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Abstract

We propose a new isogeometric shell formulation that blends Kirchhoff-Love theory with
Reissner-Mindlin theory. This enables us to reduce the size of equation systems by elimi-
nating rotational degrees of freedom while simultaneously providing a general and effective
treatment of kinematic constraints engendered by shell intersections, folds, boundary con-
ditions, the merging of NURBS patches, etc. We illustrate the blended theory’s performance
on a series of test problems.
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1 Introduction

Reissner-Mindlin shell theory, also referred to as “thick shell theory,” which accom-
modates transverse shear deformations, has become the predominate theory used as
a basis of finite element implementations. The main attribute of Reissner-Mindlin
theory, as far as finite element technology goes, is that it is C0-conforming, that
is, standard C0-continuous interpolation functions are appropriate for representing
displacements and independent fiber rotations. Various “locking” phenomena are
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a hindrance but are either overcome or mitigated sufficiently by technologies that
were initially developed in the 1970s and refined by numerous researchers sub-
sequently. The basic four-node bilinear Reissner-Mindlin element, appropriately
treated, has proved particularly efficient and robust, and is the workhorse of com-
mercial finite element programs, such as LS-DYNA [14], which is extensively uti-
lized for automobile crash dynamics and sheet metal forming.

A particular strength in this context is the generality of the formulation in that it is
applicable to arbitrarily large deformations and fully nonlinear elastic and inelastic
constitutive behavior. It is fair to say that Reissner-Mindlin elements have almost
completely dominated finite element shell analysis for over 30 years.

Historically, initial efforts to develop shell elements were based on Kirchhoff-Love
theory, also known as “thin shell theory.” Kirchhoff-Love theory invokes the Kirch-
hoff constraint of zero transverse shear strains, and requires C1-continuous finite
element basis functions for the transverse displacements. Some functions of this
type exist, but these lead to extremely complex elements that are difficult to use in
a general nonlinear computing environment. Ultimately, these elements could not
compete with the far simpler, more efficient and robust Reissner-Mindlin elements.
Within the traditional finite element paradigm, C1-continuous basis functions re-
quire derivative degrees of freedom.

With the advent of isogeometric analysis [19,12] a plethora of C1-continuous basis
functions is available and new ones are under development (see e.g. [11,27,25]).
These offer unique finite element possibilities in that their smoothness properties
do not involve derivative degrees of freedom. Consequently, so-called “rotation-
free” elements become a possibility.

This idea was first proposed in Hughes et al. [19] and has been developed by Kiendl
et al. [21,20] and Benson et al. [6]. As the name implies, rotation-free Kirchhoff-
Love elements do not involve rotational degrees of freedom. This represents a re-
duction in the total number of degrees of freedom and also the bandwidth size,
by roughly a factor of two each. In implicit analysis, compared with the use of
Reissner-Mindlin elements, storage of the left-hand-side jacobian matrix will be
reduced by approximately a factor of four, and factorization cost will be reduced
by approximately a factor of eight. These savings are very significant and poten-
tially could represent a decisive advantage when compared to the use of Reissner-
Mindlin elements. In explicit analysis, storage would be reduced somewhat, but
not by a significant enough amount to be advantageous, and compute cost might be
commensurate, but slightly greater than Reissner-Mindlin elements, due to the ne-
cessity of computing second-derivatives, or equivalents (see Benson et al. [6] for a
variant not involving directly computing second derivatives). Nevertheless, the po-
tential advantage in implicit analysis is so significant that it warrants further inves-
tigation. Unlike the case for Reissner-Mindlin elements, areas in the shell that are
only geometrically C0-continuous require special treatment. Physically, these are
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associated with sharp folds, creases and stiffener junctions. Along these C0 lines,
the angle between intersecting branches needs to be maintained during deforma-
tion. Various ways of introducing these constraints have been investigated. Kiendl
et al. [20,21] have investigated different implementations of linear constraint equa-
tions and penalized “bending strips.” There are other possibilities that heretofore
have not been investigated, namely, “rigid bodies” [7]. Another need for the use of
these techniques is in multi-patch NURBS meshes of even smooth shells in which
basis functions at the patch boundaries only possess C0-continuity.

It is our opinion that none of these constraint techniques is completely satisfactory
in all cases. Even if they can be used successfully in certain situations they can give
rise to reduced critical time steps in explicit dynamic analysis and preclude plastic
hinge formation at shell intersections and at boundaries, where often there are very
large bending moments. The plastic hinges are precluded by the fact that there are
no transverse shear strains in rotation-free elements. As a result, in situations such
as these Reissner-Mindlin elements are much more effective, but these of course
require rotational degree of freedom. Our conclusion is that the potential advan-
tages of rotation-free elements in implicit analysis are presently difficult to realize
in most engineering situations.

In this work we offer what we believe is a novel and practical solution to these
difficulties. It is based on the concept of a “blended shell theory” in which the as-
sumptions underlying classical Reissner-Mindlin and Kirchhoff-Love theories are
combined. Specifically, we describe a blended shell through a linear combination
of the kinematical assumptions of Reissner-Mindlin and Kirchhoff-Love theories.
We recall that the only difference between the two theories involves the description
of the kinematics of the fiber vectors. In the case of Kirchhoff-Love theory, the fiber
vector remains orthogonal to the lamina reference surface throughout deformation
(see Hughes and Liu [17] for a description of the concepts of shell laminae and
fibers), whereas in Reissner-Mindlin theory it depends on the independent rotation
fields.

The parameter defining the linear combination is a function of the coordinates, but it
is convenient to implement it discretely in terms of control variables (i.e., “nodes”).
Our blended theory can represent both extremes, that is, an entire Reissner-Mindlin
shell, or an entire Kirchhoff-Love shell. It can also represent a judicious combi-
nation of the two to deal with the issue of constraints. In this case, we propose
to select all the control variables where there are intersections, boundaries, folds,
or C0 interfaces as Reissner-Mindlin control variables, and elsewhere in the shell
as Kirchhoff-Love variables. The result provides for the elimination of rotational
degrees of freedom in the smooth regions of the shell and the robust treatment of in-
tersections, boundaries, folds, etc., provided by Reissner-Mindlin theory precisely
where it is needed. We believe this represents an ideal solution that may provide
optimally efficient shell discretizations for a wide range of practical problems. An
application in sheet metal forming is schematically illustrated in Figure 1.
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Fig. 1. Schematic illustration of an application of the blended shell theory for an implicit
simulation of metal forming. Regions with low curvature may be efficiently analyzed with
rotation-free thin shells while regions of high curvature would use the Reissner-Mindlin
formulation.

