by a conglomerate of molecules called

ribosome RNA, which consists of approximately four types of molecules wrapped up by approx-

imately 75 proteins to form a bead-like structure. Each Ribosome consists of a large and small

unit separated by a groove through which an mRNA is threaded. The Ribosome slides down the

mRNA, and as it moves it joins the amino acid molecules one-by-one to form a polypeptide chain

(a cluster of ribosomes may move down an mRNA making multiple copies of the same polypeptide).
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The entire synthesis process is facilitated by what is called a transfer RNAs (tRNA), single strands

of RNA that translate the mRNA message into amino acids and then transfer those amino acids

into a growing protein chain (Figure 8.17). Generally each tRNA is around 75 bases, loops back

on itself, and each tRNA corresponds to a different amino acid and has a different base sequence.

The sequence of steps in the protein manufacturing process is as follows:

1. An initiator tRNA molecule charged with the (start) amino acid Methionine (Met) binds

to the small ribosome unit and the mRNA and the small and large ribosome units come

together. The anti-codon of the tRNA binds to the AUG start codon on the mRNA (Figure

8.19).

2. A second tRNA molecule forms base pairs between its anti-codon and the next codon, thus

aligning the first and second amino acids .

3. The bond between the first tRNA is broken and, being uncharged is ejected from the message

and is recycled, and the ribosome moves down the mRNA one codon (Figure 8.20).

4. The tRNA from the second amino acid is ejected. At the end of the message, a stop codon is

reached (such as UAG), a codon for which there is no tRNA, and a termination factor binds

in place of tRNA and stops the process (Figure 8.21).

5. The ribosomes separate, release the mRNA, and the polypeptide chain is separated from the

last tRNA molecule (Figure 8.22).

Regulatory Sequence and Cell Differentiation
In addition to sequences that code protein construction, there are genes that code regulatory

sequences and that control the rate and frequency of transcription. Thus, not all genes are “ex-

pressed”. There are 50,000-100,000 genes, 1013− 1014 cells, and ∼ 350 different types of cells. Cell

differentiation means that cells are specialized in structure to perform some specific function. The

traits of different types of cells are passed on to their progeny.

In what is called an epigenetic change within a genome, the gene expression is modified without

changing the information content of DNA. The stem cell is a specialized cell with a role of renewing

lost cells or repairing damaged cells while maintaining their own population. The role of stem cells

is proliferation (unlike other cells that rarely divide). The evolution of stem cell differentiation is

illustrated in Figure 8.15
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Figure 8.15: Evolution of stem cell differentiation: a) a stem cell in an initial state; b) cell
division (mitosis) in which a partially differentiated stem cell is created; c) cell generations; and
d) a process of macrophage in which terminally differentiated cells are created.

8.7 Signal Transduction

Individual cells are emerged in a heterogeneous array of constituents that exist outside the cell

membrane, collectively called the extracellular matrix or extracellular region. The entire life and

behavior of the cell – cell cycle, cell death (called apoptosis), gene regulation, protein synthesis, . . .

– is orchestrated by sequences of molecular signals that penetrate the membrane and propagate

within the cell via chemical reactions of protein complexes. This transmission of molecular signals

is called signal transduction, and the sequence of protein molecules reacting to create these signals

constitute a signaling pathway.

The cell membrane contains special structures on its extracellular surface or inside the membrane

surface called receptors which accept extracellular stimuli and which trigger the biochemical chain

of events inside the cell. This chain of reactions is called a signaling cascade. The response to

the signaling cascade may be an alteration of the cell’s shape, metabolism, gene expression, or

cell cycle and division. The signaling propagates through complex networks of molecules and can

be amplified or terminated at any time, and can generate responses from hundreds to millions of

molecules.
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Signal transduction involves binding of extracellular signaling molecules called ligands to receptors

that create inner-cellular events. All of these events are manifestations of changes in the structure

of particular cell proteins. The binding site may also hold ligands next to molecules to facilitate

chemical or catalyzing a chemical reaction between the two molecules. Enzymes are common pro-

tein catalysts.

The extracellular receptors are proteins that span across the cell membrane, one part within and

the rest outside of the membrane. The transduction occurs as a result of a ligand binding to the

outside region of the receptor that produces a change in the conformation of the interior portion

of the receptor. The intercellular proteins that react to a ligand-receptor interaction demonstrate

as enzymatic response, generally adhering to the laws of chemical kinetics, the enzymes being

covalently bonded to the receptor. Chemically, the enzymes include so-called tyrosine kinase and

phosphatases. Some create second level messengers that enable such events as releasing calcium

into the cytoplasm and which activate enzymes and so-called adaptor proteins, the function of

which is to link protein-binding partners together (and so to “adapt”), thereby creating larger

signaling complexes. The protein kinases, an enzyme that modifies other proteins by adding phos-

phate groups to them, and G-protein, also an enzyme, are recruited in the signal transduction to

supply short-lived active complexes in response to an activating signal, such as a growth factor

(generally a protein that stimulates cell growth, proliferations, or healing) binding to its receptor.

Within the cell, intercellular receptors are in the form of soluble proteins exist in localized regions.

To initiate transduction, the ligand diffuses through the nuclear membrane, into the cell nucleus,

to possibly alter gene expression. These so-called nuclear receptors attach to the DNA at sites in

what is referred to as the promoter region of genes, and can induce (promote) gene expression.

Typical ligands for nuclear receptors are non-polar signaling molecules called hormones, that can

be directly secreted into the blood stream and carried to the organs and tissues of the body. The

effects of such hormones may be realized in the body after a long period of time. The transfer

and covalent attachment of a phosphate group to a target protein is called phosphorylation

(a common means for activating or inhibiting the function of a protein), and the enzymes that

catalyze phosphorylation are called kinases, which play a regulatory role, turning target proteins

functionally on or off.

Cellular responses to extracellular stimulation such as gene activation and alterations of metabolism,

require signal transduction. Gene activation promotes other effects within the cell, such as in-

creased access to glucose from the blood stream.
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Signal transduction pathways are regarded the key to biological processes within mammals, and

many diseases can be attributed to disturbances of such pathways, which cell growth also depends

on. For example, the epidermal growth factor (EGF) is a protein that binds with the epidermal

growth factor receptor (EGFR), which causes the two monomers to react to form a macromolecular

complex and a phosphorylation of the EGFR, activating the intercellular pathway. A schematic

of the transduction environment is given in Figure 8.16.

Among major signaling pathways, one can list the ERK pathway (that couples intercellular re-

sponses to binding growth factors, often promoting cell division), the CAMP pathway (that works

by activating kinase A and a protein PKA), and the IP3/DAG pathway: PLC that cleaves the

molecules phospholipid phosphatidylinositol 4; 5 biophosphate producing diacyl glycerol) (DAG)

that can lead to altered cellular behavior.
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Figure 8.16: Subcellular signaling pathway: 1) Receptor accepts message; 2) message is delivered
to protein path; 3) signaling pathways; 4) cell responses; 5) cell behavior changes. [c.f., 93].
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Figure 8.17: a) A protein is a chain of amino acid molecules. The protein manufactured in the
protein synthesis process is thus a chain of atoms with amino acid molecules as side chains bonded
to a carbon backbone chain. The interaction of the side chains causes the protein to fold into a
unique convoluted 3D shape, which is often critical to the function of the protein. b) A protein
chain depicted as a continuous ribbon. It may possess binding sites, in which subsets of amino
acids allow subsets of target molecules to interact with and bind the protein.
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Figure 8.18: Protein Synthesis. – Stage (A). The beginning of the protein synthesis process:
construction of a protein chain begins as an initiator “tRNA” molecule charged with a (starting)
amino acid Methaionine (denoted Met) binds the ribosome and the mRNA.
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Figure 8.19: Protein Synthesis. – Stage (B). Anti-codon bends with start codon on mRNA, and
first and second amino acids are aligned.

ICES, Univ of Texas Austin Last modified: October 12, 2017 144



J. Tinsley Oden Lecture Notes Fall 2016

Figure 8.20: Protein Synthesis. – Stage (C). Bond with first tRNA is broken and it is ejected
and recycled and ribosome moves down mRNA.

Figure 8.21: Protein Synthesis. – Stage (E). Stop codon is reached and process is terminated.
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Figure 8.22: Protein Synthesis. – Stage (F). Ribosome separates and releases mRNA: the protein
polypeptide is complete and is separated from the last tRNA molecule.
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SUMMARY

• The information contained in RNA is translated by Ribosome: a large macromolecule that

guides the assembly of amino acids into a protein product. Now the mRNA template is

converted into an actual protein through a process called translation.

• Translation takes place at the Ribosome. The ribosome moves along the mRNA molecule

adding an amino acid to the chain until it reaches a stop codon, at which point the protein

producttion is finished, and the ribosome detaches.

• Each codon (a word consisting of the three RNA bases) corresponds to a specific amino

acid (, for example, GCC corresponds to the amino acid Alanine). There are around 20

common amino acids.

• A molecule called transfer RNA: tRNA, is the link between a codon and an amino acid.

• The ribosome steps along the mRNA molecule adding an amino acid to the chain at each

step to the growing protein chain. The process stops when it reaches a stop codon.

• A single gene can be transcribed many times, each time leading to an identical protein.

• Numerous ribosomes can bind a single mRNA, producing many copies of the same protein.

• Summary of RNA translation process:

1. RNA instigates an unwinding of the DNA double helix, which is done by RNA

polymerase II.

2. RNA transcribes a gene sequence and is encoded as mRNA.

3. mRNA leaves the cell nucleus (and DNA rewinds).

4. Ribosome (a macromolecule) attaches to the mRNA and facilitates pairing of mRNA

codon with anti-codon of tRNA molecule.

5. tRNA links codon with an amino acid molecule. This reaction is catalyzed by an

enzyme aminoacyl tRNA synthetase

6. Ribosome steps along mRNA adding an amino acid molecule to the chain at each

step, stopping at a termination sequence. The protein is thus manufactured.

ICES, Univ of Texas Austin Last modified: October 12, 2017 147



J. Tinsley Oden Lecture Notes Fall 2016

8.8 The Cell Cycle

The process of cell division begins when growth stimulating factors instigate signal-transduction

cascades. The cell volume doubles, all cellular substructures are reproduced, ∼6 billion nucleic-acid

bases are replicated, and 46 chromosomes are synthesized.

The Five Phases of Cell Cycle: In the five stages of the cycle of eukaryotic cells are

presented symbolically in Figure 8.23.

G0-Phase. The resting state – no progress through cycle⇐ terminally differentiated cells perma-

nently arrested in the state.

G1-Phase. This is the Growth Phase in which new ribosomes, proteins, mitochondria, endoplasmic

reticulum, and other constituent are built in preparation for DNA synthesis and eventual cell

division.

S-Phase. This is the Synthesis Phase in which DNA is duplicated. The histone proteins around

which DNA is wrapped are also synthesized.

G2-Phase. This is the second growth phase in which the cell prepares to divide. Proteins that are

needed to promote mitosis are manufactured.

Mitosis. This is the phase of cell division. The division of the nucleus is mitosis, and is performed

in 5 steps. The division of the cytoplasm is called cytokinesis.

The external growth signals that propagate through the transduction pathways, signals the cell

to begin a new reproductive cycle. During the S-phase (the synthesis phase) genes that produce

proteins in the DNA replication are activated. This includes the so-called cyclin molecules, a

family of proteins of general types, labeled A, B, C, D, E, F , G, and H cyclins, and all but D

are synthesized during the special discrete period in the cell cycle, and are degraded at a second

discrete point. Cyclin concentration varies over time, and new complexes are formed that, in turn,

activate new cyclin-CDK complexes. The cyclins control the progression through the G1 phase

and the transitions to the S-phase, and cyclin-A−Ch2 controls progress through the S phase. A

cyclin-dependent kinase must couple with a cyclin molecule before it can catalyze phosphorylation.

The six phases of mitosis are illustrated in Figure 8.24. In order of their development, they are

1. Prophase – two sets of chromosomes reside in the cell nucleus; two centrosomes emerge

connected by micro tubes called the mitotic spindle.

2. Prometaphase – the nuclear membrane disintegrates, the centrosomes migrate to opposite
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Figure 8.23: The five phases of cell cycle. G0, the resting phase in which no progress is made
through the cycle; the G1-phase (gap 1), in which cyclin D and E form active cyclin and other
complexes; S-phase, the synthesis phase in which all DNA is replicated including two identical
copies of chromosomes; G2-phase in which cell continuous growth and DNA synthesis is checked;
and the M -phase, mitosis, in which cell divides into two “daughter” cells and cell chromosomes
condense and duplicated chromosomes separate.
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ends of the cell and the spindle micro tubes bind each chromosomes at their center (the

centromere).

