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ABSTRACT. We propose an infinite-dimensional adjoint-based inexact Gauss-Newton

method for the solution of inverse problems governed by Stokes models of ice sheet flow

with nonlinear rheology and sliding law. The method is applied to infer the basal sliding

coefficient and the rheological exponent parameter fields from surface velocities. The inverse

problem is formulated as a nonlinear least-squares optimization problem whose cost func-

tional is the misfit between surface velocity observations and model predictions. A Tikhonov

regularization term is added to the cost functional to render the problem well-posed and

account for observational error. Our findings show that the inexact Newton method is sig-

nificantly more efficient than the nonlinear conjugate gradient method and that the number

of Stokes solves required to solve the inverse problem is insensitive to the number of inversion

parameters. The results also show that the reconstructions of the basal sliding coefficient

converge to the exact sliding coefficient as the observation error (here, the noise added to

synthetic observations) decreases, and that a nonlinear rheology makes the reconstruction of

the basal sliding coefficient more difficult. For the inversion of the rheology exponent field,

we find that horizontally constant or smoothly varying parameter fields can be reconstructed

satisfactorily from noisy observations.

1. INTRODUCTION

Here, we consider the problem of estimating unknown param-

eters characterizing an ice sheet flow model governed by the

nonlinear full Stokes equations from surface flow observations.

The central aims of the paper are (1) to present an efficient

method for the solution of ice sheet flow inverse problems that

is suitable for high-dimensional parameter spaces, and (2) to

employ this method to study how well finite amplitude per-

turbation of a sliding coefficient in the basal boundary condi-

tion, and rheological parameters in the constitutive equation,

can be recovered from surface observations that contain some

degree of error.

Ice sheet flow models usually contain parameters that are

unknown due either to our inability to directly observe them,

or their role as phenomenological parameters that must be

constrained by data. The parameter field that relates the

basal traction to the rate of basal slip arguably presents the

largest uncertainty in determining the rate of ice flow. The

basal sliding coefficient cannot be obtained from direct ob-

servations; instead, we may seek to infer it from surface flow

data. Rheological parameters can be estimated in the labo-

ratory, but their values may not adequately characterize field

ice. By treating them as uncertain parameters to be inferred

from data, we may be able to improve models of field ice

sheets. Additional unknown or uncertain inputs to ice sheet

models include the geothermal heat flux, the basal topogra-

phy, and the ice thickness.

Our goal is to devise inversion methods that target three-

dimensional, large-scale inverse ice sheet problems with linear

or nonlinear rheology, handle arbitrary geometry and bound-

ary conditions, account for errors in the observations, and

are capable of inverting for basal as well as rheology pa-

rameters. We formulate the inverse problem as an infinite-

dimensional optimization problem governed by the nonlinear

Stokes equations. The cost functional we minimize is the sum

of the squared misfit between observed and predicted surface

velocities and a regularization term that makes the ill-posed

inverse problem well-posed. The basal sliding and Glen’s flow

law exponent coefficients constitute the inversion parameter

fields.

Discretization of this infinite dimensional inverse problem

results in a large-scale numerical optimization. Gradient-based

methods offer the only hope of solving such high-dimensional

optimization problems. Here, we advocate (inexact, Gauss-)

Newton methods, which employ Hessian information (i.e.,

second derivatives or curvature) to greatly speed up conver-
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gence relative to gradient-only methods (Dennis and Schn-

abel, 1996; Kelley, 1999; Nocedal and Wright, 2006). In many

cases, convergence is obtained in a number of iterations inde-

pendent of problem size (Deuflhard, 2004). We provide sys-

tematic derivations of the gradient and Hessian for both basal

and rheology parameters, which invoke the solution of asso-

ciated adjoint Stokes problems. Explicitly constructing the

Hessian matrix at each Newton iteration is usually intractable

for inverse problems governed by expensive forward simula-

tions, since each column of the Hessian (which corresponds

to a distinct parameter) requires solution of a linearized for-

ward problem. Here, however, we do not explicitly construct

the Hessian matrix; instead, we solve the linear system aris-

ing at each Newton iteration by the (linear) conjugate gra-

dient (CG) method, which requires only the application of

the Hessian matrix to a vector at each CG iteration. This re-

quires solution of a pair of forward/adjoint linearized Stokes

problems, and makes the method well-suited for large-scale

problems when the number of CG iterations is small, as is

often the case for inverse problems.

Several studies have focused on inverse problems for the

basal boundary conditions in ice sheet models. There are

three approaches commonly used to compute derivatives in

this case. The first approach, which is related to the methods

presented in this paper, uses adjoint equations to compute

first derivatives with respect to basal sliding parameters. The

approach was introduced in the context of glaciology prob-

lems by MacAyeal (1993), who employed the framework of

optimal control theory. Applications of this method to inverse

ice sheet flow problems governed by simplifications of the full

Stokes equations are presented by Vieli and Payne (2003);

Joughin and others (2004); Larour and others (2005); Gold-

berg and Sergienko (2011); Morlighem and others (2010).

These contributions make use of the steepest descent or the

nonlinear conjugate gradient method to solve the optimiza-

tion, both of which use gradient information only and are

thus slower than Newton-type methods.

A second approach to computing derivatives uses analytical

transfer functions to describe the effects of two-dimensional,

small amplitude perturbations in basal conditions on the ice

surface velocity (Gudmundsson (2003); Thorsteinsson and

others (2003); Raymond and Gudmundsson (2005); Gudmunds-

son and Raymond (2008)). In Raymond (2007); Raymond and

Gudmundsson (2009); Pralong and Gudmundsson (2011), the

full Stokes equations are used to model ice flow, but the

derivatives needed in the inversion procedure are approxi-

mated through analytical transfer functions, which limits the

accuracy of the gradient.

A third method uses gradients of a different cost func-

tional, which compares the flow fields of two Stokes prob-

lems, one with Neumann and the other one with Dirichlet sur-

face boundary conditions (Arthern and Gudmundsson, 2010).

