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Abstract

In the modeling of pressurized fractures using phase-field approaches, the irre-
versibility of crack growth is enforced through an inequality constraint on the
temporal derivative of the phase-field function. In comparison to the classical
case in elasticity, the presence of the pressure requires the additional constraint
and makes the problem much harder to analyze. After temporal discretization,
this induces a minimization problem in each time step over a solution dependent
admissible set. To avoid solving the resulting variational inequality correspond-
ing to the first order necessary conditions; commonly a penalization approach is
used to remove the inequality constraint. It is well-known that for large penalty
parameters the algorithm suffers from numerical instabilities in the solution
process. Consequently, to avoid such a drawback, we propose an augmented
Lagrangian algorithm for the discrete in time and continuous in space phase-
field problems. The final set of equations is solved in a decoupled fashion. The
proposed method is substantiated with several benchmark and prototype tests
in two and three dimensions.

Keywords: finite elements, phase-field, variational fracture, augmented
Lagrangian, iterative solution
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1. Introduction

Presently, crack propagation in elastic and porous media is one of the ma-
jor research topics in energy and environmental engineering. Consequently, a
huge variety of models and numerical techniques have been investigated so far.
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Specifically, Griffith’s model [1] for quasi-static fracture evolution has been suc-
cessfully applied. Here, the crack propagates if the rate of elastic energy decrease
per unit surface area of the increment step is equal to the quasi-static critical
energy release rate Gc. The crack does not move if the elastic energy release
rate is less than Gc. On the contrary, it is unstable if Gc exceeds the critical
rate. Griffith found that Gc is related to the crack surface energy increase. The
solution of crack representation and propagation requires special techniques for
their numerical treatment. In recent years, different approaches have been pro-
posed such as the extended finite element method by Moes et al. [2] based on the
partition of unity method of Babuska and Belenk [3] in which the displacement
field is enriched with discontinuities. In addition, fixed-mesh approaches such as
phase-field techniques have gained increased interest by studies from Francfort
and Marigo [4], Bourdin et al. [5, 6], Miehe et al. [7, 8], Borden et al. [9], Ho-
facker and Miehe [10]. Instead of modeling the discontinuities explicitly (like
in the extended finite element method), the lower-dimensional crack surface is
approximated by a phase-field function. This introduces a diffusive transition
zone (brittle zone or mushy-zone are also common expressions depending on the
discipline) between the broken and the unbroken material; see Figure 1.

Figure 1: Explication of the fixed-grid finite element phase-field approach: A (lower-
dimensional) crack is approximated with the help of a phase-field function as shown in the
left figure. The phase-field is an indicator function with values 0 in the crack (here in red)
and 1 in the unbroken zone (here in blue). The mushy-zone provides a smooth interpolation
between 0 and 1 indicated in yellow and green. On the right side, the major advantages for the
phase-field approach are shown: joining, branching and nonplanar crack growth in possibly
heterogeneous media (figure taken from [11]).

The major advantages of using phase-field modeling for crack propagation
are three-fold. First, it is a fixed-mesh approach in which remeshing is avoided.
Second, the model is purely based on energy minimization and therefore, crack
nucleation, propagation and the path are automatically determined (avoiding
calculation of additional components such as stress intensity factors). Third,
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multiple joining and branching of cracks do not require any additional tech-
niques. Consequently, phase-field modeling allows simple handling of large and
complex fracture networks. Quantities of interest such as the crack opening
displacement (the aperture) can be recovered with the help of the phase-field
function. From the application point of view, we are specifically interested in
pressurized fractures and their propagation, which are of particular interest in
dam constructions, subsurface modeling, blood flow with damaged tissue, and
oil recovery processes. In recent years, several methods for pressurized fracture
and crack propagation have been proposed. These include an implicit mov-
ing mesh algorithms of Lecampion and Detournay [12]; moving-mesh approach
with local grid refinement by Schrefler et al. [13]; a special zero-thickness fi-
nite element approach by Carrier and Granet [14]; the partition of unity and
extended finite element approaches by Irzal et al. [15]; and finally, boundary
element approaches by Ganis et al. [16], Castonguay et al. [17]. To the best of
our knowledge, the previously mentioned phase-field approach was first applied
to pressurized cracks by Bourdin et al. [18], and a rigorous model investigation
was first undertaken by Mikelić et al. [19, 11].