3. Metaphase – Identical chromosomes line up joined at the centromere.

4. Anaphase – Bonds joining the chromosomes breaks.

5. Telophase – New nuclear membranes from around each set of separated chromosomes.

6. G1-phase – The cell is cleaved into two cells and chromosomes condense into the cell nuclei.
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Figure 8.24: Mitosis – The M-phase of cell division.
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8.9 Cancer

Cancer is a gross distortion of cell behavior due to abnormalities in the production and functioning

of proteins, and due to mutations of genes. Any autonomously growing mass of cells is called a

neoplasm. A neoplasm is classified as cancer if it is malignant, meaning it gains the capacity to

invade surrounding tissues, which generally involves destroying proteins that hold the adjacent cells

together. The term tissue homeostasis are used to describe the balance between cell proliferation

and cell death (apoptosis) that preserves the shape, volume, architecture, and functionality of

tissue in mammals. Thus, neoplasms constitute a disruption of homeostasis and the occurrence of

abnormal growth.

A tumor requires nutrients, generally provided by an enhanced supply of blood, which also removes

waste (e.g., dead cells). Among disruptions of the DNA that lead to cancer are alterations of the

base acids in the DNA, in which bonds between the A, T , C, G bases are broken, or additional

bonds appears, or when a base molecule is separated from the sugar unit leaving an unpaired base,

or a single strand of the DNA breaks, compromising the phosphodiester backbone. Such events

can be created by radiation, or chemical species that break chemical bonds.

Various types of cancer – and there are perhaps over 100 types – are often categorized according

to the types of cells they invade. For example, carcinomas are cancers of epithelial cells, sarcomas

describe cancers of connective tissues between cell types, and leukemia denote cancers of the blood

and lymphatic system. An illustration of a transition of the tumor into cancer is given in Figure

8.25.

In a highly cited pair of papers, Hanahan and Weinberg [50, 51] proposed eight common traits

shared by all, or at least the majority of types of cancer, and referred to them as The Hallmarks

of Cancer. These are displayed in Figure 8.26. The hallmarks are:

1. Sustaining Proliferative Signaling, in which the ability for cells to divide even without the

presence of growth factor is gained.

2. Deregulating Cellular Energetics, in which the ability to produce cellular glucose, and thus

cellular energy production, is reprogrammed.

3. Resisting Cell Death, in which a resistance to signals promoting apoptosis is acquired.

4. Inducing Angiogenesis, in which the cell takes on the ability to induce growth of new blood

vessels to supply nutrients and oxygen to cancerous cells.
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Figure 8.25: Illustration of the growth of a mass of cells into cancer. a) A mass of healthy and
stem cells is b) subjected to an initializing event – such as radiation – that damages the DNA
and pathways, causing mutations and uncontrolled growth. The baseline membrane is penetrated,
allowing tumor cells to invade capillaries and be transmitted to other locations in the body.
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5. Evading Growth Suppressors, by which the cancer cells gain the ability to ignore anti-

proliferation signals that maintain cellular quiescence.

6. Avoiding Immune Destruction, refers to the ability of cells to evade attacks and destruction

by the immune system.

7. Enabling Replicative Immortality, in which the ability to ignore replicative senescence (old

age of cells) is avoided.

8. Activating Invasion and Metastasis, which involves acquiring the ability to spread to other

parts of the body in secondary forms.

These hallmarks form the basis for inductive hypotheses underlying key terms in mathematical

models of terms growth in living tissues. These are discussed in Chapter 10.
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Figure 8.26: A display of the eight hallmarks of cancer proposed by Hanahan and Weinberg
[50, 51]. C.f., [74].
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Chapter 9

Phenomenological Models of Tumor

Growth

9.1 Introduction

At this point in this exposition, we reach a threshold in predictive computational science in which

we attempt to explore problems of a true frontier of this subject, a threshold in which all of the

mathematical, computational, and scientific theory discussed thus far are brought to bear on one

of the most elusive and challenging models to predict the emergence, growth, or decline of cancer

in living organisms.

The first steps involve, as always, inductive logic, the development of hypothesis in the form of

mathematical theories designed to explain observed phenomena. We are thus faced with a ques-

tion of overriding importance: what phenomena relative to tumor growth do we observe, and what

scientific principles, prior information, and judgment do we call on to develop meaningful mathe-

matical models of the physical and biological events observed?

This is not as easy question. The events leading to cancer (recall the Hallmarks of cancer listed

in the previous chapter) are manifested at several different spatial and temporal scales. On the

phenomenological level (i.e. at scales we observe with our human senses), we encounter living

tissue, a highly heterogeneous, hugely complicated mass of interacting constituents that include

masses of living cells in various stages of the cell cycle, along with blood vessels, other tissue-level

constituents, and nutrients, all evolving under the changing environmental conditions to which
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the organism is subjected. Below this scale are events at the cell level, involving the motion and

contact of individual cells, cell mitosis, hypoxia and apoptosis. At still smaller scales within in-

dividual cells there occur the critical processes of signal transduction – protein signaling along

signaling pathways, all orchestrating the behavior of the cell, its DNA, and its role in homeostasis,

cell proliferation, and necrosis. Thus, the prediction of tumor growth in living organisms involves

multiscale modeling, in which computational models of events at several scales must be developed

and in which the influence of events at one scale on those at other scales must be captured. An

illustration of these multiscale systems is shown in Figure 9.1.

In the present chapter we focus on phenomenological models of tissue behavior which attempt to

capture the behavior of a multitude interacting living species of different chemical and mechan-

ical composition. It is asserted that an appropriate mathematical framework for depicting such

behavior is the theory of mixtures, a generalization of continuum mechanics in which the thermo-

mechanical behavior of multiple interacting species is described. Thus, in developing this class of

models, we begin with time-proven principles of mechanics and we supplement these with math-

ematical characterization of the events known to influence and promote cancer, as represented,

for example, in the Hallmarks described earlier. Ultimately, we must also supplement these com-

ponents of the models with empirical relationship drawn from experimental observations. The

successful implementation of the models-development process must simultaneously account for

events at the cellular scale and the signaling-pathway scales. These modeling aspects are taken up

in subsequent chapters.

Following this introduction, we present a brief overview of the foundations of continuum mechanics

as a prelude to continuum mixture theory, taken up in Section 9.3. Example phase-field models of

tumor growth are presented in Section 9.4.

9.2 A Brief Review of Continuum Mechanics

Continuum mechanics can be viewed as branch of mathematical physics that employs phenomeno-

logical models to describe the behavior of materials and material bodies. As such, it provides the

foundations of fluid mechanics and solid mechanics. The fundamental hypothesis of continuum

mechanics is that matter is not discrete. The matter making up a material body is continuously

distributed in one-to-one correspondence with points in a subset of R3-Material bodies are thus

“continuous media”.

Continuum mechanics models the physical universe as a collection of deformable bodies, including
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Figure 9.1: Multiple scales in the physics and biology of tumor growth: a) and b) the tissue
scale(∼ centimeters); c) cellular scale (∼ 10 microns), and d) sub-cellular signaling scale (∼ 10−100
nanometers).
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fluid bodies, that occupy regions in three-dimensional space, and the subsets of space occupied by

a body that are called its configurations. One configuration, generally on in which the geometry

and physical state are known, is selected as the reference configuration, and other configurations

are characterized by comparing them with the reference configuration.

Given material body B, the material points in the reference configuration are in one-to-one cor-

respondence with a subset Ω0 of R3, with boundary ∂Ω. The material points that constitute the

body are each assigned a vector X in the reference configurations. These X, or its components

(x1, x2, x3) in a Cartesian coordinate system in Ω0 represent a label assigned to each material point

of the body.

Figure 9.2: Motion of a continuous body from its reference configuration to its current configu-
ration.

The motions of the body carries it through space over a time period [0, t] so that at time t the

body occupies a configurations Ωt ⊂ R3. Thus, material points X in Ω̄0 (the classes of Ω0) are
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mapped into positions x in Ω̄t by a smooth vector-valued map χ,

x = χ(X, t) (9.1)

χ is called the motion of the body. The displacement of points X is then

u = χ(X)−X (9.2)

(omitting time t for simplicity). The tensor F = F(X) defined by

F =∇χ =
∂Xi

∂Xj

ei ⊗ ej , (9.3)

is called the deformation gradient, ei being unit orthonormal basis vectors along coordinate lines

in the reference configurations.

Material line elements in the reference configuration and the current configuration of the body are,

respectively,

dS2
0 = dXTdX and dS2 = dxTdx ,

and since dx = FdX,

dS2 − dS2
0 = dXT (C− I)dX = 2dXTEdX ,

where C is the right Cauchy-Green deformation tensor,

C = FTF , (9.4)

and E is the Green-St. Venent strain tensor,

E =
1

2
(C− I) . (9.5)

The velocity and acceleration fields in the body are

ẋ =
∂χ(X, t)

∂t
and ẍ =

∂2χ(X, t)

∂t2
,X ∈ Ω̄0 , t ≥ 0 , (9.6)

and the spatial description of velocity is

v = v(x, t) = ẋ(χ−1(x, t), t) . (9.7)

This leads to the two classical interpretation of representations of motion (and general behavior)
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of continuum bodies:

1. the material (or Lagrangian) descriptions of motion in which functions are defined on material

points X of the body, and

2. the spatial (or Eulerian) descriptions of motion in which functions are defined on spatial

places x in R3.

Thus, given a scalar field ψ = ψ(X, t), its time rate of change in the Lagrangian descriptions is

dψ(X, t)

dt
=
∂ψ(X, t)

∂t
+
∂ψ

∂X
· ∂X

∂t
=
∂ψ(X, t)

∂t
, (9.8)

because, being only a label of a material point, ∂X/∂t = 0. In the Eulerian case,

dψ(x, t)

dt
=
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x
· ∂x

∂t
, (9.9)

but, ∂x/∂t = ẋ = v(x, t), the velocity at x at time t, so

dψ(x, t)

dt
=
∂ψ(x, t)

∂t
+ v(x, t) · ∂ψ(x, t)

∂x
. (9.10)

We denote ∂/∂X =∇ = GRAD, (∂/∂X) ·φ =∇ ·φ = DIVφ, ∂/∂x = grad, and ∂/∂x ·v = divv.

Thus,
dψ

dt
=
∂ψ

∂t
+ v.grad ψ . (9.11)

The velocity gradient is

L(x, t) = grad v(x, t) = D(x, t) + W(x, t) (9.12)

where

D =
1

2
(L + LT ) and W =

1

2
(L− LT ) (9.13)

D is the rate-of-deformations tensor and W is the spin tensor.

The Balance Laws of Continuum Mechanics. The thermo-mechanical behavior of continuous

bodies is governed by the following five fundamental principles of mechanics and thermodynamics.

I) The Principle of Conservation of Mass. The total massM(B) of a body B in a closed system
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is constant during any motion χ of B. If

M(B) =

∫
Ωt

ρdx , (9.14)

where ρ = ρ(x, t) is the mass density and dx = dx1dx2dx3 is a volume element, then

d

dt
M(B) = 0 . (9.15)

Under suitable assumptions on the smoothness of the mass density, this implies, in the spatial

description of motion,

∂ρ

∂t
+ div (vρ) = 0 , (9.16)

v = v(x, t) being the velocity.

II) The Principle of Balance of Linear Momentum. The time-rate-of change of the total linear

momentum, I(B), of a material body, equals the net force acting on the body,

dI(B)

dt
= F , (9.17)

where

I(B) =

∫
Ωt

ρvdx (9.18)

and

F =

∫
Ωt

bdx+

∫
∂Ωt

σ(n)dA . (9.19)

Here b is the body force per unit volume and σ(n) is the stress vector on surface area element

dA with orientation given by the unit exterior normal n. if momentum is conserved, then

the Cauchy stress principle holds:

σ(n,x, t) = T(x, t) n (9.20)

where T(x, t) is the (second-order) Cauchy stress tensor. The local Eulerian form of the

principle of balance of linear momentum is thus,

div T + b = ρ
dv

dt
. (9.21)
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III) Principle of Balance of Angular Momentum. The time-rate-of change of the total angular

momentum H(B) of a body B about a point O (the origin of x), equals the net moment M

about O:
dH(B)

dt
= M . (9.22)

If (9.21) holds, then locally, this implies that the stress tensor is symmetric:

T = TT . (9.23)

IV ) The Principle of Conservation of Energy. The time-rate-of change of the total energy E of

a body B is equal to the sum of the mechanical power P and the heating per unit time, Q̇:

dE

dt
= P + Q̇ . (9.24)

The total energy is the sum of the kinetic energy K,

K =
1

2

∫
Ωt

ρv · vdx (9.25)

and the internal energy U ,

U =

∫
Ωt

ρ e dx , (9.26)

where e is the internal energy per unit mass. This power is given by

P =

∫
Ωt

b · vdx+

∫
∂Ωt

σ(n) · v dA (9.27)

and the heating is given by

Q̇ =

∫
∂Ωt

−q · n dA+

∫
Ωt

rdx , (9.28)

where q is the heat flux, n is unit exterior normal to the boundary, and r is the heat supply

per unit volume generated by internal source.