The Dirichlet problem uses the observation data as boundary

condition, while the Neumann problem satisfies given (zero)

traction conditions. A gradient-based minimization algorithm

adjusts the inversion parameters until the difference between

the Dirichlet and the Neumann problem is small. Note that

an appropriate termination of this iteration is important, es-

pecially since the observations always contain some noise. An

attempt to overcome this problem by introducing a regular-

ization term has been made recently by Jay-Allemand and

others (2011). This Dirichlet-Neumann problem approach,

which has similarities with the method proposed in Maxwell

and others (2008) only requires a Stokes solver that imple-

ments different types of boundary conditions. However, the

method is derived for linear rheology and basal sliding law

in which case the adjoint Stokes equations as required in the

first approach described above also reduce to the usual linear

Stokes equations. This method has also been applied success-

fully to inverse problems with nonlinear rheology Arthern and

Gudmundsson (2010); Jay-Allemand and others (2011), but

it is not guaranteed to work for these cases.

To the best of our knowledge, inversion for the exponent

parameter in Glen’s flow law, and in particular its spatial vari-

ability, has not been addressed previously. Here we wish to de-

velop the capability to construct a more realistic description

of the ice viscosity as influenced by impurities and/or weak-

ening and damage of the ice, which may not be accounted

for by constant rheological parameters. Note that a first step

towards addressing this problem has been taken by Arthern

and Gudmundsson (2010), where they invert for the spatially-

varying effective ice viscosity η using a linear rheology (em-

ploying the third approach described above). We go beyond

this prior work by inverting for the Glen’s flow law exponent

n under a nonlinear rheology (using the fast Gauss-Newton

method advocated here). Alternatively, one could also invert

for parameters in the rate factor in Glen’s flow law, which

depends on the ice temperature, using the methodology pre-

sented here.

The remaining sections of this paper are organized as fol-

lows. We begin in Section 2 by describing the forward ice

sheet problem and the corresponding inverse problem for the

basal sliding coefficient field and for the flow law exponent

parameter. In Section 3, we present the adjoint-based inexact

Gauss-Newton method for solving the inversion problem.

Inversion and performance results are given in Section 4,

where we compare the performance of the proposed method

with the nonlinear conjugate gradient (NCG) method. Our

results show that compared to NCG, the number of itera-

tions (and thus the number of Stokes solves) required by the

Newton method is significantly smaller. We also find that the

number of Stokes solves for the Newton method is insensitive

to the number of inversion parameters, a crucial requirement

for the efficient solution of large-scale problems. Next, we

study the quality of basal inversions for linear and nonlin-

ear rheology and for different levels of observational error.

The results show that the quality of the reconstruction of the

basal coefficient depends on the wavelength of the variation

in the truth basal boundary Robin coefficient, and on the

noise level. Moreover, the reconstruction is less accurate for

nonlinear rheology than for linear, in agreement with earlier

work based on analytical transfer functions (Gudmundsson

and Raymond, 2008; Raymond, 2007). Next, we invert for

the exponent in Glen’s flow law. Although the problem is

highly underdetermined due to the ratio of surface observa-

tions to volume parameters, we find good reconstructions for

the location of viscosity anomalies and for smoothly varying

exponent fields. Section 5 summarizes our findings. Finally, in

the Appendix we give a systematic derivation of the adjoint
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and incremental equations used to compute the gradient and

the Hessian.

2. PROBLEM FORMULATION

2.1. The forward problem

We model the flow of ice as a non-Newtonian, viscous, incom-

pressible, isothermal fluid. The balance of mass and linear

momentum state that (Hutter, 1983; Marshall, 2005; Pater-

son, 1994)

∇ · u = 0 (1a)

−∇ · σu = ρg, (1b)

where u = (u1, u2, u3)T denotes the velocity vector, σu the

stress tensor, ρ the density of the ice, and g gravity. The

stress, σu, can be decomposed as σu = τu − Ip, where τu
is the deviatoric stress tensor, p the pressure, and I the unit

tensor. We employ a constitutive law for ice that relates stress

and strain rate tensors by Glen’s flow law (Glen, 1955),

τu = 2η(u, n)ε̇u, with η(u, n) =
1

2
A−

1
n ε̇

1−n
2n

II , (2)

where η is the effective viscosity, ε̇u = 1
2 (∇u + ∇uT ) the

strain rate tensor, ε̇II = 1
2 tr(ε̇2

u) its second invariant, n Glen’s

flow law exponent field, and A the temperature-dependent

flow rate factor (here taken as constant in isothermal ice).

Without loss of generality, we choose the model domain

to be a three-dimensional rectangular section of an ice sheet

with the following boundary conditions. On the top surface Γt
we impose a traction-free boundary condition, while periodic

boundary conditions are invoked along the lateral boundaries,

which are denoted by Γp. The boundary condition at the base

of the ice sheet Γb is given by a Weertman-type nonlinear slid-

ing law with normal and tangential components given by (Pa-

terson, 1994)

u · n = 0, Tσun+ β|Tu|m−1Tu = 0, (3)

where m is the basal sliding exponent, β the basal sliding

coefficient field defined on Γb, σu the stress tensor defined

previously, and T := I−n⊗n the tangential operator. Here,

“⊗” represents the tensor (or outer) product, n is the out-

ward normal vector, and I is the second order unit tensor.

Note that β, which relates tangential velocity to tangential

traction, subsumes several physical phenomena and thus does

not itself represent a physical parameter. It depends on the

frictional behavior of the ice sheet, on the roughness of the

bedrock, and, if present, on the depth of a plastically deform-

ing layer of till between the ice sheet and the bedrock.