The idea of a blended shell theory can go even further. Specifically, higher-order
shell theories involve more complex descriptions of fiber behavior. These can be
blended with Kirchhoff-Love and/or Reissner-Mindlin theories to achieve efficient
formulations for composite laminates and sandwich shells, and they may also be
useful in biomechanical modeling (e.g. arteries). It is also possible to go still fur-
ther with the concept and blend shell theories with continuum solid theories in the
spirit of transition elements. Again biomechanical modeling opportunities present
themselves, such as for heart-artery models. We also note that all these blended
theories can be developed within the IGA format of exact CAD modeling.

The blended formulation presented here is valid for a broad class of basis functions
with C1 or greater continuity, but in our examples it is applied to B-splines and
NURBS. Their form is summarized in Section 2. This is followed in Section 3
by a brief summary of current methods for joining patches in rotation-free shell
analysis. A detailed presentation of how the blended formulation may be efficiently
implemented is provided in Section 4. Linear and nonlinear example calculations
follow in Section 5 to show the strengths and weaknesses of the various approaches
to multi-patch analysis, and the good behavior of the blended formulation in all
cases.

2 A summary of B-spline and NURBS basis functions

The literature on the basis functions used in CAD and CG is extensive. The standard
reference for NURBS is by Piegl and Tiller [23], and a popular introductory book
is by Rogers [24]. The first paper on isogeometric analysis [19] contains a concise
introduction to B-splines and NURBS, and the definitive treatment of isogeometric
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analysis is provided by Cottrell, Hughes and Bazilevs [12]. A brief summary is
provided here to establish the notation used in the remainder of the paper.

A B-spline curve is defined by a knot vector and a vector of control points. The knot
vector defines the set of basis functions N b

A
(s) in terms of the parametric coordinate

s through the recursive relation

N b

A,0(s) =






1 if sA ≤ s < sA+1

0 otherwise.
(1)

N b

A,p
(s) =

s− sA

sA+p − sA

N b

A,p−1(s) +
sA+p+1 − s

sA+p+1 − sA+1
N b

A+1,p−1(s) (2)

where p > 0 is the degree of the B-spline. For brevity, the degree is omitted in the
remainder of the paper.

The knot vectors used here are all open. The first and last knots have multiplicity p+
1 for a B-spline of polynomial degree p. Knots may be repeated in the interior of the
knot vector, with each repetition locally lowering the degree of continuity by one.
The locations of the knots define the boundaries of the elements in the parametric
space. Note that the basis functions are in general not interpolatory except at the
boundaries, but they do satisfy the partition of unity property,

�
A NA(s) = 1, and

are non-negative everywhere.

A basis function of degree p spans up to p + 1 elements. Starting from the left
boundary, the first basis function spans one element, the second spans two elements
and so on until the basis functions span p + 1 elements. The same progression
of spanning from 1 to p + 1 elements occurs working to the left from the right
boundary.

The control point xA is associated with the basis function N b

A
to define the curve

x(s) =
�

A

N b

A
(s)xA. (3)

Note that the control points do not necessarily lie on the curve they define, except
for the first and last ones.

Surfaces are defined by a Cartesian product of one-dimensional B-spline curves,

x(s1, s2) =
�

AB

N b

AB
(s1, s2)xAB where N b

AB
(s1, s2) = N b

A
(s1)N

b

B
(s2). (4)

For simplicity, the subscript AB is replaced by a single subscript in the remainder
of the paper. As a result of their construction, the two-dimensional basis functions
are in general not interpolatory.
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A NURBS curve is defined by introducing a fourth, homogeneous coordinate w >
0 at each control point,

x(s) =
�

A

�
N b

A
(s)wA�

B N b

B
(s)wB

�

xA. (5)

The fourth coordinate is not an unknown, but specified with the initial coordinates
xA to define the reference configuration, and it remains constant during the analy-
sis. By inspection, the NURBS basis functions NA are

NA(s) =
N b

A
(s)wA�

B N b

B
(s)wB

. (6)

NURBS surfaces are again defined by a Cartesian product of the one-dimensional
basis functions, and, again, the double subscript is replaced by a single subscript,

x(s1, s2) =
�

A

NA(s1, s2)xA. (7)

NURBS curves and surfaces have the same properties as B-spline curves and sur-
faces:

(1) They form a partition of unity,
�

A NA = 1.
(2) The support of each NA is compact, spanning up to p + 1 knot intervals (ele-

ments).
(3) The basis functions are non-negative. NA ≥ 0.
(4) The basis functions are not usually interpolatory.
(5) The interior of the patch may be continuous up to Cp−1 but the continuity

between patches is C0 unless constraints are imposed to increase it.
(6) The coordinates of the control points do not necessarily lie on the surface.

3 Multi-patch analysis

NURBS and B-spline patches are naturally assembled in a manner similar to tradi-
tional finite elements to build domains that are more topologically complicated than
a logically rectangular mesh. While NURBS and B-splines can be up to Cp−1 on
their interiors, they meet at C0 boundaries. For the analysis of solids, or for shear
deformable structural formulations, this does not pose any problem because their
formulation requires only C0 continuity. Thin shell formulations, on the other hand,
require C1 continuity to transmit bending moments, a condition which is violated at
the patch boundaries. The C0 boundaries between patches behave like piano hinges
for thin shell formulations, and therefore C1 continuity must be enforced along the
shared boundary to transmit the moments.
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Joining patches edge-to-edge to form a single C1 surface is the simplest type of C0

merge occurring in structural analysis. Much more common are the cases where
the final structure retains the C0 lines, for example, as in the square tube buckling
problem shown in Section 5.4. In the case of the square tube, there are sharp 90◦

corners that must be maintained, making the C0 edge line a genuine geometric
feature. A simple T-intersection is another case of a C0 line that is also frequently
encountered in real structures. Like a sharp corner, the low level of continuity is
an intrinsic property of the exact geometry that cannot be eliminated by a different
choice of basis functions. The problem for merging NURBS patches that define a
smooth surface can be addressed by using different basis functions, e.g., T-Splines
[27], but the problems with sharp edges and corners remain.

There are a number of different ways to address these issues. For example, the
rotation-free formulation by Oñate and Flores [22] uses C0 basis functions in a
novel way. Within the context of isogeometric analysis, linear constraints formu-
lated in a master-slave form [21] have been used. The linearity stems from the
assumption that the membrane deformations and rigid body rotations are small,
conditions that are not satisfied in general for nonlinear problems.