Locally, (9.24)-(9.28) lead to

ρ
de

dt
= T : D− div q + r . (9.29)

V ) The Second Law of Thermodynamics. The time-rate-of change of the total entropy S(B) of
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body B minus the entropy of heating, per unit temperature is always greater than or equal

to zero:

S(B) =

∫
Ωt

ρ η dx , (9.30)

dS

dt
− 1

θ
Q̇ ≥ 0 . (9.31)

Here η is the entropy per unit mass and θ = θ(x, t) is the absolute temperature. Locally

ρ
dη

dt
+ div

q

θ
− r

θ
≥ 0 (9.32)

Relation (9.32) is also called the Clausius-Duhem inequality.

Material (Lagrangian) descriptions of the local laws (9.16), (9.21), (9.26), (9.29), and (9.32)

are, respectively,

ρ0 = ρ det F

DIVS + b0 = ρ0
∂2u

∂t2

S = ST

ρ0
∂e0

∂t
= S : Ė −DIV q0 + r0

ρ0
∂η0

∂t
+ DIV

q0

θ
− r0

θ
≥ 0


(9.33)

where the subscript “0” denotes quantities measured in the reference configuration, E is

the Green-St. venant tensor (9.5) S = det FF−1T F−T is the second Piola-Kirchhoff stress

tensor.

9.3 A Continuum Theory of Mixtures

The continuum theory of mixtures provides a united approach to modeling the evolution of com-

plex, heterogeneous massed of interacting media. Continuum mixture theory dates back to early

work of Fick [40], Darcy [37], and work of Truesdell [112], Tnuesdell and Tneepen [114], and others.

Comprehensive accounts of the theory and a fuller review of relevant literature can be found in the

review article of Bowen [20] and the monograph of Rajagopal and Tao [90]. The version outlined

here follows Oden et al (2010) [82].
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The fundamental idea underlying mixture theory is a that a material body B can be composed

N constituent species B1,B2, ...,BN that occupy the same region Ω of physical space at the same

time. As in Section 9.2, we begin by establishing a fixed reference configuration associated with

a region Ω is R3. We denote material particles in the dth constituent by the material bodies Xα

and we define the spatial position of each material point at time t by the motions,

x = χα(Xα, t) , (9.34)

α = 1, 2, ..., N . The corresponding deformation gradient for constituent α is

Fα = GRAD χα(Xα, t) . (9.35)

At each spatial position, x, N constituent species exists, and each constituent is assigned a mass

density ρ̂α where represent the mass per unit volume of the αth constituent. The mass density of

the parent media (the total mixture) is at x at time t is

ρ(x, t) =
α=1∑
N

ρ̂α(x, t) . (9.36)

It is convenient to describe the distributions of the various species at a point by introducing the

idea of their volume fractions. Consider a differential volume dv in Ω̄t× [0, τ ] containing (x, t) and

let dvα be the portion of dv occupied by constituent α. Then

φα(x, t) = dvα/dv (9.37)

is the volume fraction of the αth constituent at (x, t). The assumption that the volume φαdv = dvα

fill up the total volume is called saturation condition and is written

N∑
α=1

φα(x, t) = 1 . (9.38)

Moreover, each constituent has its own velocity,

vα =
∂χα
∂t

(Xα, t) =
∂χα
∂t

(χ−1
α (Xα, t), t) = vα(x, t) , (9.39)

while the parent full mixture velocity is the mass-averaged velocity

vα = ρ−1

N∑
α=1

ρα φα vα . (9.40)
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The motion of the mixture relative to that of the αth constituent is called the diffusion velocity

uα and is defined by

uα = vα − v . (9.41)

A simple calculations shows that
∑N

α ραφαuα = 0.

For the mixture two material-time derivations are relevant. For a differentiable function φ = φ(x, t)

we denote
dφ

dt
=
∂φ

∂t
+ v ·∇φ and

dαφ

dt
=
∂φ

∂t
+ vα ·∇φ (9.42)

∇ = ∂/∂x being the spatial gradient.

The Balance Laws for Mixtures.

Each constituent is required to satisfy its own balance laws, which differ from those of Section

9.2 due to the presence of interaction terms representing the exchange of mass, momentum, and

energy between constituents. For a mixture occupying an open region Ω in R3 over a time interval

(0, τ), the volume fractions and other independent field variables must satisfy the following local

forms of the balance laws for all α, 1 ≤ α ≤ N , all x ∈ Ω, and t ∈ (0, τ).

I. Conservation of Mass for a Mixture

∂ραϕα
∂t

+∇ · (ραϕαvα) = Sα −∇ · Jα , (9.43)

where Sα is the mass supplied to constituent α by other constituents and Jα is the mass flux due

to changes in the chemical potential defined in terms of gradients in concentrations and changes

in nutrient concentrations.

II. Balance of Linear Momentum for a Mixture

ραϕα
dαvα
dt

= ∇ ·Tα + ραϕαbα + p̂α (9.44)

where Tα is the partial Cauchy stress tensor, bα is the body force per unit mass, and p̂α is the

momentum supplied by other constituents to the αth constituent.

III. Balance of Angular Momentum for a Mixture

Mα = Tα −TT
α (9.45)
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with Mα the intrinsic moment of momentum vector for constituent α. The partial stress tensor,

Tα, is thus, in general, asymmetric.

IV. Conservation of Energy for a Mixture

ραϕα
dαeα
dt

= tr TT
αLα −∇ · qα + ραϕαrα + ε̂α + Υα. (9.46)

Here eα is the internal energy per unit mass, Lα is the velocity gradient, Lα = ∇vα, qα is the heat

flux vector, and rα is the heat supplied per unit mass per unit time. Comparing (9.46) with (9.29)

we find two additional terms: ε̂α is the energy supplied to constituent α by other constituents, and

Υα =
N∑
β=1

∇ ·
(
σαβ

dαϕβ
dt

)
+

L∑
β=1

ζαβ
dαmβ

dt
, (9.47)

is contribution to the energy from surface effects accruing at the interfaces of constituents.

The quantity σαβ is a generalized surface traction that is conjugate to time-changes in species

volume fractions on constituent interfaces (see Oden [82] for a history of this energy contribution).

This term represents the contribution to the change in energy due to actions of surface tensions

or adhesion between cell concentrations due to time-rates-of-change of each mass concentration on

the surface of the full mixture, and results from a surface power defined by a surface integral,∫
∂ω

(∑
βσαβ

dαϕβ
dt

)
· n d s ,

n being a unit outward normal to the boundary ∂ω of ω, an arbitrary subdomain of Ω.

In (9.46), mβ denotes a concentration of a nutrient species so that mβϕα defines the reaction be-

tween various nutrients in the mixture (such as oxygen) and the constituent ϕα, and ζαβ denotes

the chemical or biological forces conjugate to changes in nutrient concentrations. This term in the

energy balance provides a means to account for the diffusion of chemical or biological constituents

due to chemo- or bio-taxis (see [34]).

V. The Second Law of Thermodynamics for a Mixture

N∑
α=1

{
ραϕα

dαηα
dt
− 1

θα
ραϕαrα + Γαηα +∇ · (Hα − ραϕαηαuα)

}
≥ 0. (9.48)
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Here ηα is the entropy per unit mass, Γα is the total mass supplied,

Γα = Sα −∇ · Jα, (9.49)

Hα is the entropy flux in the αth constituent, and θα is its absolute temperature. Introducing the

Helmholtz free energy ψα for constituent α, defined by

ψα = eα − θαηα, (9.50)

yields, after some algebra,

N∑
α=1

{
1

θα

[
− ραϕα

dαψα
dt
− ραϕαηα

dαθα
dt

+ tr TT
αLα −∇ · qα

+ ε̂α +
N∑
β=1

∇ ·
(
σαβ

dαϕβ
dt

)
+

L∑
β=1

ζαβ
dαmβ

dt

]
+ Γαηα +∇ · (Hα − ραϕαηαuα)

}
≥ 0.

(9.51)

These principles describe the balance laws and the second law of thermodynamics, for a constituent

α in a mixture of N constituents. This system is closed by the addition of appropriate constitutive

equations, which put constraints on the physical processes that can be performed on the mixture.

There are other constraints imposed by the requirement that the above axioms for the constituents

must be consistent with those for the mixture as a whole, as will be made clear below.

The continuum balance laws for the parent mixture are defined by the use of system of laws

described earlier (e.g., (9.16), (9.21), (9.26), (9.29), and (9.32)), except that new surface energy

terms may appear for the mixture:

∂ρ

∂t
+∇ · (ρv) = 0;

ρ
dv

dt
= ∇ ·T + ρb; (T = TT )

ρ
de

dt
= tr TL−∇ · q + ρr +

N∑
α=1

(Υα + ραϕαbα · uα);

ρ
dη

dt
−

N∑
α=1

(
1

θα
ραφαrα −∇ ·Hα

)
≥ 0; (ψ = e− θη)



, (9.52)
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Note that the body-force term in (9.52)3 vanishes when there is no diffusion or when b1 = b2 =

· · · = bN = b, as pointed out by Bowen [20]. If we sum the constituent balance laws over all N

constituents, the sums are compatible with (9.52) if

T =
N∑
α=1

(Tα − ραϕαuα ⊗ uα); M =
N∑
α=1

Mα = 0;

e =
1

ρ

N∑
α=1

(
ραϕαeα +

1

2
ραϕαuα · uα

)
; b =

1

ρ

N∑
α=1

ραϕαbα;

η =
1

ρ

N∑
α=1

ραϕαηα; r =
1

ρ

N∑
α=1

ραϕαrα;

q =
N∑
α=1

(
qα −TT

αuα + ραϕαeαuα +
1

2
ραϕαuα(uα · uα)

)



(9.53)

and, very importantly, the following conditions hold:

N∑
α=1

Γα =
N∑
α=1

(Sα −∇ · Jα) = 0;

N∑
α=1

(Γαuα + p̂α) = 0;

N∑
α=1

Mα = 0;

N∑
α=1

[
ε̂α + p̂α · uα + Γα

(
eα +

1

2
uα · uα

)]
= 0.



(9.54)

The mass, momentum, and energy supplied to a constituent for any internal energy eα and diffusive

velocity uα must satisfy (9.54). We observe that by taking (9.54)1 and (9.54)2 into account, the

fourth sum in (9.54) can be written,

N∑
α=1

[
ε̂α + p̂α · vα + Γα

(
eα +

1

2
vα · vα

)]
= 0 (9.55)

We henceforth assume that all N constituents experience the same temperature θ = θ(x, t) at a
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point x in the mixture at time t: θ = θ1 = θ2 = . . . = θN .

An alternate form of (9.51) is obtained if we introduce the Helmholtz free energy per unit volume

Ψα instead of ψα,

Ψα = ραϕαψα. (9.56)

Thus one can show that,

ραϕα
dαψα
dt

=
dΨα

dt
− Γαψα + Ψαtr Lα. (9.57)

Returning to (9.51), we shall take for the entropy flux:

Hα =
qα
θ

+ ραϕαηαuα + J̃α. (9.58)

Here qα/θ is the standard entropy flux due to the influx of heat at an absolute temperature θ,

ραϕαηαuα is the entropy flux due to the relative motion of the mixture to constituent α, and J̃α

is the entropy flux due to chemical reactions, adhesion, and surface gradients in concentrations of

volume fraction and will be defined more precisely below. Eliminating the energy supply ε̂α using

(9.55), the entropy (Clausius-Duhem) inequality (9.51) assumes the form

N∑
α=1

{
1

θ

[
− dαΨα

dt
− ραϕαηα

dαθ

dt
+ tr (TT

α −ΨαI)Lα +
L∑
β=1

ζαβ
dαmβ

dt

+
N∑
β=1

∇ ·
(
σαβ

dαϕβ
dt

)
−
(

p̂α +
1

2
Γαvα

)
· vα

]
− 1

θ2
qα · g +∇ · J̃α

}
≥ 0.

(9.59)

General Forms of Constitutive Equations. The system of basic balance laws is closed by introducing

constitutive equations for the dependent variables: mass, flux, free energy, Cauchy stress, internal

energy or entropy, heat flux, and the momentum. Since we have ignored electromagnetic effects, we

confine our attention hereafter to nonpolar materials, so that Mα = 0 and the partial stress tensors

Tα are symmetric. Throughout, we insist that the constitutive equations obey the restrictions

imposed by the classical axiom of material frame indifference (as in Ref. [114]). Symbolically, we

wish to supply frame indifferent constitutive equations for the thermomechanical fields

(Ψα,Tα, ηα,qα, p̂α), 1 ≤ α ≤ N (9.60)
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in terms of an array Λα of independent state variables, with equations for other quantities, such

as σαβ, ζαβ, jα, Ĵα. We assume that the mixture consists of M solid constituents and N −M

fluid components, each of which may be heterogeneous, but which are pointwise isotropic. The M

solid constituents are assumed to be heterogeneous isotropic hyperelastic materials. The partial

stresses for the fluid phases are assumed to consist of the sum of an equilibrium stress Te
α, which

is characterized as that of a simple fluid (see Truesdell and Noll [113]) and a non-equilibrium

thermoviscous stress Tv
α, the form of which must be consistent with the principle of material frame

indifference and the entropy inequality. We take

Λα =

 (Xα, θ,g,Cα,ϕ,∇ϕ, m̂α) for α ≤M

(xα, θ,g,Fα,ϕ,∇ϕ, m̂α) for M < α ≤ N
(9.61)

where
g = ∇θ
Cα = FT

αFα

ϕ = (ϕ1, ϕ2, . . . , ϕN)

∇ϕ = (∇ϕ1,∇ϕ2, . . . ,∇ϕN)

m̂α = (m1ϕα,m2ϕα, . . . ,mLϕα),


(9.62)

Cα being the right Cauchy-Green deformation tensor.

