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Abstract

The article reviews fundamentals of Discontinuous Petrov-Galerkin (DPG) Method with Op-
timal Test Functions. The main idea admits three different interpretations: a Petrov-Galerkin
method with (optimal) test functions that realize the supremum in the inf-sup condition, a minimum-
residual method with residual measured in a dual norm, and a mixed formulation where one solves
simultaneously for the Riesz representation of the residual. The methodology can be applied to
any well-posed variational problem but it is especially effective in context of discontinuous (bro-
ken) test spaces. We discuss how one can “break” test functions in any variational formulation,
and use the convection-dominated diffusion model problem to illustrate challenges related to the
choice of an appropriate test norm.
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1 Introduction. A Model Problem

The name Discontinuous Petrov Galerkin (DPG) Method was introduced in a series of papers by
Bottasso, Causin, Micheletti and Sacco, see e.g. [5, 15]. The method was built on a variational
formulation in which all derivatives are passed to test functions. We named it later the ultraweak
variational formulation 1 and provided for it a precise functional setting. As the name suggests it,
the method uses a Petrov-Galerkin scheme, i.e. the trial and test basis functions are different. The
ultraweak formulation uses a non-symmetric functional setting (trial and test spaces are different) and
the Petrov-Galerkin scheme is a must. In the work of the Italian colleagues, the word “discontinuous”
referred to both trial and test functions. Both sets of functions were predefined a-priori. The main idea
behind our version of the (ideal) DPG method [23, 25] consisted in computing the test functions on
the fly. More precisely, for each trial function uh, we compute the corresponding optimal test function
vh = Tuh defined by a trial-to-test operator T . In practice, operator T and the optimal test functions
have to be approximated, and we talk then about a practical DPG method. Critical for the practicality
of the method is the use of discontinuous or broken test spaces which enables the computation of
optimal test functions (and their approximation) on the element level. It took us a while to understand
that the DPG methodology can be applied to any well-posed variational formulation [14] including
those that use continuous trial functions. Consequently, the word “discontinuous” in our DPG method
refers only to test functions. The ideal DPG method turns out to be equivalent to a minimum residual
method in which the residual is measured in the dual test norm. In case of the L2 test space, the
DPG method reduces to classical least squares, see e.g. [12, 4] so, it can be also understood as a
generalized least squares method. The idea of minimizing residuals in a dual norm is also not new,
see [6]. Finally, the ideal DPG method is also equivalent to a mixed formulation introduced by Cohen,
Dahmen, Schwab and Welper [20, 19] where one simultaneously solves for the approximate solution
and the Riesz representation of the residual (we call it the error representation function). Element
contributions to the norm of the error representation function serve as element error indicators, and
provide a basis for adaptivity. We shall discuss these relations in detail.

1The name has already been used in the same spirit by J.L. Lions and, more recently, by Cessenat and Despres.
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We conclude the opening paragraph by comparing the DPG method (with optimal test functions)
with a standard Petrov-Galerkin (PG) approach. Both methodologies use the standard FE technology
and differ only in element computations. In the standard PG method, given bilinear and linear forms
defining the problem, and trial and test shape functions, we integrate for the corresponding element
stiffness matrix and load vector, and return them to the solver. In the DPG method, we enter the
element routine only with trial shape functions, but we must also be given a concrete test inner product
that dictates the dual norm in which the residual is minimized, and provides a basis for computing the
optimal test functions. Clearly, for different test inner products, we get different methods and, for that
reason, one should talk rather about the DPG methodology than a DPG method. Selection of a starting
variational formulation (functional setting) and a proper test norm are instrumental in building a DPG
method for difficult singularly perturbed problems.

Model problem. The DPG method can be applied to both linear and nonlinear problems. This pre-
sentation will focus on linear problems for which a fairly complete theory has now been developed,
and we will make only a few informal comments about applications to compressible and incom-
pressible Navier-Stokes equations. To make the discussion more concrete, we will focus on a model
diffusion-convection-reaction problem. Given a bounded domain Ω ⊂ IRN , N = 1, 2, 3, we want to
determine u = u(x), x ∈ Ω that satisfies:

−div(a∇u− bu) + cu = f in Ω

u = u0 on Γu

(a∇− bu) · n = σ0 on Γσ

(1)

where a = aij is the diffusion matrix, b = bi is the advection vector, r is the reaction coefficient, and
f is a given source function. Boundary Γ = ∂Ω has been split into two disjoint parts Γu,Γσ on which
the two boundary conditions are satisfied with given data u0, σ0. Finally, n stands for the outward
normal unit vector, and σ · n denotes the dot product of vectors σ and n. Other boundary conditions
are possible.

Introducing explicitly flux σ := a∇u− bu, we can rewrite the problem as a system of first order
equations: 

ασ −∇u+ βu = 0 in Ω

−divσ + cu = f in Ω

u = u0 on Γu

σ · n = σ0 on Γσ

(2)

where a is assumed to be invertible, and α := a−1, β := a−1b.

2 Various Variational Formulations

We multiply the constitutive equation with a test function τ , the conservation equation with a test
function v, and integrate over the domain Ω. Each of the two equations can then be relaxed, i.e.
we integrate it by parts, moving derivatives to the test functions, and we build in the corresponding
boundary condition. For instance, relaxation of the conservation equation leads to:

(σ,∇v) + (cu, v) = (f, v) + 〈σ0, v〉 v = 0 on Γu
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where (u, v) denotes the L2(Ω) or (L2(Ω)N inner product, and 〈σ0, v〉 stands for the duality pairing
between H1/2(Γ) and and its dual H−1/2(Γ), generalizing the L2(Γ)-inner product. Notice that the
term involving the unknown normal flux σ · n on Γu has been eliminated by requesting the additional
condition1 on test function v.

Depending upon which choice we make, we obtain one of the following four variational formula-
tions.