Rigid bodies [7] appear to be the natural generalization of linear constraints to the
nonlinear regime, offering a symmetry in their treatment of adjacent patches that
has been found useful in contact. The coordinates of all points in a rigid body are
constant in the body’s local reference frame. If the points satisfy a linear constraint
in the local reference frame at t = 0, then the constraint will be satisfied at all later
times in the local frame independent of any large rigid body rotations. Instead of
spending a lot of time deriving potentially complicated linear constraints between
adjacent patches (e.g., for the L-shaped domain used in an Section 5.3), it is suffi-
cient to simply group each independent set of control points into a rigid body. For
example, if two patches share ten control points along a common boundary, there
are ten sets of three linearized master-slave constraints, each having three control
points (the shared control point plus an additional one from each patch). The ten
sets are used to define ten rigid bodies, each consisting of the appropriate set of
three control points. The particular rigid body formulation used in the example cal-
culations is summarized in the Appendix.

Care must be exercised in introducing constraints. As shown in Section 5.2, even
simple eigenvalue problems may have significant sensitivity to the choice of con-
straint equations. Generating the correct constraints for general structural topolo-
gies and basis functions in an automated manner is anticipated to be a difficult
problem.

Another approach is the penalty method, e.g., as embodied in the bending strip
method [2]. It is assumed that the shell structure is comprised of smooth subdo-
mains, such as NURBS patches, that are joined with C0-continuity. In addition, thin
strips of fictitious material, also modeled as surface NURBS patches, are placed at
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structural patch intersections. The triples of control points at the patch interface,
consisting of a shared control point and one on each side, are extracted and used as
a control mesh for the bending strips. The parametric domain of each bending strip
consists of one quadratic element in the direction transverse to the interface and,
for simplicity and computational efficiency, as many linear elements as necessary
to accommodate all the control points along the length of the strip. The material is
assumed to have zero mass, zero membrane stiffness, and non-zero bending stiff-
ness only in the direction transverse to the interface. Bending strips transmit the
bending moment from one patch to the other, which may not be accomplished with
a C0-continuous discretization alone. As such, the bending-strip method is viewed
as a physically-motivated penalty technique. The bending-strip method was suc-
cessfully employed in the modeling of wind turbine blades in [2,1].

Constraints are typically enforced by formulating them in a master-slave formalism
that imposes the constraints sequentially when explicit time integration is used in
structural dynamics. While feasible in many cases, a sequential imposition is not al-
ways possible, leading to the development of consistent constraint explicit methods
[14] that append constraint equations to the mass matrix using Lagrange multipli-
ers. Although this method is effective, it is also more expensive in comparison to
standard explicit formulations. Constraints that cannot be analytically eliminated
or imposed sequentially are therefore imposed using the penalty method. If a con-
straint approach is taken to enforce the continuity between patches, the bending
strip is therefore preferred based on efficiency considerations.

4 The blended shell element formulation

The blended shell formulation proposed here may be thought of as selectively
adding rotational degrees of freedom instead of adding constraints. Although adding
degrees of freedom to satisfy a set of constraints sounds counter intuitive, choos-
ing generalized coordinates that automatically satisfy the required kinematic con-
straints has a long history in the analysis of mechanisms [29]. This approach elim-
inates the need to enforce the nonlinear C1 continuity constraints, eliminates the
possibility of locally over constraining the structure at complicated intersections,
and simplifies imposing the boundary conditions. More specifically, rotational de-
grees of freedom are selectively added to a rotation-free formulation [6] as needed
to allow patches to be connected. This formulation is not restricted to the control
points on the boundary, but permits the rotational degrees of freedom to be added
anywhere within the patch to permit arbitrary connections. It also simplifies the
imposition of the boundary conditions.

The blended formulation may be interpreted as one that switches from a Kirchhoff-
Love theory to a Reissner-Mindlin theory at appropriate locations in the structure.
With thin shell theories, the angle between two patches is rigidly fixed, but this
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is not true for shear deformable theories. The ability to switch between theories
therefore has some attractive properties for large deformation problems such as
metal forming. One operation that is commonly performed on metal stamping is
“flanging,” where the sheet is locally folded back on itself to stiffen the structure,
introducing a C0 discontinuity along the fold line. This operation is commonly
simulated in metal stamping analyses using standard C0 shell elements without any
difficulty, but similar simulations would not be possible with a pure C1 formulation.

4.1 The shell kinematics

The shell kinematics follow the degenerated solid approach to shells [17] where the
volume is reduced from three dimensions to a two-dimensional representation. All
coordinates are in the current configuration. By assumption, the thin dimension is
associated with the third parametric coordinate s3. For convenience, −1 ≤ s3 ≤
+1. A reference surface xRS(s1, s2) midway between the upper and lower surfaces
has the parameteric coordinate s3 = 0. A fiber vector of unit length f̂(s1, s2) and
a thickness function h(s1, s2) are introduced so that the coordinates of any point in
the shell are defined in terms of the parametric coordinates as

x(s1, s2, s3) = xRS(s1, s2) + s3
h

2
(s1, s2)f̂(s1, s2) (8)

In most shell formulations, the thickness function is assumed to be independent of
time and therefore volume is not conserved for large membrane strains. Recent ef-
forts to incorporate thickness strains by adding extra degrees of freedom have been
very successful, e.g., [9,10]. Earlier efforts [16], where the normal strain required to
satisfy the zero normal stress condition is integrated through the thickness to update
the thickness, also work well. For notational simplicity, the thickness is assumed to
be independent of time, and the extension of the current work to incorporate thick-
ness changes may be introduced using any of the methods developed for standard
shell elements.

The Kirchhoff-Love hypothesis defines f̂ as the unit normal n to the reference
surface. The normal is defined from the derivatives of the midsurface,

p =
∂x

∂s1
× ∂x

∂s2
, and n =

p

|p| . (9)

With this assumption, the motion of the shell volume is uniquely defined by the
motion of the reference surface, and it, in turn, is defined entirely by the motion of
the control points xA.

The Reissner-Mindlin hypothesis adds the coordinates defining the orientation of f̂
as new solution variables, allowing the development of transverse shear strain. The
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orientation of the fiber vector can be represented by the points on the surface of
a sphere, giving two extra rotational degrees of freedom, f̂(θ1, θ2). Working with
two finite angles in practice, however, is difficult in structures with complicated
shell intersections. Most shell element formulations use the simpler representation
of the three degrees of freedom associated with the angular velocity ω about the
global coordinate directions,

˙̂f = ω × f̂ . (10)

As a practical matter, many Reissner-Mindlin shell elements set the fiber vector to
be the current configuration of the reference surface normal, e.g., [3], simplifying
the formulation and increasing its robustness.