For a simple fluid, Te
α and qα can depend on Fα only through det Fα or through the mass density

ρ̂α (see, e.g. Batra[14]). Under these conventions, the constitutive equations assume the form,

Ψα = Ψα(Λα), 1 ≤ α ≤ N

Tα = Te
α + Tv

α, 1 ≤ α ≤ N

Te
α = Te∗

α (Λα), 1 ≤ α ≤ N

Tv
α = Tv∗

α (Λα), M < α ≤ N


. (9.63)

It follows that the total time-rate change of the free energy is

dαΨα

dt
=
∂Ψα

∂θ
θ̇ +

∂Ψα

∂g
· ġ +

∂Ψα

∂(Cα,Fα)
: Dα

+
N∑
β=1

(µαβϕ̇β +∇ · σαβϕ̇β) +
L∑
γ=1

∂Ψα

∂(mγϕα)
ϕαṁγ

+
N∑
β=1

∂Ψα

∂∇ϕβ
⊗ (∇ϕ̇β −∇vα · ∇ϕβ)

(9.64)
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with

∂Ψα

∂(Cα,Fα)
: Dα =


∂Ψα

∂Cα

: Ċα = 2FT
α

∂Ψα

∂Cα

Fα : Dα, α ≤M

∂Ψα

∂Fα

: Ḟα =
∂Ψα

∂Fα

FT
α : Dα, M < α ≤ N

, (9.65)

and µαβ is the chemical potential

µαβ =
∂Ψα

∂ϕβ
+ δαβ

L∑
γ=1

∂Ψα

∂(mγϕα)
mγ −∇ · σαβ. (9.66)

Implementation of the coleman-Noll Principle alters considerably the algebra (see [82]). It can be

shown that the Clausius-Duhem inequality assumes the form,

N∑
α=1

{
1

θ

[
−
(
∂Ψα

∂θ
+ ραϕαηα

)
θ̇ − ∂Ψα

∂g
· ġ + tr

[
Tα −

(
Ψα −

N∑
β=1

ϕαµβα

)
I

− ∂Ψα

∂(Cα,Fα)
+

N∑
β=1

∂Ψα

∂∇ϕβ
⊗∇ϕβ

]
Lα +

N∑
β=1

(
σαβ −

∂Ψα

∂∇ϕβ

)
∇ϕ̇β

+
N∑
β=1

(
ζαβ −

∂Ψα

∂(mβϕα)
ϕα

)
ṁβ −

(
p̂α +

1

2
Γαvα −

N∑
β=1

[
1

ρβ
µαβ∇(ρβϕβ)

− 1

ρα
µβα∇ (ραϕα)

])
· vα

]
+Rα −

1

θ2
g · qα −

N∑
β=1

∇
(
µαβ
ρβ

)
· J̃β
}
≥ 0,

(9.67)

where Rα = −∑N
β=1

µαβ
ρβ

[
Sβ − ϕβ d

αρβ
dt

]
and we have taken J̃α = −∑N

β=1
µαβ
ρβ

Jβ.

The classical method of Coleman and Noll [29] now can be implemented, whereby the rates in

(9.67) are arbitrarily varied and, in order for the inequality to hold, it is sufficient that

∂Ψα

∂θ
= −ραϕαηα

∂Ψα

∂g
= 0

σαβ =
∂Ψα

∂∇ϕβ
ζαβ =

∂Ψα

∂(mβϕα)
ϕα

Te
α =

(
Ψα −

N∑
β=1

µβαϕα

)
I +

∂Ψα

∂(Cα,Fα)
−

N∑
β=1

∂Ψα

∂∇ϕβ
⊗∇ϕβ



(9.68)
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and
N∑
α=1

{
Tv∗
α (Λα) : Dα +Rα −

N∑
β=1

∇
(
µβα
ρα

)
· Jα −

1

θ

[
p̂α +

1

2
Γαvα

−
N∑
β=1

(
1

ρβ
µαβ∇(ρβϕβ)− 1

ρα
µβα∇ (ραϕα)

)]
· vα

}
≥ 0.

(9.69)

It is sufficient to take

p̂α = −1

2
Γαvα +

N∑
β=1

(
1

ρβ
µαβ∇(ρβϕβ)− 1

ρα
µβα∇ (ραϕα)

)
− λαvα (9.70)

with λα > 0, for the bracketed term in (9.69) to be non-negative. For other choices, see Bowen[20]

[p. 39], Cristini et al [34], and Araujo and MaElwain [9].

The last term on the right-hand side of inequality (9.69) will be non-negative if we take the mass

flux

Jα = −
N∑
β=1

Mβα(ϕ,mα)∇(µβα/ρα), (9.71)

whereMβα is a symmetric positive-semi definite matrix, possibly dependent on the volume fractions

ϕ = (ϕ1, ϕ2, . . . , ϕN) and the taxis factors m1ϕα, m2ϕα, . . . , mLϕα, called the mobility of the

mixture. The last term on the left-hand side of (9.69) is then always non-negative.

Partial stress and heat flux. Recalling the notation introduced in (9.62), it is observed that the

mechanical part of the equilibrium partial stress T̂e
α (that in response to deformation and flow)

can be written as

T̂e
α = 2FT

α

∂Ψα

∂Cα

Fα =
1

det Fα

FαSαF
T
α , α ≤M

T̂e
α =

∂Ψα

∂Fα

FT
α =

∂Ψα

∂ρ̂α

∂ρ̂α
FT
α

= −πα, M < α ≤ N

 , (9.72)

where ρ0αϕ0α = ρ̂0α is the mass density of the αth constituent in the reference configuration, Sα is

the partial second Piola-Kirchhoff stress tensor,

Sα = det Fα F−1
α T̂αF

−T
α = 2

∂Wα

∂Cα

, α ≤M (9.73)

with Wα = ρ̂0αψα, and πα is the thermodynamic pressure,

πα(θ, ρ̂α,ϕ,mα) = −ρ̂2
α

∂ψα
∂ρ̂α

, M < α ≤ N .
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9.4 Mixture Theory Models of Avascular Tumor Growth

The continuum theory of mixtures laid down in preceding sections of this chapter provides a general

framework for developing phenomenological models of the behavior of heterogeneous masses of

interacting media. It is therefore natural to explore its use in developing mathematical abstractions

of the evolution of the complex microenvironment of tumors embedded in a matrix of interacting

cellular structures.

An abstraction of such an environment is depicted in Figure 9.3, where we observe a colony of

tumor cells in various stages of growth or decline, healthy cells, and other relevant constituents.

The structured framework supporting this micro-cellular-environment is called the stroma, and

it is made up of collagen together with a collection of extracellular molecules called the extra

cellular matrix (ECM). Cells called fibroblasts synthesize the collagen and ECM and make up the

main connective tissue cells present in the body. Also present are macrophages, large white blood

cells that engulf and digest cellular debris. Endothelial cells form the lining of blood vessels and

lymphatic vessels.

The use of mixture theory to model such systems requires that we first attempt to identify the key

constituents in an N-species representation of the microenvironment that prevails and contributes

to the growth of tumors in living tissue. We recall that cancer manifests itself in a series of stages in

which genetic mutations of cells causes overexpression of oncogenes, the genes causing proliferation

of tumor cells, or underexpression of mechanisms that control or suppress cell growth. Thereby,

these genes alter homeostasis and lead to the creation of colony of aberrant cells. This mutation

process may take years to progress, or can be accelerated by other factors in the microenvironment.

Oncogenes are activated by sub-cell growth signals that promote cell proliferation or halt the cell

cycle.

So at the tissue-scale, tumor cells that depend on oxygen and other nutrients to survive, may

enter the so-called hypoxic state between a state of proliferation, in which the possibility of mitosis

occurs, and a state of unplanned cell death, called necrosis. In the necrotic state, water enters the

cell, increasing pressure until it bursts, and the cell undergoes calcification going into a dormant

state of microcalcification. This cell death is different from apoptosis, programmed cell death, that

occurs when the cells are no longer needed to preserve the latent architecture of the tissue or when

they pose a threat to the organism. Thus, a colony of tumor cells can contain proliferative cells

which can grow in number due to mitosis, hypoxic cells which are in essentially a suspended state

that depends on the local nutrient and oxygen supply, and the necrotic cells.

The general tumor growth scenario is this: mass of such tumor cells establishes itself in its host
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Figure 9.3: An schematic figure of tumor environment and different involved in modeling tumor
growth.
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tissue surrounded by its microenvironment, beginning with no vascular structure of its own. The

survival of this collection of cells depends on its neighboring cell structure, the stroma for a supply

of nutrient and growth factors to stimulate its growth. Without sufficient nutrients, an inner core of

hypoxic cells forms and eventually some die, creating a necrotic core of dead cells. The outer cells,

those with sufficient nutrients and growth factor concentrations, proliferate and cause an outward

flux of cells that expands the tumor, causing mechanical compression of surrounding tissue and the

base membrane that supports the tumor mass. The proliferating cells also absorb interstitial fluid

to promote mitosis and growth of the mass of the tumor. The growing tumor interacts with the

ECM, the surrounding environment, which is degraded and modified by the secretion of special

enzymes. The ECM, in turn, release growth factors that refuel tumor growth.

Angiogenesis. If insufficient nutrients are available to promote proliferation, hypoxia occurs which,

remarkably results in the release of proteins collectively called vascular endothelial growth factors

(VEGF), which are among a group of proteins labeled tumor angiogenesis factors (TAFs). These

TAFs diffuse outward from the nutrient-deprived hypoxic cells and invade regions outside the

tumor, eventually reaching nearby blood vessels, coming into contact with endothelial cells that

form the walls of the blood vessels. When these endothelial cells detect a gradient in the TAF

they secret special enzymes such as matrix metalloproteinase (MMPs) that degrade the ECM and

the base membrane allowing the endothelial cells to migrate away from the parent blood vessel

toward the TAF source through sprouts-fingers of blood vessels that gradually growth toward

the hypoxic cell mass in micro-vascular tubes that, on contact with the hypoxic cells, supply the

needed nutrients for cell proliferation. The hypoxic cells that are supplied these nutrients, are

thus transformed to proliferative cells. These new vessels form a network around the tumor to

supply nutrients and growth factors. With this supply of nutrients, the tumor growth accelerates,

eventually invading parent blood vessels and entering the blood stream and spreading to other

parts of the body. This process is called metastasis and is the onset of cancer.

Model Construction. To begin to construct models that capture all these events, it is clear that

the principle of conservation of mass of each of the latent species is of fundamental importance.

Referring to (9.43), these conservation laws take the form,

∂ρα φα
∂t

+∇ · (ρα φα vα) = Sα −∇ · Jα , (9.74)

1 ≤ α ≤ N , where ρα is the mass per unit volume of constituents α, φα is the corresponding

volume fraction, vα is the velocity of constituent α, Sα is the mass supplied by other constituents

to constituent α, and Jα is the mass flux. To (9.74) we add the equations of balance of linear and
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angular momentum,

divTα + ρα φα bα + p̂α = ρα
dαvα
dt

, Tα −TT
α = Mα , (9.75)

Iα being the partial Cauchy stress, bα the body factor per unit mass, p̂α the momentum suplied

by neighboring constituents, and Mα the intrinsic moment at points within constituent α. The

equations describing the conservation of energy and the Clausius-Duhem inequality could be added

to these equations.

Next we must select basic dependent variables that are suggested by the conservation laws (9.74)

and (9.75) and that characterize the system described up to this point. Following the development

in Lima, Oden, and Almeida [73], we identify the principal volume fraction fields as follows:

α = 1 , φ1 = φT = volume fraction of tumor cells (9.76)

The tumor cells are divided into three categories: proliferative cells φP , hypoxic cells φH , and

necrotic cells φN , so that

φT = φP + φH + φN . (9.77)

It is important to track the evolution of proliferative, hypoxic, and necrotic cells independently, so

we choose φP , φH , φN as unknown dependent variables and calculate φT using (9.77).

In a closed system, the numbers of tumor cells and healthy cells φC , excluding endothelial cells is

essentially content: φT + φC = A = constant. We set φ2 = φC = A− φT .

Nutrients, including oxygen and glucose, are dissolved in the aqueous liquid surrounding the cellular

structure, which is essentially water, making up much of the inner-cellular material environment.

