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Abstract

In this paper we present an incremental formulation of the phase field
model for a fluid filled crack in a poroelastic medium. The mathematical
model represents a linear elasticity system with fading elastic moduli as
the crack grows, that is coupled with an elliptic variational inequality
for the phase field variable. The convex constraint of the variational in-
equality assures the irreversibility and entropy compatibility of the crack
formation. We construct a finite dimensional approximation and demon-
strate its solvability. Using compactness and monotonicity arguments
we prove that solutions to the discretized problem converge to a solu-
tion of the incremental problem. We present a discretization technique
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applied to different scenarios in two and three dimensions. Computa-
tional results of benchmark problems are provided that demonstrate the
effectiveness of this approach in treating fracture propagation.

Keywords Hydraulic fracturing, Phase field formulation, Non-
linear elliptic system, Computer simulations, Poroelasticity

AMS classcode 35B25;

1 Introduction

The coupling of flow and geomechanics in porous media is a major research
topic in energy and environmental modeling. Of specific interest is induced
hydraulic fracturing or hydrofracturing commonly known as fracking. This is
technique used to release petroleum and natural gas that includes shale gas,
tight gas, and coal seam gas for extraction. Here fracking creates fractures from
a wellbore drilled into reservoir rock formations. In 2012, more than one million
fracturing jobs were performed on oil and gas wells in the United States and this
number continues to grow. Clearly there are economic benefits of extracting
vast amounts of formerly inaccessible hydrocarbons. In addition, there are
environmental benefits of producing natural gas, much of which is produced in
the United States from fracking. Opponents to fracking point to environmental
impacts such as contamination of ground water, risks to air quality, migration
of fracturing chemical and surface contamination from spills to name a few.
For these reason, hydraulic fracturing is being heavily scrutinized resulting in
the need for accurate and robust mathematical and computational models for
treating fluid field fractures surrounded by a poroelastic medium.

Even in the most basic formulation, hydraulic fracturing is complicated to
model since it involves the coupling of (i) mechanical deformation; (ii) the flow
of fluids within the fracture and in the reservoir; (iii) fracture propagation.
Generally, rock deformation is modeled using the theory of linear elasticity
which can be represented by an integral equation that determines a relationship
between fracture width and the fluid pressure. Fluid flow in the fracture is
modeled using lubrication theory that relates fluid flow velocity, fracture width
and the gradient of pressure. Fluid flow in the reservoir is modeled as a
Darcy flow and the respective fluids are coupled through a leakage term. The
criterion for fracture propagation is usually given by the conventional energy-
release rate approach of linear elastic fracture mechanics (LEFM) theory; that
is the fracture propagates if the stress intensity factor at the tip matches the
rock toughness. Detailed discussion of the development of hydraulic fracturing
models for use in petroleum engineering can be found in [1] and in mechanical
engineering and hydrology in [19], [7], [13] and in references therein.
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Major difficulties in simulating hydraulic fracturing in a deformable porous
medium are the coupling of a multi-phase reservoir simulator and in treating
crack propagation. In [17] and [18] an iterative coupling algorithm was ana-
lyzed and computational results presented demonstrating the computational
effectiveness of this method for modeling poroelastic systems without cracks
by decoupling flow and geomechanics. In this paper we present an incremen-
tal formulation of a phase field model for a fluid filled crack surrounded by a
poroelastic medium. The mathematical model involves the coupling of a lin-
ear elasticity system with an elliptic variational inequality for the phase field
variable. With this approach, branching of fractures and heterogeneities in
mechanical properties can be effectively treated as demonstrated numerically
in Section 5. Moreover, iterative coupling can be applied in decoupling fluid
and mechanics:

Iterative coupling is a sequential procedure where either the flow or the
mechanics is solved first followed by solving the other problem using the latest
solution information. At each time step the procedure is iterated until the
solution converges within an acceptable tolerance. There are four well-known
iterative coupling procedures and we are interested primarily in one called the
fixed stress split iterative method.

In order to fix ideas we address the simplest model of real applied impor-
tance, namely, the quasi-static single phase Biot system. Let C denote any open
set homeomorphic to an ellipsoid in R3 (a crack set). Its boundary is a closed
surface ∂C. The quasi-static Biot equations (see e.g. [22]) are an elliptic-
parabolic system of PDEs, valid in the poroelastic domain Ω = (0, L)3 \ C,
where for every t ∈ (0, T ) we have

σpor − σ0 = Ge(u)− αpI; − div {σpor} = ρbg; (1)

∂t
( 1

M
p+ div (αu)

)
+ div {K

η
(ρfg −∇p)} = f. (2)

Boundary conditions for the general situation involve displacement and trac-
tion as well as pressure and flux, prescribed on portions of the boundary.
The important parameters and unknowns are given in the Table 1.

We make the following hypothesis on the effective coefficients

(H1) α, η , M and ρb are positive constants.

(H2) K is a symmetric uniformly positive definite matrix, with the smallest
eigenvalue k and largest eigenvalue k∗. Furthermore, for any symmetric
matrix B we have

GB : B ≥ a|B|2 +Kdr(TrB)2, (3)

where Kdr is the drained bulk modulus.
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SYMBOL QUANTITY UNITY
u displacement m
p fluid pressure Pa
σpor total poroelasticity tensor Pa
e(u) = (∇u +∇τu)/2 linearized strain tensor dimensionless
K permeability Darcy
α Biot’s coefficient dimensionless
ρb bulk density kg/m3

η fluid viscosity kg/m sec
M Biot’s modulus Pa
G Gassman rank-4 tensor Pa

Table 1: Unknowns and effective coefficients

(H3) We have
ρbg = − div σ0. (4)

The fixed stress split iterative method consists in imposing constant volumetric
mean total stress. This means that the σv = σv,0 + Kdr div uI − αpI is kept
constant at the half-time step. The iterative process reads as follows(

1

M
+

α2

Kdr

)
∂tp

n+1 + div {K
η

(ρfg −∇pn+1)} =

− α

Kdr

∂tσ
n
v + f = f − α div ∂tu

n +
α2

Kdr

∂tp
n; (5)

− div {Ge(un+1)}+ α∇pn+1 = 0; (6)

Remark 1. We remark that the fixed stress approach is useful in employing
existing reservoir simulators in that (5) can be extended to treat the mass bal-
ance equations arising in black oil or compositional flows and allows decoupling
of multiphase flow and elasticity.

Interest in the system (5)-(6) is based on its robust numerical convergence
and on the following result

Theorem 1. (see [17]) Let us suppose hypothesis (H1)-(H3) and initial and
appropriate boundary conditions. Then the solution operator S, mapping {un, pn}
to {un+1, pn+1} is a contraction on VT ×WT , with

VT = {z ∈ C([0, T ];H1
0 (Ω)3) | ∂te(z) ∈ L2((0, T )× Ω)9} (7)

WT = {r ∈ H1(Ω× (0, T )) | r ∈ C([0, T ];H1(Ω))}, (8)

with contraction constant γFS =
Mα2

Kdr +Mα2
< 1. The corresponding unique

fixed point satisfies equations (1)-(2).
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With this strategy, we consider a realistic hydraulic fracture description in
a poroelastic medium as a mathematical model of a fluid filled crack. Recently,
numerical phase field experiments of a fluid filled quasi-static brittle fracture
were undertaken by Bourdin et al. in [6]. Here our formulation follows Franc-
fort and Marigo’s variational approach to elastic fractures ([10] and [5]) and
represents an extension to cracks in a poroelastic medium containing a viscous
fluid.

