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Abstract

Isogeometric collocation methods have been proposed recently and their accuracy and effi-

ciency demonstrated for elastostatics and explicit dynamics. This paper addresses two important

aspects in the development of the isogeometric collocation technology, namely, the imposition

of Neumann boundary conditions and the enforcement of contact constraints, which are both

treated within the same framework. It is shown that the strong imposition of Neumann bound-

ary conditions may lead to a significant loss of accuracy in some situations, in particular when

non-uniform meshes are used. Two possible remedies are proposed to restore the desired level

of accuracy while keeping the computational cost virtually unchanged, i.e. a hybrid collocation-

Galerkin approach and an enhanced collocation (EC) approach. A frictionless contact formula-

tion suitable for the collocation framework is further proposed and shown to pass the contact

patch test to machine precision. When combined with the EC approach, the formulation is

shown to deliver accurate results and to perform robustly also for highly non-uniform meshes.

For all the collocation formulations, contact pressures are greater than or equal to zero pointwise,

in contrast with standard Lagrange finite elements.

Keywords: Isogeometric analysis; collocation methods; NURBS; boundary conditions; con-

tact.
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1 Introduction

Isogeometric analysis (IGA) was recently introduced by Hughes and coworkers (Hughes et al.

2005, Cottrell et al. 2009). Its main original purpose was to bridge the gap between computer

aided design (CAD) and finite element analysis (FEA), thus simplifying the cost-intensive mesh

generation process required for standard FEA and leading to a tighter integration of CAD and

FEA tools. In the IGA framework, the same smooth and higher-order basis functions, e.g.,

non-uniform rational B-splines (NURBS) or T-splines, are used for the representation of the

exact CAD geometry and for the approximation of the FEA solution fields.

In addition to the achievement of the original goal, IGA soon turned out to exhibit increased

accuracy and robustness on a per-degree-of-freedom basis in comparison to standard finite el-

ement methods (FEM) (Evans et al. 2009, Großmann et al. 2012) and to possess a number

of additional attractive features in several areas of computational mechanics. However, smooth

higher-order basis functions immediately raised the question of their efficient implementation

and, in particular, of computationally efficient quadrature rules. In Galerkin-type formulations,

element-wise Gauss quadrature is considered optimal for standard FEM, but sub-optimal for

IGA, since it does not exploit the inter-element continuity of its smooth basis functions. Taking

advantage of the smoothness across element boundaries, more efficient quadrature rules were

developed by Hughes et al. (2010) and Auricchio et al. (2012a). A natural evolution of this

research was the investigation of isogeometric collocation (IGA-C) methods (Auricchio et al.

2010, 2012b), which can be interpreted as a one point quadrature rule in the IGA context.

As opposed to Galerkin formulations, collocation is based on the discretization of the strong

form of the governing partial differential equations. This is only possible if basis functions of

sufficient smoothness and, therefore, high order are adopted. This requirement is naturally

fulfilled by the shape functions used in IGA, which feature tailorable order and inter-element

continuity. Furthermore, the IGA framework allows domains of arbitrary geometric and topo-

logical complexity to be discretized, possibly in tight integration with CAD. In IGA-C, only one

point evaluation per control point, or “node”, is required at a collocation point. This implies the

minimization of the computational effort with respect to quadrature and is a major advantage

over Galerkin-type methods, especially for applications where efficiency is directly related to
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the cost of quadrature. A few significant examples are explicit structural dynamics, where the

computational cost is dominated by stress divergence evaluations at quadrature points for the

calculation of the residual force vector, multiscale methods based on nested solution schemes

such as FE2, where a microscale boundary value problem is solved for each quadrature point

of the macroscale, and stochastic approximation procedures such as the stochastic FEM, where

the residual vector must be evaluated a large number of times.

One point quadrature in conjunction with low-order quadrilateral and hexahedral finite el-

ements is already extensively (if not exclusively) used in crash dynamics and metal forming.

This minimizes memory requirements and the number of constitutive evaluations and enables

the efficient computation of very large problems. However, one point quadrature with standard

basis functions gives rise to zero-energy hourglass modes and rank deficient system matrices

(Bischoff et al. 2004). The problem is addressed by introducing artificial viscous and/or elas-

tic stabilization mechanisms, whose parameters often require tuning by time consuming and

computationally expensive sensitivity studies. Conversely, it can be shown that for quadratic

and higher-order NURBS, with uniform knot vectors and a suitable choice of the collocation

points, the discrete Laplace operator produced by collocation is rank sufficient in all dimen-

sions. It follows that the elasticity operator is also rank sufficient and, in particular, there are

no hourglass modes. Thus IGA-C can be viewed as a one point quadrature scheme that is rank

sufficient (Auricchio et al. 2012b, Schillinger et al. 2013). Hence, IGA collocation methods

eliminate the need for ad-hoc stabilization techniques. Furthermore, they show great promise

for the development of higher-order accurate time integration schemes (Auricchio et al. 2012b)

as well as for the development of locking-free beam, plate and shell elements (Beirão da Veiga

et al. 2012, Auricchio et al. 2013).

Before a brief literature review, it is worth mentioning that collocation techniques are also

quite often adopted within the framework of meshless methods, see, e.g., Oñate et al. (1996),

Aluru (2000), Zhang et al. (2001), Kim and Kim (2003), Hu et al. (2007), Nguyen et al.

(2008), Hu et al. (2011), Chi et al. (2013). However, the IGA-C method is not a meshless

method; here the isoparametric concept is adopted. Meshes are employed that either have a

tensor product structure or are locally refined (depending on whether NURBS or T-splines or

hierarchical B-splines are adopted).
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Only a few investigations of IGA-C have been conducted thus far. Auricchio et al. (2010)

developed the first one-dimensional theoretical analysis of the method, which served the dual

purpose of providing the theoretical background and guiding the selection of collocation points.

They presented numerical tests on simple elliptic problems in one, two and three dimensions,

demonstrated the accuracy of the method, studied the behavior of the discrete eigenspectrum

and discussed the performance of the scheme with respect to the choice of collocation points.

Auricchio et al. (2012b) introduced a variational interpretation of the collocation scheme and

set forth special considerations at points on the patch interfaces and external boundaries, giv-

ing precise descriptions of the treatment of several important cases. They also extended the

framework to dynamics and described explicit predictor multi-corrector time integration algo-

rithms. They argued that, by adopting a sufficient number of explicit multi-corrector iterations,

the higher-order spatial accuracy of the corresponding implicit algorithm with consistent mass

can be achieved. Finally, they presented several static and dynamic numerical examples. The

method was shown to deliver satisfactory results with Dirichlet and Neumann boundary condi-

tions, mixed boundary conditions, and on single and multi-patch configurations. In the dynamic

setting, the higher-order convergence rates of the explicit multi-corrector method were demon-

strated on a one-dimensional example and a two-dimensional plane strain annular configuration.

Beirão da Veiga et al. (2012) adopted an IGA-C approach for the approximation of initially

straight planar Timoshenko beams, and Auricchio et al. (2013) extended the investigation to

curved spatial Timoshenko rods. The proposed schemes, based on standard mixed formulations,

were shown theoretically and computationally to be free of shear locking for any choice of the

discrete spaces for displacements, rotations, and internal forces, in contrast with most Galerkin

approximation procedures. Schillinger et al. (2013) compared IGA-C with isogeometric Galerkin

(IGA-G) and standard finite element methods (FEA-G) in terms of their computational effi-

ciency. They first assessed the computational cost in floating point operations for the formation

and assembly of stiffness matrices and residual vectors. The operation counts demonstrated

that IGA-C significantly reduces the computational cost compared to IGA-G and FEA-G. They

also showed that in IGA-C the bandwidth of the stiffness matrix and the cost of matrix-vector

products are smaller than in IGA-G and FEA-G. They then used a series of representative

smooth and rough problems in 3D to numerically compare the different methods with respect to
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accuracy vs. the number of degrees of freedom as well as with respect to accuracy vs. the serial

computing time on a single thread. The results showed that IGA-C can be orders of magnitude

faster than IGA-G and FEA-G for the same level of accuracy.

From the above review it emerges that IGA-C holds significant promise to offer a more ef-

ficient alternative to existing finite element technologies. This paper focuses on two important

aspects in the development of the IGA-C technology. One is the imposition of Neumann bound-

ary conditions (BCs), and the other is the enforcement of contact constraints, which fits into the

same framework when contact constraints are interpreted as deformation-dependent Neumann

BCs. As will be shown subsequently, the strong imposition of Neumann BCs performed in

previous investigations on IGA-C may lead to a significant loss of accuracy in some situations,

in particular for problems featuring a reduced regularity of the solution and when non-uniform

meshes are used. Two possible remedies to restore the desired level of accuracy while keep-

ing the computational cost virtually unchanged are proposed in this paper. Moreover, contact

formulations suitable for the collocation framework are needed to tackle problems involving in-

teractions between multiple patches with non-conforming discretizations. A frictionless contact

formulation is therefore proposed and tested herein. The formulation is developed for the fully

non-linear large-deformation case, however, we confine our attention herein to linearly elastic

bodies in contact. Nevertheless, we are able to exercise the formulation on demanding tests.