Trivial (strong) formulation:

σ ∈ H(div,Ω), σ · n = σ0 on Γσ

u ∈ H1(Ω), u = u0 on Γu

(ασ, τ)− (∇u, τ) + (βu, τ) = 0 τ ∈ L2(Ω)N

−(divσ, v) + (cu, v) = (f, v) v ∈ L2(Ω)

(3)

Mixed formulation I:

σ ∈ H(div,Ω), σ · n = σ0 on Γσ

u ∈ L2(Ω)

(ασ, τ) + (u, div τ) + (βu, τ) = 0 τ ∈ H(div,Ω) : τ · n = 0 on Γσ

−(divσ, v) + (cu, v) = (f, v) v ∈ L2(Ω)

(4)

Mixed formulation II:

σ ∈ L2(Ω)N

u ∈ H1(Ω), u = u0 on Γu

(ασ, τ)− (∇u, τ) + (βu, τ) = 0 τ ∈ L2(Ω)N

(σ,∇v) + (cu, v) = (f, v) v ∈ H1(Ω) : v = 0 on Γu

(5)

Ultraweak formulation:
σ ∈ L2(Ω)N , u ∈ L2(Ω)

(ασ, τ) + (u, div τ) + (βu, τ) = 0 τ ∈ H(div,Ω) : τ · n = 0 on Γσ

(σ,∇v) + (cu, v) = (f, v) v ∈ H1(Ω) : v = 0 on Γu

(6)

The formulations involve two energy spaces: H1(Ω) consists of all L2 functions defined on Ω
whose gradient (in the sense of distributions) is also a (vector-valued) function that is square inte-
grable, H(div,Ω) consists of all square integrable vector-valued fields on Ω whose divergence (in
the sense of distributions) is a function (i.e. a regular distribution) that is square integrable as well.
Conforming discretizations of H1(Ω) lead to standard continuous (Lagrange) elements, whereas con-
forming discretizations of H(div,Ω) lead to Raviart-Thomas elements with vector-valued functions

1Simply speaking, we do not test on Γu.
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whose normal1 components must be continuous across interelement boundaries. The boundary con-
ditions are understood in the sense of traces. Notice that only the mixed formulations employ a
symmetric functional setting, i.e. the trial and test spaces are the same and, therefore, are eligible for
the standard (Bubnov-) Galerkin method.

The non-relaxed equations are equivalent to their strong form and, for both mixed formulations,
can be used to eliminate one of the variables to arrive at two reduced formulations. Eliminating the
flux from the second mixed formulation, we obtain the classical variational formulation expressed in
terms of u alone: 

u ∈ H1(Ω), u = u0 on Γu

(a∇u,∇v)− (bu,∇v) + (cu, v) = (f, v) + 〈σo, v〉

v ∈ H1(Ω) : v = 0 on Γu .

(7)

Assuming c 6= 0, we can eliminate u from the first mixed formulation, and obtain the second reduced
formulation expressed in terms of flux only,

σ ∈ H(div,Ω), σ · n = σ0 on Γσ

(ασ, τ) + (c−1div σ, div τ) + (βc−1div σ, τ) = −(c−1f, div τ)− (βc−1f, τ)

τ ∈ H(div,Ω) : τ · n = 0 on Γσ .

(8)

Of course, if c vanishes, the second reduced formulation is not possible.
Under standard assumptions on coefficients a, b, c, the bilinear forms for all all formulations sat-

isfy simultaneously the inf-sup condition (in the corresponding variational setting) with related inf-sup
constants [22]. Loosely speaking, all formulations are simultaneously well- or ill-posed. Different
variational settings imply of course different regularity assumptions on the load data. Each of the
formulations, including those with the non-symmetric functional setting, may serve as a starting point
for the DPG method, resulting in the convergence in a different norm. One can also mix different
formulations in different parts of the domain.

Finally, we mention that there is no need for making the additional assumptions on test functions.
Elimination of the side conditions on the test functions (i.e. testing on the whole boundary) leads
always to the introduction of additional unknowns on the boundary. For instance, if we test in the
classical formulation (7) with all v ∈ H1(Ω), we have to introduce an extra unknown - boundary flux
σ̂ · n, a trace of a flux σ ∈ H(div,Ω) on Γu. It is convenient to assume that σ̂ · n lives on the whole
boundary, and it satisfies the flux boundary conditions on Γσ. We obtain,

u ∈ H1(Ω), u = u0 on Γu

σ̂ · n ∈ H−1/2(Γ), σ̂ · n = σ0 on Γσ

(a∇u,∇v)− (bu,∇v) + (cu, v)− 〈σ̂ · n, v〉 = (f, v) v ∈ H1(Ω) ,

(9)

whereH−1/2(Γ) is the trace ofH(div,Ω). Consequently, the extra unknown is discretized with traces
of Raviart-Thomas elements. Similar modifications can be made to all other variational formulations
resulting in well-posed variational formulations. In classical Finite Element (FE) implementation we
prefer to reduce the number of unknowns by imposing the extra boundary conditions on test functions.
Once the problem is solved, we come back to the equation above, and test it subsequently with the

1In general, the tangential components are discontinuous.
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remaining test functions (those that do not vanish on Γu) to solve for flux σ̂ · n on Γu. For regular
solutions, the additional unknown coincides with the flux corresponding to the primary variable u, and
the whole procedure is interpreted as a postprocessing scheme. This is not a must though, we can solve
simultaneously for u and σ̂ · n, if needed. The concept of solving for u and the flux simultaneously is
critical for understanding the next section.

Comment: Introduction of the additional unknown σ converting the second order problem into
the first order system is not unique and has been motivated here by the boundary condition. Also,
multiplication of the first equation with the inverse α = a−1 is somehow arbitrary. In context of
convection-dominated diffusion where a = εI , [9] advocate a multiplicative splitting of the diffusion
coefficient and identifying σ = ε1/2∇u as the additional variable.