Following Griffith’s criterion, we suppose that the crack propagation occurs
when the elastic energy restitution rate reaches its critical value Gc. If τ is the
traction force applied at the part of the boundary ∂NΩ, then we associate to
the crack C the following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τ ·u dS−
∫

Ω

αpBdiv u dx+GcH2(C), (9)

where pB is the poroelastic medium pressure calculated in the previous iterative
coupling step and α ∈ (0, 1) is the Biot coefficient.

This energy functional is then minimized with respect to the kinematically
admissible displacements u and any crack set satisfying a crack growth condi-
tion. The computational modeling of this minimization problem should treat
complex crack topologies and requires approximation of the crack location and
of its length. This can be overcome by regularizing the sharp crack surface
topology in the solid by diffusive crack zones described by a scalar auxiliary
variable. This variable is a phase-field that interpolates between the unbro-
ken and the broken states of the material. As previously stated above for
the purely solid mechanics problem variational methods were introduced by
Francfort and Marigo.

A related approach is diffusive crack modeling, developed by Miehe et al
in [15] and based on the introduction of a crack phase-field. They propose
a thermodynamically consistent framework for phase-field models of quasi-
static crack propagation in elastic solids, together with incremental variational
principles.

The outline of our paper is as follows: Based on the approach of Francfort
and Marigo, we introduce a phase field model for a fluid filled crack in Section 2
and give an incremental formulation. Here we take into account the stress field
coming from the crack and the pressure gradient, calculated by the previous
fixed stress split model. In Section 3 we present a mathematical analysis
of the incremental problem. In Section 4 the numerical method is briefly
explained. Finally in Section 5 we provide numerical experiments for classical
benchmark cases, e.g. Sneddon’s pressurized crack with constant fluid pressure
(see Subsection 5.2 and [20]).
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2 Incremental phase field formulation

We introduce the time-dependent crack phase field ϕ, defined on (0, L)3 ×
(0, T ). The regularized crack functional reads

Γε(ϕ) =

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx =

∫
(0,L)3

γ(ϕ,∇ϕ) dx, (10)

where γ is the crack surface density per unit volume. This regularization of
H2(C), in the sense of the Γ−limit when ε→ 0, was used in [4].

Our further considerations are based on the fact that evolution of cracks
is fully dissipative in nature. First, the crack phase field ϕ is intuitively a
regularization of 1− 1C and we impose its negative evolution

∂tϕ ≤ 0. (11)

Next we follow [15] and [6] and replace energy (9) by a global constitutive
dissipation functional for a rate independent fracture process. that is

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ1+bpBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (12)

where b is a fixed nonnegative constant and k is a positive regularization pa-
rameter for elastic energy, with k � ε. The corresponding Euler-Lagrange
equations read∫

(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx−

∫
∂NΩ

τ ·w dS−∫
(0,L)3

αϕ1+bpB div w dx = 0, for all admissible w; (13)∫
(0,L)3

(1− k)ϕ(ψ − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ψ − ϕ)+

ε∇ϕ · ∇(ψ − ϕ)
)
dx−∫

(0,L)3
(1 + b)αϕb(ψ − ϕ)pB div u dx ≥ 0, for all admissible ψ, (14)

where ∂tψ ≤ 0. This two-field formulation can be compared with the Model I
formulation given in [15] (see page 1289). The only difference is that (14) is a
variational inequality and in [15] an equation is imposed through penalisation.
The constraint ∂tψ ≤ 0 can be imposed by penalization and (14) then becomes
a variational equation.
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Nevertheless, the crack is filled with a fluid and system (13)-(14) is incom-
plete. If we think of the crack as of a 3D thin domain with width much less
than length, then the lubrication theory can be applied. At the leading order
the stress in C is −pfI and at the crack boundary we have the continuity of
the contact force

σn = (Ge(u)− αpBI)n = −pfn (15)

Before introducing the phase field, we eliminate the traction crack surface
integrals and obtain∫

Ω

αpBdiv w dx+

∫
∂C
σnw dS =

∫
Ω

αpBdiv w dx−
∫
∂C
pfwn dS =∫

Ω

αpBdiv w dx−
∫

Ω

div (pBw) dx+

∫
∂NΩ

pBwn dS =

∫
Ω

(α− 1)pBdiv w dx−∫
Ω

∇pBw dx+

∫
∂NΩ

pBwn dS.

Remark 2. Setting α = 1, p = pf in the crack and p = pB in the poroelastic
medium, then the above calculations yield∫

Ω

αpBdiv w dx−
∫
∂C
pfwn,poroelastic dS =

∫
(0,L)3

αpdiv w dx+∫
C
∇pw dx−

∫
C

div (pw) dx−
∫
∂C
pfwn,poroelastic dS =∫

(0,L)3
αpdiv w dx+

∫
C
∇pw dx−

∫
∂C
p(wn,poroelastic − wn,crack) dS.

The last term coincides with the virtual work of the pressure force as introduced
in [8] and applied in [6].

Next we have

−
∫
∂NΩ

τ ·w dS +

∫
∂C
pwn dS −

∫
Ω

αp div w dx = −
∫

Ω

(α− 1)p div w dx+∫
Ω

∇pw dx−
∫

Ω

div (T w) dx = −
∫

Ω

(α− 1)p div w dx+∫
Ω

(∇p− div T )w dx−
∫

Ω

T : e(w) dx, (16)

where T is a smooth symmetric 3 × 3 matrix with compact support in a
neighborhood of ∂(0, L)3, such that T n = τ + pn on ∂N(0, L)3. We note that
T is chosen to avoid interaction between the crack C and ∂NΩ.

After the above transformations, we have the following phase field formu-
lation of equation (13)
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∫
(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx−

∫
(0,L)3

(α− 1)ϕ1+bp div w dx+∫
(0,L)3

ϕ1+b(∇p− div T )w dx−
∫

(0,L)3
ϕ1+bT : e(w) dx = 0,

for all admissible w. (17)

We are working with the quasi-static formulation and velocity changes are
small. Hence, we are able to replace our time derivative in inequality (11) with
a discretized one, namely we work with an incremental formulation

∂tϕ→ ∂∆tϕ = (ϕ− ϕp)/(∆t),

where ∆t > 0 is the time step and ϕp is the phase field from the previous time
step. After time discretization, our quasistatic equations (14), (17) change to
a stationary problem, called the incremental problem.

In the classical case of elastic cracks one has 0 ≤ ϕ ≤ 1. We will establish
this property for the continuous in space incremental problem. Nevertheless,
for the incremental problem discretized in spaces and penalized to satisfy the
obstacle condition ϕ ≤ ϕp, the phase field unknown ϕ may be negative and
take values larger than 1. Thus, for the discretized equations we use ϕ+ instead
of ϕ in terms where negative ϕ could lead to a wrong conclusion and make
cut-offs where ϕ could be larger than 1.