The paper is organized as follows. Section 2 presents a brief review of isogeometric basis

functions and introduces the elastostatic problem and its treatment in the IGA-C framework.

Section 3 illustrates the treatment of Neumann BCs in the conventional IGA-C setting, as well

as the two alternative treatments formulated in this work. These aim at improving the accuracy

of the solution in some critical cases while keeping computational cost comparable to that of the

original IGA-C. Section 4 presents two examples demonstrating the possible loss of accuracy of

the conventional IGA-C method and the performance of the proposed alternative procedures.

Section 5 introduces the frictionless contact formulation and Section 6 illustrates four contact

examples, including two examples of contact between a deformable body and a rigid obstacle,

and two examples of contact between two deformable objects, one of them consisting of the

well-known contact patch test. Finally, the main conclusions are summarized in Section 7.
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2 NURBS-based isogeometric collocation for elastostatics

In this section we first discuss the basic concepts regarding B-spline and NURBS basis functions,

employing standard NURBS terminology. For further details and extensive references see Piegl

and Tiller (1996) and Cottrell et al. (2009) among others. Subsequently, the elastostatic prob-

lem is briefly reviewed and its solution with the IGA-C formulation is presented following the

variational interpretation introduced by Auricchio et al. (2012b) and Schillinger et al. (2013).

2.1 B-spline and NURBS basis functions

A B-spline basis of degree p is generated based on a sequence of real numbers called a knot

vector

Ξ = {ξ1, ..., ξm+p+1} (1)

where ξ1 ≤ ξ2 ≤ ... ≤ ξm+p+1, each ξi ∈ R is a knot, and m is the associated number of control

points, also equal to the number of basis functions. A univariate B-spline basis function Ni,p (ξ)

is obtained from the so-called Cox-de Boor recursion formula. Starting from p = 0 where

Ni,0 (ξ) =


1 ξi ≤ ξ < ξi+1

0 otherwise

(2)

the basis functions for p > 0 are obtained from

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (3)

introducing the convention 0/0 = 0. If a knot has multiplicity k, the smoothness of the B-spline

basis is Cp−k at that location. In so-called open knot vectors, the first p+ 1 knots and the last

p+ 1 terms are equal, so that the basis is interpolatory at the ends (Figure 1a).

Once the basis functions are available, a B-spline curve can be constructed as their linear

combination
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C (ξ) =

m∑
i=1

PiNi,p (4)

where Pi ∈ Rds are the so-called control points, and ds is the dimension of the physical space

(Figure 1b).

Multivariate B-splines are generated through the tensor product of univariate B-splines. If

dp denotes the dimension of the parametric space, dp univariate knot vectors are needed:

Ξd =
{
ξd1 , ..., ξ

d
md+pd+1

}
(5)

where d = 1, ..., dp, pd is the polynomial degree in the parametric direction d, and md is the

associated number of basis functions. Denoting the univariate basis functions in each parametric

direction d as Nd
id,pd

, the multivariate basis functions Bi,p (ξ) are obtained from

Bi,p (ξ) =

dp∏
d=1

Nd
id,pd

(
ξd
)

(6)

where the multi-index i =
{
i1, ..., idp

}
denotes the position in the tensor product structure,

p = {p1, ..., pd} indicates the polynomial degree, and ξ =
{
ξ1, ..., ξdp

}
is the vector of the

parametric coordinates in each parametric direction d. B-spline surfaces and solids are obtained

for dp = 2 and dp = 3, respectively, from a linear combination of multivariate B-spline basis

functions and control points as follows

S (ξ) =
∑
i

PiBi,p (ξ) (7)

where the summation is extended to all combinations of the multi-index i.

NURBS basis functions are obtained from a projective transformation of their B-spline coun-

terparts in Rds+1. Univariate NURBS basis functions Ri,p (ξ) are given by

Ri,p (ξ) =
wiNi,p (ξ)∑m
j=1 wjNj,p (ξ)

(8)

where Ni,p are B-spline basis functions and wi are the corresponding weights. Finally, multi-

variate NURBS basis functions are obtained as
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Ri,p (ξ) =
wiBi,p (ξ)∑
j wjBj,p (ξ)

(9)

and NURBS surfaces and solids result from

S (ξ) =
∑
i

PiRi,p (ξ) (10)

2.2 Elastostatic problem

Let Ω ⊂ Rds represent an elastic body B subjected to body forces f , to prescribed displacements

g on a portion of the boundary Γg, and to (possibly zero) prescribed tractions p on the remaining

portion Γp. Thus Γ = Γg
⋃

Γp is the boundary of the domain, and Γg
⋂

Γp = Ø. Suitable

regularity requirements are assumed to hold for f , g, and p.

The small-strain linear elasticity problem in strong form is defined by

divC∇Su + f = 0 in Ω (11)

complemented by the Dirichlet BCs

u = g on Γg (12)

and by the Neumann BCs

(
C∇Su

)
n = p on Γp (13)

In the above, u (x) is the unknown displacement field (x being the position vector), ∇S is

the symmetric part of the gradient operator, C is the fourth-order elasticity tensor, div is the

divergence operator, and n is the outward unit normal to the boundary of the domain.

2.3 Isogeometric collocation for elastostatics

As in Auricchio et al. (2012b) and Schillinger et al. (2013), the collocation method is interpreted

herein in a variational sense and applied directly in the isogeometric framework. The elasticity
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problem in variational form, based on the principle of virtual work, reads

ˆ
Ω

C∇Su : ∇SwdΩ =

ˆ
Ω

f ·wdΩ +

ˆ
Γp

p ·wdΓ (14)

for every test function w ∈
[
H1 (Ω)

]ds satisfying homogeneous Dirichlet BCs, i.e.,

w = 0 on Γg (15)

Integrating eq. (14) by parts and rearranging terms leads to

ˆ
Ω

(
divC∇Su + f

)
·wdΩ−

ˆ
Γp

[
C
(
∇Su

)
n− p

]
·wdΓ = 0 (16)

Note that, should the test function not satisfy eq. (15), the variational form of the elasticity

problem would read

ˆ
Ω

C∇Su : ∇SwdΩ =

ˆ
Ω

f ·wdΩ +

ˆ
Γp

p ·wdΓ +

ˆ
Γg

C
(
∇Su

)
n ·wdΓ (17)

i.e., an additional term pertaining to the Dirichlet boundary would appear. However, integration

by parts would still lead to eq. (16). Therefore, the test function w does not need to satisfy

homogeneous Dirichlet BCs in order for eq. (16) to be applicable. This property will be exploited

in one of the formulations introduced later.

Using the isoparametric approach, we seek an approximation uh to the unknown exact

solution field u of the elastostatic problem in the form

uh =

n∑
a=1

Ra (x) ûa (18)

where Ra are the NURBS basis functions described in Section 2 and ûa are the unknown

displacement control variables. Substitution into eq. (16) yields

ˆ
Ω

(
divC∇Suh + f

)
·wdΩ−

ˆ
Γp

[
C
(
∇Suh

)
n− p

]
·wdΓ = 0 (19)

We now need a suitable choice of the test functions. In the collocation method, the test

function w is selected as the Dirac delta, which can be formally constructed as the limit of a
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sequence of smooth functions with compact support that converge to a distribution (Auricchio

et al. 2010, 2012b), satisfying the so-called sifting property, i.e.,

ˆ
Ω

fΩ (x) δ (x− xi) dΩ = fΩ (xi) (20)

ˆ
Γ

fΓ (x) δ (x− xi) dΓ = fΓ (xi) (21)

for every function fΩ continuous about the point xi ∈ Ω and for every function fΓ continuous

about the point xi ∈ Γ. In the following, the Dirac delta will be indicated as a Dirac delta

“function” following conventional terminology.

Let us assume that ds = 2,m1 andm2 are the numbers of control points in the two parametric

directions and n = m1m2 is the total number of control points. Thus 2n scalar equations are

needed to determine the unknown control point displacements. In the collocation scheme, we

choose n collocation points τkl, k = {1, ...,m1}, l = {1, ...,m2} located at the (tensor product)

Greville or Demko abscissae (Auricchio et al. 2010 and references therein) of the knot vectors.

The collocation points for k = 1,m1 and l = 1,m2 are located at the boundary Γ. Separate sets

of equations are needed for the patch interior and for the boundaries.

