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Abstract

Phase-field models have been a topic of much research in recent years. Results have shown

that these models are able to produce complex crack patterns in both two and three dimensions.

A number of extensions from brittle to ductile materials have been proposed and results are

promising. To date, however, these extensions have not accurately represented strains after

crack initiation or included important aspects of ductile fracture such as stress triaxiality. This

work introduces a number of contributions to further develop phase-field models for fracture

in ductile materials. These contributions include: a cubic degradation function that provides

a stress strain response prior to crack initiation that more closely approximates linear elastic

behavior, a derivation of the governing equations in terms of a general energy potential from
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balance laws that describe the kinematics of both the body and phase-field, introduction of a

yield surface degradation function that provides a mechanism for plastic softening and corrects

the non-physical elastic deformations after crack initiation, a proposed mechanism for includ-

ing a measure of stress triaxiality as a driving force for crack initiation and propagation, and a

correction to an error in the configuration update of an elastoplastic return-mapping algorithm

for J2 flow theory. We also present a heuristic time stepping scheme that facilitates computa-

tions that require a relatively long load time prior to crack initiation. A number of numerical

results will be presented that demonstrate the effects of these contributions.

Keywords: Phase-field, fracture, plasticity, triaxiality

1 Introduction

The development of computational methods that accurately predict complex failure and fracture
processes in ductile materials has proven difficult, particularly for full three-dimensional geome-
tries, and many approaches have been proposed with varying success. The phase-field method,
also known as the variational approach to fracture, is an approach that has recently received much
attention in the literature. It has been shown that this method is able to produce complex crack
patterns, including branching and merging, in both two and three dimensions. This approach leads
to a system of partial differential equations that fully describe the evolution of crack surfaces with-
out the need for ad hoc additions to the theory. Computations with this method are performed on
the original mesh and no crack interface tracking is required. This leads to robust computational
implementations. To date, most of the research has focused on brittle material. In this work we
introduce additions and modifications to the theory that improve its ability to predict fracture in
ductile materials.

The variational approach to brittle fracture, proposed by Francfort and Marigo [16], seeks to
find a solution to the fracture problem by minimizing a potential energy based on Griffith’s theory
of brittle fracture. This approach leads to a Mumford-Shah [36] type energy potential that can be
approximated by a phase-field formulation following the work of Ambrosio and Tortorelli [3]. This
approximation was adopted by Bourdin et al. [10] to facilitate numerical solution of the variational
formulation. An alternative formulation, based on continuum mechanics and thermodynamic ar-
guments, was presented by Miehe et al. [30] and Miehe et al. [29]. In addition to an alternative
derivation, Miehe et al. [29] also added an important mechanism for distinguishing tensile and
compressive effects on crack growth. The works of Larsen [25], Larsen et al. [26], Bourdin et al.
[12], Borden et al. [8], and Hofacker and Miehe [21] have shown that this approach can be ex-
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tended to dynamic fracture and produces results that agree well with several benchmark problems.
Other problems of interest that the variational approach to fracture has been applied to include
hydraulic fracturing (Bourdin et al. [13], Mikelic̀ et al. [35]), piezoelectric ceramics (Wilson et al.
[45]), rubbery polymers (Miehe and Schänzel [32]), and thermo-elastic solids (Miehe et al. [33]).

Initial work to extend the variational approach to ductile materials has been reported in Ambati
et al. [1, 2] and Miehe et al. [31, 34]. The approach presented by Ambati et al. [1] augments the
degradation function by a term that increases damage based on the accumulation of an equivalent
plastic strain measure. Miehe et al. [31] have modified the history functional, H, which drives the
evolution of the phase-field, to include an equivalent plastic strain measure. A similar approach is
presented by McAuliffe and Waisman [27] where a model that couples the phase-field with ductile
shear band development is described. In this approach shear bands are modeled using an elastic-
viscoplastic model and fracture is modeled as the degradation of the volumetric elastic stress terms
only (the deviatoric stress is undamaged).

In these previous approaches, however, the accumulation of plastic deformation reduces the
elastic strength of the material in some way, but the plastic response is unmodified. This means
that the yield surface and hardening modulus are not effected by the evolution of the phase-field.
The result of this is that at some point the plastic strains saturate and the deformation becomes
dominated by recoverable elastic strains. However, the experimental results presented in [17]
show that ductile failure of an aluminum alloy is preceded by large plastic strains and that void
nucleation and growth occurs in a relatively short strain interval just before failure. This behavior
is contrary to what is predicted by the existing phase-field models for ductile materials.

In this work we present a number of contributions for phase-field models of fracture in duc-
tile materials. These contributions include: 1) The introduction of a cubic degradation function
that provides a stress-strain response prior to crack initiation that more closely approximates lin-
ear elastic behavior. 2) A microforce derivation of the governing equations in terms of a general
energy potential for finite deformation problems. 3) The introduction of a yield surface degrada-
tion function that provides a mechanism for plastic softening and corrects the non-physical elastic
deformations after crack initiation. 4) A mechanism for including a measure of stress triaxiality as
a driving force for crack initiation and propagation. 5) A modification of the elastoplastic return
mapping algorithm for J2 flow theory presented by Simo and Hughes [41] that corrects an error in
the update of the elastic configuration, which leads to errors in the calculation of the strain energy.

The paper will proceed as follows: In Section 2 we will establish the notation, describe the
phase-field approach to fracture, introduce the cubic degradation function, and present a balance
law derivation of the governing equation in terms of a general energy potential. In Section 3 we will
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present the hyperelastic-plastic constitutive model that governs the stress response of a body and
determines the contributing factors to crack growth. In this section we introduce new developments
that couple crack growth with stress triaxiality and plastic softening. A summary of the constitutive
model is given in Section 3.4. Section 4 presents the finite element formulation and establishes the
return mapping algorithm. Numerical results are presented in Section 5. In this section we also
present a heuristic adaptive time stepping scheme for cases with long loading times prior to crack
initiation and propagation. In Section 6 we summarize our results and conclusions. A detailed
description of the elastoplastic constitutive model and return-mapping algorithm are given in the
appendix.

2 Formulation

In this section we develop a large deformation phase-field formulation for fracture in ductile ma-
terials. In this formulation, we will assume an energetic description of the fracture process and
derive the governing equations from an energy balance principle.

Γ0

Ω0

∂Ω0

Ω0

∂Ω0

c = 1

c = 0

(a) (b)

Figure 1: (a) A sketch of a body, Ω0, with an internal discontinuity boundary Γ0. (b) The phase-
field representation of the internal discontinuity.

2.1 Kinematics

We begin by establishing the notation that we will use to describe the kinematics of the body. We
let Ω0 ⊂ Rd (with d ∈ {2, 3}) be the reference configuration of an arbitrary body with external
boundary ∂Ω0 and evolving internal discontinuity boundary Γ0(t) as shown in Figure 1(a). We
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assume that the internal discontinuity evolves in an irreversible manner such that Γ0(t) ⊂ Γ0(t +

∆t) for all ∆t > 0. The motion of the body is described by the time dependent deformation map
ϕ : (Ω0 × R) → Rd, which maps a point X ∈ Ω0 at time t ∈ [0, T ] to a point x = ϕ(X, t) ∈
Rd. The reference configuration is mapped to the current configuration through the motion as
Ωt = ϕ(Ω0, t) and the boundary of the current configuration is represented as ∂Ωt. The internal
discontinuity is also mapped to the current configuration through the motion as Γt = ϕ(Γ0(t), t).

The deformation gradient is a second-order tensor defined as

F = ϕ,X(X, t) =
∂ϕ(X, t)

∂X
, (1)

and the displacement of a point X at time t is denoted by U(X, t) = ϕ(X, t)−X. The displacement
field satisfies time-dependent Dirichlet boundary conditions, Ui(X, t) = Gi(X, t), on ∂ΩGi

⊆
∂Ω0, and time-dependent Neumann boundary conditions on ∂ΩHi

⊆ ∂Ω0.
For a ductile response, we assume the existences of a stress-free deformation from which the

elastic deformation can be characterized. This assumption leads to a local multiplicative decom-
position of the deformation gradient into elastic and plastic parts that takes the form

F = FeFp (2)

where Fe and Fp are the elastic and plastic deformations gradients respectively (see Simo and
Hughes [41] for details). We denote derivatives with respect to the coordinates in the reference
configuration as

(·),X =
∂

∂X
(·) DIV(·) =

∂

∂X
· (·) ∆X(·) =

∂

∂X
· (·),X. (3)

2.2 Phase-field approximations of fracture

For energetic descriptions of fractured bodies, e.g. Griffith’s theory of brittle fracture, the stored
energy of a body can be written in the reference configuration as

Ψ(F,Γ0) =

∫
Ω0

W (F) dΩ0 +

∫
Γ0

G0
c dΓ0 (4)

where W is the elastic strain energy per unit volume and G0
c is the critical fracture energy per unit

area in the reference configuration. For the case of brittle fracture, Francfort and Marigo [16] have
proposed a variational approach that predicts crack evolution by finding a global minimizer of (4).
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To facilitate the numerical solution of this problem, Bourdin et al. [11] introduced a phase-field
approximation of (4) that takes the form

Ψ̃(F, c, c,X) =

∫
Ω0

g(c)W (F) dΩ0 +

∫
Ω0

G0
cΓc(c, c,X) dΩ0 (5)

where c ∈ [0, 1] is the phase-field parameter, g(c) is the degradation function that acts to reduce
the elastic strength of the material, and∫

Ω0

G0
cΓc dΩ0 ≈

∫
Γ0

G0
c dΓ0 (6)

is a volumetric approximation of the energy contribution from the crack surface. We call Γc the
crack density functional, which typically takes the form

Γc(c, c,X) =
1

4`0

[
(c− 1)2 + 4`2

0|c,X|2
]

(7)

where `0 ∈ R+ is a length scale parameter that determines the width of the approximation. Other
crack density functionals have been proposed, for example those by Burke et al. [15] and also a
higher-order functional by Borden et al. [9].