Let us set

F = −(α− 1)pI − T , f = ∇p− div T . (18)

To avoid that high gradients in the neighborhood of a crack lead also to non-
physical large displacements, we add a friction term β∂tu, β > 0.
We assume on the part of the boundary ∂D(0, L)3 the homogeneous Dirichlet
conditions for the displacement and choose as functional space of admissible
displacements VU = {z ∈ H1((0, L)3)3 | z = 0 on ∂D(0, L)3 }. Equation (17)
becomes∫

(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx+

∫
(0,L)3

βϕ∂∆tu ·w dx+∫
(0,L)3

ϕ1+b(F : e(w) + f ·w) dx = 0, ∀w ∈ VU , (19)

or in the differential form
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βϕ∂∆tu− div

((
(1− k)ϕ2 + k

)
Ge(u)

)
+ ϕ1+bf−

div (ϕ1+bF) = 0 in (0, L)3, (20)

u = 0 on ∂D(0, L)3, (21)(
(1− k)ϕ2 + k

)
Ge(u)n = −ϕ1+bFn on ∂N(0, L)3. (22)

For α = 0 and β = 0 we recover the pressure term from [6] and [8].
It remains to write the phase field equation. In the differential form it reads

∂∆tϕ ≤ 0 on (0, L)3 and
∂ϕ

∂n
= 0 on ∂(0, L)3; (23)

−Gcε∆ϕ−
Gc

ε
(1− ϕ) + (1− k)Ge(u) : e(u)ϕ+

(1 + b)ϕb(F : e(u) + f · u) ≤ 0 in (0, L)3, (24){
−Gcε∆ϕ−

Gc

ε
(1− ϕ) + (1− k)Ge(u) : e(u)ϕ+

(1 + b)ϕb(F : e(u) + f · u)

}
∂∆tϕ = 0 in (0, L)3. (25)

Note that for b = 0, ϕb reads H(ϕ), where H is Heaviside’s function, H(0) = 0
and H(t) = 1 for t > 0.

In order to write the variational form, we introduce the convex set K by

K = {ψ ∈ H1((0, L)3) | ψ ≤ ϕp ≤ 1 a.e. on (0, L)3}. (26)

The variational formulation is∫
(0,L)3

(1− k)ϕ(ψ − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ψ − ϕ)+

ε∇ϕ · ∇(ψ − ϕ)
)
dx+

∫
(0,L)3

(1 + b)ϕb(F : e(u) + f · u) (ψ − ϕ) dx ≥ 0,

∀ ψ ∈ K ∩ L∞((0, L)3). (27)

3 Well-posedness of the model

We will search for a solution to variational equation (19)-(27). A natural way
would be to use the Schauder-Tychonoff fixed point theorem. Unfortunately the
first term in equation (27) is not continuous with respect to weak convergence
in H1 and our strategy is different. We will prove that there is a solution for a
finite dimensional approximation of equations (19)-(27) and then pass to the
limit. Our goal is to prove
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Theorem 2. (Existence of a weak solution to the incremental phase field prob-
lem) Let b, k > 0 and F , f ∈ W 1,∞, ϕp ∈ H1, 0 ≤ ϕp ≤ 1 a.e. on (0, L)3.
Then there exists {u, ϕ} ∈ VU×K, ϕ ≥ 0 a.e. on (0, L)3, satisfying variational
equations (19) and (27) and a priori estimates

β

2∆t

∫
(0,L)3

ϕ|u|2 dx+ ||√ϕu||2L2 + ||ϕe(u)||2L2 ≤ c; (28)

Gc

∫
(0,L)3

((ϕ− ϕp)2

ε
+

(ϕp − 1)(ϕ− ϕp)
ε

+ ε|∇(ϕ− ϕp)|2
)
dx+

||√ϕe(u)||2L2 +
√
k||e(u)||2L2 ≤

c√
k
. (29)

3.1 A finite dimensional approximation

Let {ψr}r∈N be a smooth basis for H1((0, L)3) and {wr}r∈N be a smooth basis
for VU . We start by defining a finite dimensional approximation problem:

Definition 1. Let δ > 0 and M ∈ N. Let ϕ̃ = inf{1, ϕ+}. The pair {uM , ϕM},
uM =

∑M
r=1 arw

r and ϕM =
∑M

r=1 brψr, is a finite dimensional penalized
approximative solution for problem (19) and (27) if it satisfies∫

(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(wr) dx+

∫
(0,L)3

βϕM+ ∂∆tu
M ·wr dx

+

∫
(0,L)3

(ϕ̃M)b+1(F : e(wr) + f ·wr) dx = 0, ∀r = 1, . . . ,M, (30)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕM)ψr + ε∇ϕM · ∇ψr

)
dx+

∫
(0,L)3

1

δ
(∂∆tϕ

M)+ψr dx+

(1 + b)

∫
(0,L)3

(ϕ̃M)b(F : e(uM) + f · uM)ψr dx+∫
(0,L)3

(1− k)ϕ̃MψrGe(uM) : e(uM) dx = 0, ∀ r = 1, . . . ,M. (31)

We note that in the elasticity equation (30) a friction term is added and in
the phase field equation (31) a penalization term is used.

Proposition 1. We suppose the hypotheses of Theorem 2. Then there exists a
finite dimensional penalized approximative solution for problem (30)-(31) that
satisfies the a priori estimate

Gc

∫
(0,L)3

(ϕM)2

ε
dx+

∫
(0,L)3

1

∆tδ
(ϕM − ϕp)2

+ dx+
β

∆t

∫
(0,L)3

ϕM+ |uM |2 dx+

k||e(uM)||2L2 + ||ϕ̃Me(uM)||2L2 ≤
c

ε
, (32)
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where c is independent of M,k and ε.

Proof. Let ξ = {ar, br}r=1,...,M = {ξ1, ξ2} and X the finite dimensional space
spanned by the set of all such ξ. X is isomorphic to R2M and we take the
natural scalar product. After setting

P1,r(ξ) =

∫
(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(wr) dx+

∫
(0,L)3

βϕM+ ∂∆tu
M ·wr dx

+

∫
(0,L)3

(ϕ̃M)b+1(F : e(wr) + f ·wr) dx, r = 1, . . . ,M ; (33)

P2,r(ξ) =

∫
(0,L)3

(1− k)ϕ̃MψrGe(uM) : e(uM) dx+

∫
(0,L)3

1

δ
(∂∆tϕ

M)+ψr dx+

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕM)ψr + ε∇ϕM · ∇ψr

)
dx+

(1 + b)

∫
(0,L)3

(ϕ̃M)b(f · uM + F : e(uM))ψr dx, r = 1, . . . ,M, (34)

we see that problem (30)-(31) has a solution if and only if equation P (ξ) = 0
has a solution.

The nonlinear mapping P is obviously continuous between X and X. Using
a well-known corollary1 of Brouwer’s fixed point theorem, it is enough to prove
that (P (ξ), ξ)X > 0 for ξ with sufficiently large norm. Existence of at least
one root would follow.