In the patch interior Ω, we write 2 (m1 − 2) (m2 − 2) scalar equations by choosing as test

functions the Dirac delta functions centered at the interior collocation points τkl, k = {2, ...,m1 − 1},

l = {2, ...,m2 − 1}. The resulting equations read

(
divC∇Suh + f

)
(τkl) = 0 τkl ⊂ Ω (22)

i.e., they are the collocated strong form of the equations at τkl.

No equations are needed at the Dirichlet boundary, as we impose a priori that uhi (τkl) =

gi (τkl) on Γg.
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3 Collocation, hybrid collocation - Galerkin and enhanced

collocation treatments for the enforcement of Neumann

BCs

Three possible methods to enforce Neumann BCs within the IGA-C framework are described. As

illustrated in the later examples, the standard collocation treatment utilized in prior literature

on isogeometric collocation may deliver results of unsatisfactory accuracy in certain situations,

for which reason the two alternative formulations are proposed in this paper.

3.1 Collocation treatment

In the standard collocation method, each τkl ⊂ Γp is associated with a collocation equation

that sets the value of the boundary traction. This corresponds to choosing as test functions

the Dirac delta functions centered at the collocation points located at the Neumann boundary.

Here a distinction is needed between the collocation points located at the edges (k = 1,m1 and

l = 2, ...,m2 − 1, or l = 1,m2 and k = 2, ...,m1 − 1), and those located at the corners of the

domain (k = 1,m1 and l = 1,m2 ). For collocation points located on edges within the Neumann

boundary, the equations are

[
C
(
∇Suh

)
n− p

]
(τkl) = 0 τkl ⊂ edge ⊂ Γp (23)

i.e., they are the collocated strong form of the Neumann BCs at τkl. For collocation points

located at corners where two Neumann boundaries meet, Auricchio et al. (2012b) showed that

the appropriate equations are

[
C
(
∇Suh

)
n′ − p′

]
(τkl) +

[
C
(
∇Suh

)
n′′ − p′′

]
(τkl) = 0 τkl ≡ corner ⊂ Γp (24)

where n′ and n′′ are the outward unit normals of the edges meeting at the corner, and p′ and

p′′ are the respective imposed tractions.

The approach in which collocation equations are written at the patch interior (eq. (22))

and at the Neumann boundary (eq. (24)) is denoted in the following as the “pure collocation”
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(PC) approach. It coincides with the approach proposed in the first investigations on IGA-C

methods, see Auricchio et al. (2012b). In what follows, it will be shown that the PC approach

may lead to an inaccurate imposition of the Neumann BCs and therefore alternative methods

are needed.

3.2 Hybrid collocation - Galerkin treatment

In this approach, the equations at the Neumann boundary are written by choosing as test

functions some of the shape functions used for the discretization of the unknown displacements.

Let us consider the collocation points located on the Neumann boundary at an edge. E.g., at

an edge with k = k̄ = 1,m1 and l = 2, ...,m2 − 1 we can write 2 (m2 − 2) equations by choosing

as test functions the shape functions Rb with b = m1 (l − 1) + k̄, as follows

ˆ
Ω

[
divC∇Suh + f

]
RbdΩ−

ˆ
Γpk̄

[
C
(
∇Suh

)
nk̄ − pk̄

]
RbdΓ = 0 (25)

where Γpk̄ denotes the considered edge within the Neumann boundary, and nk̄ and pk̄ are

the respective outward unit normal and applied traction. In the same way, at edges with

l = l̄ = 1,m2 and k = 2, ...,m1 − 1, we can write 2 (m1 − 2) equations by choosing as test

functions the shape functions Rc, with c = m1

(
l̄ − 1

)
+ k, i.e.

ˆ
Ω

[
divC∇Suh + f

]
RcdΩ−

ˆ
Γpl̄

[
C
(
∇Suh

)
nl̄ − pl̄

]
RcdΓ = 0 (26)

where the considered edge is indicated as Γpl̄, and nl̄ and pl̄ are the respective outward unit

normal and applied traction. Note that the shape functions Rb and Rc are those corresponding

to the control points located on the Neumann edges of the patch domain.

The integrals in eqs. (25) and (26) can be evaluated with Gauss-Legendre quadrature. Note

that, while all NURBS shape functions have support over (p + 1)(q + 1) knot spans, those

pertaining to the control points located at the edges have a reduced support in the parametric

direction perpendicular to the edges due to the use of open knot vectors. In particular, shape

functions Rb have support over (1)(q + 1) knot spans, i.e., over knot intervals [ξp+1, ξp+2] ×

[ηl, ηl+q+1] for k̄ = 1 and over knot intervals [ξm1 , ξm1+1] × [ηl, ηl+q+1] for k̄ = m1. Shape

functions Rc have support over (p + 1)(1) knot spans, i.e., over knot intervals [ξk, ξk+p+1] ×
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[ηq+1, ηq+2] for l̄ = 1 and over knot intervals [ξk, ξk+p+1]× [ηm2
, ηm2+1] for l̄ = m2.

The approach in which collocation equations are written at the patch interior (eq. (22))

whereas Galerkin-like equations are written at the Neumann boundary (eqs. (25) or (26))

is denoted in the following as “hybrid collocation” (HC), to emphasize that it is a hybrid of

collocation and Galerkin test functions. Due to the need for the evaluation of the integrals

in eqs. (25) or (26), the HC approach is somewhat more expensive than the PC approach.

However, it retains a significant cost advantage relative to the conventional Galerkin method,

as the equations at the interior points are still written in the collocated form (22). Moreover,

this approach will be later shown to achieve in certain situations better accuracy than the PC

method for non-uniform meshes.

3.3 Enhanced collocation treatment

As mentioned earlier and shown later in the examples, the use of the PC collocation approach

leads in some cases to unsatisfactory accuracy of the results in presence of Neumann BCs. The

HC treatment presented in the previous section yields improved results but requires integration

over both the area and edge domains (eqs. (25) or (26)). The enhanced collocation approach is

meant to mimic the results of the HC approach while maintaining the same computational cost

as pure collocation. As in the HC case, the Neumann BCs are written considering a combination

of area and edge terms, as follows

[
divC∇Suh + f

]
(τkl)−

C∗

h

[
C
(
∇Suh

)
n− p

]
(τkl) = 0 τkl ⊂ edge ⊂ Γp (27)

where h is the mesh size in the direction perpendicular to the edge. This size is here computed

as the distance between the first two collocation points encountered starting from the edge and

traveling in the parametric direction perpendicular to the edge. In order for this approach to

be applicable, a suitable value for the constant C∗ in eq. (27) needs to be determined. The

constant C∗ is here calibrated by minimizing the discrepancy of the results with respect to those

obtained with the classical Galerkin formulation. This will be illustrated in detail in Section 4.

The approach in which collocation equations are written at the patch interior (eq. (22))

whereas enhanced collocation equations are written at the Neumann boundary (eq. (27)) is
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denoted in the following as “enhanced collocation” (EC).

4 Examples of the enforcement of Neumann BCs

In this section, some examples are presented to illustrate the performance of the previously

described methods for small-strain linear elasticity problems in plane strain. For simplicity we

will always consider single-patch situations. However, the extension to multiple patches can be

easily dealt with as shown by Auricchio et al. (2012b), see also Schillinger et al. (2013).

4.1 Example N1: the compression test

4.1.1 Description and general results

The first example is a square block of side L = 1. The lower edge has restrained displacements in

both directions, whereas the upper edge has restrained displacement in the horizontal direction

and a constant downward imposed displacement in the vertical direction, v̄. The vertical sides

are both subjected to homogeneous Neumann BCs in both directions (Figure 2). The material

has Lamè constants µ = 0.5 and λ = 0.8. Despite the assumption of small-strain elasticity, the

quite large vertical downward displacement v̄ = −0.25 is applied to help visualize the effects of

the different numerical treatments on results.

A crucial parameter influencing the collocation performance is the geometry of the mesh. As

shown hereafter, the strong enforcement of Neumann BCs leads to inaccurate results when the

distance between consecutive collocation points perpendicular to the boundary is sufficiently

larger than parallel to the boundary. For simplicity, in the following this parameter is controlled

indirectly through the ratio between the number of control points in the directions parallel and

perpendicular to the Neumann boundary, which we will refer to as the “mesh aspect ratio” for

the sake of simple terminology. E.g., a mesh with 10x20 control points for the example in Figure

2 is said to have an aspect ratio of 2.

Figure 3 shows the contour plot of the vertical displacement component on the deformed

shape, as obtained from the PC, HC and EC formulations. For aspect ratios larger than 1, PC

results are characterized by significant oscillations of the solution field close to the Neumann

boundaries (Figure 3b,c). These oscillations result from the strong enforcement of the Neumann
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BCs and tend to increase with increasing mesh aspect ratio. Both the HC and the EC treatments

solve the issue recovering good-quality displacement contour plots and deformed shapes.