Amor et al. [4], Miehe, Hofacker, and Welschinger [29], and Miehe, Welschinger, and Ho-
facker [30] further refined this approximation by introducing an additive decomposition of the
elastic strain energy to distinguish between tensile and compressive contributions. The resulting
approximation takes the form

Ψ̃(F, c, c,X) =

∫
Ω0

{
g(c)W+(F) +W−(F)

}
dΩ0 +

∫
Ω0

G0
cΓc(c, c,X) dΩ0 (8)

where W+ represents tensile contributions and W− represents compressive contributions to the
stored elastic strain energy. This modification provides a mechanism for distinguishing states of
strain under which cracks will grow. For example, one popular decomposition introduced in [29]
and [30] is based on a spectral decomposition of the strain tensor. In this form the sign of the
principal strains are used to determine tensile and compressive contributions. Another approach
proposed in [4] uses a constitutive model that decouples the volumetric and deviatoric response
and defines the tensile contributions as the deviatoric part of the model. We will discuss these
approaches in more detail in Section 3.1.

For the energy functional presented in (8) crack growth is driven by elastic strain energy. To
extend this theory to ductile materials and provide a mechanism for plastic yielding to contribute
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to crack growth we add an effective plastic work contribution, Wp, to the stored energy. The stored
energy functional that we propose is

Ψ̃(F, c, c,X,F
p, α) =

∫
Ω0

{
g(c)W+(F,Fp) +W−(F,Fp) + gp(c)Wp(α)

}
dΩ0

+

∫
Ω0

G0
c

4`0

[
(c− 1)2 + 4`2

0|c,X|2
]
dΩ0

(9)

where α is an internal hardening variable and gp(c) is the plastic degradation function. The plastic
degradation function is analogous to the elastic degradation function and provides a mechanism
for driving crack growth by the development of plastic strains.

2.2.1 The cubic degradation function

The stress degradation function, g : [0, 1]→ [0, 1] plays an import role in the formulation because
it determines how the stress responds to changes in the phase-field. A simple quadratic degradation
function that is common in the literature is

g(c) = c2. (10)

A plot of this function and corresponding stress–strain response for uniaxial homogeneous stress
are shown as the dashed lines in Figure 2. We call the maximum stress the critical stress and the
corresponding strain is called the critical strain. For the quadratic degradation function these values
are

σquad
c =

9

16

√
EG0

c

6`0

, εquad
c =

√
G0
c

6`0E
. (11)

It is clear that the critical stress will increase as `0 decreases. In the limit as `0 goes to zero,
i.e., when the phase-field formulation coincides with the discrete fracture formulation, the critical
stress goes to infinity.

The critical value for the phase-field, that is the value of the phase-field parameter when the
stress is equal to the critical stress, is independent of the model and material parameters and is
given by

cc =

√
σc
Eεc

=
3

4
. (12)

This implies that, no matter what parameters are used, a 25 percent reduction in the phase-field
is established prior to reaching the critical stress. It is also clear from the plot of the stress–strain
curve that the response is nonlinear up to this point. This non-linear elastic stress-strain response
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Figure 2: The quadratic and cubic degradation functions (left) and the respective stress–strain plots
for a uniaxial homogeneous stress response (right). The material parameters are the same for both
stress–strain responses.

effects material behavior prior to yielding in ductile materials as will be shown in Section 5.1. To
address these issues we propose a parameterized cubic degradation function given by

g(c) = s(c3 − c2) + 3c2 − 2c3 (13)

where s > 0 determines the slope of g at c = 1 (the quadratic degradation function is a special
case of this function for s = 2). Using this cubic degradation function, it can be shown that for
ε ≤ εquad

c

lim
s→0

σ(ε) = Eε, lim
s→0

chom = 1. (14)

In other words, as s→ 0 the stress-strain relationship becomes linear up to the value of strain equal
to the critical value found for the quadratic degradation function. This function and the resulting
stress–strain curve for s = 10−4 are shown as the solid line in Figure 2. For comparison the critical
stress and strain for the cubic degradation function are given in the limit as s→ 0 as

lim
s→0

σcubic
c =

81

50

√
EG0

c

15`0

, lim
s→0

εcubic
c =

√
5G0

c

27`0E
(15)

where the critical stress in this case is about 1.8 times higher than what is obtained with the
quadratic degradation function and the critical strain is slightly higher (there is a small non-linear
region for εquad

c < ε < εcubic
c .
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The parameter s in the cubic degradation function is used to set a positive but small slope at
c = 1. If the derivative of the degradation function is allowed to be zero at c = 1 then a uniform
phase-field (δc = 0) would satisfy the governing equations for any state of strain (see (46)) and
crack nucleation would not occur. For all simulations presented in the following sections we have
set s = 10−4, but do not consider it to be a model parameter with any physical meaning.

There are two points about the cubic degradation function we will emphasize. The first is
the nearly linear stress-strain behavior prior to reaching the critical stress. This means that the
behavior of the model more closely reproduces the response that is predicted by linear elastic
fracture mechanics. The second difference is that for a given length scale, the critical stress for the
cubic degradation is larger. This implies that to achieve a given critical stress, a larger length scale
parameter will be used for the cubic degradation function. This allows a coarser mesh to be used
and can reduce the computational cost for a given simulation.

To further show that the cubic degradation more closely reproduces the linear elastic fracture
mechanics response we can compare crack opening stresses for the double cantilever beam prob-
lems shown in Figure 3. This configuration allows us to compare the response computed using
the phase-field formulation with the response computed using a standard linear elastic fracture me-
chanics approach. Furthermore, under displacement controlled loading the crack growth is stable
allowing us to examine and compare the stress states at various crack lengths. For this example,
we compare the crack opening stress for a crack tip that is approximately at the midpoint of the
geometry. These stresses are plotted in Figure 4. This plot shows that there is a process near the
crack for both the quadratic and cubic degradation functions where the stress deviates from the
classical stress singularity predicted by linear elastic fracture mechanics. It is clear that this pro-
cess zone is smaller for the cubic degradation function (recall that the `0 is the same for both cases)
and that the stresses more accurately reproduce the stresses computed from linear elastic fracture
mechanics. This plot also suggests that we can tailor the stresses in the process zone by modifying
the degradation function and this may be an interesting area for future investigation.

2.3 Balance law derivation of the phase-field fracture model

In this section we postulate the existence of a microforce balance law that describes the kinematics
of the phase-field. This balance law supplements the usual linear and angular momentum balance
laws and provides a theory that allows a general, thermodynamically consistent derivation of the
governing equations for phase-field models of fracture. This derivation separates balance laws
from constitutive behavior. It also provides a natural way to introduce dissipation mechanisms
through a general analysis of the second law of thermodynamics.
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Figure 3: The geometry of the double cantilever beam is shown in the left and a phase-field repre-
sentation of the crack is shown on the right.
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Figure 4: A plot of the crack opening stress for cracks computed using the phase-field approach
with the quadratic and cubic degradation function and using a standard linear elastic fracture me-
chanics (LEFM) approach. `0 is taken to be the same for the quadratic and cubic degradation
function calculations.
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Microforce theories have been applied to other phase-field models. For example, Gurtin [19]
has derived the Cahn-Hilliard equation from a microforce balance law. In addition, Stumpf and
Hackl [42] introduced a microforce derivation for damage laws that provides a thermodynamically
consistent framework for thermo-viscoelastic and quasi-brittle materials. More recently, a phase-
field model for fracture in piezoelectric ceramics has been derived by Wilson et al. [45] based on a
microforce approach. We follow the developments of this later work to derive a formulation in the
large deformation setting restricted to purely mechanical processes.

We begin the derivation of the phase-field model with the usual linear and angular momentum
balance laws. In order to localize the balance laws, we assume that the following integral equations
hold for all U ⊂ Ω0, where U is an open set with Lipshitz boundary ∂U , and we assume all
integrands are at least C0-continuous functions. The linear and angular momentum balance laws
are

Linear momentum:

d

dt

∫
U

ρ0U̇ dU =

∫
U

B dU +

∫
∂U

PN d∂U (16)

⇒ DivP + B = ρ0Ü (17)

Angular momentum:

d

dt

∫
U

x× ρ0U̇ dU =

∫
U

x×B dU +

∫
∂U

x× (PN) d∂U (18)

⇒ PFT = FPT (19)

where ρ0 is the mass density in the reference configuration, P is the first Piola-Kirchhoff stress
tensor, N is the outward unit normal of ∂U , B is the body force, U is the displacement, and the
superposed dot is the material time derivative.

To derive the microforce balance law, we assume that at each time step the phase-field can be
characterized by an internal microforce π(x, t) ∈ R, an external microforce l(x, t) ∈ R acting
on the body, and an external microforce λ(x, t) ∈ R acting on the surface of the body. We also
assume the existence of a micro force traction vector, ξ(x, t) ∈ Rd, such that λ = ξ · n on ∂U .
Furthermore, we assume that there are no inertial terms associated with the microforces. Given
these assumptions, we postulate the microforce balance law to be
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Microforce: ∫
∂U
ξ ·N d∂U +

∫
U
l dU +

∫
U
π dU = 0 (20)

⇒ DIV ξ + π + l = 0. (21)

Given these balance laws, the thermodynamic analysis of the phase-field fracture model follows:

Energy Balance Letting e denote the internal energy per unit mass density and noting that ċ is
rate-of-work conjugate to the microforces, the energy balance is stated as

d

dt

∫
U

(
1

2
ρ0|U̇|2 + ρ0e

)
dU

=

∫
∂U

(PN) · U̇ d∂U +

∫
U
B · U̇ dU +

∫
∂U

(ξ ·N)ċ d∂U +

∫
U
lċ dU

(22)

⇒ ρ0ė = P : Ḟ + ξ · ċ,X − πċ. (23)

Second law Let s be the entropy per unit mass density. Then the second law of thermodynamics
can be stated as

d

dt

∫
U
ρ0s dU ≥ −

∫
∂U

q ·N
Θ

d∂U +

∫
U

ρ0r

Θ
dU (24)

⇒ Θρ0ṡ ≥
1

Θ
q ·Θ,X −DIV q + ρ0r (25)

where Θ is absolute temperature, q is the heat flux, and r is a heat source. For the formulation
presented here we assuming r = 0, DIV q = 0, and Θ,X = 0. Under these assumptions, the
second law inequality simplifies to

Θρ0ṡ ≥ 0. (26)

Dissipation inequality Using the Legendre transformation we write the internal energy in terms
of the Helmholtz free energy and entropy as

ρ0e = ρ0ψ + Θρ0s. (27)
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The dissipation inequality follows from this equation and is given by

ρ0ψ̇ ≤ ρ0ė. (28)

Substituting (23) into (28), the dissipation inequality is written in terms of the Piola-Kirchhoff
stress tensors and microforces as

ρ0ψ̇ ≤ P : Ḟ + ξ · ċ,X − πċ (29)

or

ρ0ψ̇ ≤
1

2
S : Ċ + ξ · ċ,X − πċ (30)

where C = FTF is the right Cauchy-Green deformation tensor and S = F−1P is the second
Piola-Kirchhoff stress tensor.