In this paper, we extend the previous studies [19, 11]. Namely, the pe-
nalization of the irreversibility condition for crack growth is modified. It is
well-known from Lootsma [20], Murray [21] that simple penalization leads to
numerical instabilities due to ill-conditioning of the constraint Hessian. Con-
sequently, another (but computational costly) method is proposed by Mikelić
et al. [11]. We circumvent these drawbacks in adapting a robust method from
optimization: the augmented Lagrangian method dating back to Hestenes [22]
and Powell [23] and proposed by Fortin and Glowinski [24], Glowinski and Tallec
[25] for use in discretized differential equations. In particular, we consider the
augmented Lagrangian in a function space setting similar to Ito and Kunisch
[26, Chapter 4].

The numerical discretization is based on the incremental formulation [11].
In particular, a Galerkin finite element scheme is used for spatial discretiza-
tion. The solution algorithm is based on a decoupling of the equations, which
allows for easy extension to sophisticated solvers for each of the subproblems.
This is in particular interesting for large-field 3d simulations. Since the aug-
mented Lagrangian method is based on an iteration itself, we perform several
subiterations until the change in displacements is sufficiently small. The nonlin-
ear phase-field equation is solved with Newton’s method whereas the elasticity
problem is linear.

The paper is organized as follows: In Section 2, we recall the energy func-
tionals defined on the continuous level. In Section 3, the augmented Lagrangian
is derived with respect to the energy functional. Next, in Section 4, the corre-
sponding Euler-Lagrange equations and their discretization are discussed. More-
over, our solution algorithm is described. The final Section 5 presents four
different examples for pressurized cracks in two and three dimensions. We pro-
pose simple configurations that might allow comparisons with other methods
for crack propagation and we provide a deeper understanding of the capabilities
of our method by studying several numerical aspects.
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Figure 2: Prototype configurations of the setting. The difference between Bourdin’s approach
[18] (left) and our approach (right) is that he works in an elastic medium whereas we work in
a poroelastic setting.

2. The Energy Functional

Let Ω ∈ Rd, d = 2, 3 be a given domain. We assume that the crack C is
contained compactly in Ω, i.e., it does not reach the boundary. Let us denote
by (·, ·)A, ‖ · ‖A the usual L2-inner product and norm on A. If A = Ω we skip
the subscript for better readability.

Following Griffith’s criterion, we suppose that the crack propagation occurs
when the elastic energy restitution rate reaches its critical value Gc. If τ is the
traction force applied at the part of the boundary ∂NΩ, we then associate to
the crack C the following total energy

E(u, C) =
1

2
(Ge(u), e(u))Ω\C − (τ, u)∂NΩ

− (α− 1)(pB ,div u)Ω\C + (∇pB , u)Ω\C +GcHd−1(C), (1)

where u denotes the vector-values displacement field, pB is the poroelastic
medium pressure, α ∈ [0, 1] is the Biot coefficient, Hd−1 is the d−1-dimensional
Hausdorff measure, and G the rank-4 Gassman tensor. Later, we use the law

Ge(u) = σ(u) = 2µse(u) + λstre(u)I,

where µs and λs denote the Lamé coefficients, e(u) = 1
2 (∇u+∇uT ), and I the

identity in d-dimensions.
This energy functional is then minimized with respect to the kinematically

admissible displacements u and any crack set satisfying a crack growth condi-
tion. The computational modeling of this minimization problem should treat
complex crack topologies and requires approximation of the crack location and
of its length. This can be overcome by regularizing the sharp crack surface
topology in the solid by diffusive crack zones described by a scalar auxiliary
variable. This variable is a phase-field that interpolates between the unbroken
and the broken states of the material. As previously stated above for the purely
solid mechanics problem variational methods were introduced by Bourdin et al.
[5, 6].
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We introduce the time-dependent crack phase-field ϕ, defined on Ω× (0, T ).
The regularized crack functional reads

Γε(ϕ) =
1

2ε
‖(1− ϕ)‖2 +

ε

2
‖∇ϕ‖2 =

∫
Ω

γ(ϕ,∇ϕ) dx, (2)

where γ is the crack surface density per unit volume. This regularization of
Hd−1(C), in the sense of the Γ−limit when ε→ 0, was used in [5, 6].