In summary, the (forward) nonlinear Stokes ice sheet model

we consider in this paper is given by

∇ · u = 0 in Ω, (4a)

−∇ · [η(u, n)(∇u+ ∇uT )− Ip] = ρg in Ω, (4b)

u|Γl
= u|Γr

and σun|Γl
= σun|Γr

on Γp, (4c)

σun = 0 on Γt, (4d)

u · n = 0 on Γb, (4e)

Tσun+ β|Tu|m−1Tu = 0 on Γb, (4f)

where the effective viscosity is given by Equation (2), and

the stress is given by σu = η(u, n)(∇u + ∇uT ) − Ip. In

the expressions above, pairs of opposing boundaries on Γp on

which periodic conditions are imposed are denoted generically

by Γl and Γr. The choice of periodic boundary conditions for

the lateral boundaries is of course arbitrary; the expressions

for infinite-dimensional gradients and Hessians given in the

next section can be derived for other boundary conditions

using the same variational approach.

2.2. The inverse problem

The inverse problem is formulated as follows: given (possibly

noisy) observations uobs of the velocity u on the surface Γt
of an ice sheet occupying a domain Ω, we wish to infer the

sliding coefficient field β defined on the base of the ice sheet,

and the exponent parameter field n in Glen’s flow law defined

within the ice volume, that best reproduce the observed ve-

locity. This can be formulated as the following nonlinear least

squares minimization problem,

min
β,n

J (β, n) :=
1

2

∫
Γt

|u(β, n)− uobs|2 ds+R(β, n), (5)

where u depends on (β, n) through the solution of nonlinear

Stokes problem (4).

The first term in the cost functional J (β, n) represents

the misfit between the observed velocity field uobs and that

predicted by the nonlinear Stokes model, u. The regulariza-

tion term R(β, n) imposes regularity on the two inversion

fields, such as smoothness in an appropriate norm. Often this

reflects prior knowledge on the model parameters. In the ab-

sence of such a term, the inverse problem is ill-posed, that is,

its solution is not unique and is highly sensitive to errors in

the observations (Engl and others, 1996; Vogel, 2002). As is

common in inverse problems (and as will be discussed in Sec-

tion 4), small wavelength components of the parameter fields

β or n cannot be identified from surface observations; as a re-

sult, they can appear as arbitrary noise in the reconstructed

parameter fields. As a remedy, we impose a Tikhonov regu-

larization, which penalizes oscillatory components of β and

n, thus restricting the solution to smoothly varying fields:

R(β, n) =
γβ
2

∫
Γb

|T∇β|2 ds+
γn
2

∫
Ω
∇n · ∇n dx. (6)

Here, γβ > 0 and γn > 0 are regularization parameters that

control the strength of the imposed smoothness relative to

the data misfit. Large values for γβ and γn in (6) put the

emphasis in the minimization problem (5) on R, and thus

the solution (β, n) has small gradients (i.e., is smooth). For

small or vanishing regularization parameters, R has little or

no effect and the inverse problem is ill-posed (noise in the

data can result in oscillations in the solution of the inverse

problem).

3. ADJOINT-BASED INEXACT
GAUSS-NEWTON METHOD FOR
SOLUTION OF THE INVERSE
PROBLEM

In this section, we present an adjoint-based inexact (Gauss)-

Newton method for solving the nonlinear least squares op-
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timization problem (5). Starting with an initial guess for

the parameter fields (β, n), Newton’s method iteratively up-

dates these parameters based on successive quadratic approx-

imations of the cost functional J—using gradient (i.e., first

derivative) and Hessian (i.e., second derivative) information

with respect to (β, n). That is, the parameters are updated

by

(β, n)new = (β, n) + α(β̃, ñ),

where (β, n) are the current model parameters and the New-

ton “direction” (β̃, ñ) is obtained by minimizing the quadratic

approximation, or equivalently solving the linear system

H(β, n)(β̃, ñ) = −G(β, n). (7)

Here, G is the gradient of the regularized data misfit func-

tional J in (5), and H is its Hessian operator. To provide

robustness, the new values of the parameters are found by

“damping” the Newton direction, i.e., by choosing a step

length α such that the cost functional in (5) is sufficiently

decreased at each iteration. The details of carrying out this

so-called line search will be described later in this section.

The gradient and Hessian in the Newton step (7) are in fact

Fréchet derivatives, obtained at the infinite-dimensional level

using variational calculus. Since evaluating the functional J
requires the solution of the forward Stokes ice sheet model

(4), which depends on (β, n), derivatives of J with respect to

(β, n) need to take into account this implicit dependence as

well. The main part of this section is devoted to the presen-

tation of expressions for computing the gradient and Hessian

using so-called adjoint methods. Here we simply state the

resulting expressions; their derivations are given in Appendix

A.1. Readers wishing more details on procedures for finding

gradients and Hessians of cost functional defined by solutions

of PDEs may consult Borz̀ı and Schulz (2012); Gunzburger

(2003); Tröltzsch (2010). All expressions in this section are

given in infinite-dimensional form, which provides a natural

and “clean” path to computing the derivatives. These expres-

sions can then be discretized using standard finite element

methods, as discussed in Appendix A.2.

To facilitate the computation of infinite-dimensional gradi-

ent and Hessians, we introduce a so-called Lagrangian func-

tional,

L(u, p; v, q; β, n) := J (β, n) +

∫
Ω

2η(u, n)ε̇u : ε̇v dx

−
∫

Ω
(p∇ · v + q∇ · u+ f · v) dx

+

∫
Γb

β|Tu|m−1Tu · Tv ds,

which augments the regularized data misfit functional J with

additional terms comprising the weak form of the forward

nonlinear Stokes problem (4). This weak form is obtained by

multiplying the nonlinear Stokes system (4) with arbitrary

test functions v and q, integrating over the domain Ω, and

using integration by parts (Oden and Reddy, 1976; Braess,

1997; Gockenbach, 2006). The test functions establishing the

weak form are known as Lagrange multipliers, and since they

end up being identified with solutions of so-called adjoint

(Stokes) problems, are also known as the adjoint velocity v

and the adjoint pressure q. Finally, in the above equation,

ε̇v = 1
2 (∇v + ∇vT ) is the adjoint strain rate tensor and “:”

represents the scalar product of two tensors.