This derivation provides a general formulation for phase-field fracture models. As long as
the free energy, ψ, is defined such that (29) and (30) hold the model will be thermodynamically
consistent.

2.3.1 Governing equations

To derive the governing equations we assume the Helmholtz free energy function takes the general
form ψ = ψ(C,Cp,Q, c, c,X, ċ), where Q is a set of internal plastic variables and

Cp = FpTFp (31)

is the plastic right Cauchy-Green deformation tensor. Substituting this into (30) and integrating
over the reference domain we get∫

Ω0

(
ρ0
∂ψ

∂C
: Ċ + ρ0

∂ψ

∂Cp
: Ċp + ρ0

∂ψ

∂Q
· Q̇ + ρ0

∂ψ

∂c
ċ+ ρ0

∂ψ

∂c,X
· ċ,X + ρ0

∂ψ

∂ċ
c̈

)
dΩ0

≤
∫

Ω0

(
1
2
S : Ċ + ξ · ċ,X − πċ

)
dΩ0.

(32)

We now wish to relate terms on the left hand side of the inequality with terms on the right hand side.
We begin by noting that for purely elastic deformations, we can assume that the plastic dissipation,
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defined as

Dp(C,Cp,Q; Ċp, Q̇) = −ρ0
∂ψ

∂Cp
: Ċp − ρ0

∂ψ

∂Q
· Q̇, (33)

is zero. The remaining terms on the left hand side are linear in Ċ, ċ, ċ,X, and c̈ and we assume that
the inequality must hold for arbitrary time histories of these variables. This leads to the following
relations:

ρ0
∂ψ

∂ċ
= 0 (34)

ρ0
∂ψ

∂c,X
= ξ (35)

2ρ0
∂ψ

∂C
= S (36)(

π + ρ0
∂ψ

∂c

)
ċ ≤ 0⇒ π = −ρ0

∂ψ

∂c
− βċ (37)

Dp = −ρ0
∂ψ

∂Cp
: Ċp − ρ0

∂ψ

∂Q
· Q̇ ≥ 0 (38)

where β = β(C,Cp, c, c,X) ≥ 0 a function that can be used to account for other dissipation
mechanisms. Substituting these equations into the balance laws using P = FS we get:

Linear momentum:

DIV

(
2Fρ0

∂ψ

∂C

)
+ B = ρ0Ü (39)

Microforce:

DIV

(
ρ0

∂ψ

∂c,X

)
+ l − ρ0

∂ψ

∂c
= βċ (40)

With the governing equations of motion and the second-order approximation from Section 2.2
in hand, we can derive the strong form of the phase-field model for ductile fracture. It follows from
(9) that the Helmholtz free-energy is given by

ρ0ψ(C,Cp,Q, c, c,X) = g(c)W+(C,Cp) +W−(C,Cp) + gp(c)Wp(Q) + G0
c

[
(1− c)2

4`0

+ `0c,X · c,X
]

(41)
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where we have left the energy density functions W+, W−, and Wp to be defined later. Then

DIV

(
2Fρ0

∂ψ

∂C

)
= DIV

(
2F

(
g(c)

∂W+

∂C
+
∂W−

∂C

))
(42)

DIV

(
ρ0

∂ψ

∂c,X

)
= 2G0

c `0 DIV (c,X) (43)

ρ0
∂ψ

∂c
= g′W+ + g′pWp − G0

c

1− c
2`0

. (44)

substituting these back into (39) and (40) and taking l = 0 and β = 0 we get the following
governing equations

DIV

(
2F

(
g(c)

∂W+

∂C
+
∂W−

∂C

))
+ B = ρ0Ü (45)

2`0

G0
c

(
g′W+ + g′pWp

)
+ c− 4`2

0∆Xc = 1. (46)

Irreversibility of crack growth due to elastic deformation will be enforced through the history
functional introduced by Miehe et al. [29], i.e.

H(C,Cp) = max
t̂≤t

W+(C(t̂),Cp(t̂)). (47)

Since it is assumed that the effective plastic work, Wp, is monotonically increasing no constraints
are needed to enforce irreversible crack growth due to plastic deformation. However, in order to
have more control of the contribution of plastic deformation to crack growth we introduce a plastic
work threshold, W0, to the formulation and replace Wp in (72) with 〈Wp −W0〉 where the angle
bracket operator is defined as

〈x〉 =

0 x < 0

x x ≥ 0
. (48)

This modification provides a mechanism to control the point at which plastic deformation begins
to contribute to crack growth (more details will be provided in Section 5.1). We also introduce two
parameters βe ∈ [0, 1] and βp ∈ [0, 1] that may be used to weight the contribution to crack growth
from elastic strain energy and plastic work. Substituting these modifications into (46) the updated
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phase-field equation becomes

2`0

G0
c

(
βeg

′H + βpg
′
p〈Wp −W0〉

)
+ c− 4`2

0∆Xc = 1. (49)

The governing equations are summarized in Section 3.4.1

3 Large deformation constitutive response

In Section 2 we have derived the strong form equations in terms of the general energy functionals
W+,W−, and Wp. In this section we describe the constitutive relations we use to complete the
formulation. This will include a finite deformation hyperelastic constitutive model, an elastoplastic
constitutive model based on J2 flow theory with isotropic hardening, and the effective plastic work
driving energy term that takes into account the state of stress triaxiality.

3.1 Finite deformation hyperelastic model

The constitutive model governing the elastic response will be based on the assumption that the
strain energy can be decomposed into volumetric and deviatoric contributions. We follow the
strain energy decomposition introduced by Amor et al. [4] and define the tensile and compressive
contributions to be

W+ =

{
U(Je) + W̄ (C̄,Cp) Je ≥ 1

W̄ (C̄,Cp) Je < 1
(50)

W− =

{
0 Je ≥ 1

U(Je) Je < 1
(51)

respectively, where

Je = detFe (52)

and

C̄ = Je−2/3C. (53)
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The damaged elastic strain energy is then given by

W (Je, C̄,Cp, c) = g(c)W+(Je, C̄,Cp) +W−(Je). (54)

For the formulation presented here, we use the specific forms

U(Je) =
1

2
κ

[
1

2
(Je2 − 1)− ln Je

]
, (55)

W̄ (C̄,Cp) =
1

2
µ
(
C̄ : Cp−1 − 3

)
(56)

where κ and µ are the bulk and shear modulus respectively. The resulting constitutive model for
the elastic response is summarized in Section 3.4.2.

An alternative constitutive model that has been used in large deformation phase-field formula-
tions is based on the spectral decomposition of the logarithmic strain tensor. Letting εe represent
the elastic logarithmic strains and

εe =
∑

εeana ⊗ na (57)

be its spectral decomposition, we define the tensile part as

εe+ =
∑
〈εea〉na ⊗ na (58)

and the compressive part as εe− = εe − εe+. The strain energy contributions are then given as

W+ =
1

2
λ〈tr εe〉2 + µεe+ : εe+ (59)

W− =
1

2
λ〈− tr εe〉2 + µεe− : εe− (60)

Although this representation leads to a split that tends to produce better results in certain brittle
fracture simulations it leads to a more complex return mapping algorithm when simulating fracture
in ductile materials. In our experience this has resulted in a loss of numerical accuracy and conver-
gence problems and we will not consider its use in this paper. However, we intend to explore this
issue in future work.
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3.2 Elastoplastic constitutive model

In this section we describe an associative elastoplastic constitutive model based on J2 flow theory
with isotropic hardening. We assume an isotropic stress response governed by the damage elastic
constitutive model given in Section 3.4.2. We also assume the plastic flow to be isochoric, i.e.,

detFp = 1 ⇒ J = detFe. (61)

The standard yield function for J2 plasticity is given by

f(τ , α) = ‖s‖ −
√

2
3
k(α), s = dev τ (62)

where α is the hardening parameter and k(α) the isotropic hardening modulus. The hardening law
is determined by the choice of k(α) as, for example,

k(α) =

{
σy (Perfect plasticity)
σy +Kα (Linear hardening)

(63)

where τ = Jeσ is the Kirchhoff stress, σy is the yield stress, and K is the linear hardening
coefficient.

In Section 5.1 we will show that the standard yield function shown in (62) does not produce
the correct physical response when coupled with the phase-field model for crack growth. As the
material fails the damaged elastic response pulls the stress back within the yield surface and any
further deformation up to complete failure is purely elastic (i.e. recoverable). This is contrary to
what is observed physically for ductile materials where the deformation is dominated by plastic
strain. To compensate for this behavior we multiply the yield surface by the plastic degradation
function, gp(c). The modified yield function that we propose is

f(τ , α) = ‖s‖ − gp(c)
√

2
3
k(α). (64)

A detailed study of this modified yield function will be presented in Section 5.1.
The elastoplastic constitutive model is completed by the associative flow rule, which is derived

assuming maximum plastic dissipation. Under this assumption, and given the constitutive model
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summarized in Section 3.4.2 and yield function (64), the flow rule is

dev [Lvb
e] = −2

3
γ̇ tr [be]n (65)

n =
s

‖s‖ (66)

where be = FeFeT , Lvbe is the Lie derivative of be (see Simo and Hughes [41] for details), and
γ̇ is the plastic multiplier from the constrained minimization problem that follows from the prin-
cipal of maximum plastic dissipation. We note that the principal of maximum plastic dissipation
determines only the deviatoric part of Lvbe. The evolution of the spherical part of be must be de-
termined by the isochoric assumption, i.e. det[be] = J2. A detailed derivation of the elastic/plastic
constitutive model is presented in Appendix A and a brief summary is given in Section 3.4.3.

3.3 Effective plastic work driving energy and stress triaxiality

We take two approaches for computing the effective plastic work contribution to (49). In the first
approach the effective plastic work is defined by the rate equation

Ẇp = γ̇‖s‖. (67)

This approach provides a simple measure of the effective plastic work but provides no information
about the state of stress.