Our modeling part is based on the fact that the crack can only grow, which
is represented by the irreversibility constraint:

∂tϕ ≤ 0. (3)

In the following, we replace the energy (1) by a global constitutive dissipation
functional for a rate independent fracture process [7, 18, 19]. We obtain then

Eε(u, ϕ) =
1

2

((
(1− κ)ϕ2 + κ

)
Ge(u), e(u)

)
− (τ, u)∂NΩ

− (α− 1)(ϕ2pB ,div u) + (ϕ2∇pB , u)

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
,

(4)

where κ is a positive regularization parameter for elastic energy, with κ � ε.
We remark that the meaning of the different terms in (4). The first term denotes
the elastic bulk energy and the final term characterizes the surface energy of
the crack. These two terms are already well-known from the pure elastic case.
The middle line is novel and is a contribution from the pressure in the fracture.

In the following, we work in a quasi-static formulation and velocity changes
are assumed to be negligible. Consequently, we replace the time derivative ∂tϕ
by a backward difference quotient

∂tϕ ≈ ∂kϕ =
ϕ− ϕn−1

k
,

where k > 0 denotes the time step parameter and ϕ := ϕn the present solution
and ϕn−1 the solution to the previous time step. Discretization in time at this
stage leads to an incremental formulation. With this we have

ϕ ≤ ϕn−1

which means that the crack should not shrink in each incremental step. Re-
member (see Figure 1) that the crack region is characterized by ϕ = 0 and the
non-fractured zone by ϕ = 1.

3. The Augmented Lagrangian Method

The major novelty in this study is to impose the irreversibility constraint
(3). To pose it in a minimization setting in function spaces, let us denote
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V := H1
0 (Ω) and W := H1(Ω). Then given a previous time step solution

(un−1, ϕn−1) ∈ V ×W we seek find (un, ϕn) ∈ V ×W satisfying

min Eε(u
n, ϕn)

s.t. ϕn ∈ K(ϕn−1) := {ϕ | 0 ≤ ϕn ≤ ϕn−1 ≤ 1},
(5)

or equivalently

min Eε(u
n, ϕn) + IK(ϕn−1)(ϕ

n), (6)

with the indicator function IS of an arbitrary set S given by

IS =

{
0 on S,

∞ otherwise.

Since K(ϕn−1) is closed, convex, and non empty IK(ϕn−1) : L2(Ω)→ R∪{±∞}
is proper, convex, and lower semi-continuous.

A rather simple penalization technique, to eliminate the extended real valued
function IK(ϕn−1), is used in [19], where the approximation

IK(ϕn−1) ≈ γ
(

(ϕ− ϕn−1)
)+)2

,

for γ →∞ is considered. Here we denote by the superscript + the positive part
of a function, i.e.,

f+ = max(0, f).

However, it is well-known that this leads to numerical instabilities in the
solution process. Another penalization of theoretical importance is employed
in [11]. This one has however the drawback that it is very difficult to imple-
ment and rather expensive since second order derivatives need to be evaluated.
Consequently, we aim for a simple but powerful strategy, which is provided
by the augmented Lagrangian penalization. It is well-known in approaches as
constraint optimization and in solving variational inequalities.

To avoid the non-differentiability of IK(ϕn−1), while not increasing γ → ∞,
we introduce its Moreau-Yosida approximation, see, e.g., [26, Section 4.4]. To
do so, let γ ∈ R>0, ϕ, λ ∈ L2(Ω) be given. We define

Mγ(ϕ, λ) = inf
ψ∈L2(Ω)

(
IK(ϕn−1)(ϕ− ψ) + (λ, ψ) + γ

2 ‖ψ‖
2

)
. (7)

Mγ is, again, convex and Frechét differentiable with respect to ϕ, see, e.g., [26,
Theorem 4.39]. In the present case, the unique minimizer ϕγ on the right of the
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definition of Mγ(ϕ, λ) in (7) is given by

ϕγ = min
(
ϕ,max

(
ϕ− ϕn−1, −1

γ λ
))

= min
(
ϕ, (ϕ− ϕn−1) +

(
(ϕn−1 − ϕ)− 1

γλ
)+)

= min
(
ϕ, (ϕ− ϕn−1) + 1

γλ+
(
(ϕn−1 − ϕ)− 1

γλ
)+ − 1

γλ
)

= min

(
ϕ,

1

γ

((
λ+ γ(ϕ− ϕn−1)

)+ − λ))
=

1

γ
min

(
γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+ − λ)
=

1

γ

(
min

(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)− λ).
Hence

Mγ(ϕ, λ) = IK(ϕn−1)(ϕ− ϕγ) + (λ, ϕγ) + γ
2 ‖ϕγ‖

2

= (λ, ϕγ) + γ
2 ‖ϕγ‖

2

=
(
λ+ 1

2

(
min

(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)− λ), ϕγ)
=

1

2γ

(
λ+ min

(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)
, γϕγ

)
=

1

2γ

∥∥∥∥min
(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)∥∥∥∥2

− 1

2γ
‖λ‖2.