The cellular water can be rich in nutrients, or poor in nutrients, depending on whether the cells

have or have not absorbed nutrients to promote proliferation or to combat hypoxia. Thus, another

constituent α = 3 ∼ φσ can be assigned to nutrient rich extracellular water, and α = 4 φσ0 can be

assigned to its complements nutrient poor extracellular water, so that φσ + φσ0 = B, a constant

representative of the total water volume fraction.

Similar complementary relations can be postulated for protein-rich TAF, with φ5 = φTAF , and

protein poor TAF, φ6 = φTAF 0, with φTAF = φTAF 0 = C = constant, and for proliferative

endothelial cell volume fraction φT = φe, and not-activated endothelial cell volume fractions φ8 =
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φe0, with φe + φe0 = 0 = constant. The saturation condition (9.38) requires that

φT + φC︸ ︷︷ ︸
A

+φσ + φσ0︸ ︷︷ ︸
B

+φTAF + φTAF0︸ ︷︷ ︸
C

+φe + φe0︸ ︷︷ ︸
D

= 1 , (9.78)

for eight constituents. We next introduce simplifying assumptions. We will assume the material

is non-polar, meaning the intrinsic moments Mα = 0, so that the partial stress tensor Tα are

symmetric. Since all constituents can be assumed to have a mass density close to that of water.

We take ρα = ρ̃ =constant = 1, 1 ≤ α ≤ 8. All thermal effects are ignored (e.g. qα = 0, θ = const.,

etc.) and the body forces bα are assumed to be negligible. The mass flux Jα is assumed to be of

the form (9.71) depends on the chemical potential µαβ. With these assumptions in force, (9.74)

leads to the following systems of mass balance equations:

∂φP
∂t

+∇ · (φPvP ) = −∇ · JP + SP ,

∂φH
∂t

+∇ · (φHvH) = −∇ · JH + SH ,

∂φN
∂t

+∇ · (φNvN) = −∇ · JN + SN ,

∂φσ
∂t

+∇ · (φσvσ) = −∇ · Jσ + Sσ,

∂φTAF
∂t

+∇ · (φTAFvTAF ) = −∇ · JTAF + STAF ,

∂φe
∂t

+∇ · (φeve) = −∇ · Je + Se,



(9.79)
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The relevant mass fluxes are:

JP = −MP∇DφPE,

JH = −MH∇DφHE,

JN = −MN∇DφNE,

Jσ = −Mσ∇DφσE,

JTAF = −MTAF∇DφTAFE,

Je = −Me∇DφeE,



(9.80)

MP (·), MH(·), . . ., Me(·) are mass-flux mobilities, where φ = (φ1, φ2, . . . , φ8) and µP , . . . , µe are

corresponding chemical potentials.

The chemical potentials for multi-species mixtures represent the energy absorbed or released during

a chemical reaction or a phase change, and generally is given by the derivative of the energy with

respect to the amount of the species, all other species in the mixture remaining constant. In

the theory described in previous sections, higher-order terms appear due to surface energy effects

represented by gradients of the volume fractions. The correct characterization of the chemical

potentials is then as variational or Gateaux derivatives of the free energy. The total energy is

given by,

E =

∫
Ω

dx

(
ΨT (φ) + Ψσ(φ) + ΨTAF (φ) + Ψe(φ)

)
, (9.81)

where,

ΨT (φ) = f(φT ) +
ε2T
2

∣∣∇φT ∣∣2 +W (CT , φT ) ,

Ψσ(φ) = 1
2
δ−1
σ φ2

σ − χ0φσφT ,

ΨTAF (φ) = 1
2
δ−1
TAFφ

2
TAF ,

Ψe(φ) = f(φe) + ε2e
2

∣∣∇φe∣∣2 +W (Ce, φe) .


(9.82)
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Here f(·) is the double-well potential,

f(φ) = γφφ
2(1− φ)2 (9.83)

and W (Cα, φα), (α = T, e) are the stored energy functions supplied due to mechanical deformation

of tumor and endothelial cells and γφ is an energy scale parameter associated with φ. The chemical

potentials are then,

µT = f ′(φT )− ε2T∆φT − χ0φT + ∂W (C, φT ) ,

µH = µT ,

µN = µT ,

µσ = δ−1
σ φσ − χ0φTφT ,

µTAF = f ′(φe)− ε2σ∆φe − ∂W (C, φe)/∂φe .



(9.84)

The source terms SP , SH , SN , Sσ, STAF , and Se in (9.84) are to be assigned functional forms that

depict and are consistent with the Hallmarks of Cancer given in Chapter 8 (recall Figure 8.26).

A key feature is the threshold at which various biological events are initiated or terminated in

the organism dictated by sub-cellular phenomena, protein-signaling, and genetics. For example,

σPH may be introduced as a threshold value of the amount of nutrient φσ in which cancer cells

are transformed from a proliferative state (φP ) to an hypoxic state (φH), suggesting a decline in

nutrients needed sufficient to transfer hypoxic cells to a proliferative state with higher probability

of proliferation. This would be captured by terms of the form,

−λPHH (σPH − φσ) + λHPH (φσ − φHP ) ,

λPH and λHP being material parameters, H being the Heaviside step function,

H (x) =

1 x > 0 ,

0 x ≤ 0 .

The proliferative cells volume fraction φP can grow when assuming nutrient at a constant rate of

cell mitosis of λP and when hypoxic cells return to a proliferative state when nutrient levels exceed

the threshold value σHP . They may also decay due to programmed death, apoptosis, at a rate λA.

The hypoxic cells can irreversibly become part of the necrotic core when φσ drops below a necrotic

ICES, Univ of Texas Austin Last modified: October 12, 2017 181



J. Tinsley Oden Lecture Notes Fall 2016

threshold σHN at a constant rate λHN . The necrotic core can never decrease and are included in

a process of calcification. Following Lima et al [73] we observe that the TAF-rich extracellular

water volume fraction is produced by hypoxic cells at a rate λTAF and the growth levels off when

TAF-rich extracellular water volume fraction approaches its maximum value. It is also uptaken by

proliferative endothelial cells with a volume-action coefficient αTAF during angiogenesis. Both the

proliferation of endothelial stalk cells and the TAF-rich uptaken by endothelial cells are regulated

by the discrete angiogenesis model so that they are activated whenever TAF-rich volume fraction

is higher than the activation threshold φTAFc . The generation of new endothelial cells occurs at

the proliferation rate αP (φTAF ) that depends on φTAF . When φTAF < φref , this rate is given by

αPφTAF . Otherwise, there is a saturation in the proliferation so that this rate reaches its highest

value αPφref . Finally, the proliferative endothelial cells provide an increase of the nutrient amount

at a rate αR. The growth levels off in regions where the nutrient approaches its maximum volume

fraction. With these assumptions, the source terms take the form

SP = λPφσφP−λAφP−λPHH (σPH − φσ)φP

+ λHPH (φσ − σHP )φH ,

SH = −λAφH+λPHH (σPH − φσ)φP−λHPH (φσ − σHP )φH

−λHNH (σHN − φσ)φH ,

SN = λHNH (σHN − φσ)φH ,

Sσ = −λPφσφP − λPhφσφH+λA (φP + φH) + αR (1− φσ)φe,

STAF = λTAF (1− φTAF )φH−αTAFφTAFφeH (φTAF − φTAFc),

Se = αP (φTAF )φeH (φTAF − φTAFc),



(9.85)

Assuming that the velocities of the constituents are negligible, the mass fluxes for each constituent
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are given by (9.80), and considering Ω ⊂ Rd (d = 1, 2, 3), the system (9.79) can be rewritten as

∂φT
∂t

= ∇ · M(φT , φH , φN)∇µ+ ST ,

µ = Ψ′(φT )− ε2T∆φT − χ0φσ,

∂φH
∂t

= ∇ · M̄Hφ
2
H∇µ+ SH ,

∂φN
∂t

= ∇ · M̄Nφ
2
N∇µ+ SN ,

∂φσ
∂t

= ∇ ·Mσδ
−1
σ ∇φσ −∇ ·Mσχ0∇φT + Sσ,

∂φTAF
∂t

= ∇ ·MTAF δ
−1
TAF∇φTAF + STAF ,

∂φe
∂t

= ∇ · M̄eφ
2
e∇µe + Se,

µe = Ψ′(φe)− ε2e∆φe,



in Ω× (0, T ), (9.86)

where ST = λPφσ (φT − φH − φN)− λA (φT − φN). Here we take,

M(φT , φH , φN) = M̄P (φT − φH − φN)2 + M̄Hφ
2
H + M̄Nφ

2
N ,

MH = M̄Tφ
2
H ,

MN = M̄Nφ
2
N ,

Me = M̄eφ
2
e ,


(9.87)

where M̄P , M̄H , M̄N , and M̄e are positive constants (or time-independent densities). Among

typical boundary conditions on the boundary ∂Ω over a time interval (0, τ), we list the following:

∇φT · n =∇µT · n =∇φH · n =∇φN · n =∇µσ · n = 0,

∇φTAF · n =∇φe · n =∇µe · n =∇φσ · n = 0,

 (9.88)

on ∂Ω× (0, τ), n being a unit exterior normal to ∂Ω. Numerical implementations of these models
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and the result several numerical experiments are reported in [73].

9.5 An Application of OPAL to the Selection and Valida-

tion of Models of Tumor Growth

To demonstrate the methods of predictive computational science presented in Chapter 1-8, we now

draw from the study of Lima et al [74] examples of application of OPAL to representative classes

of models of tumor growth. These involve reaction diffusion models: for tumor cell volume fraction

φT , generalized diffusion models characterized by system of the form 9.86, and mechanical effects

based on simple models of elastic deformation. In this case, we take for the energy E of 9.81,

E =

∫
Ω

(Ψ(φT ,∇φT ) +W (ε(u), φT )) dx (9.89)

where W (ε(u), φT ) is the strain energy density,

W =
1

2
ε : C(φT )ε+ ε : T (φT ) (9.90)

ε being the strain tensor for small displacement gradients ∇u(ε(u) = ((∇u + ∇uT )/2) · C
the fourth-order elastic compliance tensor, and T (φT ) is a symmetric compositional stress tensor

dependent on the tumor volume fraction φT . We take

C(φT ) = Ch + g(φT )(Ct −Ch), (9.91)

Ch being the compliance tensor for healthy cells, Ct that for tumor cells, and g(phiT ) a smooth

interpolation function with property, g(φT = 1) = 1, g(φT = 0) = 0. The chemical potential

µ(= µαβ = µα) and the Cauchy stress are

µ = ∂Ψ
∂φT
−∇ · ∂Ψ

∂∇φT
+ ∂W (φT ,ε(u))

∂φT
,

T = ∂W
∂ε
− ∂Ψ

∂∇φT
⊗∇φT .

 (9.92)

Owing to the fact that the diffusion mechanisms in the tissue take place over a timescale much

larger than that associated with inertia effects, we consider a quasi-static deformation governed

by the momentum balance,

1

2
∇ · [C(φT )(∇u +∇uT )] + λ∇φT = 0 , (9.93)
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where we have set T (φT ) = λφT I, with I being the identity tensor. As a first approximation, we

assume the method is isotropic and homogeneous, and we impose Hooke’s law, giving

∇ ·G∇u+∇ G

1− 2ν
(∇ · u)− λ∇φT = 0 , (9.94)

G being the shear modules of the material.

With these conventions, we have introduced a very simple model of mechanical deformations of

the tumor cells, leaving the principal sources of tumor evolution to the conservation of mass, which

is dependent on the form of the free energy per unit volume, Ψ(φT ,∇φT ). Three classes of models

are considered:

I. Reaction Diffusion Models (µ = cφT )

∂φT
∂t

=∇ ·M∗
T∇φT + λgrowT φT (1− φT ), (9.95)

II. Reaction Diffusion Models with Mechanical Coupling
∂φT
∂t

= ∇ ·MT (φT )∇µ+ λgrowT φT (1− φT ) ;

µ = cφT − λ∇ · u.
(9.96)

III. Phase-Field Models
∂φT
∂t

= ∇ ·MPF (φT )∇µ+ λgrowT φT (1− φT ) ;

µ = 2ĒφT (1− 3φT + 2φ2
T )− ε2T∆φT − λ∇ · u.

(9.97)

To account for the a effects of mechanical stress on tumor growth, we choose a mobility coefficient

that is damped by a stress measure Σ according to

MT ∼ M̄T exp(−γΣ) , M∗
T ∼M∗

T exp(−γΣ) (9.98)

and

λgrowT = λgrowT exp(−γgrowΣ) (9.99)

where Σ is taken to be the Von Mises stress and γ, γgrow are constants.
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For illustration purpose, we consider a set of 13 possible models, listed in Table 9.1, in the following

categories: RD (reaction diffusion), MD (reaction diffusion with mechanical deformation) and

PF (phase field). The parameters in each model are listed in the table. Experimental data

were obtained from [57] on growth of glioma (brain) cancer in a murine model (laboratory rates)

acquired using diffusing weighted magnetic resonance imaging (DW-MMRI), beginning 10 days

after implantation and collected on day 10, 12, 14, 15, 16, 18, and 20. Detailed can be found in

[57, 74]. The observed progression of the tumor mass over 20 days, shown at a 20-slice selected so

that tumor is observed at all measurement samples, is reproduced in Figure 9.4.