4.2 The discrete kinematics

The motion of the reference surface (denoted with the superscript RS) is commonly
expressed as

xRS =
�

A

NAxA, uRS =
�

A

NAuA, (11)

where uRS is the displacement of the reference surface, but there are numerous
choices for the discrete expression of the displacement contribution associated with
the fiber vector. Most Kirchhoff-Love elements directly evaluate the normal using
Equation 9 at (s1, s2), i.e., f̂(s1, s2) = n(s1, s2) in Equation 8, giving the discrete
expression for the coordinates,

x(s1, s2, s3) =
�

A

NA(s1, s2)xA + s3
h

2
(s1, s2)n(s1, s2). (12)

The velocity field for the Kirchhoff-Love formulation is obtained by directly dif-
ferentiating Equation 12,

ẋ =
�

A

NAẋA + s3
h

2
ṅ (13)

ṅ =
1

|p| (I − n⊗ n) ṗ (14)

p =
∂xRS

∂s1
× ∂xRS

∂s2
(15)

ṗ =
∂ẋRS

∂s1
× ∂xRS

∂s2
+

∂xRS

∂s1
× ∂ẋRS

∂s2
(16)

where the dependencies on the parametric coordinates are omitted for brevity.

Using the degenerated solid approach to formulate a shell, the fiber contribution is
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interpolated from the nodes as in the Hughes-Liu element [17],

f̂(s1, s2) =
�

A

NA(s1, s2)f̂A
, (17)

and the resulting discrete representation of the coordinates is

x(s1, s2, s3) =
�

A

NA(s1, s2)

�

xA + s3
h

2
f̂

A

�

. (18)

Our previous isogeometric shells [5,6] use Equation 18 with f̂
A

= nA for robust-
ness and simplicity.

Differentiating Equation 18 for the velocity field using the normal vector for the
fiber direction gives

ẋ =
�

A

NA

�

ẋA + s3
h

2
ṅA

�

. (19)

For the Reissner-Mindlin isogeometric shells [5], the time derivative of the normal
is evaluated as

ṅA = ωA × nA, (20)
the same expression used in standard C0 elements. The time derivative of the nor-
mal may also be evaluated by taking the time derivative of Equation 9 evaluated at
A as in the rotation-free formulation [6],

ṅA =
1

|p
A
| (I − nA ⊗ nA) ṗ

A
(21)

p
A

=
∂x

∂s1
|A ×

∂x

∂s2
|A (22)

ṗ
A

=
∂ẋ

∂s1
|A ×

∂x

∂s2
|A +

∂x

∂s1
|A ×

∂ẋ

∂s2
|A (23)

Note that “evaluated at A” means that for every control point A there is a unique
location in the parametric domain where nA is evaluated (see [5,6] for further de-
tails).

4.3 Selective enrichment with the blended formulation

The only difference between the kinematics of the rotation-free formulation [6] and
the Reissner-Mindlin formulation [5] is the evaluation of ṅA, as given by Equations
21 and 20, respectively. Since these equations refer only to control point variables,
the equations may be invoked on a control point by control point basis. In effect,
this shell formulation permits the smooth blending of a thin shell theory with a
shear deformable one.
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Rotational degrees of freedom may therefore be selectively introduced to permit
the transmission of the bending moment along lines of C0 continuity without intro-
ducing constraints by locally using a shear deformable shell theory. This is accom-
plished by using the kinematics defined by Equations 18 and 19, and choosing ṅ to
be defined by Equation 21 for the control points in the thin shell regions, A ∈ T ,
and by Equation 20 for control points in the shear deformable regions, A ∈ S,

x =
�

A

NA

�

xA + s3
h

2
nA

�

(24)

ẋ =
�

A

NAẋA

+ s3
h

2

�
�

A∈T
NA

1

|p
A
| (I − nA ⊗ nA) ṗ

A
+

�

A∈S
NAωA × nA

�

(25)

Elements with control points belonging to both sets exhibit a behavior somewhere
between the pure thin shell and shear deformable shell theories. Example problems
presented later explore the influence of using a shear deformable theory in relatively
localized regions of an otherwise thin shell analysis.

4.4 Implementation

The implementation is a combination of the Reissner-Mindlin [5] and rotation-free
[6] isogeometric shell implementations. These shells, in turn, follow the general-
ized element strategy [4]. The focus here is on how much of the various required
calculations can be carried out in common in order to both maximize the efficiency
of the implementation and define where independent operations must be performed.

While the primary motivation for introducing rotations is joining patches in a multi-
patch analysis, they are also convenient for imposing boundary conditions. Addi-
tionally, there are occasions when having C0 lines running through a patch sim-
plifies the model generation. To incorporate these extensions, the definition of the
set S is generalized to include any control point with rotational degrees of freedom
even if they are not on the patch boundary, and the set T contains the remainder.
Every element may therefore contain an arbitrary combination of control points
with, and without, rotational degrees of freedom.

Gauss quadrature is performed over the reference surface spanned by s1 and s2,
and through the thickness direction spanned by s3. Many of the common terms
are not functions of s3. Efficiency is therefore enhanced by evaluating them once
before performing the integration loop through the thickness, and making the in-
tegration over the reference surface the outer loop. Variables associated with the
outer and inner integration loops are given the superscripts G and g, respectively.
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The integration point within an element is, for example, specified by the parametric
coordinates (sG

1 , sG

2 , sg

3), and the volume integration is evaluated as

V =
�

x
dx =

�

s
det (J) ds =

�

G

�

g

WGwgdet
�
JGg

�
=

�

G

�

g

V Gg, (26)

where the integration weights for G and g are WG and wg, respectively. For com-
pactness, the evaluation of a function at the specific integration point (sG

1 , sG

2 , sg

3) is
denoted by the dual superscripts “Gg” and the volume contribution of integration
point Gg is denoted V Gg.

4.5 Evaluation of the normals and their time derivatives

Since the basis functions are not interpolatory, there is no natural location for eval-
uating the normal. The derivatives of x and ẋ with respect to the two parametric
coordinates s1 and s2 in Equations 15 and 16 are replaced by the vectors ti and ṫi

tAi =
�

B

CA

Bi
xB (27)

ṫAi =
�

B

CA

Bi
ẋB (28)

where CA

Bi
are evaluated by a lifting operation (for details and explicit formulae,

see [6]). The normals are computed at each control point outside of the element
integration loop since they are independent of the integration points,

p
A

= tA1 × tA2, nA =
p

A

|p
A
| , no sum on A. (29)

The time derivative of the normals are dependent on the degrees of freedom at the
control point,

ṅA = ωA × nA, A ∈ S (30)

ṅA =
1

|p
A
|(I − nA × nA)ṗ

A
, A ∈ T (31)

ṗ
A

= ṫA1 × tA2 + tA1 × ṫA2 (32)

Evaluating the time derivative of the normal once outside the element integration
loops simplifies the evaluation of the velocity gradient, which is evaluated at every
integration point.
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4.6 Evaluation of the Jacobian and the velocity gradient

The summation convention is used as follows: When repeated, it is to be understood
that subscripts i, j, k, and � are summed over 1, 2, and 3, unless it is explicitly
indicated to sum over 1 and 2.