We start by multiplying P1,r(ξ) by ar and taking the sum with respect to
r. It yields

(P1(ξ), ξ1) =

∫
(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(uM) dx+∫

(0,L)3
βϕM+ ∂∆tu

M · uM dx+

∫
(0,L)3

(ϕ̃M)b+1(F : e(uM) + f · uM) dx. (35)

We estimate terms one by one:∫
(0,L)3

ϕM+ β∂∆tu
M · uM dx ≥ β

2

∫
(0,L)3

ϕM+ ∂∆t|uM |2 dx =

β

2

∫
(0,L)3

∂∆t(ϕ
M
+ |uM |2) dx− β

2

∫
(0,L)3

|up|2∂∆tϕ
M
+ dx, (36)

1Lemma 1.4. (see e.g. R. Temam, Navier-Stokes Equations, page 164) Let X be a
finite dimensional Hilbert space with scalar product (·, ·)X and norm || · ||X and let P be a
continuous from X into itself such that

(P (ξ), ξ)X > 0 for ||ξ||X = R > 0.

Then there exists ξ ∈ X , ||ξ||X ≤ R, such that P (ξ) = 0.
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|
∫

(0,L)3
(ϕ̃M)b+1f · uM dx| ≤ ||

√
ϕM+ uM ||L2 ||f ||L2 , (37)

|
∫

(0,L)3
(ϕ̃M)b+1F : e(uM) dx| ≤ ||ϕ̃Me(uM)||L2 ||F||L2 , . (38)

The elastic energy terms yields∫
(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(uM) dx ≥

c1k||e(uM)||2L2 + c3||ϕ̃Me(uM)||2L2 . (39)

After inserting (36)-(39) into (35), we get

(P1(ξ), ξ1) ≥ β

2

∫
(0,L)3

∂∆t(ϕ
M
+ |uM |2) dx+ c1k||e(uM)||2L2 − c5 − c2||

√
ϕM+ uM ||L2

+
c3

2
||ϕ̃Me(uM)||2L2 −

β

2

∫
(0,L)3

|up|2∂∆tϕ
M
+ dx. (40)

Next we have

(P2(ξ), ξ2) =

∫
(0,L)3

(1− k)ϕ̃MϕM+ Ge(uM) : e(uM) dx+

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕM)ϕM + ε|∇ϕM |2

)
dx+

∫
(0,L)3

1

δ
(∂∆tϕ

M)+ϕ
M dx+

(1 + b)

∫
(0,L)3

(F : e(uM) + f · uM)(ϕ̃M)bϕM+ dx. (41)

Estimating different terms is straightforward:

Gc

∫
(0,L)3

−1

ε
(1− ϕM)ϕM dx ≥ −GcL

3

2ε
+Gc

∫
(0,L)3

(ϕM)2

2ε
dx. (42)

Next we note that

(min{x+, 1})bx+ ≤ min{x+, 1}(1 + x+)

which gives

|
∫

(0,L)3
F : e(uM)(ϕ̃M)bϕM+ dx| ≤ c7||ϕ̃Me(uM)||L2(1 + ||ϕM ||L2);

|
∫

(0,L)3
f · uM(ϕ̃M)bϕM+ dx| ≤ c8||

√
ϕM+ uM ||L2||ϕM ||L1 ;

|
∫

(0,L)3

1

δ
(∂∆tϕ

M)+ϕ
M dx| ≥

∫
(0,L)3

1

δ∆t
(ϕM − ϕp)2

+ dx.

12



Therefore, we have

(P2(ξ), ξ2) ≥ Gc

∫
(0,L)3

((ϕM)2

2ε
+ε|∇ϕM |2

)
dx+

∫
(0,L)3

1

∆tδ
(ϕM − ϕp)2

+ dx−

c7

(
||
√
ϕM+ uM ||L2 + ||ϕ̃Me(uM)||L2

)
(1 + ||ϕM ||L2)− GcL

3

2ε
. (43)

Next we have

|β
2

∫
(0,L)3

|up|2(∂∆tϕ
M
+ )+ dx| ≤

∫
(0,L)3

1

4∆tδ
(ϕM−ϕp)2

+ dx+
β2δ

4∆t

∫
(0,L)3

|up|4 dx.

(44)
Putting together (40) and (43), and using (44), yields

(P (ξ), ξ) = (P1(ξ), ξ1) + (P2(ξ), ξ2) ≥ Gc

∫
(0,L)3

((ϕM)2

4ε
+ε|∇ϕM |2

)
dx+∫

(0,L)3

1

4∆tδ
(ϕM − ϕp)2

+ dx+
β

2∆t

∫
(0,L)3

ϕM+ |uM |2 dx+ c1k||e(uM)||2L2+

c̃3||ϕ̃Me(uM)||2L2 −
c̃9

ε
. (45)

It follows from (45) that (P (ξ), ξ) > 0 for ||ξ|| = R, with sufficiently large R.
Obviously corresponding solutions {uM , ϕM} satisfy a priori estimate (32).

Theorem 3. Assume the hypotheses of Theorem 2. Then there exists {uδ, ϕδ} ∈
VU ×H1((0, L)3) satisfying the variational equations∫

(0,L)3

(
(1− k)(ϕ̃δ)2 + k

)
Ge(uδ) : e(w) dx+

∫
(0,L)3

βϕδ+∂∆tu
δ ·w dx+∫

(0,L)3
(ϕ̃δ)b+1(F : e(w) + f ·w) dx = 0, ∀ w ∈ VU , (46)∫

(0,L)3
(1− k)ϕ̃δψGe(uδ) : e(uδ) dx+

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕδ)ψ + ε∇ϕδ · ∇ψ

)
dx+

∫
(0,L)3

1

δ
(∂∆tϕ

δ)+ψ dx+

(1 + b)

∫
(0,L)3

(ϕ̃δ)b(f · uδ + F : e(uδ))ψ dx = 0,

∀ ψ ∈ H1((0, L)3) ∩ L∞((0, L)3). (47)

and a priori estimate (32).
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Proof. By Proposition 1 there is a solution {uM , ϕM} for equations (30)-(31)
satisfying a priori estimate (32). Therefore there exists {uδ, ϕδ} and a subse-
quence, denoted by the same superscript, such that

{uM , ϕM} → {uδ, ϕδ} weakly in VU ×H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6, and a.e. on (0, L)3, as M →∞. (48)

Passing to the limit in equation (30) is straightforward and we conclude that
{uδ, ϕδ} satisfies equation (46).