The gradient of J can be found by requiring that variations

of the Lagrangian L with respect to the forward velocity and

pressure (u, p) and the adjoint velocity and pressure (v, q)

vanish. Variations with respect to (β, n) then result in the

following strong form of the gradient G:

G(β, n) :=


−∇ · (γβT∇β) + |Tu|m−1Tu · Tv on Γb,

(γβT∇β) · n on ∂Γb,

−∇ · (γn∇n) + 2 dηdn (u, n) ε̇u : ε̇v in Ω,

(γn∇n) · n on ∂Ω.
(8)

Here, ∂Γb is the boundary of the basal surface, n is the out-

ward normal vector on ∂Γb, and dη
dn (u, n) is given by

dη

dn
(u, n) = ln

(
A

1
n2 ε̇
− 1

2n2

II

)
η(u, n).

The velocity u in (8) is obtained by solving the forward Stokes

problem (4) for given (β, n), and the adjoint velocity v is

obtained by solving the following adjoint Stokes problem for

given (β, n) and for u satisfying (4):

∇ · v = 0 in Ω, (9a)

−∇ · σv = 0 in Ω, (9b)

v|Γl
= v|Γr

and σvn|Γl
= σvn|Γr

on Γp, (9c)

σvn = uobs − u on Γt, (9d)

v · n = 0 on Γb, (9e)

Tσvn+ β|Tu|m−1Tv+

β(m− 1)|Tu|m−3(Tu⊗ Tu)Tv = 0 on Γb. (9f)

Here, the adjoint stress σv is given by

σv := 2η(u, n)
(
I +

1− n
n

ε̇u ⊗ ε̇u
ε̇u : ε̇u

)
ε̇v − Iq,

where I is the fourth order identity tensor. As can be seen

from (9), the adjoint Stokes problem is driven by the misfit

between observed and predicted surface velocity on the top

boundary, given by (9d); all other source terms are zero. Note

that while the forward problem is a nonlinear Stokes problem,

the adjoint Stokes problem (9) is linear in the adjoint velocity

and pressure, and is characterized by a linearized Stokes oper-

ator with an effective anisotropy that depends on the forward

velocity u, as well as a linearized basal boundary condition

with coefficient depending on u. The effective anisotropy of

the adjoint Stokes operator can be seen in the expression

for the adjoint stress σv above: the isotropic action of the

unit tensor I is reduced (since n ≥ 1) by the second term

in the viscosity tensor, which acts only in the direction of

the forward strain rate ε̇u. Note also that the adjoint Stokes

operator is the same operator as the Jacobian that arises in

Newton’s method for the forward (nonlinear) Stokes problem.

This is because the forward problem can be derived from a

(constrained) variational problem (see Appendix A.3), and

thus the Jacobian of the forward problem is self-adjoint. This

means that any forward nonlinear Stokes ice sheet code based

on a Newton solver is already equipped with the operator

needed to solve the adjoint Stokes problem.

The computation of the gradient G for a given (β, n) iterate

proceeds as follows. First, given the current estimate of the
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parameter fields (β, n), the forward nonlinear Stokes prob-

lem (4) is solved using Newton’s method, with a step size ap-

propriately chosen such that the corresponding energy func-

tional is decreased (see Appendix A.3). The resulting forward

velocity u is then used to construct the effective anisotropic

viscosity tensor, the basal boundary condition coefficient, and

the data misfit “source” term for the adjoint Stokes prob-

lem (9). This adjoint Stokes problem is then solved (using

the same linear solver used for the forward (linearized) Stokes

problem – see Section 4.1) to yield the adjoint velocity v (and

adjoint pressure q). The forward and adjoint velocities, along

with the current parameter field iterates (β, n), then enter

into the evaluation of the gradient G in (8). The role of the

forward and adjoint Stokes solves in the Newton iteration is

summarized in Algorithm 1.

The gradient computation (8) is inexpensive relative to the

forward and adjoint Stokes solves, since it does not require

the solution of any additional linear systems. Solution of the

adjoint Stokes problem (9), in turn, is inexpensive relative to

the solution of the forward Stokes problem (4), since the lat-

ter is nonlinear and its solution typically requires 5–10 linear

solves, while the former is linear. Thus, the gradient can be

found using this adjoint approach at minimal additional cost

beyond solving the forward Stokes problem, independent of

the number of (discretized) inversion parameters. The same

cannot be said about a direct method for computing the gra-

dient (Hinze and others, 2009). Direct methods compute the

sensitivity with respect to each parameter by solving a linear

Stokes problem, and thus require as many additional linear

Stokes solves as there are discretized inversion parameters.

Now that the gradient computation forming the right side

of the Newton system (7) has been described, we next present

the computation of the Hessian operator H on the left side

of the Newton equation. It is well-known that the Newton

direction is a descent direction only if the Hessian is posi-

tive definite. Unfortunately, even when the inverse problem is

well-posed, H is guaranteed to be positive definite only close

to a minimum (Nocedal and Wright, 2006). The remedy we

apply here is to neglect terms in the Hessian expression that

involve the adjoint variable (see Appendix A.2). This leads

to the so-called Gauss-Newton approximation of the Hessian,

which (with appropriate regularization) is guaranteed to be

positive definite. Since the adjoint system (9) is driven only by

the data misfit (uobs−u) on the top boundary Γt, the adjoint

velocity is expected to be small when the data misfit is small,

which occurs close to the solution of the inverse problem pro-

vided the model or observational errors are not large. The

Gauss-Newton Hessian is thus often a good approximation

of the full Hessian. In such cases, even though one loses the

strict quadratic convergence guarantee of Newton’s method,

one can still obtain fast, superlinear convergence, as well as

independence of the number of iterations from the number

of inversion parameters, as will be seen in the numerical re-

sults in the next section. In the remainder of this article, we

employ the Gauss-Newton approximation of the Hessian, but

for simplicity we occasionally drop the term “Gauss” when

referring to the method.