Note that this behavior emanates from the large gradients of deformations and stresses in

proximity of the corners. No oscillations are registered if the same example is computed with

Poisson’s ratio ν = 0 or with unrestrained horizontal displacements on the upper and lower edges

of the block, regardless of the mesh aspect ratio. Interestingly, examples with such localized

strain and stress gradients at the corners due to the particular choice of the BCs also feature

a reduced theoretical regularity of the solution; see Grisvard (2011) and the convergence plots

in the next section. Similar oscillations had never been observed in previous investigations on

IGA-C, as problems attaining a solution with full regularity and uniform meshes had always

been adopted.

4.1.2 Convergence behavior

We shall perform an evaluation of the displacement errors for the PC, HC and EC methods, as

well as for the Galerkin method. As no closed-form solution is available for the present example,

the reference solution is computed for a mesh with degree 5 in both parametric directions, uni-

form knot vectors and 200x200 control points solved with the Galerkin method. The normalized

displacement error in the L2-norm is evaluated as follows

eRefL2 =

∥∥uh − uref
∥∥
L2

‖uref‖L2

(28)

where uref is the reference displacement solution. Figure 4 shows the convergence plots for

discretizations of different order with aspect ratios of 1 and 5, in order to quantify the role of

the aspect ratio on the convergence behavior.

A few noteworthy observations emerge:

• all convergence plots feature a slope close to 1.5 for second-order discretizations, and

slightly larger (up to a maximum of about 2 in the fifth-order case) for higher orders. The

suboptimal convergence rates are due to the reduced regularity caused by the particular

BCs; see e.g. Grisvard (2011). The theoretically expected slope of the convergence plot is

given by the solution α of the following non-linear equation (Grisvard 1986)
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which is equal to about 1.7 for this case;

• when the aspect ratio is equal to 1, there are no significant differences in the convergence

behavior of the PC, HC and EC approaches, except for the highest analyzed orders where

PC delivers a slightly lower accuracy than the other methods;

• when the aspect ratio is equal to 5, PC results are in all cases significantly less accurate

than those of the other methods;

• for orders 2 and 3, the Galerkin approach outperforms the others. For orders 4 and 5 and

regardless of the mesh aspect ratio, HC and EC deliver the same accuracy as the Galerkin

method, at a significantly lower computational cost.

4.1.3 Comparison of methods

Since convergence plots show that the error of the Galerkin method is always the smallest, in

this section the quality of all methods is evaluated through the comparison with results obtained

from the Galerkin method on the same discretization. In particular, the displacement error of

each method relative to the Galerkin solution is computed as

eGalL2 =

∥∥uh − uhG
∥∥
L2∥∥uhG∥∥L2

(30)

where uhG is the Galerkin solution for any given mesh. The above quantity is evaluated as a

function of the mesh aspect ratio by fixing the number of control points in one direction and

increasing their number in the other direction. The change in quality of the solution as a result of

the change in the number of degrees of freedom does not affect the evaluation as the comparison

with Galerkin results is always made for the same mesh. Results are shown in Figure 5.

As is visibile in Figure 5a,b, PC leads to a displacement error relative to Galerkin which

increases significantly as the mesh aspect ratio is increased for all interpolation orders. If collo-

cation is performed at the Demko abscissae (Figure 5b) the error monotonically increases with

the interpolation order for a given mesh aspect ratio. If Greville abscissae are used (Figure 5a)
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a similar trend is observed with the exception of the second-order case, which shows a different

behavior.

Figures 5c-f indicate that both the HC and the EC formulations (whereby the choice of

C∗ = 4 will be justified later) reduce the error relative to Galerkin by more than one order of

magnitude, to a level which varies weakly with the mesh aspect ratio and with the interpolation

order. The errors resulting from the HC and EC formulations are very similar, whereby EC

is computationally as (in)expensive as PC whereas HC requires computation of the boundary

integrals. On the other hand, calibration of the unknown constant C∗ is needed for EC. We

expand upon this issue in the next sub-section.

4.1.4 Choice of C∗ in the EC treatment

As mentioned earlier, the EC treatment requires the constant C∗ to be appropriately selected.

For this example, the selection of C∗ based on minimization of the displacement error as given

by Eq. (30) is illustrated in Figure 6. For the sake of conciseness only results obtained from

collocation at the Greville abscissae are reported, however very similar results were obtained

from the use of the Demko abscissae. It is clear that eGalL2 exhibits a definite minimum, so

that the “optimal” value of C∗ is readily estimated. For a given degree of the interpolation, the

optimal C∗ depends weakly on the mesh aspect ratio and seems to attain a constant value as the

aspect ratio becomes sufficiently large (Figure 7). If this constant value is plotted as a function

of the interpolation degree (Figure 8), the obtained trend is increasing when Greville abscissae

are used, and approximately constant for Demko abscissae. To verify whether the optimal C∗

correctly scales with h as assumed in Eq. (27), analyses in Figures 6-7 (all based on a minimum

number of control points fixed to 10 and hence, for aspect ratios larger than unity, on a fixed

value of h) have been repeated for a minimum number of control points equal to 20. As shown

in Figure 8, results show a satisfactory agreement between the two curves for both Greville and

Demko abscissae.

The final results indicate that a value of C∗ between 3 and 4 can be considered appropriate for

all interpolation degrees using both Greville and Demko abscissae. The errors shown in Figure 5

have been computed for C∗ = 4 thus verifying that low errors are obtained in all cases. Note that

the optimal value of C∗ is expected to be operator-dependent but not problem-dependent, so
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that the calibration performed herein is expected to hold for all small-strain elasticity problems.

This is verified in the next example.

4.2 Example N2: the quarter of annulus

4.2.1 Description and general results

The second example is a quarter of an annulus of inner radius Ri = 1 and outer radius Ro =

4. The left vertical side has restrained displacements in both directions, whereas the lower

horizontal side has restrained displacement in the vertical direction and a constant imposed

displacement, ū, in the horizontal direction. The curved sides are both subjected to homogeneous

Neumann BCs in both directions (Figure 9). The material has Lamé constants µ = 0.5 and

λ = 0.8. A horizontal displacement ū = 1.00 is imposed.

Figure 10 shows the contour plot of the vertical displacement component on the deformed

shape, as obtained from the PC, HC and EC formulations. As in the previous example, PC

results for aspect ratios larger than one exhibit significant spurious oscillations of the solution

field close to the Neumann boundaries (Figure 10b,c). These oscillations disappear when either

the HC or the EC formulation is adopted. Figure 11 is analogous to Figure 10 but here meshes

have twice the number of control points in each direction. It is evident that mesh refinement

reduces the size of the spurious oscillations, which become more localized in the vicinity of the

corners. Once again these oscillations are only visibile in the PC results and disappear when

HC or EC are used.

4.2.2 Convergence behavior

Once again, we evaluate the displacement error of the PC, HC, EC and Galerkin methods, and

employ an “overkill” solution computed with the Galerkin method on a mesh with degree 5 in

both parametric directions, uniform knot vectors and 200x200 control points. The normalized

displacement error in the L2-norm is evaluated from eq. (28). Figure 12 shows the convergence

plots of the displacements for discretizations of different orders for aspect ratios of 1 and 5. The

main observations are summarized as follows:

• as in the previous example, the reduced regularity of the solution, due to the particular
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form of the BCs, leads to convergence rates between 1.5 and 2, which is consistent with

the anticipated theoretical rate of about 1.7 (once again from eq. (29));

• when the aspect ratio is equal to 1, the HC method is always the least accurate and

the Galerkin method is always the most accurate. PC and EC deliver intermediate and

comparable accuracy for orders 2 and 3, whereas for orders 4 and 5 the EC method is

more accurate and asymptotically approaches the same accuracy of the Galerkin method;

• when the aspect ratio is equal to 5, the Galerkin approach is the most accurate for all

discretization orders. The least accurate is HC for orders 2 and 3, and PC for orders 4

and 5. EC appears as the best choice among collocation methods, and its accuracy comes

close to that of the Galerkin method as the order increases.

4.2.3 Comparison of methods

As in the previous example, PC leads to a displacement error relative to the Galerkin solution

which increases for larger values of the mesh aspect ratio (Figure 13). For both the Demko and

Greville abscissae, for a given aspect ratio, the error monotonically increases with p for p ≥ 3.

However, p = 2 does not fit this trend for either the Demko or Greville abscissae.

Figures 13c-f indicate that both the HC and the EC formulations (once again the choice

of C∗ = 4 will be justified later) reduce the error relative to Galerkin with respect to the PC

method. Unlike in the first example, HC is not as effective as EC. However, both lead to a

reduced error which varies weakly with the mesh aspect ratio and with the interpolation order.

4.2.4 Choice of C∗ in the EC treatment

As mentioned earlier, the optimal value of the constant C∗ is expected to be operator-dependent

and not problem-dependent. Therefore we expect the optimal C∗ for this second example to

also lie in the range between 3 and 4 as indicated by the first example. Figure 14 illustrates

eGalL2 as a function of C∗ for different mesh aspect ratios and different interpolation degrees.