For passing to the limit in equation (31) we need strong convergence of
{uM} in VU . We choose w = uM as test function in (46) and pass to the limit
M →∞. It yields∫

(0,L)3

(
(1− k)(ϕ̃δ)2 + k

)
Ge(uδ) : e(uδ) dx+

∫
(0,L)3

βϕδ+∂∆tu
δ · uδ dx

+

∫
(0,L)3

(ϕ̃δ)b+1(F : e(uδ) + f · uδ) dx = 0. (49)

Therefore we have the convergence of the weighted elastic energies

lim
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(uM) dx =∫

(0,L)3

(
(1− k)(ϕ̃δ)2 + k

)
Ge(uδ) : e(uδ) dx. (50)

Using Fatou’s lemma we have∫
(0,L)3

lim inf
M→∞

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(uM) dx

≤ lim inf
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M)2 + k

)
Ge(uM) : e(uM) dx

=

∫
(0,L)3

(
(1− k)(ϕ̃δ)2 + k

)
Ge(uδ) : e(uδ) dx. (51)

Consequently

uM → uδ strongly in VU , as M →∞. (52)

For every ψ ∈ L∞((0, L)3) ∩H1((0, L)3), (52) implies

lim
M→∞

|
∫

(0,L)3
ϕ̃MψGe(uM − uδ) : e(uM − uδ) dx| → 0, as M →∞,
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and ∫
(0,L)3

ϕ̃MψGe(uM) : e(uM) dx =

∫
(0,L)3

ϕ̃MψGe(uM−

uδ) : e(uM − uδ) dx+ 2

∫
(0,L)3

ϕ̃MψGe(uM) : e(uδ) dx−∫
(0,L)3

ϕ̃MψGe(uδ) : e(uδ) dx→
∫

(0,L)3
ϕ̃δψGe(uδ) : e(uδ) dx,

as M →∞. (53)

Passing to the limit in equation (31) is now straightforward. We note that
convergence (53) allows to establish strong convergence of {ϕM} in H1((0, L)3).

Corollary 1. Assume the hypotheses of Theorem 2. Then ϕδ is nonnegative
a.e. on (0, L)3.

Proof. If ϕp ≥ 0 a.e., then (ϕδ+ − ϕp)+ϕ
δ
− = 0. We take ϕδ− as a test function

in (47). It yields

0 ≥ Gc

∫
(0,L)3

(
ε|∇ϕδ−|2 −

ϕδ−
ε

+
|ϕδ−|2

ε

)
dx

and we see that ϕδ is nonnegative.

We remark that Corollary 1 fails for b = 0.
Our next step is to pass to the limit δ → 0.

3.2 Proof of Theorem 2

Proof. (of Theorem 2) We start by testing equation (46) by w = uδ. After
repeating calculations described in the proof of Proposition 1, we arrive at an
analogue of estimate (40)

β

4∆t

∫
(0,L)3

ϕδ|uδ|2 dx+ k||e(uδ)||2L2 + || inf{ϕδ, 1}e(uδ)||2L2 ≤

C +
Cβ

2

∫
(0,L)3

|up|2(∂∆tϕ
δ)+ dx. (54)

Next we test equation (47) with ψ = ϕδ. After repeating calculations from the
proof of Proposition 1, we arrive at an analogue of estimate (43)

Gc

∫
(0,L)3

((ϕδ)2

2ε
+ ε|∇ϕδ|2

)
dx+

∫
(0,L)3

1

2∆tδ
(ϕδ − ϕp)+ϕ

δ dx ≤

C
(
||
√
ϕδuδ||L2 + || inf{ϕδ, 1}e(uδ)||L2

)
(1 + ||ϕδ||L2) +

c9

ε
. (55)
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In order to get an estimate independent of δ, our strategy is to combine esti-
mate (54) and estimate (55) multiplied by ε. Then the penalization term is
used to control the right hand side of estimate (54), i. e. we need to bound
the following combination∫

(0,L)3

1

∆tδ
(ϕδ − ϕp)+ϕ

δ dx− Cβ

2ε

∫
(0,L)3

|up|2(∂∆tϕ
δ)+ dx.

Using elementary inequalities yields

ε

δ
(ϕδ − ϕp)+ϕ

δ − Cβ

2
|up|2(ϕδ − ϕp)+ ≥

3ε

4δ
(ϕδ − ϕp)2

+ −
β2C2δ

4ε
|up|4. (56)

Putting together estimates (54) and (55), and using inequality (56), yields

Gc

∫
(0,L)3

((ϕδ)2

16
+ ε2|∇ϕδ|2

)
dx+

∫
(0,L)3

3ε

4∆tδ
(ϕδ − ϕp)2

+ dx+

βC

2∆t

∫
(0,L)3

ϕδ|uδ|2 dx+ c1k||e(uδ)||2L2 + c̃3|| inf{ϕδ, 1}e(uδ)||2L2 ≤

c̃9 + C

∫
(0,L)3

β2δ

∆tε
|up|4 dx. (57)

For sufficiently small δ ≤ C0ε, we obtain from estimates (54) and (57)

β

2∆t

∫
(0,L)3

ϕδ|uδ|2 dx+ c10ε
2||∇ϕδ||2L2 + c3||ϕ̃δe(uδ)||2L2 + ||ϕδ||2L2 ≤ c10; (58)

||e(uδ)||2L2 ≤
c11

k
(59)

Estimates (58)-(59) imply uniform boundedness of ϕδ in H1((0, L)3), with
respect to δ. Therefore there exists {u, ϕ} and a subsequence, denoted by the
same superscript, such that

{uδ, ϕδ} → {u, ϕ} weakly in VU ×H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6, and a.e. on (0, L)3, as δ → +0. (60)

Passing to the limit in equation (46) is straightforward and we conclude that
{u, ϕ} satisfies equation (19). As in the proof of Theorem 3, we also conclude

uδ → u strongly in VU , as δ → +0. (61)

In addition
(ϕδ − ϕp)+ → 0, as δ → 0 and ϕ ∈ K. (62)
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Next we use Minty’s lemma and write equation (47) in the equivalent form∫
(0,L)3

(1− k) inf{ϕδ, 1}(ψ − ϕδ)Ge(uδ) : e(uδ) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ψ)(ψ − ϕδ)

+ε∇ψ · ∇(ψ − ϕδ)
)
dx+

∫
(0,L)3

1

∆tδ
(ψ − ϕp)+(ψ − ϕδ) dx+

(1 + b)

∫
(0,L)3

(inf{ϕδ, 1})b (f · uδ + F : e(uδ))(ψ − ϕδ) dx ≥ 0,

∀ ψ ∈ H1((0, L)3) ∩ L∞((0, L)3). (63)

After taking ψ ∈ K, we pass to the limit δ → 0 as in classical textbooks (see
e. g. [14]) and obtain∫

(0,L)3
(1− k)ϕ(ψ − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ψ)(ψ − ϕ)+

ε∇ψ · ∇(ψ − ϕ)
)
dx+ (1 + b)

∫
(0,L)3

ϕb (f · u + F : e(u))(ψ − ϕ) dx ≥ 0,

∀ ψ ∈ K. (64)

Applying once more Minty’s lemma, we find out that variational inequality
(64) is equivalent to variational inequality (27).
Next we take ϕp as test function in variational inequality (27).