3 Breaking Test Spaces

In each of the discussed formulations, we can test with functions coming from larger, broken test
spaces H1(Ωh) and H(div,Ωh). Elements of the new energy spaces live in H1(K) and H(div,K),
for each element K in mesh Th but, otherwise, satisfy no global conformity (continuity) conditions.
Obviously, discretization of such spaces is much easier compared with the standard spaces that require
the enforcement of the global continuity conditions. When testing with discontinuous test functions,
we pay the same price as discussed above – we have to introduce additional unknowns that live now
on the whole mesh skeleton Γh =

⋃
K∈Th ∂K. For instance, “breaking” test functions in the classical

formulation (7), we obtain,
u ∈ H1(Ω), u = u0 on Γu

σ̂ · n ∈ H−1/2(Γh), σ̂ · n = σ0 on Γσ

(a∇u,∇v)− (bu,∇v) + (cu, v)− 〈σ̂ · n, v〉 = (f, v) v ∈ H1(Ωh) ,

(10)

Notice the difference between (9) and (10): the new variable σ̂ · n is now defined on the whole mesh
skeleton Γh, and the duality pairing is defined elementwise:

〈σ̂ · n, v〉 :=
∑
K∈Th

〈σ|K · nK , vK〉∂K , v = {vK}K∈Th ∈ H
1(Ωh) (11)

where σ ∈ H(div,Ω) is an arbitrary field such that σ · n = σ̂ · nK on ∂K, with nK denoting the
outward normal unit vector on ∂K. The space of all such restrictions to Γh is denoted by H−1/2(Γh)
and equipped with the quotient (minimum energy extension) norm:

‖σ̂ · n‖H−1/2(Γh) := inf
σ
‖σ‖H(div,Ω) (12)

where the infimum is taken over all fields σ ∈ H(div,Ω) discussed above.
In a similar way, we introduce space H1/2(Γh), the space of restrictions of functions from H1(Ω)

to mesh skeleton Γh,

û ∈ H1/2(Γh)
def⇔ ∃u ∈ H1(Ω) : û = u|∂K , ∀K ∈ Th . (13)

The space is again equipped with the minimum energy extension norm. Similarly to pairing (11),
elements û ∈ H1/2(Γh) pair with broken space H(div,Ωh),

〈τ · n, û〉 :=
∑
K∈Th

〈τK · nK , u〉∂K , τ = {τK}K∈Th ∈ H(div,Ωh) (14)
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where u ∈ H1(Ω) is an extension of û to Ω. For more discussion on spaces defined on the mesh
skeleton, see [24, 31, 14].

“Breaking” test functions in the ultraweak formulation (6), we obtain a new formulation in the
form: 

σ ∈ L2(Ω)N , u ∈ L2(Ω)

û ∈ H1/2(Γh), û = u0 on Γu

σ̂ · n ∈ H−1/2(Γh), σ̂ · n = σ0 on Γσ

(ασ, τ) + (u, div τ) + (βu, τ)− 〈τ · n, û〉 = 0 τ ∈ H(div,Ωh)

(σ,∇v) + (cu, v)− 〈σ̂ · n, v〉 = (f, v) v ∈ H1(Ωh)

(15)

Notice that in process of “breaking” test functions we also eliminate boundary conditions on test
functions.

In an analogous way, we can “break” test functions in the remaining variational formulations.
Only in the case of the strong formulation, the formulation remains unchanged as the L2 spaces do
not present any global conformity assumptions. The main message of the theory presented in [14] is
now as follows. Let the original variational formulation be represented in the abstract form,{

u ∈ U
b(u, v) = l(v) v ∈ V

(16)

where U, V are trial and test spaces, and bilinear (sesquilinear) form b(u, v) and linear (antilinear)
form l(v) represent a particular variational formulation. In general, of course, both solution u and test

functions v represent group variables, e.g. for the discussed ultraweak formulation u
′
= (σ, u) and

v
′
= (τ, v). We make now the following assumptions.

A1: The test norm is of the form:
‖v‖2V := ‖Cv‖2 + ‖v‖2 (17)

where C is a differential operator of first order, and ‖ · ‖ represents L2-norm. The test space can
be replaced with its broken counterpart V (Ωh) with the test norm1 (17) and the corresponding
inner product extending naturally to the broken test space,

‖v‖2V (Ωh) :=
∑
K∈Th

{
‖CvK‖2L2(K) + ‖vK‖2L2(K)

}
, v = {vK}K∈Th (18)

with a corresponding natural extension of the bilinear form 2 bh(u, v), u ∈ U, v ∈ V (Ωh) that
remains continuous,

|bh(u, v)| ≤M‖u‖U ‖v‖V (Ωh) . (19)

A2: There exists a corresponding space of Lagrange multipliers Û defined on the skeleton Γh with a
pairing 〈û, v〉 satisfying the following two properties3:

v ∈ V ⊂ V (Ωh) ⇔ 〈û, v〉 = 0 ∀û ∈ Û , v ∈ V (Ωh)

〈û, v〉 = 0 ∀v ∈ V (Ωh) ⇒ û = 0
(20)

1We call it a localizable test norm.
2In practice the differential operators defining bh(u, v) are defined now element-wise.
3We say that that the pairing is definite.
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A3: The bilinear form in (16) satisfies the inf-sup condition:

sup
v∈V

|b(u, , v)|
‖v‖V

≥ γ‖u‖2U . (21)

Then the corresponding “broken” variational formulation:
u ∈ U, û ∈ Û
bh(u, v) + 〈û, v〉︸ ︷︷ ︸

=:bmod((u,û),v)

= l(v) v ∈ V (Ωh) (22)

is well-posed as well, with a new, mesh-independent inf-sup constant, and a mesh-dependent norm for
the Lagrange multiplier,

‖û‖Û := sup
v∈V (Ωh)

|〈û, v〉|
‖v‖V (Ωh)

. (23)

The result is a straightforward consequence of the assumptions we have made. Indeed, in order to
control u, we need only to restrict ourselves to the conforming test functions,

γ‖u‖U ≤ sup
v∈V

|b(u, v)|
‖v‖V

≤ sup
v∈V (Ωh)

|bh(u, v)|
‖v‖V (Ωh)

= sup
v∈V (Ωh)

|bmod(u, 0)|
‖v‖V (Ωh)

With u being controlled, we move bh(u, v) to the right-hand side,

〈û, v〉 = bmod((u, û), v)− bh(u, v)

and use (19) and the bound for ‖u‖U to obtain a bound of the Lagrange multiplier1

‖û‖Û ≤ (1 +
M

γ
) sup
v∈V (Ωh)

|bmod(u, û)|
‖v‖V (Ωh)

.