Table 9.1: Initial set of possible models.

Variables Parameters # Params Occam
Model φT µ u MT M

∗
T c λgrowT ĒT εT E ν λ γ γg Category

RD01 X X X 2 1
PF01 X X X X X X 4 2
RD02 X X X X X X X X 6 3
RD03 X X X X X X X X 6 3
MD01 X X X X X X X X X 6 3
RD04 X X X X X X X X X 7 4
MD02 X X X X X X X X X X 7 4
MD03 X X X X X X X X X X 7 4
PF02 X X X X X X X X X X 7 4
MD04 X X X X X X X X X X X 8 5
PF03 X X X X X X X X X X X 8 5
PF04 X X X X X X X X X X X 8 5
PF05 X X X X X X X X X X X X 9 6

Sensitivity Analysis
The elementary effects method (Morris method) described in Section 6.4 , is employed for a

sensitivity analysis using the voxel domain shown in Figure 9.5 using 50 trajectories for each

model. Table 9.3 shows the results for all the models inM. Clearly, the area of the tumor is more

sensitive to the rate of tumor growth. While the influence of some of the parameters is very small

(on the order of 10−7), we elect to retain all the models for the next OPAL process.

Model Calibration and Validation using MCMC

A set of uniform distributions was used as priors for each parameter and Occam Category 1 is

first evaluated (Tables 9.2 and 9.4. Model RD01 is a reaction-diffusion model without mechanical

deformation, so only parameters M∗
T and λgrowT need calibration. In Figure 9.6, the prior and
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(a) 10th day (b) 12th day (c) 14th day (d) 15th day

(e) 16th day (f) 18th day (g) 20th day

Figure 9.4: Observational data extracted from MRI images of progressive tumor growth in a
murine experiment.[16]

Figure 9.5: Voxels from the MRI that captures the domain of the brain (From [74]).
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Table 9.2: Uniform priors for model parameters (From [74]).

Parameter Prior

MT U(0.2, 1.0)
M∗

T U(0.05, 0.35)
c U(0.1, 0.55)

λgrowT U(0.2, 1.6)
ĒT U(0.15, 0.35)
εT U(0.5, 0.7)
E U(1.2, 2.8)
ν U(0.2, 0.49)
λ U(0.001, 0.004)
γ U(80, 320)
γg U(80, 320)

Table 9.3: Sensitivity analysis for models P1 to P13 (From [74]).

Sensitivity of the Parameters (µ∗)
Model MT M∗

T c λgrowT ĒT εT E ν λ γ γg

RD01 19.49 34.74
PF01 2.59 32.050.082.63
RD02 22.06 32.13 3.24×10−5 0.55 1.28 1.41
RD03 21.01 30.53 2.63×10−5 0.68 2.44 2.65
MD01 20.71 15.7033.86 2.97×10−5 7.89×10−5 9.54×10−5

RD04 16.63 29.94 3.02×10−5 1.37 3.72 1.212.55
MD02 14.88 15.8831.75 5.40×10−5 0.74 1.57 1.37
MD03 14.05 14.9329.91 4.23×10−5 0.91 2.79 2.48
PF02 2.77 32.020.083.219.00×10−7 2.40×10−6 5.70×10−6

MD04 12.03 16.3228.61 2.64×10−5 1.31 3.23 0.951.81
PF03 2.89 32.210.073.609.00×10−7 0.16 0.46 0.39
PF04 2.61 27.740.073.179.00×10−7 0.65 3.20 3.02
PF05 2.46 25.860.062.861.80×10−6 0.44 3.24 0.342.39
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posterior pdf to each parameter is presented.

(a) M∗
T (b) λgrowT

Figure 9.6: Prior (πCprior(θ1|P1,M)) and posterior (πCpost(θ1|yC ,P1,M)) for model RD01 at the
calibration step.

In Figure 9.7, the prior and posterior for the validation step are exhibited. The forward prob-

lem is solved using Monte Carlo sampling and the pdf for the area of the tumor is computed.

The error between the in vivo data and the model simulation is given by the Kullback-Leibler

divergence divided by the variance of the data. In order to be declared not invalid, we chose

DKL/σ
2
t = DKL(σ2

t ) ≤ γtol = 0.7, where σ2
t is the variance at time t. The tolerance is a subjec-

tive threshold picked to generally correspond to relatively close agreement (within 10-15%) of the

tumor mass (area) observed and that predicted by the model. For model RD01, DKL(σ2
16) = 0.92

and DKL(σ2
18) = 0.70, so, the model is not valid.

The Occam Category 2 model is also not valid. In Category 3, we have three models with 6

parameters each. The calibration step we compute the plausibility of each model. The most

plausible model, in this case model MD01, is selected for the validation step. Even though model

MD01 is the most plausible, it is not a valid model. The simulation is continued until a not invalid

model is selected.

Table 9.4 contains the results for all the simulations performed. For this specific data set, model

PF04 from Category 5 satisfies the prescribed tolerance, with DKL(σ2
16) = 0.70 and DKL(σ2

18) =

0.66. In Figure 9.8 we compare the mean results for the tumor area at times 16 and 18 days with

their respective in vivo data. It is possible to conclude that model PF04, which is a phase-field

model that includes the mechanical deformation feedback at the tumor growth rate (λgrowT ), is not

invalid. Having concluded that model PF04 is not invalid, it is not necessary to consider more

complex models, such as PF05.
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(a) M∗
T (b) λgrowT

Figure 9.7: Prior (πVprior(θ1|P1,M)) and posterior (πVpost(θ1|yV ,P1,M)) for model RD01 at the
validation step.

Table 9.4: Results and plausibilities (Reproduced from [74]).

Model Occam Category Plausibility DKL (σ2
16) DKL (σ2

18)

RD01 1 n/a 0.92 0.70
PF01 2 n/a 0.65 0.74
RD02 3 0.22
RD03 3 0.14
MD01 3 0.64 0.93 0.72
RD04 4 0.02
MD02 4 0.06
MD03 4 0.02
PF02 4 0.90 0.68 0.76
MD04 5 0.02
PF03 5 0.34
PF04 5 0.64 0.70 0.66
PF05 6 n/a
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(a) 32.73 mm2 (data) (b) 32.45 mm2 (PF04) (c) 37.92 mm2 (data) (d) 41.96 mm2 (PF04)

Figure 9.8: Tumor area evolution at slice 12 at t = 16 (a and b) and t = 18 (c and d).
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Chapter 10

Chemical Kinetics Models of Signal

Transduction

10.1 Introduction

As described in Chapter 8, signal transduction involves the transmission of molecular events, called

protein or molecular signals, through a sequence of chemical reactions along so-called signaling

pathways in a cell that trigger key biochemical events in the cell. Transduction occurs when

extracellular molecules react with receptor proteins on the surface of the cell or within the cell

that initiates the signaling cascade, a biochemical chain of events that leads to cell responses, such

as cell differentiation, apoptosis, proliferation through mitosis, gene expression, etc.

It is natural to think of such signaling pathways as a network of nodes representing concentrations

of protein molecules or molecule complexes connected by paths that transmit signals representing

a probable chemical reaction. Examples of signaling pathways are illustrated in Figure 10.1.

The study of the rates at which chemical reactions occur and to characterize the steps in a chemical

reaction process and the sequence in which they occur is precisely the province of chemical kinetics,

a subject that provides a natural framework for developing discrete network models of signal

transduction. The formalism of chemical kinetics is stoichiometry, that deals with recipes for

balancing reactants and products, as well as their relative proportions needed in a reaction. In this

chapter, an introduction to chemical kinetics and enzymatic reactions is given following textbook

accounts on biochemistry [e.g., 117] and the report of Shahmoradi and Oden [103].
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Figure 10.1: Symbolic representation of pathways in a cell, connecting molecules that transmit
signals to trigger various cell responses (from [83, p. 748].
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10.2 An Overview of Chemical Kinetics

A chemical reaction is a process in which one or more substances, the reactants, are converted into

one or more different substances, called the products. This conversion is generally realized because

the reaction rearranges the constituent atoms of the reactants to create different atomic structures

in the products.

The stoichiometry of reactants and products is based on the fundamental principle of conservation

of mass: atoms cannot be created or destroyed in the course of a chemical reaction. The simplest

case entails a stoichiometric reaction written as,

A −−→ P

where A represents the reactants and P the products. There may also be intermediates I1 and I2

in the reaction, and we then write,

A −−→ I1 −−→ I2 −−→ P .

A bimolecular reaction will involve two molecules, A reacting with B, and we write,

A + B −−→ P . (10.1)

Here A and B denote “species” of atoms; their mass concentration in a solution, such as cytoplasm,

is denoted by [A] and [B]. These concentrations are generally measured in moles, which, it is

recalled, is a unit M of measure in SI (the International System of Units) of the amount of the

substrate that contains NA elementary entities (atoms or molecules, etc.), NA being the Avogadro’s

number: 6.02214057× 1023/mol. The number NA of molecules per mole of a substrate is the mean

relative molecular mass expressed in grams.

The rate at which A and B react is proportional to the number of random collisions of atoms of A

with those of B. If we imagine a single molecule of species A in a concentrations of B in solutions,

then the collision note of N molecules of A with molecules B is proportional to the product of N

and the total molecular concentration [B] of B. Thus, if R denotes the collision rate of A-atoms

with B, and if V is the volume, R is proportional to N [B]/V and N/V is proportional to [A]. We

write ∗

R = k(T )[A][B] , (10.2)

∗This argument on reaction rates is found in Shahmoradi and Oden (2016) [103] and Wentworth (2000) [120].
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where k(T ) is the rate of reaction, which depends upon the temperature T , and

k(T )[A][B] = −d[A]

d t
= −d[B]

d t
=

d[P ]

d t
. (10.3)

This idea can be generalized to a more general elementary reaction involving many reactions; e.q.,

aA + bB + · · · + zZ −−→ P (10.4)

The coefficients a, b, · · · , z being stoichiometric coefficients. The rate of this process must be

proportional to the frequency with the reacting molecules combine, which must depend on the

products of the concentrations of reactants. Thus,

R = k[A]a[B]b...[Z]z (10.5)

The sum of the exponents, (a+ b+ ...+ z), is the order of the reaction, and k is the reaction rate

constant.

In many cases, it is possible to experimentally measure the molecular mass [A] or [P ] in, say, as a

function of time, so that the measured µexp rate of a reaction is,

µexp = −d[A]

d t
=

d[P ]

d t
(10.6)

Thus, for a first-order reaction,

µexp = −d[A]

d t
= k[A] , (10.7)

and for the reaction A + B −−→ P,

µexp = −d[A]

d t
= −d[B]

d t
= k[A][B] . (10.8)

Thus, in a second-order reaction, if we now denote µexp = ν =the instantaneous velocity of reaction,

2 A −−→ P results in,

− d[A]

d t
= 2k[A]2. (10.9)

For first-order reactions, the units of k are [sec−1], while for second-order reactions they are

M−1[sec−1], M standing for mass.

Transition States.
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Following [117, p. 475], consider a bimolecular elementary reaction,

( A− B ) + C −−→ A + ( B− C ), (10.10)

where atom C approaches the diatomic molecule (A-B) in which the (A-B) covalent bond is broken

while a new bond (B-C) is being formed. In between these events, an unstable complex, denoted

A ·B ·C exists called a transition state. This intermediate state is said to be an activated complex

and the reaction may decompose back into the reactant, (A-B) + C, or progress forward to the

product, A + (B-C), depending on the kinetic energy of the system. At the transition state,

there is an equal probability that the reaction will occur or that it will decompose back into it

components. The general situation for a bimolecular reaction can be written,

A + B
K−−→←−− Z

k′−−→ P + Q , (10.11)

where Z is the activated (transition) complex. If k is the usual rate constant,

d[P]

d t
= k[A][B] = k′[Z] . (10.12)

It is customary in transition-state theory to assume that Z is in equilibrium with reactants, so that

[Z] = K[A][B] , (10.13)

K being the equilibrium constant. It is argued in [117, p. 476] that the equilibrium constant is

related to the change ∆G in the Gibbs free energy of the reactants less that of the products, as

depicted in Figure 10.2, and that,

RT lnK = −∆G , (10.14)

with R being the gas constant and T the absolute temperature. Thus,

d[P ]

d t
= k′e−∆G/RT [A][B] . (10.15)

Thus, the larger the free energy difference of the transition state and the reactants, the slower the

reaction occurs.

An appeal to straightforward thermodynamic arguments [117, p. 476] leads to conclusion that the

rate constant k for the elementary reaction is,

k =
kBT

~
e−∆G/RT , (10.16)
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Figure 10.2: Gibbs free energy vs. a reaction coordinate r, showing the drop in free energy ∆G
from the activated state Z to that of the reactants (after [117]).
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kB being the Boltzmann constant and ~ is the Planck constant. Thus, the rate of reaction decreases

as the change in Gibbs energy ∆G increases, and the reaction rate increases as the temperature

rises.