Formally, when the Hessian operator in the Newton sys-

tem (7) is discretized, it gives rise to a dense Hessian matrix

of dimension equal to the number of inversion parameters

(see Appendix A.2). Computing each column of the Hessian

requires solution of a linearized forward problem (Hinze and

others, 2009). Therefore, explicitly forming and storing this

matrix is not an option. Instead, we solve the Newton sys-

tem (7) using the linear conjugate gradient (CG) method,

which does not require the explicit Hessian, instead requiring

only the action of the Hessian on a vector at each CG iter-

ation. Next, we present expressions for this Hessian action

in terms of the solution of a pair of linearized forward and

adjoint problems. These expressions are simply stated here;

their derivation is presented in Appendix A.1 (in the case of

a linear rheology, and invoking the Gauss-Newton approxi-

mation).

The action of the Gauss-Newton Hessian operator in a

given CG direction (β̃, ñ), evaluated at the current Newton

iterate (β, n), can be expressed as

H(β, n)(β̃, ñ) :=
−∇ · (γβT∇β̃) + |Tu|m−1Tu · T ṽ on Γb,

(γβT∇β̃) · n on ∂Γb,

−∇ · (γn∇ñ) + 2 dηdn (u, n) ε̇u : ε̇ṽ in Ω,

(γn∇ñ) · n on ∂Ω,

(10)

where the incremental forward velocity/pressure (ũ, p̃) satisfy

the incremental forward Stokes problem,

∇ · ũ = 0 in Ω, (11a)

−∇ · σũ = ∇ · τu in Ω, (11b)

ũ|Γl
= ũ|Γr

and σũn|Γl
= σũn|Γr

on Γp, (11c)

σũn = −τun on Γt, (11d)

ũ · n = 0 on Γb, (11e)

Tσũn+ β|Tu|m−1T ũ +

β(m− 1)|Tu|m−3(Tu⊗ Tu)T ũ =

−β̃|Tu|m−1Tu− Tτun on Γb, (11f)

with σũ := 2η(u, n)
(
I + 1−n

n
ε̇u⊗ε̇u
ε̇u: ε̇u

)
ε̇ũ − I p̃, and τu :=

2 dηdn (u, n)ñε̇u, and the incremental adjoint velocity/pressure

(ṽ, q̃) satisfy the incremental adjoint Stokes problem,

∇ · ṽ = 0 in Ω, (12a)

−∇ · σṽ = 0 in Ω, (12b)

ṽ|Γl
= ṽ|Γr

and σṽn|Γl
= σṽn|Γr

on Γp, (12c)

σṽn = −ũ on Γt, (12d)

ṽ · n = 0 on Γb, (12e)

Tσṽn+ β|Tu|m−1T ṽ +

β(m− 1)|Tu|m−3(Tu⊗ Tu)T ṽ = 0 on Γb, (12f)

with σṽ := 2η(u, n)
(
I+ 1−n

n
ε̇u⊗ε̇u
ε̇u: ε̇u

)
ε̇ṽ−I q̃. In these expres-

sions, ε̇ũ and ε̇ṽ are defined in the same manner as ε̇u and ε̇v.

Note that the only source term in the incremental adjoint

problem (12) is provided by the incremental forward velocity

on the right hand side in (12d), which results from a lineariza-

tion of the residual of the adjoint Stokes problem (9). The

only source terms in the incremental forward Stokes problem

are given in turn by the forward velocity, which again stems

from the linearization of the residual of the forward problem.
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In summary, the “workflow” for computing the application

of the Hessian to a vector (β̃, ñ) proceeds as follows. First,

in evaluating the gradient for each Newton iteration, we have

already solved the forward nonlinear Stokes problem (4) to

obtain the forward velocity/pressure (u, p), and the adjoint

Stokes problem (9) to obtain the adjoint velocity/pressure

(v, q). Next, the right hand side of the incremental forward

Stokes problem (11) is constructed from the forward velocity,

and this Stokes problem is solved to obtain the incremental

forward velocity/pressure (ũ, p̃). Then, the incremental for-

ward velocity forms the right hand side of the incremental

adjoint Stokes problem (12), which is subsequently solved to

yield the incremental adjoint velocity/pressure (ṽ, q̃). Finally,

the incremental adjoint velocity (along with the forward ve-

locity) is used to evaluate (10), the application of the Gauss-

Newton Hessian to (β̃, ñ). Algorithm 2 summarizes the role

of incremental Stokes solves in the CG iteration.

There are several observations to make about these expres-

sions. First, the Hessian action (10) has the same form as the

gradient (8). Second, the incremental forward and adjoint

Stokes problems (11) and (12) have the same operator as the

adjoint Stokes problem (9), and differ only in the domain

and boundary source terms. Like the adjoint Stokes problem,

both incremental systems are linearized Stokes equations with

anisotropic effective viscosity tensors that depend on the so-

lution of the forward Stokes problem. Since the operator for

the adjoint Stokes problem (9) is identical to the Jacobian of

the nonlinear forward Stokes problem (4), the tools needed

to solve the incremental systems are already available in any

Newton-based forward Stokes solver, as they are for the gra-

dient.

Each CG iteration entails forming the Hessian action (10)

(which, when discretized, leads to a Hessian matrix-vector

product), which in turn requires solution of the incremental

forward and adjoint systems (11) and (12). If a direct linear

solver based on a matrix factorization is feasible, the cost of

the Stokes matrix factorization can be amortized across the

incremental system solves in all of the CG iterations needed

for each Newton iteration; in this case, only triangular solves

are required at each CG iteration. If a direct solver is not

feasible, then at least the preconditioner can be reused for

all of the incremental solves during the CG iterations. In any

case, it is critical to reduce the number of CG iterations as

much as possible.