The Jacobian J and velocity gradient L are functions of the control point coor-
dinates, the normal, and the time derivative of the normal, and they are therefore
evaluated without regard to the degrees of freedom at the control points. Note that
both are affine functions of s3, allowing most of the calculations to be performed
once at each reference surface integration point.

JG

ik
(s3) =

∂xi

∂sk

= JG1
ik

+ s3J
G2
ik

(33)

JG1
ik

=
�

A

∂NA

∂sk

xAi k = 1, 2 (34)

JG1
i3 =

�

A

NA

hA

2
nAi (35)

JG2
ik

=
�

A

∂NA

∂sk

hA

2
nAi k = 1, 2 (36)

LG

ij
(sg

3) = LG1
ij

+ s3L
G2
ij

(37)

LG1
ij

=
�

k=1,2

J−1
kj

�
�

A

∂NA

∂sk

ẋAi

�

+ J−1
j3

�
�

A

NA

hA

2
ṅAi

�

(38)

LG2
ij

=
�

k=1,2

J−1
kj

�
�

A

∂NA

∂sk

hA

2
ṅAi

�

. (39)

4.7 Stress evaluation

The stress is updated in a co-rotational formulation similar to the one used by Bel-
tyschko and Tsay [3]. It is completely independent of the blending, and briefly
documented here only for completeness. A local co-rotational coordinate system
e�

i
, i = 1, 2, 3 is defined on the reference surface and is used for all the integration

points through the thickness. The normal direction defines e�

3, and the other two di-
rections are calculated using the procedure of Hughes and Liu [17,15]. The rotation
matrix from the local to the global coordinate system, vg = Rv�, is

R =
�
e�

1 e�

2 e�

3

�
. (40)
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The rate of deformation D in the global system is calculated from the velocity
gradient, and the local rate D� is obtained by

DGg =
1

2

�
LGg + (LGg)T

�
, D� = RT DGgR. (41)

The normal component D�

33 calculated in this manner will, in general, not result in
the normal stress condition σ�

33 = 0 being satisfied. A simultaneous solution for
σ�

33(D
�

33) = 0 and the stress update is performed using the appropriate algorithm
[28,14,26]. Finally, the updated stress is rotated into the global coordinate system
at the end of the time step,

σGg = Rσ�RT . (42)

4.8 Evaluation of the residual

To preserve the commonality between the two different types of control points for
as long as possible, the virtual velocity is expressed in terms of the normal and
differentiated to obtain the expression for the virtual gradient,

∂δẋ

∂x
=

�

A

�
∂NA

∂x
δẋA +

hA

2

�

s3
∂NA

∂x
+ NA

∂s3

∂x

�

δṅA

�

. (43)

Index notation simplifies gathering the common terms in the sequel,

∂δẋi

∂xj

=
�

A

�
∂NA

∂xj

δẋAi +
hA

2

�

s3
∂NA

∂xj

+ NA

∂s3

∂xj

�

δṅAi

�

(44)

=
�

A





�

k=1,2

(JGg)−1
kj

∂NA

∂sk

δẋAi +
hA

2
(JGg)−1

kj

�

s3
∂NA

∂sk

+ NAδ3k

�

δṅAi






where J−1 is the inverse of the Jacobian matrix.

Numerically integrating separately in the reference plane s1 − s2 and through the
thickness direction s3, the virtual work associated with the stress is

δW =
�

A

�

Gg

�

k=1,2

σGg

ij
(JGg)−1

kj

∂NG

A

∂sk

δẋAiV
Gg

+
�

A

�

Gg

σGg

ij
(JGg)−1

kj

hA

2

�

sg

3

∂NG

A

∂sk

+ NG

A
δ3k

�

δṅAiV
Gg (45)

Separating the terms based on their dependencies on G and g, the virtual work is
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δW =
�

A

δẋAi

�

G

�

k=1,2

∂NG

A

∂sk

�

g

σGg

ij
(JGg)−1

kj
V Gg

+
�

A

hA

2
δṅAi

� �

G

�

k=1,2

∂NG

A

∂sk

�

g

sg

3σ
Gg

ij
(JGg)−1

kj
V Gg

+
�

G

NG

A

�

g

σGg

ij
(JGg)−1

3j
V Gg

�
(46)

Collecting the common terms that are summed over g defines two resultant vectors,

RG

ik
=

�

g

σGg

ij
(JGg)−1

kj
V Gg and R̂G

ik
=

�

g

sg

3σ
Gg

ij
(JGg)−1

kj
V Gg. (47)

Substituting them into Equation 46 gives the forces that are work conjugate to δẋ
and δṅ,

F̄ x

Ai
=

�

G

�

k=1,2

RG

ik

∂NG

A

∂sk

(48)

F̄ n

Ai
=

hA

2

�

G




�

k=1,2

R̂G

ik

∂NG

A

∂sk

+ RG

i3N
G

A



 (49)

Note that the residual evaluation, consisting of the summation over the two nested
loops for the integration, is independent of whether a control point has rotational
degrees of freedom or not to this point. The only operations that depend on the
degrees of freedom are performed outside of the integration loop just before the
element residual assembly.

For the rotation-free control points, the discrete virtual power equation at control
point A gives

F x

Ai
= F̄ x

Ai
+

�

B

F̄ n

Bj

∂ṅBj

∂ẋAi

. (50)

Introducing the projection matrix PAij and the common terms CA

Bk
(see Equation

27), the final expression for the control point translational forces is

F x

Ai
= F̄ x

Ai
+

�

B

eik�F̄
n

Bj
PBjkC

B

A�
(51)

where

PAij =
1

|p
A
| (δij − nAinAj) (52)

For the control points with rotational degrees of freedom, the discrete virtual power
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equations at control point A are

F x

Ai
= F̄ x

Ai
and F ω

Ai
= F̄ n

Aj

∂ṅAj

∂ωAi

= eikjnAkF̄
n

Aj
. (53)