The minimum is here less definite than in the previous example, especially for interpolations

of higher degree. This is advantageous as it indicates a limited sensitivity of the results to the

actual choice of C∗. The optimal C∗ is reported in Figure 15 as a function of the mesh aspect
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ratio. For a given degree of interpolation, the optimal C∗ weakly increases with the aspect ratio

and does not reach a plateau as in the first example. However, the corresponding variations of

the error are of negligible magnitude. In Figure 16, the optimal C∗ corresponding to a mesh

aspect ratio of 5 is plotted as a function of the interpolation degree. The obtained trend is more

irregular than in the first example, especially for low order interpolations as these feature a very

flat shape of the error curve as a function of C∗. Despite the seemingly large range of variation

of the optimal C∗, a constant value of 4 is verified in Figure 13 to yield a very limited variation

of the error with the mesh aspect ratio and with the interpolation order.

Scaling of the optimal C∗ with h has also been verified in this example by doubling the

minimum number of control points in the mesh. Figure 16 shows the two sets of results. The

seemingly large difference for low interpolation orders is once again connected to the flat shape of

the curve of eGalL2 vs. C∗, and has no practical consequences as the change in error corresponding

to choices of C∗ deviating from the optimal value is negligible.

The final results indicate that, for second- and third-degree interpolations, any value of C∗

above 2 can be considered adequate, whereas for higher-order interpolations a value between 1.5

and 4 would be advisable. This also confirms that the value of C∗ = 4 identified from the first

example is still applicable to a different test case based on the same elasticity operator.

5 Contact formulation

As mentioned earlier, the second objective of this contribution is to extend the treatment of

Neumann BCs to the description of contact between multiple patches with non-matching dis-

cretizations within the IGA-C framework. This section first introduces the frictionless contact

problem between deformable bodies, in strong as well as in variational form. Subsequently, we

illustrate the treatment of contact constraints within IGA-C based upon the three alternative

formulations presented earlier for the enforcement of Neumann BCs.

5.1 Elastostatic problem with frictionless contact

Let Ω(i) ⊂ Rds , i = 1, 2, represent two elastic bodies B(i), each subjected to body forces

f (i), to prescribed displacements g(i) on a portion of the boundary Γ
(i)
g , to (possibly zero)
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prescribed tractions p(i) on a portion of the boundary Γ
(i)
p , and to contact constraints on the

remaining portion Γ
(i)
c . Thus Γ(i) = Γ

(i)
g
⋃

Γ
(i)
p
⋃

Γ
(i)
c is the boundary of the domain Ω(i), and

Γ
(i)
g
⋂

Γ
(i)
p = Γ

(i)
g
⋂

Γ
(i)
c = Γ

(i)
p
⋂

Γ
(i)
c = Ø. Suitable regularity requirements are assumed for

f (i), g(i), and p(i). Note that Γ
(1)
c 6= Γ

(2)
c in general, whereas the respective mappings in the

current configuration during contact coincide: γ(1)
c = γ

(2)
c . The deformations are assumed small,

however, the displacements are used to update the geometry to discern contact.

The small-strain linear elasticity problem in strong form for the two bodies consists of the

balance equations

divC(i)∇Su(i) + f (i) = 0 in Ω(i) (31)

complemented by the Dirichlet BCs

u(i) = g(i) on Γ(i)
g , (32)

by the Neumann BCs

(
C(i)∇Su(i)

)
n(i) = p(i) on Γ(i)

p (33)

and by the unilateral frictionless contact conditions

gN ≤ 0 tN ≥ 0 gN tN = 0 (34)

In the above, all quantities with superscript (i) refer to body B(i). The normal gap and normal

contact traction are defined as (Laursen 2002, Wriggers 2006)

gN =
(
x(s) − x̄(m)

)
· n̄(m) tN = t · n̄(m) (35)

where x(i) = X(i) + u(i) are the current coordinates of a point of body B(i) (X(i) being the

reference coordinates) and t is the contact traction vector, whereas the superscripts (s) and (m)

refer to the slave and master surfaces, respectively, and the symbol (̄) denotes the closest point

projection from the slave onto the master surface. Thus n̄(m) is the normal to the master surface
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at the (normal) projection point x̄(m) of a point x(s) on the slave surface. Note that the choice

to conduct the projection in the orthogonal direction to the master surface (and not to the slave

surface) is well established as it yields advantages in the consistent linearization of the contact

terms (Laursen 2002, Wriggers 2006). In the formulation adopted herein, each surface is taken

alternatively as slave and master according to the so-called double-half-pass algorithm (Sauer

and De Lorenzis, 2013). This differs from the classical contact treatments where one surface is

chosen as master and the other one as slave. More details are reported in Section 5.5.

5.2 Variational formulation

The weak form of the balance equation (11) is

G (u,w) =

2∑
i=1

Gi

(
u(i),w(i)

)
+Gc = 0 (36)

where

Gi =

ˆ
Ω(i)

C(i)∇Su(i) : ∇Sw(i)dΩ−
ˆ

Ω(i)

f (i) ·w(i)dΩ−
ˆ

Γ
(i)
p

p(i) ·w(i)dΓ (37)

and

Gc = −
2∑
i=1

ˆ
Γ

(i)
c

t(i) ·w(i)dΓ (38)

where w(i) are the test functions which are assumed to be of sufficient regularity and to satisfy

the homogeneous Dirichlet BCs

w(i) = 0 on Γ(i)
g (39)

Integrating by parts and rearranging terms leads to

2∑
i=1

[ˆ
Ω(i)

(
divC(i)∇Su(i) + f (i)

)
·w(i)dΩ−

ˆ
Γ

(i)
p

[
C(i)

(
∇Su(i)

)
n(i) − p(i)

]
·w(i)dΩ

−
ˆ

Γ
(i)
c

[
C(i)

(
∇Su(i)

)
n(i) − t(i)

]
·w(i)dΓ

]
= 0 (40)
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Once again, should w(i) not satisfy the homogeneous Dirichlet BCs, an additional term stemming

from the Dirichlet bounday would appear in eq. (37). However, this term would cancel out

during integration by parts, leading again to eq. (40). This justifies the choice of test functions

not vanishing on the Dirichlet boundary in the HC approach. The discretized version of eq.

(40) is obtained through the use of eq. (18).

5.3 Pure collocation, hybrid collocation-Galerkin and enhanced collo-

cation enforcement of contact constraints

Herein, contact constraints are treated as deformation-dependent Neumann BCs and thus en-

forced with the three methods presented in Section 3. The corresponding equations are obtained

by simply substituting the known pressure p at the Neumann boundary with the contact trac-

tion, which is a priori unknown and depends on the deformation of the two bodies. The

computation of the contact traction depends on the solution method chosen for the enforcement

of the contact constraints. The simplest option, adopted herein, is the penalty method, which

yields

t = −εNgN n̄(m) (41)

where εN > 0 is the so-called penalty parameter. With this method the non-penetration con-

straint is enforced exactly in the limit as εN approaches infinity. For a correct scaling, the

penalty parameter should be in turn set as εN = ε̄N/h, with ε̄N as a constant and h as a

characteristic mesh size.

As the active contact boundary is a priori unknown, an active set strategy is needed in order

to determine the active collocation points. According to the definition of the normal gap in eq.

(35), gN ≤ 0 needs to be determined at all points at which penetration of the bodies takes place

(Laursen 2002, Wriggers 2006).

In the PC method, each τkl ⊂ Γc is associated with a collocation equation that sets the value

of the contact traction. This once again corresponds to choosing as test functions the Dirac

delta functions centered at the collocation points located within the contact boundary. The

resulting equations are
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[
C
(
∇Suh

)
n− t

]
(τkl) = 0 τkl ⊂ edge ⊂ Γc (42)

i.e., they are the collocated strong form of the equilibrium BCs involving the contact pressures

at τkl and differ from eq. (23) simply by the substitution of the known pressure p with the

contact traction t given by eq. (41). At collocation points located within the inactive contact

boundary, t vanishes and homogeneous Neumann BCs are automatically recovered. At corners

between contact boundaries, equations such as (24) are written with t′ and t′′ in place of p′

and p′′. In case of inactive contact, one or both of the contact tractions vanish, so that the

corresponding contact constraints are automatically replaced by homogeneous Neumann BCs.