Moreover, since accurate solution of the Newton system (7)

is needed only close to the minimum of the regularized data

misfit functional J to retain superlinear convergence (No-

cedal and Wright, 2006), we terminate the CG iterations early

for iterates that are far from the converged solution. This

significantly reduces the number of required linearized for-

ward/adjoint solves. One form of this inexact Newton method

terminates the CG iterations when the norm of the residual

of the linear system (7) drops below a tolerance that is pro-

portional to the norm of the gradient (see Algorithm 2). Far

from the minimum—when the relative gradient is large—the

tolerance is also large, and the CG iterations are terminated

early. As the minimum is approached, the norm of the gra-

dient decreases, thereby enforcing an increasingly more accu-

rate solution of the Newton system (7). The criterion above is

able to significantly reduce the number of CG iterations—and

thus the required number of linearized forward/adjoint Stokes

solves—while still maintaining superlinear convergence. Com-

pared to a more accurate computation of the Newton direc-

tion, this inexactness can result in a slightly larger number of

Newton iterations, but significantly reduces the overall num-

ber of CG iterations, and thus the overall number of Stokes-

like solves.

Once the Newton direction is computed by inexact solution

of (7), we must guarantee that sufficient decrease in J is ob-

tained in that direction so that convergence of the iterations

can be assured. This is achieved by a line search that finds a

step size α satisfying the so-called Armijo condition (Nocedal

and Wright, 2006), which has the attractive property that it

requires only cost function evaluations (entailing a forward

Stokes solve), and not gradient information. The Newton it-

erations are repeated until the norm of the gradient of J is

sufficiently small. The inexact Newton method is summarized

in Algorithm 1 and Algorithm 2. Typical values for the line

Algorithm 1 Adjoint-based inexact Newton method

Initialize/define variables m1 = (β1, n1), α, ρ, c, εtol
for k = 1, . . . do

(uk, pk) ← solve the forward equation with mk

(vk, qk) ← solve the adjoint equation with mk and (uk, pk)

gk ← compute the gradient given by the discretization of (8)

Perform inexact CG iterations (Algorithm 2) to compute m̃k

α← 1

while no descent do
mk+1 ←mk + αm̃k

Solve the forward equation with mk+1

if J (mk+1) ≤ J (mk) + cαgTk m̃k then
J (mk)← J (mk+1)

else

α← ρα
end if

end while

if ||gk|| < εtol then
converged

end if

end for

Algorithm 2 CG algorithm for solving Hkm̃k = −gk
m̃0
k ← 0, i← 0

r0
k ← gk

d0
k ← −r0

k

ν ← min

(
0.5,

√
‖gk‖
‖g0‖

)
while ‖rik‖ > ν‖gk‖ do

(ũk, p̃k)← solve incremental forward equation with dik
(ṽk, q̃k) ← solve incremental adjoint equation with (ũk, p̃k)

Hkd
i
k ← evaluate the Hessian-vector product as given by the

discretization of (10)

αi ← riT
k ri

k

di
k
Hkd

i
k

m̃i+1
k ← m̃i

k + αidik
ri+1
k ← rik + αiHkd

i
k

βi+1 ← ri+1T
k

ri+1
k

riT
k

ri
k

di+1
k ← −ri+1

k + βi+1dik
i← i+ 1

end while

search parameters in Algorithm 1 are ρ = 0.5 and c = 10−4.
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Fig. 1. Illustration of the detection of an optimal regularization

parameter γ (which can either be γβ or γn) using Morozov’s dis-

crepancy principle. The dashed horizontal line depicts the noise

level δ, and the solid line shows the misfits ‖uγ −uobs‖ for differ-

ent values of γ. The value of γ corresponding to the misfit marked

by the dot is a near-optimal regularization parameter according

to Morozov’s discrepancy principle. This criterion for choosing the

regularization parameter requires the solution of several inverse

problems with different values of γ. The plot shows the parameter

selection for Model I described in Section 4.1.

Note that the CG iteration in Algorithm 2 is initialized with

m̃0
k = 0, and thus the first CG iterate m̃1

k is the negative

gradient direction, scaled by α0.

Finally we comment on the choice of the regularization pa-

rameters γβ and γn, which depend on (an estimate of) the

observation error, also called the noise level. This error can,

for instance, be due to measurement error or model uncer-

tainties (Tarantola, 2005). We use the Morozov discrepancy

criterion (Vogel, 2002), that is, we find regularization param-

eters such that ‖u − uobs‖ ≈ δ, where δ is the noise level

and u = uγ is the solution computed with the regulariza-

tion parameters (see Figure 1). Generally, the quality of the

reconstruction is not very sensitive to the choice of the reg-

ularization parameters. However, choosing parameters that

are too large will lead to an overly smoothed reconstruction,

while a regularization parameter that is too small for the

error in the observations results in instability in the inverse

problem, manifesting as noise in the inverse solution.

4. RESULTS FOR MODEL TEST
PROBLEMS

In this section, we describe numerical test problems to study

the performance of the optimization algorithm and the ability

of the inversion procedure to recover the unknown parameter

fields. Tests are performed for inversion of the sliding coeffi-

cient β in problems with linear and nonlinear rheology, and a

linear sliding law. Then, we show inversion results for Glen’s

flow law exponent parameter n.

4.1. Model problems

We begin this section by presenting five model problems we

use to assess performance and efficacy of the proposed in-

version method. The forward problems are based on the Ice

x

z

0

H

L

Ω

Γl

Γr

Γb

Γt

α

Fig. 2. Coordinate system and cross section through a three-

dimensional slab of ice as used in the computational experiments.

Sheet Model Intercomparison Project for Higher-Order Ice

Sheet Models (ISMIP-HOM) benchmark study by Pattyn and

others (2008). For all test problems, we consider a three-

dimensional hexahedral ice slab of thickness H = 1 km on

an inclined plane with slope α = 0.1o, as illustrated in Fig-

ure 2. The driving force in the Stokes equations (4) is the

gravity ρg = (ρg sin θ, 0,−ρg cos θ), where ρ = 910 kg/m3 is

the ice density, g = 9.81 m/s2 is the gravitational constant,

and θ = 0.1π/180 is the slope in radians. The basal sliding

coefficient field is defined as

β(x, y) = 1000 + 1000 sin(ωx) sin(ωy), (13)

where (x, y) ∈ [0, L]× [0, L] with L being the length of the ice

sheet, taken to be 5 km unless otherwise specified, and ω =

2π/L. Thus, the wavelength of the basal variation is L. Unless

otherwise specified, we use a linear basal sliding law (i.e., m =

1 in Equation (4f)) with the sliding coefficient given by (13),

periodic boundary conditions for the lateral boundaries, and

zero traction on the top surface. The sliding and rheology

laws considered in this section are given by the Equations (2)

and (3), respectively. For linear rheology (i.e., n = 1), the

ice flow parameter, A, is 2.140373 × 10−7 Pa−1a−1, and for

nonlinear rheology A = 10−16 Pa−na−1, where “Pa” and

“a” are units of Pascals and years, respectively (Pattyn and

others, 2008).