10.3 Complex Reactions

As noted earlier, most reactions involve multi-step processes in which key intermediates may be

obscured by the apparent simplicity of their stoichiometric equations. Shahmoradi and Oden [103]

gives the example of ozone decomposing into oxygen:

2 O3 −−→ 3 O2, (10.17)

The full equations for this reaction involve a series of intermediate reactions given by,

O3
k1−−→ O2 + O, (10.18)

O2 + O
k−1−−→ O3, (10.19)

O3 + O
k2−−→ 2 O2, (10.20)

The first two equations can be written as,

O3

k1−−→←−−
k−1

O2 + O, (10.21)

with k−1k−1k−1 describing the rate of the reverse reaction. Collectively, the full reaction can be charac-

terized by the system

−d[O3]

d t
= k1[O3]− k−1[O2][O] + k2[O][O3], (10.22)

d[O2]

d t
= k1[O3]− k−1[O2][O] + 2k2[O][O3], (10.23)

d[O]

d t
= k1[O3]− k−1[O2][O]− k2[O][O3]. (10.24)

This system completely defines the rate of change of the concentrations of O3, O2, and O.
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Equilibrium and Steady-State Approximations

Simplified forms of the rate equations such as (10.22), (10.23), (10.24) can be derived in certain

situations involving reaction equilibrium, in which all reactions are fast, thereby reaching an equi-

librated state quickly, and are reversible, in which every forward reaction is equilibrated by its

reverse reaction. In the case of reaction equilibrium of the three species of example characterized

by (10.22), (10.23), (10.24), the rate of concentration changes of all three species must vanish:

− d O3

d t
=

d O2

d t
=

d O

d t
= 0. (10.25)

A simple algebraic calculation then yields as a reaction equilibrium condition,

k1[O3]− k−1[O2][O] = 0,⇒ k1

K−1

=
[O2][O]

O3

≡ K1 (10.26)

in which K1 is called the equilibrium rate constant of the reaction.

An alternate simplifying approximation pertains to that of a steady-state approximation of a reac-

tion process. In steady-state approximation, some but not necessarily all reactants are assumed to

be time independent. For example, in the system of equations (10.22), (10.23), (10.24), in the ozone

decomposition example embodied by this system of rate equations, the fact that a single oxygen

atom O is highly reactive suggests that it reaches a low concentration quickly and becomes ap-

proximately constant over time intervals of interest. Then the steady-state approximation assumes

the form,

d[O]

d t
= k1[O3]− k−1[O2][O]− k2[O][O3],

= 0 (10.27)

Michaelis-Menten Kinetics

A well-known and highly cited example of a steady-state approximation that arises in chemical

kinetics is the Michaelis-Menten mechanism, which pertains to enzyme-substrate reactions. We

use the following common notations and symbols:

E = enzyme

S = substrate

ES = enzyme-substrate complex
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P = products

The enzyme E catalyzes the substrate S to produce the enzyme-substrate complex ES, which can

undergo a reverse reaction to recombine the reactant E+S or it can result in products P+E. The

non-covalently bonded enzyme-substrate complex ES is known as the Michaelis complex [117].

E + S
k1−−→←−−

k−1

ES
k2−−→ E + P. (10.28)

The velocity rate of d[P ]/ d t is k2[ES], and the production of ES is the difference between the

rates of elementary reactions producing [ES] and those resulting in its decrease in concentration.

The entire mechanism is governed by the system,

d[S]

d t
= − k1[E][S] + k−1[ES] , (10.29)

d[E]

d t
= − k1[E][S] + k−1[ES] + k2[ES], (10.30)

d[ES]

d t
= + k1[E][S] − k−1[ES] − k2[ES], (10.31)

d[P ]

d t
= + k2[ES], (10.32)

The assumption of reaction equilibrium, introduce by Michaelis and Menten in 1913 [76] asserts

that d[S]/ d t = 0 and leads to the condition,

k−1

k1

=
[E][S]

[ES]
. (10.33)

The constant k−1

k1
≡ Kd is the dissociation constant of the first step in the enzymatic reaction. If

also d[E]/ d t = 0, then,

1 =
Km[ES]

[E][S]
, Km =

k−1 + k2

k1

, (10.34)

Km being referred to as the Michaelis constant. According to [103], the quantities [ES] and [E] are

not directly measurable, but the total enzyme concentration,

[E]T = [E] + [ES] , (10.35)

is measurable. Setting d[ES]/ d t = 0 as a steady-state condition, using (10.35) and rearranging

terms yields, after some algebra,

[ES] =
[E][S]

Km + [S]
. (10.36)
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Returning to (10.29), (10.30), (10.31), (10.32), the initial velocity of reaction, expressed in terms

of experimentally measurable quantities is,

v0 =
d[P ]

d t

∣∣∣∣
t∗

= k2[ES] =
k2[E]T [S]

Km + [S]
, (10.37)

t∗ being the time to steady-state condition. Denoting by vmax the maximal velocity of reaction is

(which as pointed out in [117]) occurs when the enzyme is saturated; i.e., when it is entirely ES),

vmax = k2[E]T . (10.38)

Thus the initial velocity of reaction is,

v0 =
vmax[S]

Km[S]
. (10.39)

This result is called the �Michaelis-Menten equation. It provides the velocity of reaction at the time

a steady-state is achieved, and is referred to as the basic equation of enzyme kinetics.

10.4 An Application to a Cell-Signaling Pathway

Basic approaches and methodologies of stoichiometry laid down in the preceding sections provide

the framework for developing effective mathematical and computational models of cell signaling

pathways and the production of protein complexes essential in key cell functions.

As examples of representative models, we can consider the chemical kinetic model presented by

Wang et al. (2007) [119] of the non-small cell lung cancer (NSCLC) - epidermal growth factor

receptor (EGFR) signaling pathway shown in Figure 10.3. There one observes a cascade of re-

actions beginning with binding of the epidermal growth factor (EGF) or transforming growth

factor (TGFα) to the extracellular environment to produce proteins that affect various phenotypic

events, such as proliferation, or inhibition of apoptosis. The cascade begins with reactants EGF

and EGFR at the cell receptor producing EGF-EGFR, shown within the elliptical domain of the

diagram.

This initial reaction is represented by,

[EGF] + [EGFR]
k1−−→←−−

k−1

[EGF−EGFR]
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Figure 10.3: Schematic of a network describing a cascade of reactants and products defining an
EGFR signaling pathway (reproduced from Wang et al. [119]. The initiation of the cascade begins
with the reactants EGF and EGFR producing EGF-EGFR, shown within the initiation ellipse in
the figure. Reaction numbers are denoted by vi.
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and is governed by the system,

d[EGF ]

dt
= k−1[EGF − EGFR]− k1[EGF ][EGFR],

d[EGFR]

dt
= k−1[EGF − EGFR]− k1[EGF ][EGFR],

d[EGF − EGFR]

dt
= k1[EGF ][EGFR]− k−1[EGF − EGFR].

Other protein complexes involved in the network are:

PLCγ ∼ phospholipase Cγ,

ERK ∼ extracellular signal-regulated kinase,

RAF ∼ RAF protein kinase,

MEK ∼ mitogen-activated protein kinase.

The quantity of interest in this example is the concentration of ERK-PP extracellular signal-

regulated kinase (PP standing for doubly-phosphorylated), which governs the cell cycle.

The network is modeled by a system of 20 ordinary differential equations (ODEs). Using the

notation in [119], we denote by Xi, the ith molecular pathway reactant component. The system of

ODEs is generated following the chemical kinetics rules described earlier. Tables 10.1 and 10.2 are

reproduced from [119] and give the molecular type for each reactant Xi, the corresponding ODE,

and the kinetic parameters chosen in [119] for the 19 reactions, numbered V1, V2, . . . , V19.

An interesting property of this system is its response to random input concentrations of EGF in

the spirit of our study of uncertainties. Figure 10.4 contains results of calculations performed by

Ernesto Lima in which a Gaussian distribution of EGF is input, and the ODE system is integrated

numerically in time for 150 seconds using a standard fourth-order Runge-Kutta algorithm. The

system parameters were taken to be the deterministic values given in Table 10.2. The output QoI

which in this case is the ERK-PP at the output node of the network, was computed using a Monte

Carlo method and is shown in Figure ??. The output distribution is clearly non-Gaussian. A plot

of computed ERK-PP versus ERF is given in Figure 10.5, where a clear nonlinear relation between

input and output is seen.

It is interesting that this same cascade can be modeled with several different pathway networks.

Figure 10.6, for example, is a EGFR signaling pathway with 100 components representing the
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Table 10.1: Kinetic equations and initial concentrations (reproduced from [119]).

Reactant Molecular Variable Initial Value [nM] ODE
X1 EGF to be varied d(X1)/dt = −v1
X2 EGFR 80 d(X2)/dt = −v1
X3 EGF-EGFR 0 d(X3)/dt = v1 − 2v2
X4 (EGF-EGFR)2 0 d(X4)/dt = v2 + v4 − v3
X5 EGF-EGFR-P 0 d(X5)/dt = v3 + v7 − v4 − v5
X6 PLCγ 10 d(X6)/dt = v8 − v5
X7 EGF-EGFR-PLCγ 0 d(X7)/dt = v5 − v6
X8 EGF-EGFR-PLCγ-P 0 d(X8)/dt = v6 − v7
X9 PLCγ-P 0 d(X9)/dt = v7 − v8 − v9 − v10
X10 PLCγ-P-I 0 d(X10)/dt = v9
X11 PKC 10 d(X11)/dt = −v10
X12 PKC* 0 d(X12)/dt = v10 − v11
X13 RAF 100 d(X13)/dt = −v11
X14 RAF* 0 d(X14)/dt = v11 − v12 − v14
X15 MEK 120 d(X15)/dt = v13 − v12
X16 MEK-P 0 d(X16)/dt = v12 + v15 − v13 − v14
X17 MEK-PP 0 d(X17)/dt = v14 − v15 − v16 − v18
X18 ERK 100 d(X18)/dt = v17 − v16
X19 ERK-P 0 d(X19)/dt = v16 + v19 − v17 − v18
X20 ERK-PP 0 d(X20)/dt = v18 − v19

Table 10.2: Kinetic parameters (reproduced from [119]).
Reaction number Equation Kinetic parameter

v1 k1X1X2 − k−1X3 k1 = 0.003 k−1 = 0.06
v2 k2X3X3 − k−2X4 k2 = 0.01 k−2 = 0.1
v3 k3X4 − k−3X5 k3 = 1 k−3 = 0.01
v4 V4X5/(K4 +X5) V4 = 450 K4 = 50
v5 k5X5X6 − k−5X7 k5 = 0.06 k−5 = 0.2
v6 k6X7 − k−6X8 k6 = 1 k−6 = 0.05
v7 k7X8 − k−7X5X9 k7 = 0.3 k−7 = 0.006
v8 V8X9/(K8 +X9) V8 = 1 K8 = 100
v9 k9X9 − k−9X10 k9 = 1 k−9 = 0.03
v10 k10X9X11 − k−10X12 k10 = 0.214 k−10 = 5.25
v11 V11X12X13/(K11 +X13) V11 = 4 K11 = 64
v12 V12X14X15/[K12(1 +X16/K14) +X15] V12 = 3.5 K12 = 317
v13 V13X16/[K13(1 +X17/K15) +X16] V13 = 0.058 K13 = 2200
v14 V14X14X16/[K14(1 +X15/K12) +X16] V14 = 2.9 K14 = 317
v15 V15X17/[K15(1 +X16/K13) +X17] V15 = 0.058 K15 = 60
v16 V16X17X18/[K16(1 +X19/K18) +X18] V16 = 9.5 K16 = 1.46× 105

v17 V17X19/[K17(1 +X20/K19) +X19] V17 = 0.3 K17 = 160
v18 V18X17X19/[K18(1 +X18/K16) +X19] V18 = 16 K18 = 1.46× 105

v19 V19X20/[K19(1 +X19/K17) +X20] V19 = 0.27 K19 = 60
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same cascade given in Figure 10.3, but with many more components, advocated in Schoeberl et

al. (2002) [100].

(a) EGF input N (3, 0.15) (b) ERK-PP output.

Figure 10.4: a) Input EGF distribution supplied to the pathway network shown in Figure 10.3,
with parameters given in Table 10.2 with 100,000 samples of a Gaussian input. b) The computed
output ERK-PP at t=150 seconds.
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Figure 10.5: Computed variations in output at t=150 seconds to EGF input.
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Figure 10.6: A more complex version of the signaling pathway in Figure 10.3 (reproduced from
[100]).
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Chapter 11

Phase-Field Models

11.1 Introduction

The phase-field models, among the classes of models derived for simulating tumor growth at the

tissue scale, belong to a rich class of models that feature moving boundaries between two or

more constituents, called “phases”. The solutions of phase-field models exhibit internal layers or

boundaries that represent interfaces between phases which have a small but finite width which is

controlled by a length-scale parameter. The moving boundary problem is thus characterized by a

smooth moving interface which can be regarded as a smoothing or diffusing of the sharp-interface

models – and for this reason, phase-field models are also referred to as diffuse-interface models. A

comprehensive overview of phase-field modeling can be found in the encyclopedia article of Gomez

[44] and van der Zee [115], and fundamental ideas behind a large class of such models are discussed

in Gurtin [46].