The contact equations for the HC and PC methods can once again be simply obtained from

eqs. (25) (or (26)) and (27), respectively, by substituting for the pressure p the contact traction

t, and read

ˆ
Ω

(
divC∇Suh + f

)
RbdΩ−

ˆ
Γpk̄

[
C
(
∇Suh

)
nk̄ − tk̄

]
RbdΓ = 0 τkl ⊂ edge ⊂ Γc (43)

(
divC∇Suh + f

)
(τkl)−

C∗

h

[
C
(
∇Suh

)
n− t

]
(τkl) = 0 τkl ⊂ edge ⊂ Γc (44)

5.4 Enforcement of contact constraints with Nitsche’s method

The so-called Nitsche’s method differs from the penalty method for the presence of the consis-

tency term in the expression of the contact traction, as follows:

t = C
(
∇Suh

)
n− εNgN n̄(m) (45)

Unlike eq. (41), eq. (45) is consistent as the gap tends to zero. With the PC method, inserting

eq. (45) into eq. (42) leads to the enforcement of the contact constraints in the form of Dirichlet

BCs, by imposing that the gap vanishes at all collocation points on the (active) contact boundary.

Insertion of eq. (45) into eqs. (25) (or (26)) and (27) delivers Nitsche’s contact conditions for

the HC and EC methods, respectively:
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ˆ
Ω

(
divC∇Suh + f

)
RbdΩ−

ˆ
Γpk̄

εNgN n̄(m)RbdΓ = 0 τkl ⊂ edge ⊂ Γc (46)

(
divC∇Suh + f

)
(τkl)−

C∗

h

(
εNgN n̄(m)

)
(τkl) = 0 τkl ⊂ edge ⊂ Γc (47)

The implementation of Nitsche’s method is thus clearly straightforward in the collocation frame-

work, as the consistency term cancels out within the strong form of the boundary equations.

Conversely, its implementation within the Galerkin framework is quite cumbersome as it re-

quires the evaluation of additional boundary integrals. The use of Nitsche’s method is not

further investigated here and will be pursued by the authors in future research.

5.5 The double half-pass algorithm

In the classical Galerkin setting, contact constraints are usually enforced by considering one

of the contacting surfaces as slave and the other one as master. In order to determine the

active contact boundary, i.e. the portion of the surfaces where penetration between the bodies

takes place, a loop is performed over the discretized slave surface, the values of the gap are

evaluated according to eq. (35), and an active contact status flag is assigned to the surface

regions where gN ≤ 0. Evaluation of the gap and the corresponding enforcement of the non-

penetration constraint may take place at the nodes (such as in the classical node-to-surface

formulation largely used in conjunction with linear elements, see Zavarise and De Lorenzis

2009, and recently extended to the isogeometric setting by Matzen and Bischoff 2013), or at

Gauss-Legendre quadrature points located on the contact surface (such as in the formulation

proposed by Fischer and Wriggers 2005 and extended to the isogeometric setting by Temizer et

al. 2011, De Lorenzis et al. 2011 and Dimitri et al. 2014). More complex formulations within

the framework of mortar methods evaluate the gap at the contact quadrature points and then

project their values onto the nodes or control points where the contact constraints are enforced

(see, e.g., Puso and Laursen 2004, and the isogeometric extension by Temizer et al. 2012 and

De Lorenzis et al. 2012).

Despite the different way the contact contribution is introduced into the variational frame-

work and discretized, all these formulations share two main features which are relevant to the

26



present discussion: a) they introduce a bias between the slave and the master surfaces, as they

prevent the slave body from penetrating into the master body but not vice versa; b) they enforce

a priori the local pressure equilibrium between the contacting bodies. The latter is the main

reason why these formulations do not seem to fit well into the collocation framework. Should

one of the contacting surfaces be chosen as slave, the gap would need to be evaluated and the

contact constraints enforced at all collocation points located on the slave surface. The contact

traction t would thus be computed on the slave surface, and due to the a priori enforcement of

equilibrium the opposite traction −t would need to be applied to the master surface. However,

this transfer would not be obvious to realize for meshes with non-matching locations of the col-

location points on the contacting surfaces. The same transfer does not represent any problem

within a weak formulation in the Galerkin setting, however, the bias between the two surfaces

still remains.

Sauer and De Lorenzis (2013) proposed an alternative approach which they called the “two

half-pass formulation”, as opposed to the classical procedure termed “full-pass”. A similar for-

mulation had been proposed in earlier works by Papadopoulos and co-workers (Papadopoulos et

al. 1995). In this approach, two loops are performed treating each surface alternatively as slave

and master. In each loop (“half-pass”), the contact tractions are computed only on the surface

currently treated as slave. Therefore, no transfer of tractions to the master side is needed. Local

equilibrium at the surfaces is not enforced a priori but has been shown to be recovered with

high accuracy. The advantages of the two-half pass approach are the unbiased treatment of both

surfaces as well as an increased degree of robustness observed within the Galerkin setting.

The two half-pass formulation is adopted herein to address the enforcement of contact con-

straints within the collocation framework. These constraints are enforced at the collocation

points situated on the contacting surfaces. During each half-pass, one of the potentially con-

tacting surfaces is treated as slave. At each collocation point on this surface, the gap and the

contact traction are computed using eqs. (35) and (41), respectively. The latter is then used

within eqs. (42), (43) or (44), depending on the specific method used. Note that these are

all non-linear equations, since t as given by eq. (41) is evaluated in the current configuration.

This implies that, in the computation of the gap from eq. (35), the projection point x̄(m) of

each slave collocation point and the corresponding normal n̄(m) are both let to vary, so that the
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contact traction is a non-linear function of the unknown displacements. Eqs. (42), (43) or (44)

are here consistently linearized (see the Appendix) and the problem is solved using the classical

Newton-Raphson iterative procedure.

6 Examples on contact

In this section, some examples are presented to illustrate the performance of the contact for-

mulation described in the previous section. The first two examples deal with contact between a

deformable body and a rigid obstacle. They include the Hertz problem, a classical benchmark

due to the availability of an analytical solution, and a rigid indentor problem. The next two

examples tackle contact between two deformable bodies. The third example is the so-called con-

tact patch test, often used to evaluate the capability of a contact formulation to transfer uniform

stresses across the contact surfaces and thus to converge to the exact solution in the presence of

non-conforming discretizations. The fourth example involves contact between two deformable

blocks. In most of the examples, the effect of mesh non-uniformity is investigated in light of the

observations made for Neumann BCs. As HC has been shown in Section 4 to deliver inferior

results as compared to EC, and also because of its higher computational cost, the comparisons

in this section are limited to PC and EC. In the latter case, the value of C∗ = 4 as identified

in Section 4 is used. In the last three examples, results are only reported for p1 = p2 = 2 but

higher-order interpolations lead to similar conclusions.

6.1 Example C1: the Hertz problem

The first contact example deals with frictionless contact of a cylinder of radius R = 1 on a rigid

plane, see Figure 17. The material of the cylinder is linearly elastic with Lamé constants µ = 0.5

and λ = 1.0, corresponding to Young’s modulus E = 1.333 and Poisson’s ratio ν = 0.333. The

cylinder is loaded with a vertical force P = 0.0048 applied as a uniformly distributed load on

the upper surface. Symmetry restraints are placed on the vertical axis in order to prevent rigid

body motion. Although this setup does not correspond exactly to the original Hertz model, the

related error is negligible provided that the applied load is sufficiently small. Hertz theory gives

in this case a = 0.0641, a being the half-width of the contact area. The penalty parameter is
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εN = 103. Three different meshes are considered to evaluate the effect of mesh refinement on

results. In all cases, the mesh is refined close to the contact region by using non-uniform knot

vectors, see Figure 18. In all meshes, the chosen amount of redistribution of the knot vector

entries is such that 85% of the elements are located within 20% of the total length of the knot

vector.

The contact stresses obtained from the PC approach at all collocation points with linear (for

simplicity) intermediate interpolation are shown in Figures 19 to 21. Results show a satisfactory

agreement with the analytical solution and display a monotonic improvement of the pressure

distribution quality with increasing resolution at a fixed order. For a given resolution, the

quality of the contact pressure distribution is virtually unaffected by the order. This result was

already obtained for NURBS discretizations in a Galerkin framework (see Temizer et al. 2011,

2012, and De Lorenzis et al. 2011, 2012) and is in contrast with the observations made for

higher-order Lagrange elements, where the contact stresses feature oscillations at the boundary

between active and inactive contact regions, whose magnitude increases with the discretization

order.