It yields ∫
(0,L)3

(1− k)ϕ(ϕ− ϕp)Ge(u) : e(u) dx+∫
(0,L)3

(
− Gc

ε
(1− ϕp)(ϕ− ϕp) +

Gc

ε
(ϕ− ϕp)2 + ε∇ϕ · ∇(ϕ− ϕp)

)
dx+

(1 + b)

∫
(0,L)3

ϕb (f · u + F : e(u))(ϕ− ϕp) dx ≤ 0. (65)

At this point we recall the elementary inequality

2
√
k(1− k)ϕ ≤ (1− k)ϕ2 + k

which, together with estimates (58)-(59), yields

||√ϕe(u)||2L2 +

∫
(0,L)3

ϕϕpGe(u) : e(u) dx ≤ C√
k
. (66)

Repeating once more the estimates for the phase field equation established
before estimate (43) and using estimates (58)-(59) and estimate (66), gives
estimate (29).
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Next we prove that we can take the limit β → 0.
Since ϕ ≥ 0, we recall that variational inequality (27) can be written in

the simpler equivalent form (67)-(68)∫
(0,L)3

(1− k)ϕψGe(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

)
dx

+(1 + b)

∫
(0,L)3

ϕb(f · u + F : e(u))ψ dx ≤ 0,

∀ ψ ∈ H1((0, L)3), ψ ≥ 0 a.e. on (0, L)3, (67)∫
(0,L)3

(1− k)ϕ(ϕp − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ϕp − ϕ)+

ε∇ϕ · ∇(ϕp − ϕ)
)
dx+ (1 + b)

∫
(0,L)3

ϕb(f · u + F : e(u))(ϕp − ϕ) dx = 0. (68)

We observe that equation (68) is the condition of Rice (see e.g. [11]).

Theorem 4. There exists {v, κ} ∈ VU ×K, κ ≥ 0 a.e. in (0, L)3, satisfying
variational inequality (67)-(68) and∫

(0,L)3

(
(1− k)κ2 + k

)
Ge(v) : e(w) dx+

∫
(0,L)3

κb+1(F : e(w)+

f ·w) dx = 0, ∀ w ∈ VU . (69)

Proof. We start by using uβ as a test function in variational equation (19).
We follow the estimates for P1 in the proof of Proposition 1. Obviously, it is
enough to redo the estimates involving β, i.e. estimates (36)-(37)∫

(0,L)3
ϕββ∂∆tu

β · uβ dx ≥ β

2

∫
(0,L)3

ϕβ∂∆t|uβ|2 dx =
β

2

∫
(0,L)3

∂∆t(ϕ
β|uβ|2) dx

−β
2

∫
(0,L)3

|uβp |2∂∆tϕ
β dx ≥ β

2

∫
(0,L)3

∂∆t(ϕ
β|uβ|2) dx, (70)

|
∫

(0,L)3
(ϕβ)1+bf · uβ dx| ≤ CbK√

k

√
k

∫
(0,L)3

Ge(uβ) : e(uβ) dx. (71)

The calculations analogous to the ones from the proof of Proposition 1 yield

β

2h

∫
(0,L)3

ϕβ|uβ|2 dx+ c3||ϕβe(uβ)||2L2 + k||e(uβ)||2L2 ≤
c̃12

k
, (72)

with constants independent of β. Getting an H1-estimate, independent of β,
for ϕβ, is now straightforward. Passing to the limit β → 0 follows the lines of
the proof of Theorem 3 .
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4 Numerical approximation

We now formulate finite element approximations to (19) and (27), which are
analogues to equations (30)–(31).

For spatial discretization, we apply a standard Galerkin finite element
method on quadrilaterals in 2D or hexahedra in 3D. Specifically, we approxi-
mate displacements by continuous biquadratics in 2D or trilinears in 3D and
refer to the finite element space as Vh. We take ϕ, f and F to be bi- or trilin-
ears in 2D or 3D, respectively, in order to assure continuity, and denote this
space as Wh. Here h represents a standard approximation parameter.

In this section, we present the discretization of our phase-field formulation.

∫
(0,L)3

(
(1− k)(ϕ̃h)2 + k

)
Ge(uh) : e(w) dx+

∫
(0,L)3

βϕh+∂∆tu
h ·w dx

+

∫
(0,L)3

(ϕ̃h)b+1(F : e(w) + f ·w) dx = 0 ∀w ∈ Vh, (73)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx+

∫
(0,L)3

1

δ
(∂∆tϕ

h)+ψ dx+

(1 + b)

∫
(0,L)3

(ϕ̃h)b(F : e(uh) + f · uh)ψ dx+∫
(0,L)3

(1− k)ϕ̃hψGe(uh) : e(uh) dx = 0 ∀ ψ ∈ Wh. (74)

The incremental formulation (73)-(74) corresponds to the (pseudo-) time step-
ping scheme based on a difference quotient approximation with backward dif-
ferences for the time derivatives. In the quasi-static model the time derivatives
βϕn∂tu and 1

δ
[∂tϕ]+ are present. They are discretized as follows

βϕ+∂tu→ βϕ+∂∆tu = βϕ+
u− un−1

∆t
,

1

δ
[∂tϕ]+ →

1

δ
[∂∆tϕ]+ =

1

δ

[ϕ− ϕn−1]+
∆t

,

with the time step size ∆t, where n− 1 is used to indicate the preceding time
step. We then obtain for the weak form:

βϕ+(u− un−1,w)L2 + ∆t(A,w)L2 = 0, ∀w ∈ Vh, (75)

1

δ
(ϕ+ − ϕn−1

+ , ψ)L2 + ∆t(B,ψ)L2 = 0, ∀ψ ∈ Wh. (76)

Here, (·, ·) denotes the discrete scalar product in L2 and A and B denote
the operators of all remaining terms for the present time step in the weak
formulation, where equations (75) and (76) are related to equations (73) and
(74).
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Finally, the spatially discretized semi-linear form can be written in the
following way:

Finite Element Formulation 1. Find Uh := {uh, ϕh} ∈ Vh×Wh such that:

A(Uh)(Ψ) = βϕh+(uh − uh,n−1,w)L2+

1

δ
([ϕh − ϕh,n−1]+, ψ)L2 + ∆tAS(Uh)(Ψ) = 0,

with

AS(Uh)(Ψ) =
(

((1− k)(inf{ϕh+, 1})2 + k)Ge(uh), e(w)
)
L2
− 〈τ,w〉∂NΩ

− ((inf{ϕh+, 1})1+b(α− 1)pB,∇ ·w)L2 + (∇pB(inf{ϕh+, 1})1+b,w)L2+(
(1− k)Ge(uh) : e(uh)(inf{ϕh+, 1}), ψ

)
L2
− Gc

ε
(1− ϕh, ψ)L2 +Gcε(∇ϕh,∇ψ)L2

− (1 + b)
(

(inf{ϕh+, 1})b(α− 1)pB∇ · uh, ψ
)
L2

+ (1 + b)
(

(inf{ϕh+, 1})b∇pB · uh, ψ
)
L2

= 0,

for all Ψ = {w, ψ} ∈ Vh ×Wh, where AS(·)(·) is the sum of equations (73)
and (74) and equality (16) is applied in the relation between τ and T .

Later in the simulations we choose b = 1
2
.