The dual norm for the Lagrange multipliers can be reinterpreted in terms of solution to local Neumann
problems. First of all, we have the fundamental algebraic property for the broken test spaces,(

sup
v∈V (Ωh)

|〈û, v〉|
‖v‖Ω(h)

)2

=
∑
K∈Th

(
sup

vK∈V (K)

|〈û, vK〉|
‖v‖V (K)

)2

(24)

Secondly, the Riesz Representation Theorem implies that the element supremum equals the norm of
the local Riesz representation of the pairing,

sup
vK∈V (K)

〈û, vK〉
‖v‖V (K)

= ‖Û‖V (K) (25)

where ÛK is the solution of the local variational problem, ÛK ∈ V (K)

(CÛK , Cδv) + (ÛK , δv) = 〈û, δv〉 δv ∈ V (K) .
(26)

1Brezzi’s argument.
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Variational problem (26) is equivalent to a local Neumann problem for operator C∗C + I , and it can
be shown to be equivalent to a local Dirichlet problem for operator CC∗+ I , see [14]. Consequently,
the norm for the (natural) norm for the Lagrange multiplier can be interpreted in terms of minimum
energy extension norms (‖C∗v‖2 + ‖v‖2)1/2. This is consistent with the generic norms that we have
introduced for traces and fluxes. If we use the standardH1-test norm in (10), fluxes σ̂·n ∈ H−1/2(Γh)
are measured using the minimum energy extension norm (12), i.e.

‖σ̂ · n‖2 =
∑
K∈Th

{‖div σ‖2 + ‖σ‖2}

where σ solve the local Dirichlet problems,{
σ ∈ H(div,K), σ · n = σ̂ · n on ∂K

−∇(div σ) + σ = 0 in K

Similarly, if we use the standard H(div)-norm for the τ component in (6), the norm for the corre-
sponding Lagrange multiplier, the trace û is given by:

‖û · n‖2 =
∑
K∈Th

{‖∇u‖2 + ‖u‖2}

where u solve the local Dirichlet problems,{
u ∈ H1(K), u = û on ∂K

−div (∇u) + u = 0 in K

If, however, we choose to work with different test norms, the natural norm for the Lagrange multipliers
(fluxes and traces) will change accordingly. Notice the philosophical aspect of our discussion: the
natural norm for the additional unknowns resulting from breaking test functions is not derived from
the trial but rather test norm.

4 Three Hats of the Ideal DPG Method

The methodology discussed in this section applies to any abstract variational problem (16) but, in
practice, will be applied to problems (22) employing a broken test space. In order to simplify the
exposition, we will use the terminology of problem (16). Obviously, replacing u with group variable
(u, û) and bilinear form b(u, v) with the modified form bmod((u, û), v), we can apply all results of the
forthcoming discussion to the modified problem as well.

4.1 Hat 1: a Petrov-Galerkin method with optimal test functions

Given a variational problem (16), we construct its Petrov-Galerkin discretization by selecting a trial
space Uh ⊂ U and a test space Vh ⊂ V , of equal dimension dim Uh = dim Vh < ∞ and solve the
algebraic problem: {

uh ∈ Uh

b(uh, vh) = l(vh) vh ∈ Vh .
(27)
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The trouble with the discrete problem is that the well-posedness of the continuous problem does not
imply that the discrete problem is well posed as well. More precisely, the continuous inf-sup condition
does not imply its discrete version:

sup
v∈V

|b(uh, v)|
‖v‖V

≥ γ‖uh‖U 6=⇒ sup
vh∈Vh

|b(uh, vh)|
‖vh‖V

≥ γ‖uh‖U . (28)

The reason is obvious: the supremum on the continuous level is taken with respect to all non-zero test
functions, whereas on the discrete level only over the subspace Vh. The situation changes, however, if
we do not work with arbitrary selected test functions but only with those that realize the supremum. Let
B : U → V ′ be the operator corresponding to bilinear form b(u, v), i.e. 〈Bu, v〉V ′×V = b(u, v), u ∈
U, v ∈ V , and let RV : V → V ′ denote the Riesz operator corresponding to test inner product
(v, δv)V , ‖v‖2V = (v, v)V . We claim that the supremum in the inf-sup condition is attained for
v = R−1

V uh. Indeed,

sup
v∈V

|b(uh, v)|
‖v‖V

= ‖Buh‖V ′ (definitions of B and dual norm)

= ‖R−1
V Buh‖V (Riesz operator is an isometry)

=
(R−1

V Buh, R
−1
V Buh)V

‖R−1
V Buh‖V

(‖v‖2V = (v, v)V )

=
〈Buh, R−1

V Buh〉
‖R−1

V Buh‖V
(definition of Riesz operator)

=
b(uh, R

−1
V Buh)

‖R−1
V Buh‖V

(definition of operator B)

Consequently, if we introduce trial to test operator T : U → V, T = R−1
V B, and select the optimal

test space as Vh = TUh, the problem with discrete stability is solved once and forever. If we test with
optimal test functions, the discrete inf-sup constant is always at least as good as the continuous one,
γh ≥ γ. Notice. however, that the inversion of the Riesz operator (determination of the optimal test
functions) requires solution of an auxiliary variational problem,{

v = Tuh ∈ V

(v, δv)V = b(uh, δv) δv ∈ V .
(29)

4.2 Hat 2: a minimum residual method

Let us replace the original trial norm ‖u‖U with a special “energy” norm,

‖u‖E = ‖Bu‖V ′ = ‖R−1
V Bu‖V . (30)

Obviously, with a redefined norm on u, the corresponding continuity and inf-sup constants will
change. It takes a second to see that continuity constant M equals one 1. Now, with optimal test
functions,

sup
vh∈Vh

〈Buh, vh〉
‖vh‖V

= sup
v∈V

〈Buh, v〉
‖v‖V

= ‖uh‖E ,

1With spaces U, V equipped with norms ‖u‖E , ‖v‖V , bilinear form b(u, v) becomes a a duality pairing , comp. [10].
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which proves that γh ≥ 1 as well. Consequently, Babuška’s Theorem [1] implies that

‖u− uh‖U ≤
M

γh︸︷︷︸
≤1

inf
wh∈Uh

‖u− wh‖U .

In other words, the Petrov-Galerkin method delivers an orthogonal projection in the energy norm. But
the energy norm is equal to the residual,

‖u− uh‖E = ‖B(u− uh)‖V ′ = ‖l −Buh‖V ′ = ‖R−1
V (l −Buh)‖V ,

and, therefore, DPG with optimal test functions is a minimum residual method. Critical is the fact that
the residual is measured in the dual norm, consistently with the variational formulation of the problem.
It may come as a surprise that the minimum residual method is the most stable Petrov Galerkin scheme.
In the case of the trivial (strong) variational formulation, the test space is the L2-space and (with the
usual identification of the dual space with L2 itself) the Riesz operator reduces to identity. With the
residual measured in the L2-norm, the DPG method reduces to classical least squares.