In order to evaluate the effect of the mesh aspect ratio on the accuracy of the contact stress

distributions, further analyses are performed by using a 150x30 control net with a uniform knot

vector in the radial direction and a non-uniform knot vector in the circumferential direction,

such that 85% of the elements are located within 10% of the total length of the knot vector. This

leads to a distance between adjacent collocation points which is larger in the radial direction, i.e.

in the direction perpendicular to the lower edge of the cylinder where either contact constraints

or homogeneous Neumann BCs are enforced. As shown earlier, this is the most critical condition

for the accuracy of the solution in the vicinity of this edge. Figure 22 illustrates that, close to the

boundary between contact and no-contact regions, for the same non-uniform discretization, EC

delivers a more accurate contact pressure distribution than PC. Note that, in all cases, contact

pressures are greater than or equal to zero pointwise, which is a priori guaranteed by PC and

EC. This is a property not satisfied by classical Lagrange finite elements.
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6.2 Example C2: the rigid indentor

In the second contact example, a deformable block with Lamé constants µ = 0.5 and λ = 0.8 is

pressed against a rigid indentor of smaller width by imposing a uniform vertical displacement

v̄ = 0.3 (along with zero horizontal displacement) to its upper edge. The penalty parameter is

εN = 103. The problem geometry is illustrated in Figure 23, where the locations of the Greville

collocation points for the two investigated meshes are reported. In both cases, the distance

between adjacent collocation points is larger in the direction perpendicular to the lower edge. As

demonstrated earlier, this corresponds to the most critical case for this portion of the boundary,

where either contact constraints or homogeneous Neumann BCs are enforced.

Figures 24a and b illustrate the PC results for the two meshes. With mesh 2, no iterative

convergence is obtained due to large oscillations of the solution in the vicinity of the corner of the

indentor, as shown by the close-up in Figure 24c. The reported deformed shape corresponds to

the last unconverged state (after the 10th iteration). These oscillations lead to loss of convergence

of the active set algorithm, which in turns leads to failure of the iterative procedure. Conversely,

the EC formulation achieves iterative convergence for both meshes by preventing the strong local

oscillations. The corresponding solution is shown in Figure 24d. We are well aware that the

large rotations and strains about the corner of the rigid indentor are not consistent with the use

of small deformation linear elasticity. However, we only intend this problem as a severe test of

the contact formulations, which fully account for large geometric changes.

6.3 Example C3: the contact patch test

The contact patch test, proposed by Taylor and Papadopoulos (1991), is classically adopted in

contact mechanics to test the capability of a contact formulation to transfer a constant contact

pressure across the interface between discretized bodies with non-conforming meshes. This is

viewed as a necessary condition for convergence to the exact solution upon mesh refinement.

Among the most widely used contact formulations within the Galerkin framework, the node-

to-surface (NTS) algorithm is known to fail the contact patch test, as the local enforcement

of the non-penetration condition at the slave nodes leads to local violation of the equilibrium

of moments at the contact interfaces (Zavarise and De Lorenzis 2009); mortar algorithms pass
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the contact patch test to machine precision, as a result of their non-local enforcement of the

contact constraints; Gauss-point-to-surface (GPTS) approaches (Fischer and Wriggers 2005, see

also Dimitri et al. 2014), whereby the enforcement of the contact constraints occurs at multiple

locations within each slave contact surface element, pass the contact patch test to within the

integration error of the contact contribution to the weak form. Sauer and De Lorenzis (2013)

showed that the two-half-pass version of the GPTS approach passes the contact patch test to

machine precision for low or moderate penalty parameters.

Figure 25 illustrates the geometry of the contact patch test adopted herein. The two blocks

have Lamé constants µ = 0.5 and λ = 1.0, and are pressed onto each other with a uniform

pressure p̄ = 0.1 applied in 10 loading steps. Symmetry BCs are enforced on the left vertical

edges of both blocks. In all points of the lower edge of the lower block, zero vertical displacement

and zero shear stress are imposed. Figure 26a,b shows the vertical displacement contour on the

deformed geometry and the relative error of the stress σy (with respect to the exact solution equal

to −p̄) obtained with the PC approach for a penalty parameter εN = 10. A visible penetration

error is observed in Figure 26a due to the low value of the penalty parameter. Nevertheless,

the exact stress solution is attained within machine precision. In Figure 26c,d, the penalty

parameter is raised to εN = 100, which obviously leads to smaller (now visually imperceptible)

penetrations (Figure 26c). The error in the stress computation is still at machine precision

26d. Thus, interestingly, the collocation approach does pass the contact patch test despite

its local enforcement of the contact constraints at the collocation points. The reason is that

the governing equations involve contact pressures. Conversely, in the NTS approach, where the

contact constraints are also enforced locally at the slave nodes, the contact residual contributions

are computed in the form of concentrated forces at the slave nodes, and a uniform smearing of

these forces over the contact elements (Zavarise and De Lorenzis 2009) is not sufficient for an

accurate recovery of the contact pressure distribution.

Note that in this example, as the exact solution features uniform deformation and stress

states throughout the blocks, the PC and EC approaches (as well as the HC one) deliver identical

results regardless of the aspect ratio of the employed mesh.
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6.4 Example C4: the two deformable blocks

In this example, a deformable block with Lamé constants µ = 0.5 and λ = 0.5 is pressed

against another deformable block with the same elastic constants but larger width, by imposing

a uniform vertical displacement v̄ = 0.2 (along with zero horizontal displacement) to its upper

edge in 20 time steps. The lower edge of the lower block is restrained against both vertical and

horizontal displacements. Once again, we are fully aware that the large deformations of the

blocks are not consistent with the use of linear elasticity. However, we simply view this as a

severe test of the contact formulation which is applicable to large deformations.

The penalty parameter is set to εN = 1500. This large value is needed to prevent visible

penetrations at the corners of the upper block where large stress concentrations are expected.

The problem geometry is illustrated in Figure 27, where the locations of the Greville collocation

points for the first two investigated meshes are reported. In mesh 1, the distance between

adjacent collocation points is similar in both horizontal and vertical directions. In the second

mesh, this distance is larger in the horizontal direction, i.e. in the direction perpendicular to the

vertical edges of the blocks where homogeneous Neumann BCs are enforced. As demonstrated

earlier, this corresponds to the most critical case for this portion of the boundary.

Figure 28a,b illustrate the PC results for the two meshes in terms of σy stress contours. The

expected large stress concentrations at the corners of the blocks are correctly captured with

mesh 1, whereas mesh 2 leads to spurious stress oscillations of significant magnitude. These are

due to the strong enforcement of the Neumann BCs on the vertical edges of both blocks, and

are consistent with observations in earlier examples. The oscillations disappear when using the

EC formulation, which leads to the expected solution for both meshes (Figure 28c,d).

Additional meshes are investigated where the distance between adjacent collocation points

is larger in the vertical direction, i.e. in the direction perpendicular to the horizontal edges

of the blocks where the contact constraints (or, for the inactive contact regions, homogeneous

Neumann BCs) are enforced. This thus corresponds to the most critical case for this portion

of the boundary. When using the PC formulation, the iterative procedure fails at loading step

7 for a mesh with 25x5 control points, and at loading step 18 for a mesh with 20x5 control

points. As already observed in the rigid indentor example, the loss of iterative convergence is
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due to failure of the active set algorithm, in turn due to strong local oscillations of the solution

taking place in the vicinity of the contact boundary. By suppressing these oscillations, the EC

formulation achieves convergence for both meshes. The mesh with 25x5 control points and the

corresponding solution are respectively shown in Figure 29a,b.

7 Conclusions

This paper tackled two important aspects in the development of isogeometric collocation, namely,

the imposition of Neumann BCs, and the enforcement of contact constraints between multiple

patches with non-conforming discretizations. Both issues fit into the same framework as contact

constraints can be viewed as a special type of Neumann BC. Notably, contact is the first non-

linear solid mechanics problem for which isogeometric collocation is investigated. The following

main conclusions were reached:

- for problems featuring reduced regularity of the solution (e.g., problems with incom-

patible BCs at corners) and non-uniform meshes, the strong imposition of Neumann

BCs in the conventional collocation method may lead to a significant loss of accuracy;

- in such situations, the proposed enhanced collocation scheme, whereby the Neumann

BCs are imposed considering both boundary and bulk contributions, significantly

improves the accuracy over the conventional collocation method and achieves an

accuracy comparable to that of the Galerkin method, especially for discretizations

of order larger than 3, while completely eliminating quadrature. The penalty-like

constant required by this approach was calibrated for small-deformation elasticity

and is expected to be operator-dependent but not problem-dependent;

- the proposed hybrid collocation-Galerkin scheme is also effective in improving the

accuracy, especially for high discretization orders. In comparison to the enhanced

collocation scheme, this method has the disadvantage of requiring computation of

a boundary integral, but the advantage that it contains no penalty-like constant in

need of calibration;

- for contact problems between deformable bodies, the two-half-pass formulation seems
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the most natural algorithm in the collocation framework. Despite the pointwise

evaluation of the contact residual contributions at the surface collocation points, the

formulation passes the contact patch test to machine precision;

- the proposed frictionless contact formulation in the collocation setting yields results

of very good quality for regular solutions and uniform meshes. In situations with

highly non-uniform meshes, as for the more general Neumann cases, the original

collocation method fails whereas the proposed enhanced collocation scheme is an

effective remedy which restores accuracy of the results and robustness of the iterative

procedure.
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A Consistent linearization