5 Example calculations

Explicit finite element formulations traditionally rely on lower-order elements with
uniformly reduced integration for their computational efficiency. Therefore, explicit
analysis typically uses elements with linear basis functions, one point integration,
and hourglass control. Higher order Lagrange elements are not practical for explicit
analysis because of the increased cost of evaluating the element, their instability un-
der large deformations, and their reduced time step size due the large errors in their
highest frequencies. The convergence of NURBS basis functions at their highest
frequencies eliminates the time step size penalty, but the cost of evaluating the ele-
ments still increases with p. Based on previous benchmarks [4], quadratic NURBS
elements with uniform reduced integration offer the greatest opportunity for en-
hancing the spatial accuracy without increasing the analysis cost in comparison to
current formulations. Throughout, each element is integrated with the 2 × 2 uni-
formly reduced Gauss quadrature rule in the plane, and the three-point rule through
the thickness. Indeed, as shown previously [4] and in the last example in this sec-
tion, isogeometric analysis with quadratic NURBS offers the possibility of increas-
ing accuracy at a reduced computational cost. The focus in the examples presented
here is therefore on quadratic NURBS exclusively. However, we note that recent
work on isogeometric collocation methods in explicit dynamics suggests that this
picture may change.

5.1 Nonlinear L-beam

In order to demonstrate the ability of the current formulation to preserve the initial
angle of multiple patches along C0 lines, an L-shaped cantilever beam subjected to
a point load is chosen. This example has been analyzed by Kiendl et al. [20,21] to
show the performance of the constraint equations and the bending strip method in
multi-patch analysis.

Quadratic NURBS elements in three different model configurations are analyzed
as shown in Figure 2. Starting from the left, the first model has two patches with
rotation-free isogeometric shell elements everywhere. The second model is split
into two patches with the blended isogeometric shell formulation with the rota-
tional degrees of freedom added along the C0 edge. Finally, a two patch model
with the Reissner-Mindlin isogeometric shell formulation [5] is also analyzed. The
structural response is shown in Figure 3. The first model, as expected, illustrates the
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Fig. 2. Initial meshes of the L-beams modeled with quadratic NURBS. From left to right:
two patches of rotation-free elements, two patches of blended elements with rotations along
the fold line, and finally two patches of Reissner-Mindlin shell elements.

Fig. 3. Final configuration of the L-beams. From left to right: two patches of rotation-free
elements, two patches of blended elements with rotations along the fold line, and finally
two patches of Reissner-Mindlin shell elements.

inability of rotation-free shells to transmit bending moments across C0 lines. The
C0 line behaves like a hinge and the initial 90◦ angle is not maintained. The other
models give identical results, demonstrating the proper transmission of bending
moments with the blended formulation.

5.2 Vibration of a thin simply-supported square plate

The previous example evaluated the accuracy of different methods for multi-patch
analysis subject to single modes of deformation. An eigenvalue analysis introduces
a large number of modes of deformation with the complexity of the deformations
increasing with the frequency, giving additional insight. This example was used to
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Fig. 4. The geometry of the local constraint equation. The C0 interface is normal to the
plane of the figure and located at the middle control point, �w is in the global coordinate
system perpendicular to the plate, and X� is in the plane of the plate and perpendicular to
the C0 boundary.

test isogeometric analysis in [13], and was also analyzed in [6] to demonstrate the
accuracy of the rotation-free isogeometric shell formulation in linear analysis. The
exact eigenvalues in radians for a square plate of length L and thickness h, using
thin plate theory, are

ωij = C
�
i2 + j2

�
0 < i, j (54)

C = π2

�
E

ρ (12 (1− ν2))

h

L2
(55)

where E is Young’s modulus, ν is Poissons’s ratio, and ρ is the density. In this
example, the values are chosen to be E = 107, ν = 0.3, ρ = 1.0, h = 0.05,
L = 10.

The square plate is evenly divided into two patches and the eigenvalue problem is
solved using three formulations:

(1) The rotation-free-formulation [6] with the geometric continuity enforced with
linear constraints formulated in a manner similar to Kiendl et al. [21]. The
constraints are discussed in more detail below. This formulation is referred to
as RF1.

(2) A second rotation-free formulation, based on the updated Lagrangian formu-
lation given by Equation 12 with C1 continuity enforced using the same linear
constraints as in (1). The two rotation-free formulations differ in where their
normals are evaluated, however they give the same eigenvalues on a single
patch for the square plate problem. Of interest here is the sensitivity of the
eigenvalue accuracy to the different rotation-free formulations when using the
constraints to enforce continuity. This formulation is referred to as RF2.

(3) The blended formulation with the common boundaries between the patches
having translational and rotational degrees of freedom while the interior of
the patches is rotation-free. Since constraints on the rotations are not imposed
on the perimeter of the plate, the perimeter control points have only the three
constrained translational degrees of freedom.

The linear constraints enforcing the continuity [21] are defined in terms of the local
reference geometry and the infinitesimal displacements as illustrated in Figure 4.
Neglecting the higher order terms, the linear constraint equation in the local co-
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Fig. 5. Convergence of the first eigenvalue for the two patch mesh of the square plate
problem as a function of the number of control points.

Fig. 6. Convergence of the first eigenvalue for the four patch mesh of the square plate
problem as a function of the number of control points.

ordinate system defined at the shared boundary of two coplanar patches simplifies
to

�X�

1�w2 −�X�

2�w1 = 0. (56)
where X� is in the local coordinate system of the flat plate with one axis aligned
with the patch boundary.

The convergence rates for the first eigenvalue, using two quadratic NURBS patches,
are shown in Figure 5.

An additional C0 discontinuity is introduced by splitting the domain into four
square patches. This problem is fundamentally different from the previous one be-
cause it has intersecting C0 lines involving nine control points in the constraints at
the center of the plate. If the constraint patterns along the two C0 lines are blindly
imposed along the C0 lines, the nine control points are subjected to six constraint
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equations, producing a singular system. Deleting both constraints for the center
control point improved the accuracy of some modes and made the accuracy of oth-
ers worse compared to the single patch results, but deleting only one restored the
accuracy to almost exactly the single patch results. Constraints making the center
control point displacement the average of a set of the surrounding control points,

wC −
1

N

�

A∈C
wA = 0, (57)

where C designates the central control point and C is a subset of the control points
surrounding C, worked equally well. General, accurate, robust strategies for con-
straining control points at arbitrary shell intersections are currently unavailable.

No special treatment was required for the blended formulation. The center node was
treated like any other node at a C0 line, i.e., it had a full set of rotational degrees of
freedom. The control points on the simply supported boundary again had only the
three constrained translational degrees of freedom.

The convergence rates are shown in Figure 6. These results are virtually identical
to the results for one and two patches.