In the second approach we modify the rate equation (67) to include information about stress
triaxiality. It has long been established that the failure of ductile materials can be characterized
by a combination of the effective plastic strain and the level of stress triaxiality. Material ductil-
ity as quantified by the equivalent strain to failure is higher for stress states when the ratio of the
mean stress to the effective stress is low than when this measure of triaxiality is high. The micro-
scopic mechanism of void growth responsible for this behavior was modeled in the seminal works
of Bridgman [14], Rice and Tracey [37], and McClintock [28]. Thereafter, the Gurson-Tvergaard-
Needleman (GTN) plasticity model (Gurson [18], Tvergaard and Needleman [43]), which includes
the volume fraction of voids as an internal variable, was established and has been used extensively
to model ductile failure of metals. It is of note that the failure behavior at low triaxiality levels
has received renewed interest due to the fact that the GTN model does not perform well in this
regime, (Bao and Wierzbicki [7], Bai and Wierzbicki [5, 6], Halton et al. [20]). In this work it is
receognized that the effects of triaxiality play a key role in the failure of ductile metals and must be
incorporated into any phenomenological model that attempts to capture the physics of ductile fail-
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ure. The recent works referenced above indicate that a full phenomenological description should
incorporate triaxialty as well as the third invariant of the deviatoric stress tensor, however for the
sake of simplicity the present modeling approach will implement the simpler failure criterion due
to Johnson and Cook [24]. We note that the present framework allows for a more detailed failure
criterion once established.

In this work stress triaxiality is measured in terms of the Kirchhoff stress as

τm
‖s‖ (68)

where

τm =
tr [τ ]

3
. (69)

This measure of stress triaxiality is then incorporated into the measure of effective plastic work by
modifying the rate equation for Ẇp such that

Ẇp = γ̇
‖s‖
ϕ

(70)

ϕ = d1 + d2 exp

[
d3
τm
‖s‖

]
(71)

where d1, d2, and d3 are dimensionless model parameters.

3.4 Summary

In this section we summarize the initial/boundary-value problem and constitutive relations that
have been described in the previous sections.
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3.4.1 Strong form initial/boundary-value problem

The strong form of the initial/boundary-value problem can be stated as

(S)



DIV

(
2F

(
g(c)

∂W+

∂C
+
∂W−

∂C

))
+ B = ρ0Ü on Ω0×]0, T [

2`0

G0
c

(
βeg

′H + βpg
′
p〈Wp −W0〉

)
+ c− 4`2

0∆Xc = 1 on Ω0×]0, T [

Ui = Gi on ∂Ω0,Gi
×]0, T [

Ti = Hi on ∂Ω0,Hi
×]0, T [

c,X ·N = 0 on ∂Ω0×]0, T [

U(X, 0) = U0(X) X ∈ Ω0

U̇(X, 0) = V0(X) X ∈ Ω0

(72)

where Gi(X, t) are prescribe displacement boundary conditions on ∂ΩGi
, Hi(X, t) are prescribed

traction boundary conditions on ∂ΩHi
, T = P ·N is the Piola-Kirchhoff traction vector, U0 is an

initial displacement, and V0 is an initial velocity. These equations of motion can be solved to find
both the displacement field U(X, t) and phase-field c(X, t).

3.4.2 Damaged hyperelastic constitutive model

The damaged elastic constitutive model in the reference configuration.

Positive, negative and damaged elastic strain energy density functions

U(Je) =
1

2
κ

[
1

2
(Je2 − 1)− ln Je

]
W̄ (C̄,Cp) =

1

2
µ
(
C̄ : Cp−1 − 3

)
W+(Je, C̄,Cp) =

{
U(Je) + W̄ (C̄,Cp) Je ≥ 1

W̄ (C̄,Cp) Je < 1

W−(Je) =

{
0 Je ≥ 1

U(Je) Je < 1

W (Je, C̄,Cp) = g(c)W+(Je, C̄,Cp) +W−(Je)

Positive, negative and damaged second Piola-Kirchhoff stress tensors
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S+ =

 JeU ′(Je)C−1 + µJe−2/3
[
Cp−1 − 1

3
(C : Cp−1)C−1

]
Je ≥ 1

µJe−2/3
[
Cp−1 − 1

3
(C : Cp−1)C−1

]
Je < 1

S− =

{
0 Je ≥ 1

JeU ′(Je)C−1 Je < 1

S = g(c)S+ + S−

The Cauchy stress obtained by a standard push-forward of the second Piola-Kirchhoff stress

σ+ =

{
U ′(Je)I + Je−1µ dev

[
b̄e
]
Je ≥ 1

Je−1µ dev
[
b̄e
]

Je < 1

σ− =

{
0 Je ≥ 1

U ′(Je)I Je < 1

σ = g(c)σ+ + σ−

3.4.3 Elastoplastic constitutive model

A finite deformation rate-independent elastoplastic constitutive model based on J2 flow theory
with an associative flow rule is considered. The stress response is governed by the damage elastic
constitutive model from Section 3.4.2.

Elastic-plastic strain decomposition

F = FeFp

Isochoric assumption

det [Fp] = 1

Je = J = det [F]

Finite deformation damage/elastic constitutive model (see Section 3.4.2)

σ = g(c)σ+ + σ−, τ = Jeσ

Mises-Huber yield function

f = ‖s‖ − gp(c)
√

2
3
k(α), s = dev τ
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Flow rule

dev[Lvb
e] = −2

3
γ̇ tr[be]n, n =

s

‖s‖
det [be] = J2

Hardening law

α̇ =
√

2
3
γ̇

Kuhn-Tucker loading/unloading conditions

f ≤ 0, γ̇ ≥ 0, f γ̇ = 0

4 Finite element formulation

In this section we describe the discretization of the formulation developed in Section 3. We for-
mulate the spatial discretization by means of the Galerkin method. The temporal discretization
of the governing equations is achieved through an adaptation of the generalized-α method using
a staggered scheme to solve for displacement and phase-field increments independently (see [8]
for details). The temporal discretization of the elasto-plastic constitutive model is achieved via a
backward Euler method that leads to an elastic predictor, plastic corrector algorithm.

The Galerkin formulation will follow from the weak form problem statement in the usual way.
We let G be the given displacement boundary conditions on ∂ΩG, H be the given traction boundary
conditions on ∂ΩH, U0 and V0 be the initial displacement and velocity respectively, and c0 be the
initial phase-field. The trial solution spaces are

St =
{
U(t) ∈ H1(Ω)d | Ui(t) = Gi on ∂ΩGi

}
(73)

S̃t =
{
c(t) ∈ H1(Ω)

}
(74)

and the weighting function spaces are

V =
{
w ∈ H1(Ω)d | wi(t) = 0 on ∂ΩGi

}
(75)

Ṽ =
{
q ∈ H1(Ω)

}
. (76)
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Ignoring body forces, the weak form can now be stated in the reference configuration as:

(W)



Given G, H, U0, V0, and c0 find U(t) ∈ St and c(t) ∈ S̃t, t ∈ [0, T ], such
that for all w ∈ V and for all q ∈ Ṽ ,

(
ρ0Ü,w

)
Ω0

+

(
2F

(
g(c)

∂W+

∂C
+
∂W−

∂C

)
,w,X

)
Ω0

= (H,w)∂ΩH(
2`0

G0
c

(
βeg

′(c)H + βpg
′
p(c)〈Wp −W0〉

)
+ c, q

)
Ω0

+
(
4`2

0c,X, q,X
)

Ω0
= (1, q)Ω0

(ρ0U(0),w)Ω0
= (ρ0U0,w)Ω0(

ρ0U̇(0),w
)

Ω0

= (ρ0V0,w)Ω0

(c(0), q)Ω0
= (c0, q)Ω0

Following the Galerkin method, we define the usual finite dimensional function spaces Sh
t ⊂

St, S̃ht ⊂ S̃t, Vh ⊂ V , and Ṽh ⊂ Ṽ to arrive at the Galerkin form of the problem (see Hughes
[22]), which is given by

(G)



Given G, H, U0, V0, and c0 find Uh(t) ∈ Sh
t and ch(t) ∈ S̃ht , t ∈ [0, T ], such

that for all wh ∈ Vh and for all qh ∈ Ṽh,

(
ρ0Ü

h,wh
)

Ω0

+

(
2F

(
g(c)

∂W+

∂C
+
∂W−

∂C

)
,wh

,X

)
Ω0

=
(
H,wh

)
∂ΩH(

2`0

G0
c

(
βeg

′(ch)H + βpg
′
p(c

h)〈Wp −W0〉
)

+ ch, qh
)

Ω0

+
(
4`2

0c
h
,X, q

h
,X

)
Ω0

=
(
1, qh

)
Ω0(

ρ0U
h(0),wh

)
Ω0

= (ρ0U0,w
h)Ω0(

ρ0U̇
h(0),wh

)
Ω0

= (ρ0V0,w
h)Ω0(

ch(0), qh
)

Ω0
= (c0, q

h)Ω0 .

The explicit representation of the displacement and phase-field in terms of the basis functions and
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nodal variables is given by

Uh(X, t) =

nb∑
B=1

NB(X)dB(t) (77)

ch(X, t) =

nb∑
B=1

NB(X)φB(t) (78)

where nb is the number of basis functions.

4.1 Return-mapping

During plastic flow the configuration is updated based on the elastoplastic constitutive theory sum-
marized in Section 3.4.3. The updated configuration at time tn+1 must satisfy the discrete form of
the Karush-Kuhn-Tucker conditions

f(τ n+1, αn+1) ≤ 0, ∆γ ≥ 0, ∆γf(τ n+1, αn+1) = 0 (79)

where τ n+1 = tr[τ n]I + g(c)µ dev[b̄en+1] and ∆γ is the algorithmic counterpart to γ̇. For each
time increment [tn, tn+1] we assume a trial state based on a purely elastic deformation, i.e.

f̄n+1 = det[fn+1]−1/3fn+1 (80)

b̄e trial
n+1 = f̄n+1b̄

e
nf̄

T
n+1 (81)

αtrial
n+1 = αn (82)

where

fn+1 = I +∇xnun. (83)

is the relative deformation gradient between the configurations at time tn and tn+1. If the trial
state satisfies the discrete KKT conditions then it is accepted as the updated configuration. If the
discrete KKT conditions are not satisfied then the trial state is inadmissible and the configuration
must be updated according to the discrete form of the flow rule and hardening law

dev
[
b̄en+1

]
= dev

[
b̄e trial
n+1

]
− 2

3
∆γ tr[b̄en+1]nn+1 (84)

αn+1 = αn +
√

2
3
∆γ. (85)
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This update leads to the return-mapping algorithm outlined in detail in Appendix B and summa-
rized in the following section.