4.1 Linearization and Newton’s method

The nonlinear problem is solved with Newton’s method. For the iteration steps
m = 0, 1, 2, . . ., it holds:

A′(Uh,m)(∆Uh,Ψ) = −A(Uh,m)(Ψ), Uh,m+1 = Uh,m + λ∆Uh,

with ∆Uh = {∆uh,∆ϕh}, and a line search parameter λ ∈ (0, 1]. Here, we
need the (approximated) Jacobian of Finite Element Formulation 1 (defined
without using the subscript h):

A′(U)(∆U,Ψ) = β
(

∆ϕ+(u− un−1) + ϕ+∆u,w
)
L2

+

1

δ
(∆[ϕ− ϕn−1]+, ψ)L2 + ∆tA′S(U)(∆U,Ψ),

with

A′S(U)(∆U,Ψ) =
(

2(1− k) inf{ϕ+, 1}H(1− ϕ)∆ϕGe(u) + ((1− k)(inf{ϕ+, 1})2

+k)Ge(∆u), e(w)
)
L2
− ((1 + b)(inf{ϕ+, 1})bH(1− ϕ)∆ϕ(α− 1)pB,∇ ·w)L2+
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((1 + b)(inf{ϕ+, 1})bH(1− ϕ)∆ϕ∇pB,w)L2 +
(

2(1− k)Ge(u) : e(∆u) inf{ϕ+, 1}

+(1− k)Ge(u) : e(u)H(1− ϕ)∆ϕ, ψ
)
L2

+
Gc

ε
(∆ϕ, ψ)L2 +Gcε(∇∆ϕ,∇ψ)L2−

(α− 1)(1 + b)(pB(b(inf{ϕ+, 1})b−1H(1− ϕ)∆ϕ∇ · u + (inf{ϕ+, 1})b∇ ·∆u), ψ)L2

+(1 + b)
(
∇pB · (b(inf{ϕ+, 1})b−1H(1− ϕ)∆ϕu + (inf{ϕ+, 1})b∆u), ψ

)
L2

= 0,

for all Ψ = {w, ψ} ∈ Vh ×Wh. H(·) is Heaviside’s function.

4.2 Choice of the parameters

It is important to understand the meaning of the various parameters k, β, ε, δ
and the discretization parameters ∆t and h. For the usual parameters in a
pure elastic regime, we restate the findings of Bourdin et al. [4]:

• k � 1 because the elastic moduli are small in the crack and, in
addition, should be large enough to stabilize the numerical scheme, but
small enough to prevent overestimation of the elastic bulk energy,

• h < ε� 1 should be small enough to prevent overestimation of the crack
surface energy,

• ∆t small enough for the crack propagation.

Novel in our work now is the presence of the pressure term pB so that we have
in addition to the previous statements:

• β contributes to the robustness of the algorithm. The theory and com-
putational results demonstrate that the solutions are insensitive with
respect to β.

• δ is the penalization parameter which should be chosen appropriately for
a given probem.
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5 Numerical Tests

We carry out three different tests. In the first example, we neglect the pressure
and reproduce benchmark results for crack growth in a pure (brittle) elastic
regime [16]. The second test is a modification of Bourdin et al. [6], where a
constant pressure pB = 10−3 is injected into the domain. The crack opening
displacement and the volume is compared to published values.

The programming code is a modification of the multiphysics program tem-
plate [23], based on the finite element software deal.II (see [2]).

5.1 Single edge notched tension test

In this first example, we compute the single edge notched tension test without
using a pressure, i.e., pB = 0. We use this test for code verification for standard
examples in pure elasticity. The geometric and material properties are the
same as used in [16]. The configuration is displayed in Figure 1. We use µ =
80.77kN/mm2, λ = 121.15kN/mm2, and Gc = 2.7N/mm. The crack growth
is driven by a non-homogeneous Dirichlet condition for the displacement field
on Γtop, the top boundary of Ω . We increase the displacement on Γtop at each
time step, namely

uy = ∆t× ū, ū = 1 mm.

Furthermore, we set k = 2.2 × 10−2, ε = 4.4 × 10−2 mm and the mesh size
parameter is chosen as h ∼ 2.2× 10−2mm. Computations are shown for three
different time steps ∆t = 10−4s, 5× 10−5s and 10−5s.

We also run tests on a locally refined mesh with minimal h = 2.76× 10−3

mm and as shown in Figure 1. The parameters δ and β are not important for
this elasticity example and we choose δ =∞ and β = 10−8 kN/mm4.

We evaluate the surface load vector on the Γtop as

τ = (Fx, Fy),

where we are particularly interested in Fy as illustrated in Figure 2, we identify
the same behavior for the load-displacement curve as observed in [16].

In Figure 3, we identify the crack pattern for three different displacement
steps. The locally pre-refined mesh is displayed in Figure 1. Finally, Figure 4,
shows the sharp jump in the displacement in the y direction. Later, the jump
can be used to determine the width of the fracture.

From our numerical observations, the most critical choice for a fixed ε :=
2h in this setting is the parameter k, which strongly determines when the
crack starts to grow. This agrees with the theory and the parameter relations
outlined in Section 4.2.
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Figure 1: Example 1: Single edge notched tension test: configuration (left)
and mesh.
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Figure 2: Example 1: Single edge notched tension test: load-displacement
curves for different time steps.
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Figure 3: Example 1: Single edge notched tension test: crack pattern for two
different displacement steps.

Figure 4: Example 1: Single edge notched tension test: surface plot of the
y-displacement. We identify the sharp front in the jump of the normal dis-
placement.
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Figure 5: Example 1 with hetereogeneous material: Mesh and µ-distribution.
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Figure 6: Example 1 with hetereogeneous material: Single edge notched ten-
sion test: load-displacement curve.

We extend the previous configuration in order to demonstrate the perfor-
mance of approach. The distributed Lamé coefficients are used to simulate
a heterogeneous material. This leads to non-planar crack-growths, branching
and joining of cracks without any modifications in the program. The Lamé
parameters are randomly distributed. The previous configuration is modified
with respect to the geometry and the µ-λ-fields as displayed in Figure 5. Here,
µ varies between 8.1×104−5.8×105 and λ varies between 1.2×105−6.2×105.
All the other parameters remain the same as in the previous test. The load-
displacement curve is observed in Figure 6. Finally, the crack path in this
setting is shown in Figure 7.
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Figure 7: Example 1 with hetereogeneous material: Crack path for different
time steps.

5.2 Constant pressure in a crack

The second example is motivated by Bourdin et al. [6] and is based on Sned-
don’s theoretical calculations [21, 20]. Specifically, we consider a 2D problem
where a (constant) pressure pB is used to drive the deformation and crack
propagation. We assume a dimensionless form of the equations.

The configuration is displayed in Figure 8. We prescribe the initial crack
implicitly (see e.g. Borden et al. [3]). Therefore, we deal with the following
geometric data: Ω = (0, 4)2 and a (prescribed) initial crack on the y = 4.0-line
ΩC = (1.8, 2.2) ⊂ Ω with length 2l0 = 0.4. As boundary conditions we set
the displacements zero on ∂Ω. We perform 5 time steps with time step size
∆t = 1.0.

We fix in the following all computations the regularization parameters ε =
2.2 × 10−2 and k = 1.1 × 10−3. For studies in which they vary, we refer the
reader to [6]. The Biot coefficient is α = 0. The fracture toughness is chosen
as Gc = 1.0. The mechanical parameters are Young’s modulus and Poisson’s
ration E = 1.0 and νs = 0.2. The injected pressure is pB = 10−3.