11.2 Structure of Phase-field Models

A fundamental property of thermodynamically consistent phase-field models is that the Helmholtz

free energy Ψ depends upon both the values and gradients of the principal field being modeled,

the phase field φ:

Ψ = Ψ̂(φ,∇φ) (11.1)

The corresponding energy functional E is called the Ginsberg-Landau energy:

E =

∫
Ω

Ψ̂(φ,∇φ) dx (11.2)
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Ω being the phase-field domain (Ω ⊂ Rd, d = 1, 2, 3). dx a volume element. The principle

of material frame indifference mandates that Ψ̂ depends on ∇φ only through |∇φ|. In general,

Ψ̂(0, 0) is taken to be of the form

Ψ̂(φ,∇φ) = W (φ) +
ε2

2
|∇φ|2 (11.3)

where W (φ) is the phase-field potential. In general, the term ε2|∇φ|2/2 represent the surface

energy, of the surface separating phase, ε (or
√
ε) being the transition with of the diffused interface.

The phase field energy collapses to the usual Helmholtz free energy as ε approaches zero (see

Ambrosio and Tortelli [8], Braides [23], Dal Masso [36] and Gomez and van der Zee [44]). The

potential W is generally taken to be a characterization of a double-well potential with two local

minima, making possible the coexistence of different phases. Typical choices are:

W = W1(φ) =
1

4
(1− φ)2 ,

W = W2(φ) =
1

2

[
(1 + φ) log

(1

2
(1 + φ)

)
+ (1− φ) log

(1

2
(1− φ)

)
+ a(1− φ2)

]
,

W = W3(φ) =


1
4
(1 + φ)2 , φ < −1

1
4
(1− φ2)2 , − 1 ≤ φ ≤ 1

1
4
(φ− 1)2 , φ > 1 ,


(11.4)

a being a positive constant. With Ψ(0, 0) given by (11.3), the Gateaux (vibrational derivative) of

the Ginsberg-Landau energy is

〈DE, δφ〉 = lim
θ→0

θ−1(E(φ+ θδφ)− E(φ)) = 〈µ, δφ〉 (11.5)

where µ is the chemical potential, and is given by

µ = DE = W ′(φ)− ε2∆φ , (11.6)

∆ being the Laplacian.

Free-Energy Dissipation. For ω ⊂ Ω, we have, from the conservation of energy principle and the

second law of thermodynamics,

d

dt

∫
ω

Ψ̂(φ,∇φ) dx = Pω −Dω , (11.7)
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where Pω is the mechanical power and Dω is the total dissipation, which must be non-negative for

every physically meaningful process on the material body occupying ω:

Dω ≥ 0 . (11.8)

For an arbitrary subdomain ω ⊂ Ω,

d

dt

∫
ω

ψ dx =

∫
ω

µ
∂φ

∂t
dx+

∫
∂ω

∂

∂∇φΨ̂ · n∂φ
∂t
da (11.9)

where the chemical potential is again the variational derivative,

µ =
∂Ψ̂

∂φ
−∇ ·

(
∂Ψ̂

∂∇φ

)
. (11.10)

We now present several applications of these relations toward the derivation of classical models by

phase transitions and non-classical models of tumor growth.

11.3 The Allen-Cahn Equation

Let φ denote a differentiable scalar-valued field on Ω × (0, τ ] representing volume fraction of a

constituent or a concentration of a species. Then, as we have seen earlier, the conservation of mass

of this quantity is characterized by are evolution equation of the form

∂φ

∂t
+ S(φ,∇φ, µ) = 0 (11.11)

where S is to be designed to not only represent mass supplied or removed but also satisfy the

dissipation inequality (11.8). To find restrictions on the form of S, we return to (11.9) and write

d

dt

∫
ω

Ψ̂ dx =

∫
ω

−µS dx+

∫
∂ω

∂Ψ̂

∂∇φ · n
∂φ

∂t
da , (11.12)

we set (recall (11.7)),

Pω =

∫
∂ω

n ·
( ∂Ψ̂

∂∇φ
)∂φ
∂t
da =

∫
ω

−∇ · ∂Ψ̂

∂∇φ ·
∂φ

∂t
dx , (11.13)

Dω =

∫
ω

µS dx . (11.14)

ICES, Univ of Texas Austin Last modified: October 12, 2017 211



J. Tinsley Oden Lecture Notes Fall 2016

The dissipation inequality is satisfied if we take S = m(φ)µ, with m(φ) ≥ 0 ∀φ. If Ψ̂ is given by

(11.3), then µ is given by (11.6) and

∂φ

∂t
= −m(φ)

(
W ′(φ)− ε2∆φ

)
. (11.15)

This is the Allen-Cahn equation, presented by Allen and Cahn in 1979. Gertin [47] refers to it as

the Ginzburg-Landau equation.

11.4 The Cahn-Hilliard Equation

A similar argument leads to the Cahn-Hilliard equation. Here the mass balance is of the form

∂φ

∂t
+∇ ·H = 0 (11.16)

where H is a mass flux of the form,

H = H(φ,∇φ, µ,∇µ) , (11.17)

Now,

d

dt

∫
ω

Ψ̂ dx =

∫
ω

H ·∇µ dx+

∫
∂ω

(
∂Ψ̂

∂∇φ ·
∂φ

∂t
− µH

)
· nda (11.18)

If the first term on the right-hand-side is identified as Dω, the it is sufficient to take asH a function

of the form

H = −m(φ)∇µ , (11.19)

with m(φ) ≥ 0. Then (11.16) assumes the form of the coupled pair

∂φ

∂t
=∇ · (m(φ)∇µ)

µ = W ′(φ)− ε2∆φ

 (11.20)

or, as a single equation
∂φ

∂t
=∇ ·

(
m(φ)∇(W ′(φ)− ε2∆φ)

)
. (11.21)

This relation is the Cahn-Hilliard equation. It is a fourth-order nonlinear partial differential equa-

tion in the space variable x and first order in time. Its similarity to several of the phase-field

models of tumor growth derived earlier is apparent.
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11.5 Phase-Field Models of Tumor Growth

For illustration purpose, we consider a reduced version of the phase-field tumor growth models

introduced in Chapter 9 that lead to systems analogous to the Cahn-Hilliard equations and whose

solutions exhibit interesting patterns of phase evolution. These examples are based on the analysis

of the four species tumor growth models studied by Hawkins-Daruud, van der Zee, and Oden [53].

First, some simplified notations are in order. We set

φ1 = φT = u = tumor cell volume fraction,

φ2 = φc = h = healthy cell volume fraction,

φ3 = φσ = n = nutrient-rich extracellular water volume fraction,

φ4 = φσ◦ = w = nutrient-poor extracellular water volume fraction.

Then,

u+ h+ n+ w = 1 , (11.22)

everywhere in Ω̄× [0, τ). We set u+ h = c, n+ w = 1− c and then rescale u, h and n, w so that

u and h and n and w take on values between 0 and 1.

We assume that the nutrient-rich extracellular water is governed by diffusion and that neither n

nor w are represented by a double-well-potential in the energy. We include in the energy functional,

a term which attains a minimum when full interaction between the tumor cells and the nutrient

rich extracellular water when both u = 1 and n = 1, thereby driving the tumor concentrations

toward the oxygen supply. The total free energy is then assumed to be often form

E =

∫
ω

Ψ̂(u, n) dx (11.23)

=

∫
ω

(
W (u) +

ε2

2
|∇u|2 + χ(u, n) +

δ−1

2
n2

)
dx .
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Under assumptions leading to equations (9.86), we arrive at the system

∂u

∂t
= ∇ · Mu∇µu + Su,

∂h

∂t
= ∇ · Mh∇µh + Sh,

∂n

∂t
= ∇ · Mn∇µu + Sn,

∂w

∂t
= ∇ · Mw∇µw + Sw.



(11.24)

(Note. The mass densities of the constituents are assumed to be constant and the constituent

velocities are set equal to zero). According to the mixture theory laid down in Chapter 9, the

mixture equations (11.24) are compatible with the global balance laws of

Su + Sh +∇ · Mu∇µu +∇ · (Mh∇µh) = 0

Sn + Sw +∇ · Mn∇µn +∇ · (Mw∇µw) = 0

 (11.25)

and ∑
i

µiSi ≤ 0 , (11.26)

where

µu = W ′(u)− ε2∆u−Duχ(u, n) ,

µh = −W ′(c− h)− ε2∆(c− h)−Duχ((c− h), n) ,

µn = Dnχ(u, n) + δ−1n ,

µw = −Dnχ(u, (1− c)− w) + δ−1((1− c)− w) .


(11.27)

We easily verify that Σiµi = 0. In the case of equal mobilities: Mu = Mh and Mn = Mw, we arrive

at the conditions,

∇
(
Mu∇µu

)
+∇ ·

(
Mh∇µh

)
= 0 ,

∇ ·
(
Mn∇µn

)
+∇ ·

(
Mw∇µw

)
= 0 ,

 (11.28)
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which reduces to

Su + Sh = 0 and Sn + Sw = 0 . (11.29)

Assuming for simplicity, that cell mobility for tumor and healthy cells is the same (Mu = Mh)

and that Mn = Mw, we see that thus ∂u/∂t = −∂h/∂t and ∂n/∂t = −∂w/∂t. In these cases, the

system (11.24) reduces to only two equations,

∂u

∂t
=∇ ·

(
Mu∇

(
W ′(u)− ε2∆u+Duχ(u, n)

))
+ Su , (11.30)

and
∂n

∂t
=∇ ·

(
Mn∇

(
Dnχ(u, n) + δ−1n

))
+ Sn (11.31)

subject to constraints (11.25) and (11.26).

To proceed, we make additional simplifying assumptions. Motivated by the success of using linear

constitutive laws for certain chemical reactions, we take [c.f., 53],

Su = P (u)(µn − µu) ,
Sn = −Su ,

}
(11.32)

Where P (u) = δP◦u, u ≥ 0, P (u) = 0 elsewhere P◦ being a non-negative threshold constant, and

δ is a small constant. Following [53], we take

Su = P◦un+ δP◦u
(
Dnχ(u, n)− µu

)
W (u) = γu2(1− u)2 (γ = const.)

χ(u, n) = −χ◦un

 (11.33)

χ◦ being a constant ≥ 0.

Given the governing equations (11.30) and (11.31), with relations (11.32) and (11.33) in force, we

can not implement numerical methods, described fully in [53], to solve the resulting system for

appropriate boundary conditions.

Example Solutions. The following example is found in [53]. Taking for simplicity, a quasi-slide

nutrient concentration (∂n/∂t = 0), Ω = (0, 25.6)2. The momenta are taken to be Mu = M̂u2,
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Mn = δD̂, leading to the system

∂u

∂t
=∇ ·

(
M̂u2∇

(
W ′(u)− ε2∆u− χ◦n

))
+ Su

0 =∇ ·
(
δD̂(δ−1n− χ◦u)

)
+ Sn

 (11.34)

with ∇u · n = 0, n = 1 on ∂Ω × (0, τ ], u(x, 0) = u◦, x ∈ Ω. We set D̂ = 1, P◦ = 0, 1 and

take as an initial condition, the situation in which the tumor resides in the elliptical domain

{(x, y) : (x− 12.8)2/2.1 + (y − 12.8)2/1.9 ≤ 1}. For this example, one takes δ = 0.01, γ = 0.045,

ε = 0.005, and χ◦ = 0.05.

Results of a numerical solution of (11.34) given in [53] are represented in Figure 11.1.
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Figure 11.1: Adaptive meshing: illustration of the mesh adaptivity for the simulation shown in
Figure 11.2. The patch-recovery method is used for the adaptive meshing (from [53]).
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Figure 11.2: Example simulation: snapshots are shown at t=20, 40, 60, and 80 of a simulation
with Γ = 0.045, ε = 0.005, χ◦ = 0.05, δ = 0.01, P◦ = 0.1, M̂ = 200, and D̂ = 1 (from [53]).
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Figure 11.3: Simulation energy profile: shown here is the evolution of the energy value for the
simulation shown in Figure 11.2 (from [53]).
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Figure 11.4: Evidence for spatial accuracy: on the top row, the solution at t = 20 is shown for
the same set of parameters and initial conditions as in Figure 11.2, but with one mesh at a finer
resolution than the other. The corresponding final meshes are shown below the solutions (from
[53]).
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Figure 11.5: Effects of parameter χ◦: illustrated here are the effects of different values of χ◦
when Γ = 0.045 and ε = 0.005 are held constant. In the first row, χ◦ = 0.005; in the second row,
χ◦ = 0.05; and in the third row, χ◦ = 0.5. In the first column, δ = 0.1; and in the second column,
δ = 0.01 (from [53]).
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