We point out that this algorithm deviates from the algorithm presented in [41] in two ways.
First, we have included the elastic and plastic degradation functions from the theory presented
in Section 3. Second, we have modified the update of the intermediate configuration (Step 6) to
maintain the correct determinant of b̄e. This update effects only the trace of b̄e and has no effect
on the stress computations but is necessary to compute the correct strain energy. More details and
further justification are provided in Appendix B.

4.1.1 The return-mapping algorithm

The steps of the return-mapping algorithm are summarized in this section. This algorithm follows
the algorithm presented by Simo and Hughes [41] with modifications to include the degradation
functions and correct the update of the intermediate configuration. The modifications are indicated
by the boxed lines.

1. Update the current configuration

φn+1(X) = φn(X) + un(φn(X))

fn+1 = I +∇xnun

Fn+1 = fn+1Fn

2. Compute the damage/elastic predictor

f̄n+1 = det[fn+1]−1/3fn+1

b̄e trial
n+1 = f̄n+1b̄

e
nf̄

T
n+1

strial
n+1 = g(c)µ dev

[
b̄e trial
n+1

]
3. Check for plastic loading

f trial
n+1 = ‖strial

n+1‖ − gp(cn)
√

2
3
k(αn)

IF f trial
n+1 ≤ 0 THEN

Set (·)n+1 = (·)trial
n+1, and EXIT

ELSE
Go to 4 (return-mapping)

ENDIF
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4. Return-mapping

Īe trial
n+1 = 1

3
tr
[
b̄e trial
n+1

]
µ̄ = g(c)µĪe trial

n+1

Solve: f̂(∆γ) = ‖strial
n+1‖ − gp(cn)

√
2
3
k(αn +

√
2
3
∆γ)− 2µ̄∆γ = 0

sn+1 = strial
n+1 − 2µ̄∆γn

αn+1 = αn +
√

2
3
∆γ

5. Update the Kirchhoff stress

Jn+1 = det[Fn+1]

pn+1 =

{
g(c)U ′(Jn+1) Jn+1 ≥ 1

U ′(Jn+1) Jn+1 < 1

τ n+1 = Jn+1pn+1I + sn+1

6. Update the intermediate configuration (corrects error in algorithm presented in [41])

dev
[
b̄en+1

]
=

sn+1

g(c)µ

Solve (to find Īen+1): det
[
dev

[
b̄en+1

]
+ Īen+1I

]
= 1

b̄en+1 = dev
[
b̄en+1

]
+ Īen+1I

5 Numerical Results

In the previous sections we have introduced a number of modifications to the phase-field theory to
facilitate its application to ductile materials. These modifications include:

1. The introduction of a cubic degradation function that more accurately represents the linear
stress-strain response prior to crack initiation/nucleation (Section 2.2.1)

2. The use of a plastic work threshold in the phase-field equation (Section 2.3.1).

3. An additional degradation function that induces plastic softening (Section 3.2).
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4. A dependence of the effective plastic work measure on the state of stress triaxiality (Sec-
tion 3.3).

In the following sections we present results for a number of numerical experiments that demon-
strate the effects of these modifications. The first is a series of computations for a uniaxial stress
state that establish the stress-strain response of the model. The second is a computation on a thin,
flat, and symmetrically notched specimen that is loaded in tension. This example allows us to
explore the stress-strain behavior of a three-dimensional geometry. We also present an adaptive
time stepping scheme in conjunction with this example that provides a mechanism for adjusting
the dynamic time step size based on the evolution of the phase-field. The third example represents
a contemporary problem that is of interest to the defense industry. In this example we simulate a
large steel plate subjected to a blast load. This example demonstrates that phase-field models have
the potential to predict complex failure behavior of three-dimensional structures under sever load
conditions.

5.1 Uniaxial constitutive response

In this section we present an analysis of the effects of modifications 1–3 on the constitutive re-
sponse of the proposed model in a simple one-dimensional setting (we examine the effect of mod-
ification 4 in Section 5.2). This analysis will help to develop an intuitive understanding of how the
modifications we have introduced effect the response. To simplify the analysis, the response will
be computed on a single unit cube volumetric element under a state of uniaxial stress. Furthermore,
we choose a length scale, `0, that is larger than the element size. This creates a homogeneous re-
sponse in c where all derivatives of c are equal to zero. We will also ignore inertial and body force
terms. The model parameters are given in Table 1 and yield σc = 500 MPa.

Table 1: Model parameters for the uniaxial stress computations reported in this section.

Young’s modulus 68.8 GPa
Poisson’s ratio 0.33

Yield stress 320 MPa
Critical fracture energy 138× 106 J/m2

`0 2 m

We first examine the case where gp = 1 (there is no plastic softening) g is taken to be the
standard quadratic degradation function, and W0 = 0. Two variations of this case are shown in
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Figure 5 and are compared to the standard J2-plasticity response with linear isotropic hardening,
which we refer to as the “No fracture” case. For the first variant we set βe = 1 and βp = 0 so that
only the elastic strain energy contributes directly to the evolution of the phase-field. For the second
variant of this case we set βe = βp = 1 to show the response when the effective plastic work is
also included in the phase-field equation with W0 = 0.
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Figure 5: The stress-strain response for a simple J2 plasticity model with linear hardening. The
“No fracture” case is a simple elastic-plastic response with linear hardening and is shown for
reference. When βp = 0.0 the stress increases until it hits the critical stress that is predicted by the
brittle theory. When βp = 1.0 we see the response when the effective plastic work term is added
to the history functional.

A number of observations can be made from the plots shown in Figure 5. First, when βe = 1

and βp = 0 the stress reaches the critical stress, labeled σc, that is calculated for the purely elastic
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case. This is expected since the driving term in the phase-field equation includes only contributions
from the elastic strains. Second, setting βp = 1 reduces the critical stress and crack formation
occurs at a much lower total strain. Third, the plots of elastic and plastic strains show that the
plastic strain saturates at about the level of total strain where the ultimate stress is obtained. Beyond
this point, the model exhibits damage elastic behavior. This is contrary to what is expected from
ductile materials where very large plastic strains occur.

The nonphysical behavior of the strains shown in Figure 5 motivated the addition of the plastic
degradation function to the yield surface. Adding the degradation function to the yield surface,
as described in Section 3.2, changes the constitutive response to that shown in Figure 6. For this
response, the quadratic degradation function was used for both g and gp. In this case the strain
response is as expected: once yielding occurs the total strain is dominated by plastic strain. This
happens because the plastic degradation function is shrinking the yield surface even as the elastic
strength is being reduced. For isotropic hardening, as in the current case, there will be competition
between the hardening effect from additional plastic strain and the softening due to the evolution
of c and gp(c). For the current response, this results in a reduction in strain hardening as shown by
the reduced slope of the curve after yielding. We also see in Figure 6 that the initial yield stress is
lower compared to the no fracture case. This is a result of the reduction in c, and consequently in
gp, prior to reaching the elastic critical stress as is shown in Figure 7.

For the constitutive response shown in Figure 8 we have used the cubic degradation function
(13) with s = 10−4 for both g and gp. For this case we have adjusted the material parameters such
that the critical stress in the elastic case is the same as it would be if the quadratic degradation
function where used (compare Figure 7 to Figure 2). We can see that the yield stress in this case
is the same in the damaged and undamaged cases because the cubic degradation function delays
damage accumulation due to elastic deformation until just before the critical stress is reached.
Once the critical stress is reached, the more rapid decrease of the cubic gp with increased elastic
strain (when compared to the quadratic gp) causes softening as the yield surface contracts due to
gp out pacing the expansion caused by the evolution of the hardening parameter α.

5.2 Tensile Test

In this section we simulate crack initiation and growth in a symmetrically notched thin rectangular
specimen, shown in Figure 9, which is loaded in tension. The notched configuration causes a
nonuniform triaxiality state prior to necking on the cross section bisecting the specimen between
the notches. This allows us to investigate the effect of the modification to the effective plastic work
computation presented in Section 3.3.
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Figure 6: Stress-strain constitutive response using the quadratic degradation function for both g
and gp for several different values for the plastic work threshold W0. The initial yield stress is
reduced due to accumulated damage caused by elastic strains prior to yielding. Strain hardening
is reduced due to the contraction of the yield surface induced by gp. The elastic and plastic strain
curves follow the “No fracture” case for all values of W0.

The computations were performed on a multi-patch quadratic NURBS isogeometric spatial
discretization (see Hughes et al. [23]). The Bézier element representation of the NURBS patches
is shown in Figure 10. This discretization is refined locally using a hierarchical refinement scheme
as describe in Schillinger et al. [38] and Scott et al. [39]. Using hierarchical NURBS allows us
to represent the circular notches exactly in the analysis model. This is an important consideration
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Figure 7: The quadratic and cubic degradation function (left) and the respective stress-strain plots
for a uniaxial homogeneous constitutive response (right). The length scale parameter has been
adjusted for the response from the cubic degradation function so that the critical stress is the same
for both cases. Compare the stress-strain response from Figure 2.
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Figure 8: Stress-strain constitutive response using the cubic degradation function for both ge and
gp with several different values for the plastic work threshold W0. The cubic degradation delays
the accumulation of damage until either the critical stress or plastic work threshold is achieved so
that the original yield stress is maintained. The elastic and plastic strain curves (not shown) follow
the “No fracture” case for all values of W0.

for fracture problems because the stress intensity factors that drive crack growth are influenced
by the geometry of the problem. Furthermore, the resolution of the discretization and the higher
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25.4

152.4
R4.06

t = 2.37

Figure 9: The geometry and associated dimensions (in mm) used for the tensile test. A thin
rectangular specimen was notched at the midpoint to localize stresses and initiate yielding and
crack growth.

polynomial degree of the basis reduces the effect of volumetric locking during plastic deformation
and no special treatment of the volumetric term is used in these calculations.

The material parameters used for the numerical simulations are shown in Table 2. The parame-
ters E, ν, ρ, σy, and k are fixed for all cases presented in the following. In choosing the remaining
parameters we seek to keep the critical stress, σc, which depends on the choice of degradation func-
tion, and the length scale parameter, `0, which effects the plastic response, the same. Under these
constraints the only remaining parameter that can be changed is G0

c . For these simulations we have
chosen a value for G0

c for each case of the degradation function that yields the same critical stress
value. This implies that the energy dissipated by the creation of the crack surfaces will be different
between the cases using the quadratic and cubic degradation functions. However, for ductile mate-
rials the energy dissipated by plastic deformation is typically much larger than the energy required
to create new crack surfaces and by keeping `0 constant the plastic deformation is comparable for
the two degradation functions.