Noting that if
(
λ+ γ(ϕ− ϕn−1)

)+ 6= 0 then it holds(
λ+ γ(ϕ− ϕn−1)

)+
= λ+ γ(ϕ− ϕn−1) ≤ λ+ γϕ

and thus it is

min
(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)
=
(
λ+ γ(ϕ− ϕn−1)

)+
.

Furthermore, it is

λ+ γϕ ≥ λ+ γ(ϕ− ϕn−1) =
(
λ+ γ(ϕ− ϕn−1)

)+ ≥ 0

and hence min(0, λ+ γϕ) = 0. In the other case, i.e.,
(
λ+ γ(ϕ− ϕn−1)

)+
= 0

it holds
min

(
λ+ γϕ,

(
λ+ γ(ϕ− ϕn−1)

)+)
= min(0, λ+ γϕ).

We conclude that we can rewrite Mγ(ϕ, λ) as

Mγ(ϕ, λ) =
1

2γ

∥∥∥min(0, λ+ γϕ) +
(
λ+ γ(ϕ− ϕn−1)

)+∥∥∥2

− 1

2γ
‖λ‖2

=
1

2γ

∥∥∥min(0, λ+ γϕ)
∥∥∥2

+
1

2γ

∥∥∥(λ+ γ(ϕ− ϕn−1)
)+∥∥∥2

− 1

2γ
‖λ‖2.
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Its Frechét derivative with respect to ϕ is given by

M ′γ(ϕ, λ) = min(0, λ+ γϕ) +
(
λ+ γ(ϕ− ϕn−1)

)+
.

Using these calculations, we introduce the augmented Lagrangian

Lγ(u, ϕ, λ) = Eε(u, ϕ) +Mγ(ϕ, λ),

and the corresponding method reads as follows:

Algorithm 1 Augmented Lagrangian Algorithm for the Solution of (5)

Choose λ0 ∈ L2(Ω), γ > 0, and let k = 0.
repeat

Find (uk+1, ϕk+1) solving

min
u,ϕ

Lγ(u, ϕ, λk)

or equivalently

min
u,ϕ

Eε(u, ϕ) +
1

2γ

∥∥min(0, λ+ γϕ)
∥∥2

+
1

2γ

∥∥(λk + γ(ϕ− ϕn−1)
)+∥∥2

.

Update
λk+1 = M ′γ(ϕk+1, λk)

k ← k + 1
until Stopping criterion (8) is satisfied
(un, ϕn) = (uk, ϕk)

Remark 3.1. In our calculations, a clever choice for the initial guess λ0 is given
by λn−1 from the previous time step.

Applying [26, Theorem 4.45], for (un, ϕn) solving (5) it holds necessarily
that there is some λn such that

λn = M ′γ(ϕn, λn), (un, ϕn) = argminEε(u, ϕ) +Mγ(ϕ, λn).

Hence a reasonable stopping criterion for Algorithm 1 is given by

max(‖uk−1 − uk‖, ‖λk−1 − λk‖) ≤ TOL (8)

for some given tolerance TOL > 0.

4. Equations and Finite Element Implementation

In this section, we derive from the energy functional (6) the corresponding
Euler-Lagrange equations in variational form. These equations are the basis of
our Galerkin finite element discretization. Finally, we describe our decoupled
solution algorithm.
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4.1. The Euler-Lagrange equations

In order to apply a Galerkin finite element method, we need to derive the
Euler-Lagrange equations to the energy functional

min
u,ϕ

Eε(u, ϕ) +
1

2γ

∥∥(λk + γ(ϕ− ϕn−1)
)+∥∥2

.

Differentiating with respect to u and ϕ, we obtain:((
(1− κ)ϕ2 + κ

)
Ge(u), e(w)

)
− (τ, w)∂NΩ

− (α− 1)(ϕ2pB ,div w) + (ϕ2∇pB , w) = 0 ∀w ∈ V,
(9)

as well as

(1− κ)(ϕ Ge(u) : e(u), ψ)− 2(α− 1)(ϕ pB div u, ψ) + 2 (ϕ∇pB u, ψ)

+Gc

(
−1

ε
(1− ϕ,ψ) + ε(∇ϕ,∇ψ)

)
+
(

(λ+ γ(ϕ− ϕn−1))+, ψ
)

= 0 ∀ ψ ∈W.