Eqs. (42), (43), and (44), respectively for the PC, HC, and EC collocation approaches, contain

in different forms the same boundary residual term

Rbou = C
(
∇Su

)
n− t (A.1)

where t is given by eq. (41). For a more concise notation, the superscript h indicating the

discretized displacement field is here omitted. Linearization of this residual gives

∆Rbou = C
[
∇S (∆u)

]
n−∆t (A.2)

with ∆ as the symbol for linearized increment. In turn, eq. (41) yields

∆t = −εN
(

∆gN n̄(m) + gN∆n̄(m)
)

(A.3)

where ∆gN and ∆n̄(m) are given by (Laursen 2002, Wriggers 2006)
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∆gN =
(

∆x(s) −∆x̄(m)
)
· n̄(m) (A.4)

and

∆n̄(m) = − 1

m̄
(m)
11

(
∆x̄

(m)
,ξ · n̄

(m) + k̄
(m)
11 ∆ξ̄(m)

)
τ̄ (m) (A.5)

In the latter equation it has been assumed that the master surface is parameterized by the

convective coordinates ξ(m), that define the covariant vector τ (m) = x
(m)
,ξ and the metricm(m)

11 :=∥∥τ (m)
∥∥2

. The curvature follows from k
(m)
11 = x

(m)
,ξξ · n(m), where n(m) is the normal unit vector

to the master surface. Being n̄(m) the normal to the master surface at the projection point,

these quantities are all evaluated at the projection point, and the parametric location of this

point must also be linearized. It can be shown that (Laursen 2002, Wriggers 2006)

∆ξ̄(m) =
1

Ā
(m)
11

[(
∆x(s) −∆x(m)

)
· τ̄ (m) − gN n̄(m) ·∆x

(m)
,ξ

]
(A.6)

with

Ā
(m)
11 = m̄

(m)
11 − gN k̄

(m)
11 (A.7)
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Figure 1: Example of B-spline basis functions and a corresponding 2D B-spline
curve. (a) Cubic B-spline basis functions corresponding to the knot vector
{0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}. (b) A possible 2D B-spline curve generated
from the basis functions in (a) by selecting the black points as control points.
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Figure 2: Example N1: the compression test.
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Figure 3: Example N1: results with the PC (a,b,c), HC (d,e,f) and EC (g,h,i) treatments using
the Greville abscissae. p1 = p2 = 2. All contours show the vertical displacement field on the
deformed geometry for meshes with 5x5 (a,d,g), 5x15 (b,e,h) and 5x25 (c,f,i) collocation points
(aspect ratios of 1, 3, and 5, respectively). In the EC treatment C∗ = 4. The blue dots represent
the Greville collocation points.
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Figure 4: Example N1: displacement error in L2-norm for a mesh aspect ratio of 1 (a,c,e,g), and
5 (b.d.f.h). p1 = p2 = 2 (a,b), 3 (c,d), 4 (e,f), 5 (g,h). Collocation is performed at the Greville
abscissae.
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Figure 5: Example N1: comparison between methods. Displacement error in L2-norm relative
to Galerkin results for the same mesh. Collocation is performed at the Greville (a,c,e) and at the
Demko (b,d,f) abscissae. The minimum number of control points is fixed to 10 (e.g. an aspect
ratio = 3 corresponds to a mesh with 10x30 control points; an aspect ratio of 0.5 corresponds
to a mesh with 20x10 control points). In the EC treatment C∗ = 4.
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Figure 6: Example N1: displacement error in L2-norm of the EC treatment relative to Galerkin
as a function of C∗ using the Greville abscissae and p1 = p2 = 2 (a), 3 (b), 4 (c), and 5 (d).
The minimum number of control points is fixed to 10.
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Figure 7: Example N1: optimal C∗ versus the mesh aspect ratio using the Greville (a) and
Demko (b) abscissae. The minimum number of control points is fixed to 10.
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Figure 8: Example N1: optimal C∗ for a mesh aspect ratio of 5 versus the degree of interpolation
using the Greville (a) and Demko (b) abscissae.
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Figure 9: Example N2: the quarter of annulus.
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(d) (e) (f)

(g) (h) (i)

Figure 10: Example N2: results with the PC (a,b,c), HC (d,e,f) and EC (g,h,i) treatments using
the Greville abscissae. p1 = p2 = 2. All contours show the vertical displacement field on the
deformed geometry for meshes with 5x5 (a,d,g), 15x5 (b,e,h) and 25x5 (c,f,i) collocation points.
In the EC treatment C∗ = 4. The blue dots represent the Greville collocation points.
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Figure 11: Example N2: results with the PC (a,b,c), HC (d,e,f) and EC (g,h,i) treatments using
the Greville abscissae. p1 = p2 = 2. All contours show the vertical displacement field on the
deformed geometry for meshes with 10x10 (a,d,g), 30x10 (b,e,h) and 50x10 (c,f,i) collocation
points. In the EC treatment C∗ = 4. The blue dots represent the Greville collocation points.
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Figure 12: Example N2: displacement error in L2-norm for a mesh aspect ratio of 1 (a,c,e,g),
and 5 (b.d.f.h). p1 = p2 = 2 (a,b), 3 (c,d), 4 (e,f), 5 (g,h). Collocation is performed at the
Greville abscissae.
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Figure 13: Example N2: comparison between methods. Displacement error in L2-norm relative
to Galerkin results for the same mesh. Collocation is performed at the Greville (a,c,e) and at the
Demko (b,d,f) abscissae. The minimum number of control points is fixed to 10 (e.g. an aspect
ratio = 3 corresponds to a mesh with 30x10 control points). In the EC treatment C∗ = 4.
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Figure 14: Example N2: displacement error in L2-norm of the EC treatment relative to Galerkin
as a function of C∗ using the Greville abscissae and p1 = p2 = 2 (a), 3 (b), 4 (c), and 5 (d).
The minimum number of control points is fixed to 10.
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Figure 15: Example N2: optimal C∗ versus the mesh aspect ratio using the Greville (a) and
Demko (b) abscissae.
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Figure 16: Example N2: optimal C∗ versus the degree of interpolation using the Greville (a)
and Demko (b) abscissae.
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Figure 17: Example C1: the Hertz problem.
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Figure 18: Example C1: contour of stresses σy in the vicinity of the contact region. The PC
formulation is used. The blue dots represent the Greville collocation points.
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Figure 19: Example C1: analytical and numerical contact pressures for p1 = p2 = 2, meshes
with 50x20 (a), 100x40 (b), 150x60 (c), 200x60 (d) control points. The PC formulation is used.
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Figure 20: Example C1: analytical and numerical contact pressures for p1 = p2 = 3, meshes
with 50x20 (a), 100x40 (b), 150x60 (c), 200x60 (d) control points. The PC formulation is used.
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Figure 21: Example C1: analytical and numerical contact pressures for p1 = p2 = 4, meshes
with 50x20 (a), 100x40 (b), 150x60 (c), 200x60 (d) control points. The PC formulation is used.
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Figure 22: Example C1: analytical and numerical contact pressures for p1 = p2 = 2, mesh with
150x30 control points, comparison between PC (a) and EC (b) results.
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(b)

Figure 23: Example C2: the rigid indentor. Mesh 1 with 20x10 control points (a) and mesh
2 with 35x10 control points (b). The blue dots represent the Greville collocation points (p1 =
p2 = 2).
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Figure 24: Example C2: vertical displacement contour on the deformed geometry for PC with
mesh 1 (a), PC with mesh 2 (b,c), and EC with mesh 2 (d). (c) is a closeup in the vicinity of
the corner of the indentor. The solution in (b,c) is unconverged. The blue dots represent the
Greville collocation points (p1 = p2 = 2).
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Figure 25: Example C3: the contact patch test. The blue dots represent the Greville collocation
points (p1 = p2 = 2).
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!(a) !(b)

!(c) !(d)

Figure 26: Example C3: vertical displacement contour on the deformed geometry (a,c) and
stress error (b,d) for εN = 10 (a,b) and εN = 100 (c,d). The PC formulation is used. The blue
dots represent the Greville collocation points (p1 = p2 = 2).
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Figure 27: Example C4: the two deformable blocks. Mesh 1 with 10x5 control points (a) and
mesh 2 with 10x15 control points (b) for each block. The blue dots represent the Greville
collocation points (p1 = p2 = 2).
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Figure 28: Example C4: contour of stresses σy on the deformed geometry for PC with mesh 1
(a), PC with mesh 2 (b), EC with mesh 1 (c) and EC with mesh 2 (d). The blue dots represent
the Greville collocation points (p1 = p2 = 2).

60



!

!

!!

!̅!

!!

(a) !(b)

Figure 29: Example C4: mesh 3 with 25x5 control points for each block (a) and the contour
of stresses σy on the deformed geometry obtained with EC (b). The blue dots represent the
Greville collocation points (p1 = p2 = 2).
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