4.3 Hat 3: a mixed method

We can start now from the other end, i.e. the minimum residual method,

uh = arg minwh∈Uh
J(wh) J(wh) :=

1

2
‖Bwh − l‖2V ′ =

1

2
‖R−1

V (Bwh − l)‖2V

where, again, we use the fact that the Riesz map RV is an isometry. The minimized functional is a
simple quadratic functional, and the minimization problem is equivalent to vanishing of its Gâteaux
derivative:

(R−1
V (Buh − l), R−1

V Bwh) = 0 ∀wh ∈ Uh . (31)

We can eliminate one of the Riesz operators above by replacing the test inner product with duality
pairing in V ′×V . If we identify vh = R−1

V Bwh as the optimal test function corresponding to wh and
eliminate the first Riesz operator, we recover the Petrov-Gelerkin scheme with optimal test functions,

〈Buh, vh〉 = 〈l, vh〉 vh := R−1
V Bwh, wh ∈ Uh .

Alternatively, if we identify ψ := R−1
V (Buh − l) as a new unknown, we can take the second Riesz

operator out to obtain
〈Bwh, ψ〉 = 0 wh ∈ Uh .

Rewriting definition of ψ and the equation above in the variational form, we obtain a mixed problem,
ψ ∈ V, uh ∈ Uh
(ψ, v)V − b(uh, v) = −l(v) v ∈ V
b(wh, ψ) = 0 wh ∈ Uh .

(32)

We called ψ the error representation function although a better and more informative name would
be simply the Riesz representation of residual. The mixed problem is equivalent to a constrained
minimization problem where one minimizes the functional:

1

2
‖ψ‖2V + l(ψ) , (33)
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over all ψ that satisfy the constraint: b(wh, ψ) = 0 , wh ∈ Uh. It is not a typical mixed problem as it
involves an infinite dimensional space V , and a finite dimensional space uh. The norm ‖ψ‖V equals
the residual. For a broken test space,

‖ψ‖2V (Ωh) =
∑
K∈Th

‖ψK‖2V (K) ψ = {ψK}K∈Th ,

and the element contributions ‖ψK‖2V (K) are perfect a-posteriori error indicators. As least squares,
DPG method comes with a built-in a-posteriori error estimate.

5 A Practical DPG Method

The key point in applying the concept of optimal test functions in practice is the use of broken test
spaces. We call the test norm (18) localizable as the norm (squared) equals sum of norms (squared)
defined over individual element test spaces. With a broken test space and localizable test norm, the
inversion of Riesz operator in (29) is done elementwise, can be done in parallel, and it does not
contribute to global computations. Still, except for very simple problems like convection [23], the
element-wise inversion of the Riesz operator can be done only approximately. In all of our work we
have pursued the idea of an enriched test space 1. If trial space is, loosely speaking, discretized with
elements of order p, we introduce a finite-dimensional enriched subspace V r ⊂ V corresponding to
elements of order r > p. Typically, ∆p := r − p = 1, 2, 3. Dimension of the enriched space V r

is larger than dimension of the trial space, dim V r >> dim Uh. The actual optimal test space Vh is
then determined by approximating variational problem (29) with the standard Galerkin method, and
the enriched space V r replacing the infinite-dimensional space V ,{

vr = T ruh ∈ V r ⊂ V

(vr, δv)V = b(uh, δv) δv ∈ V r .
(34)

Operator T r is called the approximate trial-to-test operator, and T rUh is the approximate optimal test
space. Replacing test space V with the enriched subspace V r in the definition of the dual norm and
the mixed problem, we realize again that the three formulations of the practical DPG method are fully
equivalent.

Obviously, replacing the optimal test functions with their approximation or, in another words,
approximating the Riesz operator with the enriched space, we loose the optimal properties of the
method. The question is: how much? The question was addressed in [29] by introducing the concept
of a Fortin operator F r : V → V r that satisfies two properties:

b(wh, v − F rv) = 0 (orthogonality)

‖F rv‖V ≤ Cr‖v‖V v ∈ V (continuity)
(35)

Continuity constant Cr helps to quantify how much stability we loose by replacing the optimal test
functions with their approximations. Let v = Tuh be the exact optimal test function corresponding to

1Broersen and Stevenson [8] use the name of a search space.
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uh, and vr = T ruh its approximate counterpart. We have,

|b(uh, vr)|
‖vr‖

= sup
w∈V r

|b(uh, w)|
‖w‖

(def of approximate optimal test functions)

≥ |b(uh, F
rv)|

‖F rv‖
(def of supremum)

=
|b(uh, v)|
‖v‖

‖v‖
‖F rv‖

(orthogonality property of F r)

≥ γ

Cr
‖uh‖ (continuity property of F r)

(36)

Consequently, Babuška’s Theorem [1] implies the a-priori error estimate:

‖u− uh‖U ≤
CrM

γ
inf

wh∈Uh

‖u− wh‖U . (37)

A family of commuting Fortin operators for Nedéléc simplices of the first type and the exact sequence
test spaces has been constructed in [29, 14]. A similar simple argument can be used to assess the
damage to the a-posteriori residual error estimate in terms of the Fortin constant Cr, see [13].

The enriched space is defined a-priori by specifying the order increment ∆p. In most of our
computations we have used ∆p = 2. A common sanity check is to rerun the code with a higher
∆p and compare the results. Implicit in the philosophy of the enriched space is the assumption that
both the optimal test functions and the error representation functions ψ are rather regular, and can
be sufficiently well approximated with the simple p-enrichment scheme. The assumption is satisfied
for standard test inner products corresponding to H1, H(curl) and H(div)-spaces and regular load
data. It fails to be satisfied for singular perturbation problems and test norms that inherit the (small)
perturbation parameter. We will return to this issue momentarily.

Coding the DPG method. We conclude this section with a short comment on how we code the
practical DPG method in context of the modified variational formulation (22). We shall use the mixed
problem formalism (32) to explain it. The mixed formulation for the “broken problem” reads as
follows. 