(10)

In order to solve both problems, we formulate a bilinear form for the linear
elasticity part and a semi-linear form for the nonlinear phase-field as follows:

A1(u,w) =
((

(1− κ)ϕ2 + κ
)
Ge(u), e(w)

)
− (τ, w)∂NΩ

− (α− 1)(ϕ2pB ,div w) + (ϕ2∇pB , w) = 0 ∀w ∈ V,
(11)

and
A2(ϕ)(ψ) = (1− κ)(ϕ Ge(u) : e(u), ψ)

− 2(α− 1)(ϕ pB div u, ψ) + 2 (ϕ∇pB u, ψ)

+Gc

(
−1

ε
(1− ϕ,ψ) + ε(∇ϕ,∇ψ)

)
+
(

(λ+ γ(ϕ− ϕn−1))+, ψ
)

= 0 ∀ ψ ∈W.

(12)

4.2. Galerkin finite element discretization

The computational domain is subdivided into quadrilateral or hexahedral el-
ement domains. Both subproblems are discretized using H1-conforming bilinear
elements, i.e., the ansatz and test space uses Qc1-finite elements. Consequently,
the discrete spaces have the property Vh ⊂ V and Wh ⊂ W . The elasticity
problem is linear and can be treated with an appropriate solver. Thus, for any
given ϕh ∈Wh we can find uh ∈ Vh solving

A1(uh, w) = 0 ∀w ∈ Vh.

Vice versa, for any given uh ∈ Vh we can solve the nonlinear problem of finding
ϕh solving (12) with Newton’s method. For the iteration steps m = 0, 1, 2, . . .,
the Newton update is given by finding δϕh ∈Wh solving:

A′2(ϕh,m)(δϕh, ψ) = −A2(ϕh,m)(ψ) ∀ψ ∈Wh,

ϕh,m+1 = ϕh,m + ωδϕh,
(13)
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with a line search parameter ω ∈ (0, 1]. Here, we need the Jacobian of A2(ϕ)(ψ)
applied to a direction δϕ:

A′2(ϕ)(δϕ, ψ) = (1− κ)
(
δϕGe(u) : e(u), ψ

)
− 2 (α− 1)(δϕ pB div u, ψ) + 2 (δϕ∇pB w,ψ)

+Gc

(
−1

ε
(δϕ, ψ) + ε(∇δϕ,∇ψ)

)
+ γ (δϕ, ψ)A(ϕ)

(14)

where
A(ϕ) = {x ∈ (0, L)3 |λ+ γ(ϕ− ϕn−1) > 0}.

Summarizing, we deal with:

Problem 4.1 (Variational FE formulation for linear elasticity). Find uh ∈ Vh
such that

A1(uh, w) = 0, ∀w ∈ Vh,

and

Problem 4.2 (Variational FE formulation for phase-field). Find ϕh ∈Wh such
that

A′2(ϕh,m)(δϕh, ψ) = −A2(ϕh,m)(ψ), ϕh,m+1 = ϕh,m + ωδϕh, (15)

for all δϕh ∈Wh and where A2 and A′2 are given by (12) and (14).

4.3. The solution algorithm

Following [11], we use the quasi-static splitting approach as solution algo-
rithm. Here, both systems are solved subsequently in an iterative way. This
allows for easy extension for the usage of specific solvers for each of the sub-
problems. Our strategy is as follows: at time step tn, for the given iteration
ϕl−1, we solve first for ul and then for the new ϕl with given ul. Thus,

Problem 4.3 (Iteration of the decoupled problem). Let ϕh,l−1 be given from
the previous iteration step. Find uh,l ∈ Vh such that

A1(uh,l, w) = 0, ∀w ∈ Vh.

Take uh,l and solve for ϕh,l:

A′2(ϕh,m,l)(δϕh, ψ) = −A2(ϕh,m,l)(ψ), ϕh,m+1,l = ϕh,m,l + ωδϕh, (16)

for all δϕh ∈Wh and where A2 and A′2 are given by (12) and (14). The iteration
is stopped when

max(‖ul−1 − ul‖, ‖ϕl−1 − ϕl‖) ≤ TOL2 (17)

for some positive tolerance TOL2.

For the sake of simplicity, we use direct solvers to solve the linear sub-
problems. However, the implementation of an iterative solver is straight forward.