The deformation is displacement controlled with the top and bottom surfaces being displaced
in opposite directions at a rate of 4.2× 10−6 m/s, which maintains a quasi-static loading condition.
The computation, however, was fully dynamic and the staggered solution scheme describe in [8]
was used at each time increment with the momentum equation being solved implicitly.
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Table 2: Material properties for the notched specimen tensile test.

Young’s modulus (E) 68.8 GPa
Poisson’s ratio (ν) 0.33
Mass density (ρ) 2700 kg/m3

Yield stress (σy) 320 MPa
Hardening modulus (k) 688 MPa
Critical fracture energy (G0

c ) – quadratic 60× 103 J/m2

Critical fracture energy (G0
c ) – cubic 18.06× 103 J/m2

Length scale (`0) 3.226× 10−4 m
Triaxiality parameter 1 (d1) 0.1
Triaxiality parameter 2 (d2) 3.8
Triaxiality parameter 3 (d3) -1.8

5.2.1 Adaptive Time Stepping

Because of the quasi-static loading rate there is a relatively long period of time over which the
load is applied but no crack propagation occurs. During this time interval the inertial terms can be
negligible, which allows time steps that are much larger than what is required to resolve dilatational
waves. Once the crack initiates, however, the time step needs to be small enough to accurately
capture the propagation of the crack. We propose here a heuristic adaptive time stepping scheme
that efficiently handles the large difference in the time scales between the quasi-static loading stage
and the crack propagation stage of this problem. This adaptive time stepping scheme adjusts the
time step based on the change in the fracture energy between two consecutive time steps. The
fracture energy is computed as

Ψc
n =

∫
Ω0

G0
c

4`0

[
(cn − 1)2 + 4`2

0|(cn),X |2
]
dΩ0 (86)

where the subscript n refers to the time step number. The change in the fracture energy between
two time steps acts as a surrogate measure for the crack tip velocity, which provides a way to
determine when cracks are propagating. The scheme is summarized as follows:

1. Compute the change in fracture energy:

∆Ψc
n = Ψc

n −Ψc
n−1

2. Compute the effective change in the crack length by normalizing the change in fracture
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Figure 10: The Bézier representation of the NURBS discretization of the tensile test geometry.
The basis functions are locally refined using hierarchical B-splines to maintain computational effi-
ciency.

energy with respect to G0
c :

∆aeff
n =

∆Ψc
n

G0
c

3. Check to see if the time step should be reduced or increased based on a maximum and
minimum tolerance for the ratio between ∆aeff

n and hmin. The tolerances are given as tolmax

and tolmin. A safety parameter, sa, is also specified to prevent large changes in the time step
between consecutive time increments:

IF ∆aeff
n

hmin
> tolmax THEN:

∆tn+1 = ∆tn

(
tolmax

∆aeff/hmin

)
× sa

IF ∆tn+1 < ∆tmin THEN

∆tn+1 = ∆tmin

END IF
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ELSE IF ∆aeff
n

hmin
< tolmin THEN

∆tn+1 = ∆tn

(
tolmin

∆aeff/hmin

)
× sa

IF ∆tn+1 > 2∆tn THEN

∆tn+1 = 2∆tn

END IF

IF ∆tn+1 > ∆tmax THEN

∆tn+1 = ∆tmax

END IF

END IF

The adaptive time stepping parameters used for the notched specimen example are given in Table 3.

Table 3: Parameters used to control the adaptive time stepping procedure for the notched specimen
example.

tolmax 10−4

tolmin tolmax/2
∆tmin 10−9 s
∆tmax 0.5 s
s 0.9
hmin 1.5× 10−4 m

5.2.2 Results

Results were computed using both the quadratic and cubic degradation functions and unmodified
and modified effective plastic work calculations. The computations were performed for several
different values of the plastic work threshold, W0. Plots showing the nominal stress vs. nominal
strain for each case are presented in Figure 11 where the nominal stress is defined as the resultant
force at the ends of the specimen divided by the undeformed cross-sectional area at the narrowest
point in the notch and the nominal strain is defined as the total change in length of the specimen
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divided by the original length. Values of W0 were first chosen for the computations without the
modifications that include triaxiality effects. Then, for the case with triaxiality included, values of
W0 where chosen so that the uniaxial constitutive response reaches the same maximum stress as the
corresponding case without triaxiality effects. Values of W0 were chosen in this way to facilitate
comparison since the triaxiality modification decreases the effective plastic work. The plots in
Figure 11 show qualitative agreement with the behavior seen for the one-dimensional response
described in Section 5.1. That is, when the quadratic degradation function is used the yield stress
is reduced but when using the cubic degradation function the response follows the no fracture case
until crack nucleation. The effect of increasing the plastic work threshold also agrees with the
uniaxial stress computations.

Contour plots showing the progression of the phase-field through the horizontal plane with
minimum cross-section area are presented in Figures 12 and 13. These plot compare the results
computed with and without triaxiality effects. For the plots shown in Figure 12 the quadratic
degradation function was used, and the cubic degradation function was used for the plots shown in
Figure 13. In both figures the effect of triaxiality is evident. Without triaxiality the crack nucleates
on the surface at the notch. When triaxiality is included, the crack nucleates near the notch but
not on the surface. This is the location of highest triaxiality as shown by Ghahremaninezhad and
Ravi-Chandar [17].
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Figure 11: Normalized stress vs. normalized displacement curves for the tensile test results. The
curve labeled “No fracture” is the response for standard J2 plasticity with linear isotropic harden-
ing. The top row shows the response with no triaxiality consideration and the bottom row shows
the response when triaxiality is included in the effective plastic work computations. The right
and left column show the difference when the quadratic and cubic degradation functions are used
respectively. Values of W0 where chosen for the calculations with triaxiality such that the uni-
axial constitutive response reaches the same maximum stress as the corresponding case without
triaxiality effects.
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No triaxiality With triaxiality

Figure 12: Contour plots of the phase-field as the crack progresses through a horizontal plane
through the minimum cross-section area using the quadratic degradation function. The left column
shows the results when triaxiality is not considered and the right column shows the results when
triaxiality is included.
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No triaxiality With triaxiality

Figure 13: Contour plots of the phase-field as the crack progresses through a horizontal plane
through the minimum cross-section area using the cubic degradation function. The left column
shows the results when triaxiality is not considered and the right column shows the results when
triaxiality is included.
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5.3 Bolted Plate

In this example we present numerical results of simulations of a circular steel plate subjected to
a blast load. These simulations are based on an underwater explosion experiment performed on a
steel plate that was bolted to a reaction frame. A simplified model has been used for the analysis as
shown in Figure 14. In this model, the reaction frame has been replaced by a penalty term. Details
of the bolted connections between the plate and reaction frame, however, have been included in the
analysis model. A detailed cross-section view of the bolted connection is shown in Figure 15. The
discretization is continuous between the bolt head and washer and between the washer and steel
plate. Furthermore, the barrel of the bolt passes freely through the hole in the washer and plate
and contact here is ignored, i.e., the barrel of the bolt is allowed to penetrate the washer and plate.
These simplifications remove the need to include contact and reduces the computation complexity.
Fixed displacement boundary conditions are applied to the end of the bolt.

x

y

ro

Reaction frame modeled
with penalty term in
negative direction

ri

ri = 0.5334 m
ro = 0.6477 m
t = 0.0127 m

Figure 14: Plan view of the simplified analysis model with dimensions of the steel plate. The
reaction frame is modeled by penalizing displacements in the negative-z direction on the back side
of the plate in the outer annulus between ri and ro.

The geometry of the analysis model is constructed as a quadratic multi-patch NURBS as shown
in Figure 16. This allows the geometry to be represented exactly in the analysis model. A detailed
view of the Bézier representation of the multi-patch NURBS description of a bolt is shown in
Figure 16. We note that the number of degrees-of-freedom for this problem can be greatly reduced
by the use of hierarchical refinement schemes as described by Schillinger et al. [38] and Scott et al.
[39], but this has not been considered in our calculations.

The material properties used in the analysis model are given in Table 4, and the quadratic
degradation function is used in all computations for this problem. The blast load is approximated
as a radially distributed pressure impulse that is applied to the front surface of the plate in the
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Washer
Bolt head

Steel plate

Continuity maintained
between patches here

Fixed displacement BC

Figure 15: Detailed cross-section of a bolt connection. To simplify the computation, the bolt head
is connected to the washer and the washer is connected to the steel plate in the discretization. The
barrel of the bolt passes freely through the hole in the washer and plate and contact between the bolt
and the washer or plate is not considered during the simulation. A fixed displacement boundary
condition is applied to the end of the bolt. The length of the barrel of the bolt in the analysis model
is 2.5 inches. The other dimensions of the bolt are based on a standard 1 inch diameter bolt.

current configuration. The non-dimensional radial distribution of the pressure, g, is defined as a
function of the distance r (in meters) measured from the center of the plate as

g(r) = exp

( −r2

2× 0.32

)
. (87)

The temporal distribution of the impulsive blast load is

p̃0(t) = t · exp
(
1− t · 50× 103/s

)
· 2.25× 106 MPa/s (88)

p0(t) = p̃0(t) +


0 0 ≤ t < 20µs(

1.0 + sin
(

π(t−2×10−5s)
10−4s−2×10−5s

− π
2

))
· 1 MPa 20µs ≤ t < 100µs

2 MPa t ≥ 100µs

. (89)

Plots of these functions are shown in Figure 17. The pressure is given by

p(t, r) = p0(t) ∗ g(r) (90)

and results in a peak of 45 MPa at the center of the plate at t = 20µs.
The results for a number of simulations are shown in Figure 18. This figure compares the crack

progression at three time intervals using both of the effective plastic work equations for a number of
different plastic work threshold values. The W0 = 0 case provides a good comparison that shows
how introducing the triaxiality modification to the effective plastic work term effects the crack
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(a) (b)

Figure 16: (a) shows an oblique angle of the geometry used for the analysis. (b) shows details of
the Bézier representation of the multi-patch quadratic NURBS that describes the geometry with a
close-up view of one of the bolt heads. C0 continuity is maintained between the patches.

Table 4: Material properties.