For all numerical experiments, surface velocities extracted

from forward solution fields are used as synthetic observations

in the inverse problem. Random Gaussian noise is added to

these observational data to lessen the “inverse crime,” which

occurs when the same numerical method is used to both syn-

thesize the data and to drive the inverse solution, (e.g., Kaipio

and Somersalo, 2005). We choose a regularization parameter

that approximately satisfies Morozov’s discrepancy principle.

We discretize the domain Ω into hexahedra, and for the for-

ward and adoint Stokes problems as well as their incremental

counterparts, we employ Taylor-Hood finite elements to ap-

proximate the velocity-pressure pairs, i.e., trilinear elements

for pressure and triquadratic elements for velocity compo-

nents. For the unknown inversion fields β and n, bi- and tri-

linear elements are used, respectively. All Stokes-like systems

(which share a coefficient matrix given by the Jacobian of the

forward problem) are solved by Matlab’s backslash operator,

i.e., using a direct factorization.
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The performance of the inexact Newton method presented

in the previous section is compared with two commonly used

(e.g., Morlighem and others, 2010; Goldberg and Sergienko,

2011) versions of the nonlinear conjugate gradient method,

namely the Fletcher-Reeves and Polak-Ribiéere nonlinear CG

methods with a line search such that the step length satis-

fies the strong Wolfe condition (Nocedal and Wright, 2006,

p.60). To speed up the convergence of the Fletcher-Reeves

algorithm, a restart is performed whenever two consecutive

gradients are far from orthogonal, as measured by the test

|gTk gk−1|/‖gk‖2 ≥ ν, where gk−1 and gk are the (discrete)

gradients at iterations k − 1 and k, respectively. A typical

value for the parameter ν is 0.1 (Nocedal and Wright, 2006,

p.125).

We now describe the five model problems used below. The

general setup of these problems is as previously described.

Below we focus only on specifying the “truth” inversion fields

and other specific problem features.

I. The first model problem considers inversion for the basal

sliding coefficient, β, with linear rheology as given by

Equation (2), with n = 1, and linear sliding law, given

by Equation (3) with m = 1. The truth β field is given

by Equation (13). This model is used for assessing the

performance of the proposed inexact Newton method.

II. This problem is as Model I, but we use L = 10 km. Addi-

tionally, we add a small wavelength variation to the sliding

coefficient, i.e., we replace (13) by

β1(x, y) = β(x, y) + 100 + 100 sin(8ωx) sin(8ωy).

III. This is the same as Model I, but in addition to the linear

rheology, we also consider a nonlinear rheology law (n =

3) and various sizes of the domain, namely L = 5, 10, 20,

and 40 km. By choosing these different horizontal dimen-

sions, we are able to assess the ability to invert for several

different wavenumber variations in the truth β field from

surface observations.

IV. Model IV considers inversion for a smoothly-varying Glen’s

flow law exponent parameter, n, in the nonlinear Stokes

equations (4). The basic geometry and model setup is as

previously described except that the boundary conditions

on both lateral xz-plane boundaries are set to no-slip con-

ditions. The purpose of this model problem is to study

whether variations in the volume viscosity field can be

reconstructed from surface velocity observations. For this

purpose, we propose the following truth n field,

n(x, y, z) = 3 +
1

3
[sin(ω1x) + sin(ω1y) + sin(ω2z)], (14)

where ω1 = 2π/L and ω2 = πH/4.

V. The geometry and problem setup for this model are the

same as for Model IV, but we aim to reconstruct the fol-

lowing n field,

n(x, y, z) = 3 + 2 max(n1, n2), (15)

where

n1(x, y, z) = exp

[
− (x− x0)2 + (y − y0)2

2σ2

]
,

n2(x, y, z) =

{
exp(− (y−y0)2

2σ2 ), x < x0,

0, else.

Above, we choose x0 = L/2, y0 = 3L/4, and σ = 10
√
L/5.

The goal of this problem is to study the ability of the in-

version method to reconstruct strong local anomalies in

the rheology. Such anomalies could indicate that Glen’s

flow law cannot be used to describe the mechanical prop-

erties of the ice in that region sufficiently well.

4.2. Performance of the inexact Newton
method

In this section, we study the behavior of the inexact Newton

method described in the previous section and compare its per-

formance to the nonlinear conjugate gradient (NCG) method,

using Model I but with a nonlinear rheology (n = 3) as a test

problem. To motivate our performance metric, note that the

solution of linear or linearized Stokes systems dominates the

computational cost for both inversion methods, since as ex-

plained in the previous section, this is at the heart of cost

function, gradient, and Hessian-vector product evaluation.

Here, we use a direct method based on a matrix factorization

to solve these Stokes systems. Relative to computing a fac-

torization, the cost of the subsequent triangular substitutions

is negligible, especially for large problems. Thus, we charac-

terize the cost of the two inversion methods by the number

of matrix factorizations needed to achieve convergence for a

given tolerance. This allows conclusions on the performance

of the methods to be independent of the specific direct solver

one employs. Note that the number of factorizations needed

by both the inexact Newton and the NCG methods is equal

to the number of distinct linear systems that must be factored

(and thus, each CG iteration within the inexact Newton it-

eration does not require a factorization).