The solution process is outlined in Algorithm 2.
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Algorithm 2 Solution algorithm

For each time tn

repeat
Solve augmented Lagrangian loop
repeat

Solve two-field problem iteratively, namely
Solve linear elasticity in Problem 4.1
Solve the nonlinear phase-field in Problem 4.2.

until Stopping criterion (17) for two-field iteration is satisfied
Update

λk+1 = (λk + γ(ϕk+1 − ϕn−1))+

until Stopping criterion (8) for augmented Lagrangian is satisfied
Set: (un, ϕn) := (uk, ϕk).
Increment tn → tn+1.

5. Numerical Tests

We perform four numerical tests to investigate the augmented Lagrangian
method. First, we compute Sneddon’s 2d benchmark problem [27] (Chapter
2.4) with a constant pressure, which has been used in the literature for code
validation [18, 19, 11]. In the second example, we consider a propagating crack,
which is driven by an increasing pressure [11]. As third test case, two cracks
are joining due to an increasing pressure. In fact, this example shows one of the
advantages of the phase-field approach compared to other methods. In the final
example, we compute Sneddon’s 3d constant-pressure penny-shape crack [27]
(Chapter 3.3). It is well-known that the phase-field approach needs fine meshes
to work with sufficient accuracy. Thus, the aim of the study is to validate the
proposed model by computing solutions on a hierarchy of locally refined meshes
in which a priori knowledge of crack propagation is taken into account. However,
a simple automated refinement technique would be to use the mushy-zone of the
phase-field function to mark cells for refinement for the next time step. In fact,
such an approach for mesh refinement using an initial-point-set function (which
has the same purpose as a phase-field function) is used in [28]. To the best
of our knowledge, detailed numerical verification for pressurized cracks using a
phase-field approach has not yet been performed for the test cases 5.2, 5.3, 5.4.
All examples are computed with the multiphysics template [29], based on the
finite element software deal.II [30].

5.1. Sneddon’s 2D benchmark with constant pressure

The first example is motivated by Bourdin et al. [18] and is based on the
theoretical calculations of Sneddon and Lowengrub [27], Sneddon [31]. Specifi-
cally, we consider a 2D problem where a (constant) pressure pB is used to drive
the deformation and crack propagation. We assume a dimensionless form of the
equations. The configuration is displayed in Figure 5. Therefore, we deal with
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the following geometric data: Ω = (0, 4)2 and a (prescribed) initial crack with
length l0 = 0.4 on ΩC = (1.8, 2.2) × (2 − h, 2 − h) ⊂ Ω. As boundary condi-
tions we set the displacements zero on ∂Ω. The initial penalization is given by
γ = 104. The tolerance for the augmented Lagrangian method is TOL = 10−4.
We use a very loosely-coupled scheme in which we solve only once per subprob-
lem and then proceed to the next time step. The time step loop is run until the
tolerance is TOL = 10−5 is reached, i.e., ‖un−1 − un‖ ≤ 10−5.

The Biot coefficient is α = 0. The fracture toughness is chosen as Gc = 1.0.
The mechanical parameters are Young’s modulus and Poisson’s ration E = 1.0
and νs = 0.2. The relationship to the Lamé coefficients µs and λs is given by:

µs =
E

2(1 + νs)
, λs =

νsEs
(1 + νs)(1− 2νs)

.

The injected pressure is pB = 10−3. Several parameters and geometry-related
issues depend on the spatial mesh size parameter h. Namely, for the regulariza-
tion parameters we choose the relations κ = h, ε = 2h. In addition, the initial
(lower-dimensional) crack-line is extended by h in normal direction to approxi-
mate it as a volume as displayed in Figure 3. Finally, the evaluation points of
the normal displacements are placed depending on h as well, shown in Figure
3, too.

l0

2h

Figure 3: Zoom-in to the center of the domain Ω. The lower-dimensional crack with length
l0 = 0.4 (here a line in fat black) is approximated as a volume by extending it with mesh size
h in normal up- and down-directions. The evaluation points for the normal displacements (to
compute the COD) using Formula (18) are displayed as dark circles. The volume extension
of the crack and the evaluation points depend therefore both on the choice of h.

Specifically, to compute the width w, we have two different formulas:

• The jump of the normal displacements:

w = COD = [u(x, y) · n(x, y)], (18)

with evaluation at the points as displayed in Figure 3.