Several tests are performed:

• Spatial mesh convergence:
Fix ε, k, δ = 10−5, β = 1:
Vary h = 2.2× 10−2, 1.1× 10−2, 5.5× 10−3,

• Ratio ε to h is fixed:
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Fix k, δ = 10−5, β = 1:
Vary ε = h = 2.2× 10−2, 1.1× 10−2, 5.5× 10−3,

• Influence of the penalization parameter δ:
Fix ε, k, β = 1, h = 1.1× 10−2:
Vary δ = 10−3, 10−4, 10−5,

• Influence of the friction stabilization parameter β:
Fix ε, k, δ = 10−5, h = 1.1× 10−2:
Vary β = 100, 10−8.

The goal is to measure the crack opening displacement and the volume
of the crack. To do so, we observe u along ΩC . Specifically, the width is
determined as the jump of the normal displacements:

w = COD = [u · n]. (77)

Expression (77) can be written as

w = COD =

∫ ∞
∞

u · ∇ϕdy,

where ϕ is as before our phase-field function. Second, following [9], p. 710,
the volume of the fracture is:

V = πwl0

The analytical expression for the width (to which we compare) [9] is:

w = 4
(1− ν2

s )l0p

E
,

Then, the analytical expression for the volume becomes

V = 2π
(1− ν2

s )l20p

E
. (78)

In contrast to [6], we use the numerical approximation of the phase-field func-
tion instead of a synthetic choice of the crack indicator function.

The crack pattern and the corresponding mesh are displayed in Figure 8.
In Figures 9-12, the solutions for different set of parameters are displayed.
We observe that the choice of δ has most influence on the final crack opening
displacement as seen at Figure 11. This is a well known difficulty from the
numerical approximation of variational inequalities (see e.g. [12]). Our findings
for different spatial mesh parameters h show different results (see Figure 9).
Finally, (as already shown in the theoretical part of this work), the friction
parameter β does not influence the final result. In fact, for different β all three
graphs in Figure 12 coincide.

The obtained crack volumes are displayed in Table 2 in which the exact
value is computed by Formula (78).

27



Figure 8: Example 2: Configuration (left) and final crack pattern (right).
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Figure 9: Example 2: COD for different h. Sneddon’s pink line with squares
corresponds to his analytical solution.
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Figure 10: Example 2: COD for different ε. Sneddon’s pink line with squares
corresponds to his analytical solution.
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Figure 11: Example 2: COD for different δ. Sneddon’s pink line with squares
corresponds to his analytical solution.
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Table 2: Example 2: Volume in the fracture for different h, δ and β, respec-
tively.

h 2.2× 10−2 1.1× 10−2 5.5× 10−3 exact

V 5.34× 10−5 2.07× 10−4 4.00× 10−4 2.41× 10−4

δ 10−3 5× 10−4 10−5

V 1.47× 10−5 1.36× 10−4 2.08× 10−4 2.41× 10−4

β 100 10−4 10−8

V 2.08× 10−4 2.07× 10−4 2.07× 10−4 2.41× 10−4
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Figure 12: Example 2: COD for different β. Sneddon’s pink line with squares
corresponds to his analytical solution.

5.3 Nonconstant pressure in the crack

We extend the previous example by applying the pressure equation (2) to inject
a fluid in the crack. The following parameters are used: k = 1.1 × 10−3, ε =
4.4× 10−2, β = 1.0, Gc = 1.0× 107, δ = 10−12, νs = 0.2, E = 109.

The parameters of the pressure equations are M = 2.5×108, α = 0, µ = 1.0.
In particular, the permeability is higher for the fracture cells, i.e., K = 10−13

in the reservoir and in the fracture K = 10−12.
In each time step we inject fluid with a constant rate of qI = 1.0e − 5. In

Figure 13, we observe an increasing pressure until the crack starts growing and
the pressure decreases. This is a well-known effect in hydraulic fracturing.
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Figure 13: Example 2 with constant flow injection at a constant rate: Pressure
versus time.

5.4 3D test: Penny-shape crack growth

This example has three important features:

• Extension to three dimensions with an initially prescribed penny-shape
crack,

• A (single-phase) fluid is injected into the crack,

• Pressure is non-constant and computed fom the pressure equation (2).

We consider the unit cube and prescribe a given crack in the y = 0.5-
plane with radius 0.1 as displayed in Figure 14. Moreover, to reduce the
computational cost, local mesh refinement as shown in Figure 15 is used. At
all boundaries the homogeneous Dirichlet conditions for the displacement are
imposed, except at the top boundary, which is traction free. The material
parameters are similar to [6] (see page 5); that is µ = 1 and νs = 0.3. The
fracture toughness is Gc = 1.91 ∗ 10−9. Then, k = 0.11, ε = 0.22, β = 1.0. The
time step is chosen as ∆t = 1.0. The injection rate is qI = 5.0× 10−10.

We prescribe an injection in the middle of the domain as illustrated in
Figure 16. The pressure parameters are M = 2.5 × 108, α = 0, η = 1.0, K =
10−13, ρf = 1.0. The initial pressure is pin = 10−2.

As observed in the previous section the friction parameter does not play
a significant role. Therefore, we perform six tests, i.e., for three different h
(leading to 960, 1408, 5888 cells and indicated with ‘Level 1,2,3’ below) and
two different δ = 10−2 and 10−4.
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Figure 14: Example 3: Configuration.

Figure 15: Example 3: Locally refined meshes.

We observe the following behaviors:

• Time evolution of uy at (0.5, 0.5, 0.5),

• Time evolution of uy at (0.5, 1.0, 0.5),

• Time evolution of pressure in (0.5, 0.5, 0.5),

• End-time uy values in x-direction in the y = 0.5-plane at fixed z = 0.5.

We see in the results in Figure 19-21 a relative strong influence of the mesh
size h, which indicates a need for a sufficiently refined meshes.
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Figure 16: Example 3: Pressure field. The highest pressure (at the injection
well) is indicated in red in the middle of the domain.

6 Conclusion

In this paper we have presented a (b, β)-family of phase field algorithms for
modeling a fluid filled fracture in a poroelastic medium based on an incremen-
tal formulation. Existence of a weak solution to the incremental phase field
problem is established through a priori estimates. Several benchmark numer-
ical results are demonstrated. This approach can treat heterogeneous porous
media and allows for crack branching. Ongoing computations involve coupling
this framework to a multiphase reservoir simulator for modeling hydraulic frac-
turing as well as treating intersecting fractures.
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Figure 17: Example 3: Phase-field function at the end time step in the y = 0.5-
plane. The blue-region displays the penny-shape fracture.

Figure 18: Example 3: y-displacements in the y-direction (normal direction
to the fracture at left. In the middle and right, the y-displacement on top
y = 0.55 and below y = 0.45 the fracture are displayed. Red indicates uplift
displacement and blue downward displacement.
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Figure 19: Example 3: Time evolution of the y-displacements in the point
(0.5, 0.5, 0.5) for δ = 10−2 (left) and δ = 10−4 (right).
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Figure 20: Example 3: y-displacements in x-direction in the y = 0.5-plane for
fixed z = 0.5 for δ = 10−2 (left) and δ = 10−4 (right).
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Figure 21: Example 3: Time evolution of the Biot pressure in the point
(0.5, 0.5, 0.5) for δ = 10−2 (left) and δ = 10−4 (right).
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