ψr ∈ V r, uh ∈ Uh, ûh ∈ Ûh
(ψr, v)V − b(uh, v)− 〈ûh, v〉 = l(v) v ∈ V r

b(wh, ψ) = 0 wh ∈ Uh
〈ŵh, ψ〉 = 0 ŵh ∈ Ûh

(38)

or, in terms of matrices, 
Gψr −B1uh −B2ûh = −l
B∗1ψ

r = 0

B∗2ψ
r = 0

(39)

With a little abuse of notation, ψr, uh, ûh above can be understood as vectors of degrees-of-freedom
for the actual unknowns. G is a square m ×m Gram matrix corresponding to discretization of test
inner product with m shape functions spanning the enriched test space. B1 is a rectangular stiffness
matrix obtained from discretization of the original bilinear form with n trial shape functions and
the m enriched space shape functions, and B2 is also a rectangular k × m stiffness matrix coming
from the discretization of pairing 〈ûh, v〉 with k trial functions used to approximate ûh and the m
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enriched space shape functions. Now comes the main point: with the broken test spaces, the error
representation function ψ can be condensed out element-wise. Solving the first equation for ψ and
substituting it into the remaining two equations, we obtain the DPG system,(

B∗1G
−1B1 B∗1G

−1B2

B∗2G
−1B1 B∗2G

−1B2

) (
uh
ûh

)
=

(
B∗1G

−1l
B∗2G

−1l

)
. (40)

Note that the static condensation of ψ is equivalent to the determination of approximate optimal test
functions and computation of the corresponding DPG element matrices. The rest of the computations
follows the standard FE technology. We communicate the element matrices to a solver, and solve
for uh and ûh. In the backward substitution phase, we compute the element contributions to error
representation function ψ and its norm that serves as the a-posteriori error estimate.

The abstract exposition of the subject translates now into concrete a-priori and a-posteriori er-
ror estimates for specific problems. For instance, for the broken version of the classical variational
formulation (10), we have the a-priori error estimate:(

‖u− uh‖2H1(Ω) + ‖(σ − σ̂h) · n‖2
H−1/2(Γh)

)1/2

≤ C
(

infwh
‖u− wh‖2H1(Ω) + inf ψ̂h

‖(σ − ψ̂) · n‖2
H−1/2(Γh)

)1/2
(41)

where we have used the fact that, for sufficiently regular solution, σ̂ · n coincides simply with σ · n.
The best approximation error for flux σ · n, measured in the minimum energy extension norm, can
easily be estimated using standard interpolation error estimates. Indeed, let Πdiv

h σ be any well-defined
interpolant of σ. Then σ−Πdiv

h σ provides an extension for (σ−Πdiv
h σ) ·n and the best approximation

error of σ · n can be estimated by the H(div)-norm of the interpolation error. This suggests that the
order of approximation for uh and σ̂h · n should be dictated by the exact sequence logic; this way
both contributions to the best approximation error are of the same order, and we get the standard error
estimate:(
‖u− uh‖2H1(Ω) + ‖(σ − σ̂h) · n‖2

H−1/2(Γh)

)1/2
≤ Chmin{p,r}

(
‖u‖2Hr+1(Ω) + ‖σ‖2Hr(div,Ω)

)
(42)

where p is the order of elements. A code that supports a simultaneous discretization of all energy
spaces forming the exact sequence: H1, H(curl), H(div), L2, can naturally be used to implement the
DPG method. In the discussed case, we discretize u with H1-conforming elements, and σ̂ · n with
traces of H(div)-conforming elements. An alternative is to build a hybrid code that will support the
variables living on the mesh skeleton.

The stability constant includes the Fortin operator continuity constant Cr. For the operators con-
structed so far, Cr is independent of mesh size h but not the polynomial order p. If Cr were also
independent of p, we could claim optimal hp error estimates as well.

In a similar way, we obtain the a-priori error estimate for the broken ultraweak formulation (15):(
‖u− uh‖2L2(Ω) + ‖σ − σh‖2L2(Ω) + ‖u− ûh‖2H1/2(Γh)

+ ‖(σ − σ̂) · n‖2
H−1/2(Γh)

)1/2

≤ Chmin{p,r}
(
‖u‖2Hr+1(Ω) + ‖σ‖2Hr(div,Ω)

)1/2
(43)

To implement this version of the DPG method, we need H1, H(div) and L2-conforming elements.
The L2 elements are used to discretize u and components of σ, traces of H1-elements are used to
discretize “trace” û, and traces of H(div) elements are needed for the discretization of “flux” σ̂.
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For numerous 2D and 3D numerical experiments for standard model problems including diffusion-
convection-reaction, Maxwell, elasticity and Stokes problems, see [24, 7, 27, 26, 31, 13, 14].

Comment: In the standard Galerkin method, the mixed and corresponding reduced formulation
deliver the same discrete scheme provided the spaces are selected in such a way that range of ασh
contains the range of −∇uh + βuh, a condition that is satisfied e.g. for a = εI , constant b and
standard discrete spaces. Simply speaking, the discrete version of the constitutive equation implies
then its satisfaction pointwise, similarly to the continuous level. However, this is not the case for
the DPG method where the mixed formulation yields different discrete solution than the reduced
formulation.

6 Singular Perturbation Problems

By now, the reader should realize that DPG is not a single method but rather a methodology. Depen-
dent upon which variational formulation we choose, the error will be controlled in different norms.
More than that, for a fixed functional setting, there are many equivalent test norms we can choose.
For each test norm, the method will minimize the residual in the (approximate) dual test norm and
deliver the best approximation error in the corresponding “energy norm”. Ideally, we would like to
start with a trial norm of our choice and search for a test norm such that the corresponding energy
norm is identical or close to our preselected trial norm.

The choice of an appropriate variational formulation and the test norm emerge as crucial aspects of
the DPG methodology in context of singular perturbation problems. In our discussion, we shall focus
on the convection-dominated diffusion problem assuming in (1) constant diffusion a = εI , order
one advection b, and no reaction, c = 0. A discretization is said to be robust if stability constant C
present in estimates (42), (43) is independent of the perturbation parameter, in our case - the diffusion
parameter ε. This implies that all involved constants: inf-sup constant γ, continuity constant M and
the Fortin operator continuity constant Cr should be independent of ε. Can we derive in a systematic
way a test norm for which all three conditions are satisfied ?