Young’s modulus 206 GPa
Poisson’s ratio 0.281

Mass density 7780 kg/m3

Yield stress 355 MPa
Critical fracture energy 106 J/m2

`0 1.27× 10−2 m

behavior. For the ”No triaxiality” case a secondary crack begins to develop at the edge of the plate
and propagates back towards the main crack as it approaches the edge. For the ”With triaxiality”
case this secondary crack does not develop and instead the crack branches when it reaches the area
of the plate supported by the reaction frame. The ”With triaxiality” case also has more damage
around the perimeter of the plate. For the W0 = 20 MPa case the crack begins to propagate sooner
for the ”With triaxiality” case, which agrees with the behavior seen in the previous sections. Setting
W0 = 40 MPa for the ”With triaxiality” case results in a crack progression that more closely
matches the ”No triaxiality” case with W0 = 20 MPa.

A detailed view of the deformed configuration of the ”No triaxiality” case with W0 = 20 MPa
is shown in Figure 19. This figure shows that the phase-field model we are using is able to capture
localized ductile behavior, which qualitatively compares well with experimental results (see for
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Figure 17: Plots of the radial (left) and temporal (right) functions that define the pressure impulse.

example Webster [44]).
Figure 20 shows that in the computational results the bolts immediately adjacent to the cracks

fractured in tension. In Figure 21, depicting the experiment, it may be noted that several of the
bolts immediately adjacent to the cracks are still present in the plate after its separation from the
test frame. Our interpretation is that these bolts also fractured in tension and did not need to be
pulled out in order to separate the plate from the test frame. In the experiment, all the other bolts
are gone, indicating they had to be removed in order to separate the plate from the test frame.
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t = 3.2× 10−3 s

t = 4.8× 10−3 s

t = 8.0× 10−3 s

No triaxiality With triaxiality
W0 = 0.0 W0 = 20 MPa W0 = 0.0 W0 = 20 MPa W0 = 40 MPa

Figure 18: A comparison of crack progression at three time steps for different values of W0 with
and without the triaxiality modification to the effective plastic work term.

Figure 19: Details of the deformed plate for computations with W0 = 20 MPa. The color plots
indicate the level of plastic yielding. On the left, we see the effect of a bolt hole on the distribution
of plastic yielding. On the right we see that the plate begins to fold as the crack nears the edge.
This behavior matches well qualitatively with experimental results.
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t = 5.52× 10−3 s t = 5.92× 10−3 s t = 6.24× 10−3 s

Figure 20: A detailed view showing the progression of the failure of the bolts for the computational
with W0 = 20 MPa. The color scale indicates the value of the phase-field.

Figure 21: Figures showing the experimental results from Webster [44].
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5.3.1 A note on boundary conditions

Building detailed representations of boundary conditions and other geometric details in the analysis
model is often time consuming and may increase computational cost. Because of this, simplifica-
tions are often made where details that are deemed unimportant are removed from the analysis
model. Care must be taken, however, as too much simplification will lead to poor results. For
example, Figure 22 shows a simplified representation of the plate presented in the previous section
where the bolts have been removed. For this geometry the reaction frame is modeled by applying
displacement boundary conditions to the annular surfaces between ri and r0. We have computed re-
sults on this simplified model using two different representations of the reaction frame as shown in
Figure 23. Clamped and sliding boundary conditions, where all displacements where constrained
or the surface was free to move in the x−y plane respectively, were applied. Comparing the results
with those computed with the bolts represented in the analysis model it is clear that the detailed
representation including the bolts is critical in order to achieve accurate results.

x

y

ro

ri

ri = 0.5334 m
ro = 0.6477 m
t = 0.0127 m

Figure 22: A simplified model where the bolt details have been removed. The reaction frame was
modeled by setting Dirichlet boundary conditions on both surfaces of the plate between ri and ro.
A clamped boundary condition was applied by fixing all displacements on these surfaces. A sliding
boundary conditions was applied by fixing the out of plane displacements on these surfaces.

6 Conclusion

In this work we have presented a number of additions and modification to a phase-field model for
fracture that improve the models description of fracture in ductile materials. We have introduced a
cubic degradation function that provides a nearly linear stress-strain response prior to crack initia-
tion in elastic bodies. We have added a degradation function to the yield surface. This degradation
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Clamped Sliding Bolted

Figure 23: Results using a different representations of the connection with the reaction frame. The
clamped condition constrains all displacement in the annular surface between ri and ro. For the
sliding boundary condition the annular surface is free to move in the x− y plane. The bolted con-
nection is described in the previous section. Only the bolted configuration gives results consistent
with experiments.

function provides a mechanism to introduce plastic softening as cracks develop and results in better
representation of the physical processes that occur during failure. We have also included a mech-
anism that allows the state of stress triaxiality to influence crack growth. Examples have been
presented showing the effect that these changes have on the results. Although much work remains
to be done to fully validate the use of phase-field models for predicting ductile fracture, the results
presented here indicate that this approach qualitatively agrees with expected physical behavior in
complex physical situations.
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A Elastoplastic constitutive model

Here we present the details of the associative elastoplastic constitutive model based on J2 flow
theory with isotropic hardening that was introduced in Section 3.2. We assume an isotropic stress
response governed by the damage/elastic constitutive model summarized in Section 3.4.2. We also
assume the plastic flow to be isochoric, i.e.,

detFp = 1 ⇒ J = detFe. (91)

The associative flow rule is derived by making use of the principle of maximum plastic dissipation.
This principle states that for any given fixed internal plastic variables {Cp,Q} and yield function
f(C,Cp,Q) the actual deformation tensor, C, satisfies

Dp(C,Cp,Q; Ċp, Q̇) ≥ Dp(Ĉ,Cp,Q; Ċp, Q̇)

for all Ĉ s.t. f(Ĉ,Cp,Q) ≤ 0
(92)

where Dp is defined in (33). Assuming an uncoupled free energy function in the internal variables,
Q, the principle of maximum plastic dissipation leads to the associative flow rule

−4
∂2W

∂C∂Cp
: Ċp = 2γ̇

∂f

∂C
(93)

and the Karush-Kuhn-Tucker (KKT) loading/unloading conditions

γ̇ ≥ 0, f ≤, γ̇f = 0. (94)

For a detailed derivation see Simo [40].
For the current formulation, we assume that yielding is governed by the Mises-Huber yield

condition, given in terms of the Kirchhoff stress τ . The yield function for this case is written as

f(τ , α) = ‖s‖ −
√

2
3
k(α) (95)

where α is the hardening parameter and k(α) the isotropic hardening modulus. The hardening law
is determined by the choice of k(α). For example,

k(α) =

{
σy (Perfect plasticity)
σy +Kα (Linear hardening)

(96)
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where σy is the flow stress and K is the linear hardening coefficient.
Given the hyperelastic stress response summarized in Section 3.4.2 the yield function can be

rewritten in the form f(C̄,Cp,Q). Then, again following the derivation given by Simo [40], the
hardening law is

α̇ =
√

2
3
γ̇ (97)

and the flow rule is

J−2/3 DEV

[
2
∂2g(c)W̄

∂C̄∂Cp
: Ċp

]
= −γ̇J−2/3 DEV

[
∂f

∂C̄

]
(98)

where DEV[ · ] = ( · ) − 1
3
[C : ( · )]C−1 is the deviator in the reference configuration. Expanding

the differential term on the right-hand side of this equation we get

∂f

∂C̄
=

∂

∂C̄

(
g(c)µ dev

[
b̄e
])
. (99)

Since we use a staggered solution scheme we assume that c is fixed during plastic flow allowing
g(c) to be factored out of both sides of (98). This leads to a flow rule that is independent of c. In
the reference configuration, the flow rule simplifies to

DEV
[
Ċp−1

]
= −2

3
γ̇C : Cp−1N (100)

N = F−1nF−T (101)

n =
s

‖s‖ (102)

which can be pushed forward to the current configuration to get

dev [Lvb
e] = −2

3
γ̇ tr [be]n (103)

where Lvbe is the Lie derivative of be (see Simo and Hughes [41] for details). We point out that the
principal of maximum plastic dissipation determines only the deviatoric part of Ċp−1 and Lvbe.
The spherical part of these tensors must be determined based on the isochoric assumption, i.e.
Je = det[F] and det[b̄e] = 1. The complete elastic/plastic constitutive model is summarized in
Section 3.4.3.
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B Return-mapping algorithm

Numerical integration of the constitutive theory summarized in Section 3.4.3 is performed by a
backward Euler scheme that leads to the construction of a return-mapping algorithm. Following
the procedure outlined by Simo and Hughes [41, Chapter 9] and taking into account the definition
of the damage/elastic stress response from Section 3.4.2, the phase-field parameter is incorporated
as follows. For each time interval, [tn, tn+1], we assume the initial states φn, b̄en, αn, and Fn

are known. The configuration at time tn+1 is obtained from the incremental displacement field
un : Ωn → R3 as

φn+1(X) = φn(X) + un(φn(X)) (104)

and the relative deformation gradient is given by

fn+1 = I +∇xnun. (105)

Assuming an elastic trial response, i.e., α trial
n+1 = αn, the trial deformation is given by

f̄n+1 = det[fn+1]−1/3fn+1 (106)

b̄e trial
n+1 = f̄n+1b̄

e
nf̄

T
n+1. (107)

The trial damaged deviatoric stress is then computed from the relationship for the damaged Kirch-
hoff stress, τ = Jσ, as

s trial
n+1 = dev[τ trial

n+1 ] = g(c)µ dev[b̄e trial
n+1 ]. (108)

Now, letting ∆γ be the algorithmic counterpart to γ̇, the discrete KKT loading/unloading condi-
tions are

f(τ n+1, αn+1) ≤ 0, ∆γ ≥ 0, ∆γf(τ n+1, αn+1) = 0. (109)

These conditions give rise to two alternatives based on the result of the evaluation of the yield
function for the given trial state. We define

f trial
n+1 := f(τ trial

n+1 , α
trial
n+1) = ‖s trial

n+1‖ −
√

2
3
k(αtrial

n+1). (110)

If f trial
n+1 ≤ 0, then the KKT conditions are satisfied with ∆γ = 0 and the trial damage/elastic state
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is accepted as the solution at tn+1. If, on the other hand, f trial
n+1 ≥ 0, then the KKT conditions are not

satisfied, implying that the trial stress has moved outside the yield surface and is not admissible. In
this case, we need to update αn+1 and τ n+1 to return the stress to the yield surface. These updates
are determined by a backward Euler discetization of the evolution equations, which leads to

dev
[
b̄en+1

]
= dev

[
b̄e trial
n+1

]
− 2

3
∆γ tr[b̄en+1]nn+1 (111)

αn+1 = αn +
√

2
3
∆γ (112)

where

nn+1 =
sn+1

‖sn+1‖
. (113)

Using these update equations the new admissible state is determined by finding ∆γ > 0 and
tr[b̄en+1] such that f(τ n+1, αn+1) = 0 and det[b̄en+1] = 1.