5.3 Gravity-loaded L-shaped plate

An L-shaped plate is loaded by gravity. The problem is specified numerically and
the geometry, material, and boundary condition data are provided in Figure 8. The
parameters are chosen to make this a nonlinear, finite deformation problem with
coupled membrane and bending behavior. The plate is discretized with NURBS,
and two meshes, coarse and fine, are shown in Figure 9. The parameterization has
a discontinuous derivative along the line of symmetry. As a result, the underlying
discretization is only C0-continuous along the line of symmetry and a direct appli-
cation of a rotation-free shell formulation is not possible in this case.

One approach to overcome this difficulty is to use the bending strip method. A
bending strip patch may be generated along the symmetry line. A typical element
of that patch is depicted in Figure 10. The figure reveals the difficulty with the ap-
plication of the bending strip method in this case: Due to the abrupt change in the
parameterization near the symmetry line, the covariant basis vector G1, which is
typically used to define the direction of the bending stiffness operator, is rapidly
changing direction from one side of the bending strip to the other. Furthermore,
almost everyhere G1 has a component parallel to the interface, which will incor-
rectly stiffen the structure in this direction. Despite this difficulty, the bending strip
method was made to work in this case by integrating the contribution of the bending
strip terms with one-point quadrature placed in the middle of the element. At this
quadrature point the covariant basis vectors are orthogonal, and G1 points in the di-
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Fig. 7. Constraint configurations for the four-patch mesh. Solid lines indicate constraints
of the type defined by Equation 56 and dashed lines, Equation 57. Control points shared
between adjacent patches are indicated with white dots, and those associated with only one
patch, black dots. The configuration with all constraints locks. With only one constraint
removed, the model works correctly. The three patterns is the second row using Equation
57 worked equally well.

L 

L 

L 

L 2L 

2L 

g 

free 

simply supported 

simply supported 
x 

y 

z 

L = 1
t = 0.01
ρ = 8.0× 103

E = 200× 109

ν = 0.3

Fig. 8. L-shaped plate. Problem setup and data.

rection orthogonal to the interface. Figure 11 shows the results of the computations
with and without the bending strip.

This “fix” is somewhat ad-hoc, and, in what follows, the L-shaped plate example
is used to illustrate the good behavior of the proposed blended formulation, which
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(a) (b)

Fig. 9. L-shaped plate. NURBS meshes. Note that the parameterization of the domain has
a discontinuous derivative along the symmetry line.

Fig. 10. L-shaped plate. Illustration of the difficulty with the application of the bending strip
method to this example. The direction of the covariant basis vector G1, which is typically
taken as the direction for the bending stiffness operator, is only truly orthogonal to the
interface at the midpoint of the parametric line. Also note that the covariant basis vectors
are orthogonal only at this location. The six control point element in a) overlays the two
yellow elements in b).

does not rely on a good parameterization near C0-continuous interfaces.

An analytical solution is not available for this problem. In a one-patch convergence
study with p = 4, the maximum displacement converged to 0.003277, the value
we used in lieu of an exact solution in Figure 12. The rotation-free solutions (the
bending strip method uses a rotation-free shell [20]) converge from the soft side,
while those with rotational degrees of freedom converge from the stiff side.

To evaluate the benefits of the blended formulation for implicit problems, the prob-
lem was also solved using the Reissner-Mindlin formulation [5] on the finest mesh,
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(a) (b)

Fig. 11. L-shaped plate. Deformed configuration (scale factor of 200 is employed) colored
by the z−displacement. (a) Result without the bending strip. (b) Result with the bend-
ing strip integrated using one-point quadrature. The computation without the bending strip
gives an unphysical “kink” at the interface, while the one-point-quadrature bending strip
formulation gives a physically correct answer.

Fig. 12. Convergence of the z displacement at the origin for the L-shaped domain.

and the results are summarized in Table 1. The reported CPU times were obtained
with the standard Linux timing function, and are accurate to approximately 0.01
second. To solve the nonlinear problem required one stiffness factorization and six
solves. The storage is as expected: The blended formulation has half the number
of degrees of freedom and requires one quarter the storage. For a flat plate, the
Reissner-Mindlin formulation is effectively a five degree of freedom formulation,
with the normal rotations assigned a small values in the stiffness matrix to avoid be-
ing singular. Although the concept of a “bandwidth” is not appropriate for a sparse
solver, the logically regular structure of the mesh leads to an ordering such that
the ratio of the Reissner-Mindlin to the blended formulation factorization costs is
very close to (5/3)3 = 4.63, and for the solves, the ratio is roughly (5/3)2 = 2.78.
Although the Reissner-Mindlin formulation has simpler terms for the stiffness ma-
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Table 1
Comparison of Implicit Reissner-Mindlin and Blended Formulation Solution Costs

Reissner-Mindlin Blended Ratio (R-M)/B

Number of equations 51093 25353 2.01

Memory (103 8-byte words) 3735 937 3.98

Element CPU (sec.) 7.37 5.65 1.30

Assembly CPU (sec.) 1.29 1.09 1.18

Factorization CPU (sec.) 12.7 2.74 4.63

Total Solve CPU (sec.) 0.27 0.09 3.00

Total CPU(sec.) 21.63 9.57 2.26

L = 320 mm
l = 70 mm

hp = 67.5 mm
h = 1.2 mm
E = 1.994 GPa
ν = 0.3
ρ = 7850 kg/m3

σy = 3.366× 102 MPa
EH = 1.0 MPa

V = 5.646 m/s

Fig. 13. Buckling of a square tube: problem description and the mesh. Only one quarter of
the geometry is modeled with appropriate symmetry boundary conditions. Reprinted from
[5]

trix and the residual, having more of them puts it at a disadvantage in terms of the
overall element cost. The total gain in speed is over a factor of two for this modest
sized problem.
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Fig. 14. Final configuration of the square tube buckling problem using a) the Belytschko-T-
say element, b) the fully-integrated quadrilateral shell element, c) the p = 2 isogeometric
Reissner-Mindlin shell, d) the p = 2 rotation-free isogeometric shell with the continuity
across the C0 lines enforced with rigid bodies, and e) the blended element.

Table 2
Square tube buckling benchmark summary

Element Number of Number of CPU

Type Elements Time Steps Seconds

1-Point Quad 2560 352631 833

Full Int. Quad 2560 414148 2861

Isogeo. RM 640 153596 582

Isogeo. RF 640 173706 835

Isogeo. blended 640 158192 754

5.4 Buckling of a square tube

The problem of accordion-mode buckling of a square tube [8] was analyzed previ-
ously [5] to evaluate quadratic and quartic NURBS-based isogeometric Reissner-
Mindlin shell elements. The problem definition, geometry, material parameters,
and the NURBS mesh for one quarter of the domain are shown in Figure 13. An
isotropic elastic-plastic material with linear plastic hardening is used to model the
material response. The deformation is driven with a constant velocity at one end of
the tube with the other end fixed. A geometric imperfection with an amplitude of
0.05 mm triggers the buckling at a height of 67.5 mm from the base.