The moral of the discussion on broken test spaces in Section 3 is twofold: a/ in terms of solution
u, the “broken formulation” inherits stability properties from the original variational formulation, b/
the error in the extra unknowns: traces and/or fluxes is controlled (robustly) in a natural norm derived
from the test norm. In other words, we may try to derive an optimal test norm to control the original
unknown but once we choose it, it implies automatically the norm for the Lagrange multiplier.

We can use for a starting point a very general (and abstract) fact implied by the Closed Range
Theorem. Recall that any bilinear form b(u, v) generates two operators B : U → V ′, and B′ : V →
U ′. For Hilbert spaces U, V , B′ can be identified with the conjugate of operator B. If B′ is injective
then

‖v‖opt := sup
u

|b(u, v)|
‖u‖U

= ‖B′v‖U ′ (44)

defines a norm. We call it an optimal test norm because, with this test norm, bilinear form b(u, v)
becomes a duality pairing [36, 10], i.e.

sup
v

|b(u, v)|
‖v‖opt

= ‖u‖U . (45)

In other words, the energy norm corresponding to such a test norm coincides with the norm in U that
we began with. At this point, the ultraweak formulation emerges to be special as we can determine
the optimal test norm explicitly,

‖v‖opt = ‖A∗v‖ . (46)
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Unfortunately, in general, the optimal test norm is not localizable, i.e. we cannot use it in the broken
formulation. We know, however, from the Closed Range Theorem for Closed Operators that operators
A and its adjoint A∗ are bounded below with the same constant α > 0,

‖Au‖ ≥ α‖u‖, ‖A∗v‖ ≥ α‖v‖ . (47)

Consequently, the ideal test norm and the scaled adjoint graph norm,

‖v‖2G := ‖A∗v‖2 + c2‖v‖2 , (48)

are equivalent. Indeed, the optimal test norm is bounded by (48), and

‖A∗v‖2 + c2‖v‖2 ≤ ‖A∗v‖2 +
c2

α2
‖A∗v‖2 = (1 +

c2

α2
)‖A∗v‖2 . (49)

The duality argument implies that the energy norm corresponding to the adjoint graph norm is equiv-
alent (with the same equivalence constants) to the original trial L2-norm. The critical question is
whether the equivalence constants are bounded uniformly in perturbation parameter ε. If the bound-
edness below constant is independent of ε, we can assume in (48) c = 1 (the standard adjoint graph
norm), and we obtain a robust DPG method. This is the case for the model problem discussed here
[28, 18] and e.g. for a linear acoustics problem, see [36, 27]. In principle, if α depends upon ε, we can
compensate for α with the scaling constant but the round off error quickly prohibits such practices.

Comment. If we take for a starting point the second-order model problem (1), Broersen and
Stevenson [9, 8] noted that the corresponding first order system is not uniquely defined and raised
the question of how to select it in an optimal way. The issue concerns the definition of the additional
unknown σ (the flux) and scaling of the first equation. Broersen and Stevenson advocated to work
with the system, {

σ − ε1/2∇u = 0

−div(ε1/2u+ bu) = f ,
(50)

as opposed to {
1
εσ −∇u = 0

−div(u+ bu) = f ,
(51)

used in [28]. Different formulations result in different operators, different adjoints and, consequently,
different graph norms. Constants α are different and, more importantly, the natural norms for the
Lagrange multipliers (traces and fluxes) are different. Intuitively, we may prefer stronger test norms
so the corresponding (dual) norm for fluxes/traces is weaker and it does not dominate the norm for the
original unknowns. Additionally, we have to watch for different contributions to A∗v to be of similar
order to avoid round off truncations. Use of broken test spaces comes handy here as we can easily
rescale dual variable components τ, v element-wise adjusting for element size and ε. All these issues
are far from trivial and problem dependent.

Comment. For the convection-dominated problem, we do not have to augment (46) with the full
group L2-norm. With the dual variable (τ, v), it is sufficient to add only the L2-norm of the second
component. Also, the standard DPG method does not guarantee element conservation property. We
can enforce it by requesting, for each element K, piece-wice constants (0, 1K) to be in the test space,
and minimize the residual in the orthogonal complement of such functions [34]. We do not need then
any additional L2-term to localize the norm. The resulting formulation is robust as well.

Many of the issues discussed here disappear if we avoid breaking test functions all together and
work directly with the mixed formulation involving solution uh and an approximation of the error
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representation function ψ. We can work then directly with the optimal test norm (46). This was the
original idea by Cohen at all in [19], see also [8].

Comment. With the scaled graph norm and scaling coefficient c→ 0, we converge to the optimal
test norm which delivers the L2-projection. The corresponding optimal test functions coincide then
with the optimal test functions of Barret and Morton [3] given by another trial-to-test operator TBM :=
(B′)−1 ◦RU . The difference between the two trial-to-test operators is explained in the diagram below.

U
B−→ V ′

↓ RU ↑ RV

U ′
B′←− V

. (52)

Our trial-to-test operator involves inverting Riesz operator RV , whereas Barret-Morton operator in-
volves inverting conjugate operator B′. Nevertheless, for the ultraweak formulation and the optimal
test norm, inverting RV reduces to the variational problem:

(A∗v,A∗δv) = (u,A∗δv) ∀δv (53)

which yields the Barret-Morton optimal test function v = (A∗)−1u which, in turn, deliver the L2-
projection. In this context, the DPG method can be seen as a localization technique for the computa-
tion of Barret-Morton test functions [17].

Despite fantastic stability properties, the adjoint graph norm is not easy to work with. The pertur-
bation parameter ε has been moved to the test norm, and the resolution of the optimal test functions
and/or error representation function ψ may be almost as difficult as the solution of the original prob-
lem. The original method proposed by Cohen, Dahmen and Welper [19] uses a double adaptive
algorithm. Given a trial space, an additional a-posteriori error estimate for ψ is used to determine
adaptively an “enriched test spaces” to secure a sufficient resolution of ψ. Once the error in ψ is of
order of norm of ψ (see [19] for a precise criterion), the norm of ψ serves as an error indicator for
refining the trial space, see also [21].