To derive the system of equations that will be solved to find the admissible state we first find
a relationship between ‖sn+1‖ and ‖strial

n+1‖. This is done by substituting (111) into the constitutive
relationship (108) to get

sn+1 = s trial
n+1 − 2

3
g(c)µ∆γ tr[b̄en+1]nn+1, (114)

which can be rearranged to get

sn+1 + 2
3
g(c)µ∆γ tr[b̄en+1]nn+1 = s trial

n+1 . (115)

Now recongnizing that sn+1 = ‖sn+1‖nn+1 we can rewrite this equation one more time as

(
‖sn+1‖+ 2

3
g(c)µ∆γ tr[b̄en+1]

)
nn+1 = ‖s trial

n+1‖ntrial
n+1. (116)

We also have from (115) that

‖sn+1 + 2
3
g(c)µ∆γ tr[b̄en+1]nn+1‖ =

∥∥∥∥sn+1

(
1 + 2

3
g(c)µ∆γ tr[b̄en+1]

1

‖sn+1‖

)∥∥∥∥ (117)

= ‖sn+1‖+ 2
3
g(c)µ∆γ tr[b̄en+1] (118)

= ‖s trial
n+1‖. (119)
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This implies that nn+1,= ntrial
n+1 and we arrive at the relationship we were seeking:

‖sn+1‖ = ‖s trial
n+1‖ − 2

3
g(c)µ∆γ tr[b̄en+1]. (120)

Substituting this equation and (112) into the yield function we can then find ∆γ and tr[b̄en+1] by
solving the system of scalar valued equations

f̂(∆γ) = ‖s trial
n+1‖ − 2

3
g(c)µ∆γ tr[b̄en+1]−

√
2
3
k(αn +

√
2
3
∆γ) = 0 (121)

det
[
b̄en+1

]
= det

[
dev

[
b̄e trial
n+1

]
+ 1

3
tr[b̄en+1]

(
I− 2∆γntrial

n+1

)]
= 1. (122)

We note that our derivation has resulted in a slightly different update formula than what has
been presented in Simo [40] and Simo and Hughes [41]. The difference stems from an assumption
in these works that leads to the condition tr[b̄en+1] = tr[b̄e trial

n+1 ] (in [41] this is a result of dropping
the deviatoric operators from (111) to get b̄en+1 = b̄e trial

n+1 − 2
3
∆γ tr[b̄en+1]nn+1 and then taking the

trace of both sides of this equation). This leads to an update that depends on the solution of the
single scalar valued function

‖s trial
n+1‖ − 2

3
g(c)µ∆γ tr[b̄e trial

n+1 ]−
√

2
3
k(αn +

√
2
3
∆γ) = 0 (123)

(note that the left-hand side depends only on the trial state of b̄e). This difference is subtle and has
almost no effect (numerically) on the deviatoric part of b̄e but leads to an accumulation of error in
its trace. We illustrate this by a simple exercise of the algorithm presented in Box 9.1 of Simo and
Hughes [41, Chapter 9], which is summarized in Box 1. We choose µ = 25×109, κ = 75×109, and
k(αn) = σy = 448× 106 for the material parameters and start with an undeformed configuration,
F0 = I. We then specify a relative deformation gradient

f 1 =

 1.01 0 0

0 0.999 0

0 0 0.999

 , (124)

which causes plastic loading in Step 3 of the algorithm. Following the return-mapping and stress
update in Steps 4 and 5 we compute the determinate of b̄e1 and get 1.00005. Recall from the
definition of b̄e that its determinate should be equal to one.

There are two sources of this error in the algorithm. The first is the use of the trace of b̄e trial
n+1
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1. Update the current configuration

φn+1(X) = φn(X) + un(φn(X))

fn+1 = I +∇xnun

Fn+1 = fn+1Fn

2. Compute the damage/elastic predictor

f̄n+1 = det[fn+1]−1/3fn+1

b̄e trial
n+1 = f̄n+1b̄

e
nf̄

T
n+1

strial
n+1 = µ dev

[
b̄e trial
n+1

]
3. Check for plastic loading

f trial
n+1 = ‖strial

n+1‖ −
√

2
3
k(αn)

IF f trial
n+1 ≤ 0 THEN

Set (·)n+1 = (·)trial
n+1, and EXIT

ELSE
Go to 4 (return-mapping)

ENDIF

4. Return-mapping

Īe trial
n+1 = 1

3
tr
[
b̄e trial
n+1

]
µ̄ = µĪe trial

n+1

Solve: f̂(∆γ) = ‖strial
n+1‖ − gp(cn)

√
2
3
k(αn +

√
2
3
∆γ)− 2µ̄∆γ = 0

sn+1 = strial
n+1 − 2µ̄∆γn

αn+1 = αn +
√

2
3
∆γ

5. Update the Kirchhoff stress

Jn+1 = det[Fn+1]

pn+1 = U ′(Jn+1)

τ n+1 = Jn+1pn+1I + sn+1

6. Update the intermediate configuration

b̄en+1 =
sn+1

µ
+ Īe trial

n+1 I

Box 1: Return-mapping algorithm for J2-Flow theory from [41].
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instead of b̄en+1 in the left-hand side of (123). This error effects only the devaitoric part of b̄e and
in practice has almost no effect on the numerical results. This claim is supported by nearly 30
years of use of this model where the interest has been on the stress-strain response, which during
plastic flow is governed by the evolution of the deviatoric part of b̄e.

The second source of error follows from the condition tr[b̄en+1] = tr[b̄e trial
n+1 ]. Over time, this

leads to an accumulation of error in the trace of b̄e and one manifestation of this error is in the
error in the determinant of b̄e. If we follow the computations performed in Box 1 we see that the
determinant of b̄e is never used and hence this source of error has no effect on the stress-strain
response. For the phase-field model we have presented in this work, however, the evolution of the
phase-field depends on the elastic strain energy, which in the current configuration is given by

W̄ (b̄e) =
1

2
µ
(
tr
[
b̄e
]
− 3
)
. (125)

It is obvious from this equation that errors in the trace of b̄e will lead to errors in computation of
the elastic strain energy.
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Figure 24: Plots of stress and strain energy response from a uniaxial with linear hardening calcu-
lation. The standard update plots refer to the update from the algorithm shown in Box 1 and the
Modified update plots refer to the update from the algorithm summarized in Section 4.1.1. The
stress plots are indistinguishable while the strain energy plots are clearly different.

In light of this discussion we propose a simple modification to the algorithm presented in Box 1
for computations involving a phase-field model that depends on the evolution of the elastic strain
energy. In Step 6 of this algorithm we update the trace of b̄en+1 using (122) such that det[b̄en+1] = 1.
By leaving the preceding steps unmodified we make use of (123) instead of (121) to update the
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deviatoric part of b̄e, effectively uncoupling the system composed of (121) and (122). This ap-
proximation is justified based on the preceding discussion with regards to the errors in practical
computations. The modified return-mapping algorithm is summarized in Section 4.1.1. A compar-
ison between the two return mapping algorithms for a simple uniaxial case with linear hardening is
shown in Figure 24. In this figure the standard update refers to computations performed using the
algorithm described in Box 1 and the Modified update refers to computations performed using the
algorithm summarized in Section 4.1.1. It is clear from these plots that the modified algorithm has
virtually no effect on the stress. In fact, the difference after 300 load increments is less than 10−6

percent. The difference in the strain energy calculations, on the other hand, is significant where the
standard update obviously produces non-physical results, but the modified update is meaningful.
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[15] S. Burke, C. Ortner, and E. Süli. An adaptive finite element approximation of a generalized
ambrosio-tortorelli functional. Mathematical Models & Methods in Applied Sciences, 23(9):
1663 – 1697, 2013.

[16] G. A. Francfort and J-J. Marigo. Revisiting brittle fracture as an energy minimization prob-
lem. Journal of the Mechanics and Physics of Solids, 46(8):1319–1342, 1998.

[17] A. Ghahremaninezhad and K. Ravi-Chandar. Ductile failure behavior of polycrystalline al
6061-t6. International Journal of Fracture, 174(2):177–202, 2012.

[18] A.L. Gurson. Continuum theory of ductile rupture by void nucleation and growth – part I.
Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and

Technology, 99:2–15, 1977.

57



[19] M. E. Gurtin. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a micro-
force balance. Physica D: Nonlinear Phenomena, 92(3-4):178–192, 1996.

[20] S.S. Halton, S. Kyriakides, and K. Ravi-Chandar. Ductile failure under combined shear and
tension. International Journal of Solids and Structures, 50:1507–1522, 2013.

[21] M. Hofacker and C. Miehe. A phase field model of dynamic fracture: Robust field updates
for the analysis of complex crack patterns. International Journal for Numerical Methods in

Engineering, 93(3):276–301, 2013.

[22] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Dover Publications, Mineola, NY, 2000.

[23] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics

and Engineering, 194:4135–4195, 2005.

[24] G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected to various
strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21:31–48,
1985.

[25] C. J. Larsen. Models for dynamic fracture based on griffith’s criterion. In K. Hackl, editor,
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials,
volume 21, pages 131–140. Springer Netherlands, 2010.
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Changes

1. Changed all references to current configuration.

2. Added definition of ∆X to equation (3).

3. Removed definition of div, etc.

4. Replace Div ξ with DIV ξ in microforce balance equation (21).

5. Rewrote local form of 2nd law in reference configuration (25).

6. Replace Div with DIV in (39)

7. Replace Div with DIV in (40)

8. Replace Div with DIV 2x in (42)

9. Replace Div with DIV 2x in (43)

10. Replace Div with DIV in (45)

11. Replace c,X · c,X with ∆Xc in (46).

12. Replace c,X · c,X with ∆Xc in (49).

13. Replace Div with DIV in (72)

14. Replace c,X · c,X with ∆Xc in (72).

15. Rewrote (W) and (G) in the reference configuration (Section 4).

16. Added time argument to (77) and (78).

17. Changed Gc go G0
c in (15), (41), (43), (44), (86) (these changes have already been made to

the published version).

18. Changes Gc go G0
c in Step 2 of the adaptive time stepping algorithm described in Section

5.2.1 (this change is in the published version).

19. Changed Gc go G0
c in Table 2 (this change is in the published version).

61