• Integration in normal direction, such that

w = COD =

∫ 4

0

u(x0, y) · ∇ϕ(x0, y) dy, (19)

where ϕ is as before our phase-field function and x0 the x-coordinate of
the integration line.
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The goals of our studies are summarized as follows:

• Measuring the crack opening displacement COD for different h and com-
parison to Sneddon’s analytical results [27];

• Comparison of both COD evaluation formulas (18) and (19);

• Comparison of the number of augmented Lagrangian iterations for each
time step with respect to different h.

Our results might also be compared to [27, 18, 19, 11]. The crack pattern
and the corresponding mesh are displayed in Figure 5. In Figure 4, the crack
opening displacement is shown. The solution on the finest meshes fits well
with the analytical solution provided by Sneddon. Moreover, we observe that
both evaluation formulas gives the same limit for decreasing h. As seen in
Table 1, for the chosen tolerance 10−5 for the time step loop, we have a very
good approximation after only one time step. This is in agreement with our
expectations because the setting of this test is fully stationary. In all tests the
time step tolerance is already reached in the second iteration. We also notice
that in these two-dimensional test cases, good agreement of the functional values
is already achieved on relative coarse meshes.
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Figure 4: Example 1: COD for different h. In the plot, we have h := hmin. Sneddon’s black
line corresponds to his analytical solution. On the left, the COD is computed with formula
(18) and on the right with formula (19). Both formulas show good agreement in computing
the COD.

13



Table 1: Comparison of λ-iterations for each time step with respect to h.

Timestep hmin λ-iter

0 0.044 13

1 0.044 7

0 0.022 12

1 0.022 10

0 0.011 17

1 0.011 12

0 0.0055 22

1 0.0055 15

Figure 5: Example 1: Mesh and geometry, location of crack, zoom-in of the mesh with the
crack pattern, and finally, normal displacements (required to compute the COD of the crack)
are displayed from top left to bottom right. The green part in the third subfigure shows the
thickness ε of the mushy-zone in the phase-field variable.
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5.2. Increasing pressure leading to crack propagation

We keep the geometry, all parameters, and tolerances as in the first example.
The only two changes compared to the previous example are:

• Using an increasing pressure,

p = kp̄

with p̄ = 0.1,

• computing a fixed number of 23 time steps with time step size k = 1.

The goals in this study are

• to observe the total length of the crack with respect to spatial mesh re-
finement; distribution of the COD.

The mesh and the initial crack are displayed in Figure 6. A sequence of crack
patterns are provided in Figure 7. In fact, until time step 19, we only observe
almost no growth. Then, since Gc is exceeded, we have brutal crack growth
as also observed by [6] and [7] in the case of pure elasticity. A qualitative
distribution of the COD is shown in Figure 8. Here, we notice that the COD
has its largest value in the center of the crack and becomes smaller towards both
tips. This is physically reasonable and a good criterion for validation. Finally,
we compare the total crack length on three different meshes in Figure 9.

Figure 6: Example 2: Locally refined grid and initial crack pattern
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Figure 7: Example 2: Crack pattern for the last four time steps at T = 20, 21, 22, 23.
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Figure 8: Example 2: Normal displacement (for the computation of the width) at the begin-
ning and final times T = 1, 23. It is very important to notice that the color scheme and its
density indicate that the COD has its largest value in the center of the crack and becomes
smaller towards both tips. This is physically reasonable and a good criterion for validation.
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Figure 9: Example 2: Total crack length versus time on three mesh levels. In the plot, we
have h := hmin. The crack starts growing between time step 15 and 20 depending on the
refinement level.
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5.3. Increasing pressure leading to joining cracks

The third example demonstrates a major capability of the phase-field ap-
proach: joining of two cracks without using any special geometry-adapted tech-
nique. We keep all parameters as in the previous example. The first crack
(named as crack 1) is the same as before and centered in the middle of the
domain. The second crack (named as crack 2) is vertically-oriented at x = 2.6
and 1.8 ≤ y ≤ 2.2 and is also extended by h in normal (here x−) direction.
Consequently, the shortest distance of the two cracks is 0.4. As in the previous
example, we compute 23 time steps with time step size k = 1. While applying
an increasing pressure,

p = kp̄,

with p̄ = 0.1, we are able to study the propagation of both cracks and their
joining. The goal is again to perform studies for different h and to detect the
time when both cracks meet. Therefore, we observe the distance between the
cracks. In addition, we perform a set of computations on a 10% distorted mesh.
This is a good test, to see if the crack path is independent of the mesh structure
(which of course should be the case!). The meshes are displayed in Figure 10.