A different strategy was used in [30] where the authors used special Shishkin subelement meshes
to resolve the optimal test functions.

Finally, a fundamentally different strategy was pursued in [28, 18]. The bilinear form for the
ultraweak variational formulation with broken test spaces can be written concisely in the abstract
form:

b((u, û), v) = (u,A∗v) + 〈û, v〉 (54)

where u ∈ U = L2(Ω)N , test functions come from the broken counterpart of V = D(A∗), and
û ∈ Û , where Û is the space of Lagrange multipliers corresponding to the broken test space. Pick
u ∈ L2(Ω)N and consider the corresponding solution vu of the adjoint problem:{

vu ∈ V := D(A∗)

A∗vu = u .
(55)
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Let ‖v‖V denote an arbitrary test norm. Then,

‖u‖2 = (u,A∗vu) (A∗vu = u)

= b((u, û), vu) (v is globally conforming)

=
|b((u, û), vu)|
‖vu‖V

‖vu‖V

≤ sup
v

|b((u, û), v)|
‖v‖V

‖vu‖V (definition of supremum) .

Thus, if we can select the test norm in such a way that the solution of the adjoint problem (55) can be
controlled robustly by the L2-norm of the right-hand side,

‖vu‖V ≤ C‖u‖ (C independent of ε) (56)

then the L2-norm of u is controlled robustly by the energy norm corresponding to the test norm,

‖u‖ ≤ C sup
v

|b((u, û), v)|
‖v‖V

(57)

In other words, we try to select the test norm in such a way that at least the inf-sup constant for
the ultraweak formulation is ε-independent. One obvious choice is the adjoint graph norm but other
choices are possible as well. The search for an appropriate test norm leads thus to the stability analysis
of the adjoint problem (on the continuous level).

For example, if we select in our model problem (1) for Γu the outflow boundary and for Γσ the
inflow boundary,

Γu = Γout := {x ∈ Γ : b(x) · n > 0}

Γσ = Γin := {x ∈ Γ : b(x) · n ≤ 0} ,
(58)

we learn that, under mild regularity assumption on advection b [18], the following quantities are
controlled robustly in ε,

‖v‖, ε1/2‖v‖, ‖b ·∇v‖, ‖div τ‖, 1

ε1/2
‖τ‖ . (59)

Thus, if we put these Lego blocks together, we obtain a candidate for a test norm satisfying condi-
tion (56),

‖(τ, v)‖2V := ‖v‖2 + ε‖v‖2 + ‖b ·∇v‖2 + ‖div τ‖2 +
1

ε
‖τ‖2 . (60)

Note that, contrary to the adjoint graph norm, the terms with τ and v are now separated so the inver-
sion of the Riesz operator decouples into two separate problems for τ and v. Unfortunately, for coarse
meshes, the diffusion terms above are still dominated by reaction terms and, consequently, the corre-
sponding optimal test functions develop boundary layers and are difficult to resolve. A simple remedy
to the problem is to replace the coefficients in front of the zero order terms with mesh dependent terms.
The modified test norm for an element K takes the form:

‖(τ, v)‖2V (K) := min{ ε

hK
, 1}‖v‖2 + ε‖∇v‖2 + ‖b ·∇v‖2 + ‖div τ‖2 + min{1

ε
,

1

hK
}‖τ‖2 (61)

where hK is the element size. We called it the robust norm. Notice that norm (61) is smaller than
norm (60) so the condition (56) is still satisfied. Fig. 1 compares optimal test functions for a 1D
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Figure 1: 1D convection-dominated diffusion problem with ε = 10−2 and b = 1. v-component of
optimal test functions corresponding to a trial function u(x) = x − 1

2 (left) and their resolution with
polynomials of order r = 3 (right) for different test norms; top: adjoint graph norm, bottom: robust
test norm.

version of our model problem for the adjoint graph and robust test norms. The optimal test functions
corresponding to the robust test norm dot not develop anymore boundary layers and can be easily
resolved with the enriched test space strategy.

Returning to the abstract notation, we can claim now the following error estimate:

‖u− uh‖ ≤ C‖(u, û)− (uh, ûh)‖E = inf
(wh,ŵh)∈Uh×Ûh

‖(u, û)− (wh, ŵh)‖E (62)

In other words, we control robustly the L2-norm of u by the minimized residual. We cannot claim,
however, that the method is robust in the mathematical sense as the continuity constantM does depend
upon ε.

7 Nonlinear Problems and Other Work

Nonlinear problems. The concept of the robust test norm developed systematically for the model
convection-dominated diffusion problem has been formally extrapolated to both compressible and
incompressible steady-state Navier-Stokes equations [16, 32]. At present, there is no systematic the-
ory for nonlinear problems. We linearize the nonlinear equations and apply the linear DPG to the
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linearized problem. If we freeze the test norm, this can be interpreted as a Newton-Gauss method ap-
plied to minimize the non-linear residual. In practice, however, the test norm is not fixed as it evolves
with the background solution. Direct minimization of nonlinear residual has been investigated in [11].

Preconditioning , solvers and other related work. DPG delivers a positive-definite hermitian stiff-
ness matrix suggesting the use of Conjugate Gradient (CG) method. An additive Schwartz precondi-
tioner has been studied in [2]. Wieners and Wohlmut [35] proposed a preconditioner for the skeleton
problem resulting from static condensation of all element local degrees-of-freedom, and initiated a
study on multigrid methods. Convergence in weaker norms and first duality arguments were stud-
ied in [9]. A general framework for a fast implementation of ultraweak DPG methods for linear and
nonlinear problems has been developed in [33].

The DPG method is a very young technology and the work on the method has barely started. The
methodology offers a number of very attractive features: choice of different variational formulations
(functional settings), choice of a specific norm, positive-definite and hermitian stiffness matrix, a-
posteriori error estimate built-in, to mention a few. The work on a systematic treatment of singular
perturbation problems is far from finished, and we expect to see new developments coming soon.
Understanding of minimum residual methods with residual measured in dual norms for non-linear
methods is minimal. The method is computationally expensive on the element level, and we need to
develop new techniques, both algorithmic and purely implementational (use of multiple CPUs and
GPUs) to accelerate the element computations.

We hope that this short exposition stimulates a further research on the method.
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