One quarter of the tube is modeled using two quadratic NURBS patches that share
the control points along the common edge, leading to 640 elements. Appropriate
symmetry boundary conditions are used together with a standard single surface
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contact algorithm in LS-DYNA [14,8] applied to the automatically generated in-
terpolation elements [4]. Each quadratic NURBS element is subdivided into 2 × 2
interpolation elements.

Three different NURBS-based isogeometric shell formulations were analyzed: The
Reissner-Mindlin shell [5], the rotation-free shell [6], and the blended shell. Conti-
nuity for the rotation-free formulation is enforced between the patches using rigid
bodies [7] composed of the common control point between adjacent patches and
the first interior control points for each patch, and in a similar manner, their rota-
tional boundary conditions at the upper and lower boundaries were imposed with
rigid bodies composed of the boundary nodes and the first rows of nodes interior to
the mesh. For the blended formulation, the rotational degrees of freedom are placed
along all boundaries of the two NURBS patches.

The final deformations for the three shell formulations, and the LS-DYNA solutions
using the Belytschko-Tsay element [3] and the type 16 fully-integrated, 4-node
shell, are shown in Figure 14. The meshes for the standard elements have 2560 ele-
ments, four times as many as the quadratic NURBS. Using reduced 2×2 integration
with the quadratic NURBS elements results in the three isogeometric models hav-
ing the same number of integration points as the Belytschko-Tsay model, while the
fully-integrated shell has four times as many. The final configurations are remark-
ably similar given the five different formulations.

Since the membrane strains are small, the use of the rigid bodies to impose the con-
straints on the rotation-free elements does not introduce a noticeable error. Details
of the rigid body formulation are given in the Appendix. The rigid bodies accounted
for approximately three percent to the total CPU time, indicating that they are an ef-
ficient approach for enforcing continuity between patches. The blended solution is
less costly than the rotation-free solution primarily because of the reduced number
of time steps. On an element per time step basis, the cost of the two formulations is
nearly identical.

Table 2 summarizes the problem sizes and the CPU times for a single Xeon proces-
sor running the analyses in double precision. Comparing the computational costs of
the isogeometric elements to the traditional elements, it is clear that the quadratic
isogeometric elements are less costly primarily because of their larger stable time
step size. The fully-integrated quadrilateral is the most expensive solution because
it has a smaller time step size and four times as many integration points in the mesh
as the quadratic NURBS. In this calculation, the Reissner-Mindlin formulation is
the most accurate. However, we note that in implicit calculations there should be
significant efficiency advantages in the blended formulation.
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6 Summary and conclusions

There are significant potential savings in computational cost with rotation-free
shells in implicit analysis. Unfortunately, actually achieving such savings requires
dealing with required constraints at shell intersections, along folds and boundaries,
and at the interfaces of NURBS patches. No general strategy exists for implement-
ing the variety of situations that occur in practical engineering calculations. On
the other hand, the classical Reissner-Mindlin element formulation does not incur
any problems of this kind, at the price of twice as many degrees of freedom. In
this work we have proposed a new shell formulation that blends thin-plate rotation-
free theory with Reissner-Mindlin theory. By only selecting the Reissner-Mindlin
formulation locally, where the constraints need to be enforced, we produce a for-
mulation that yields the savings of the rotation-free formulation, combined with the
robustness and generality of the Reissner-Mindlin formulation. We have tested the
formulation on several problems and it has performed well in all cases. We have
also identified some of the difficulties encountered implementing constraint equa-
tions in rotation-free calculations. Our computations have revealed that uniformly
reduced integration quadratic NURBS elements are computationally efficient and,
for the same level of accuracy, they rival the fastest known low-order one-point
quadrature shell elements in speed. We believe that the isogeometric blended shell
formulation has the potential to become the method of choice for a wide variety of
practical engineering shell problems.
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A A Simple Rigid Body Dynamics Formulation for Explicit Calculations

Rigid bodies are a standard feature in LS-DYNA [14]. The algorithm [14,7] for
updating their motion is summarized here.

The equations of motion for the center of mass for a rigid body are

mẍCM = F and Jω̇ = M − ω × Jω (A.1)

where m is the mass of the body, J is the mass moment of inertia tensor, xCM are
the coordinates of the center of mass, ω is the angular velocity, and F and M are
the sums of the externally applied forces and moments, respectively.

The mass and the initial center of mass coordinates are

m =
�

A

mA (A.2)

xCM =
1

m

�

A

MAxA (A.3)

where the summation is performed over all the control points (or nodes) in the rigid
body. After determining the initial center of mass, the mass moment of inertia J is
calculated as

J =
�

A

mA

�
||xA − xCM ||2I − (xA − xCM)⊗ (xA − xCM)

�
+ JAI. (A.4)

At tn, the nodal forces F n

A
and moments Mn

A
are summed to calculate the rigid

body forces and moments,

F n =
�

A

F n

A
(A.5)

Mn =
�

A

(xn

A
− xn

CM
)× F n

A
+ Mn

A
(A.6)

and they are substituted into Equation A.1.

Central difference time integration updates the rigid body velocity and the center
of mass coordinates.

ẋn+1/2
CM

= ẋn−1/2
CM

+�tnẍn

CM
(A.7)

ω̇n+1/2 = ω̇n−1/2 +�tnω̈n (A.8)
xn+1

CM
= xn

CM
+�tn+1/2ẋn+1/2

CM
(A.9)

(A.10)
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The calculation of the incremental rotation vector

�θn+1 = �tn+1/2ω̇n+1/2 (A.11)

is preferred to integrating a finite rotation measure for simplicity and robustness.
Traditional finite rotation measures consisting of three angles have singular posi-
tions and quaternions require the imposition of a quadratic constraint [29].The in-
cremental rotation matrix �R is calculated from �θn+1 with the Hughes-Winget
formula [18] and used to incrementally rotate the mass moment of inertia tensor
from n to n + 1.

Finally, the control point velocity and coordinates are updated to n+1/2 and n+1,
respectively, in a manner guaranteed to exactly preserve the rigid body behavior of
the system,

ẋn+1/2
A

= ẋn+1/2
CM

+
1

�tn+1/2
�R (xn

A
− xn

CM
) (A.12)

xn+1
A

= xn

A
+�tn+1/2ẋn+1/2

A
. (A.13)
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