Figure 10: Example 3: Meshes for both sets of computations: locally refined mesh (left) and
the same mesh but randomly distorted (right).

Observing the results provides us with the following understanding. In Fig-
ure 11, the four final crack patterns on the finest mesh are displayed. Before
time step 20 almost no crack growth is observed. Then, brutal crack growth as in
the previous example occurs. The final crack pattern to both meshes are shown
in Figure 12. Indeed, the pattern is independent of the mesh-structure which is
a very important observation. Quantitative findings to the brutal growth and
the joining are provided for different meshes in Figure 13.
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Figure 11: Example 3: Crack pattern for the last four time steps at T = 20, 21, 22, 23.
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Figure 12: Example 3: Crack patterns for final time steps on the two different meshes with
the distorted mesh on the right side. Comparing the graphical solutions, we observe that the
crack pattern and propagation is independent of the mesh.
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Figure 13: Example 3: Length gain of crack 1 into east direction. Both cracks join (at latest)
when crack 1 reaches the center of crack 2. The initial distance between both cracks is 0.4.
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5.4. Sneddon’s 3d benchmark with constant pressure

In the final example, we upgrade our code to three dimensions. In the cube
Ω = (0, 10)3, we prescribe a penny-shape crack with radius r = 1.0 in the
y = 5.0-plane with mid-point (5.0, 5.0, 5.0) and which is subject to a constant
pressure pB = 10−3. The configuration and the initial crack are displayed in
Figure 14 at top left. As boundary conditions we set the displacements zero
on ∂Ω. The material parameters (i.e., Gc, E, etc.) are the same as in the
2D examples. The initial penalization parameter is given by γ = 102. The
tolerances are the same as in the 2D cases. The setup is again motivated by
Sneddon and Lowengrub [27] (Chapter 3.3) who also provides an analytical
expression to compute the normal displacements (from which we obtain the
COD):

uy = (r, ym) =
2(1− r)pp

π

√
1− (r − 5)2,

where 4 ≤ r ≤ 6 (such that the radius of the penny-shape crack is ≤ 1) and
ym = (5.0, 5.0, 5.0) denotes the origin of the penny-shape fracture. The results
of the normal displacements are provided in Figure 15.

The goal of this test is twofold:

• Compare to Sneddon’s analytical solution,

• Perform computations on different spatial mesh levels.

The evaluation of the COD is only performed with formula (18) because it has
been shown in the 2D test that they deliver the same results.

Figure 14: Example 4: Geometry information with locally refined grid and location of the
penny-shape crack.
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Figure 15: Example 4: Normal displacements for determining the COD.
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Figure 16: Example 4: COD for different h. Sneddon’s black line line corresponds to his
analytical 3D solution.

Analyzing our computations, we first notice that the time step tolerance is
reached in 3 iterations (instead of 2 in the two-dimensional case). Our results
show convergence with respect to spatial mesh refinement as illustrated in Figure
16. Moreover, the values converge towards the analytical solution. From both
findings, we infer that our model works correctly. Finally, we aim to give a
better understanding of our results and show several zoomed findings in Figure
17. In subfigure 1 (top left), we observe the location of the crack in the refined
mesh. Of course, since we are only interested in the COD and no propagation,
we adapted the local mesh refinement to the initial location of the crack. This
could easily be adapted for propagating cracks as done in the 2D test cases or
dynamically as described in the introduction to all four test cases. Specifically,
we point out the volume approximation of the crack related to ε (and h) as
shown in the subfigures 2 and 3. In subfigure 4, we emphasize that the largest
crack opening is in the center of the crack and decreases towards the ends.
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Figure 17: Example 4: Zoom-in in which the location (top left) and the volume approximation
by extending in normal up- and down direction are illustrated (2nd and 3rd figure). Finally,
a zoom-in to show the normal displacements is provided, which also shows that the largest
crack opening is in the center of the crack and decreases towards the end (see also Figure 16).

23



6. Conclusions

In this work, we considered a phase-field formulation to solve pressurized
fractures. In order to force the irreversibility of crack growth, a time inequality
constraint is required, which is realized as a penalization. A robust method
is based on the augmented Lagrangian approach which is substantiated with
several numerical tests, namely pressurized propagating fractures, which are
(still) very challenging to solve. Since detailed numerical studies are missing in
the literature, we proposed simple, but challenging, configurations. As future
extension, we plan to investigate three-dimensional propagating penny-shape
fractures.
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