Table 1 compares the number of iterations and Stokes fac-

torizations required for convergence of the NCG and inexact

Newton methods for an inverse problem with nonlinear rhe-

ology. Since realistic inverse ice sheet problems are very high-

dimensional, we are particularly interested in the behavior of

these optimization methods as the size of the inverse problem

grows. Thus, we use a sequence of increasingly-finer meshes to

assess the performance. As can be seen, for all four meshes the

number of iterations needed by the inexact Newton method is

significantly smaller than the number of iterations needed by

the NCG method. For example, on a mesh of 40× 40× 2 ele-

ments, the Newton method takes 9 iterations with 33 CG iter-

ations overall (i.e., about 4 CG iterations per Newton step),

whereas the NCG method takes more than 100 iterations.

When comparing the number of factorizations, the difference

between the two methods is even more significant, i.e., the

NCG method requires about 50 times more Stokes factoriza-

tions than does the inexact Newton method. One reason for

this is that CG (i.e., inner) iterations of Newton do not incur

any additional factorizations, since the linear systems that are

being solved have the same coefficient matrix. Moreover, even

though computing a descent direction for the NCG method
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NCG (FR/PR) inexact Newton

mesh #dof #par #iter #Stokes #iter #Stokes

10×10×2 6978 121 75/56 1933/1592 9 (34) 50

20×20×2 26538 141 83/65 2268/2373 9 (33) 57
40×40×2 103458 1681 137/103 2841/2841 9 (32) 57

80×80×2 408498 6561 164/128 3759/2812 9 (33) 64

Table 1. Number of iterations (#iter) and the number of Stokes

factorizations (#Stokes) for the NCG and inexact Newton meth-

ods for an inverse problem with nonlinear rheology. The first col-

umn (mesh) shows the number of elements used to discretize the

variables in the two horizontal and the vertical directions; the sec-

ond column (#dof) indicates the total number of velocity and

pressure variables; and the third column (#par) indicates the

number of inversion (β) parameters. The fourth and fifth columns

report the number of NCG iterations and the number of Stokes fac-

torizations for the Fletcher-Reeves (FR) and Polak-Ribiéere (PR)

variants of the NCG method. The sixth column shows the number

of Newton iterations, and in brackets the overall number of CG

iterations. The last column reports the number of factorizations

needed by the inexact Newton method. The iterations are termi-

nated when the norm of the gradient is decreased by a factor of 105.

This table shows that the cost of solving the inverse problem by

the inexact Newton method measured in number Stokes factoriza-

tions is roughly independent of the number of inversion parameters.

This is not the case for the NCG method, i.e., as we increase the

mesh resolution, the number of iterations and Stokes factorizations

increase significantly. In addition, the comparison shows that the

inexact Newton method is about 50 times faster (measured in the

number of Stokes factorizations) than the commonly-used NCG

method.

is theoretically cheaper (since it requires only gradient infor-

mation), the difficulty of finding an appropriate step length

that satisfies the Wolfe condition amounts to a large number

of linearized forward solves (i.e., number of factorizations).

Finally, the results show that the number of Newton itera-

tions is insensitive to the inverse problem size, in accordance

with the theory (Heinkenschloss, 1993). This is not the case

with the NCG method, which for the nonlinear rheology case

shows a significant increase in the number of iterations and

Stokes factorizations with problem size. The ability of New-

ton methods to scale independently of inverse problem size

is critical to the prospects for solving large-scale ice sheet

inverse problems, as will be encountered in full-continental

inversions for basal sliding and rheology coefficients.

To visualize the differences in performance between the in-

exact Newton and NCG methods, we plot in Figure 3 (left)

the cost function value versus the number of Stokes factor-

izations for the inexact Newton and for the Fletcher-Reeves

(FR) and Polak-Ribiéere (PR) variants of the NCG method.

These results are for Model I with nonlinear rheology (n=3).

This figure further illustrates the significant improvement

in efficiency of the inexact Newton method over the NCG

methods. In the right image of Figure 3, we plot the con-

vergence coefficient δ of the inexact Newton method, defined

by δ = ‖βk+1 − β∗‖L2/‖βk − β∗‖L2 , where βk is the k-th
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Fig. 3. Left: The cost function value versus the number of Stokes

factorizations for the inexact Newton (dashed line) and for the

Fletcher-Reeves (FR) (dash-dot line) and Polak-Ribiéere (PR)

(solid line) variants of the NCG method. The basal sliding coeffi-

cient β was reconstructed with nonlinear rheology, and for SNR=

500 and L = 10. This plot corresponds to the coarsest mesh (10

× 10 × 2) case in Table 1. The inexact Newton method is seen

to be significantly more efficient than the NCG methods. Right:

The coefficient δk = ‖βk+1−β∗‖L2/‖βk−β∗‖L2 (with βk denot-

ing the k-th iterate and β∗ the inverse solution) plotted against

the iteration number. Since δk → 0, the method converges at a

superlinear rate.

iterate, and β∗ is the inverse solution. This result shows that

limk→∞ δ = 0, and thus the convergence rate is superlin-

ear (Kelley, 1999; Nocedal and Wright, 2006).

4.3. Inversion results

Inversion for the basal sliding coefficient β
In this section, we study how well variations in the basal

sliding coefficient field β can be reconstructed from synthetic

observations. We use a linear sliding law (m = 1) and both

linear (n = 1) and nonlinear (n = 3) rheology. The goal

is to study the limits of invertibility for the sliding coeffi-

cient β as a function of wavelength of the basal variation and

the noise level in the synthetic velocity observations. Related

studies based on approximate derivatives found from analyt-

ical transfer functions can be found in (Gudmundsson and

Raymond, 2008; Raymond, 2007; Raymond and Gudmunds-

son, 2005, 2009). To specify the noise level, we use the signal-

to-noise ratio (SNR), which we define as the ratio between

the average surface velocity and the standard deviation of

the added noise σnoise, i.e.,

SNR =
ū

σnoise
(16)

where ū is the average surface velocity based on some Lp

norm (we use ū = ||u||L2(Γt)/|Γt|
1/2 for Models I–III, and

ū = ||u||L∞(Γt) for Models IV and V).

We start with the (linear) Model II, where the truth β co-

efficient field is given by a sum of small and large wavelength

variations (middle row in Figure 4). Due to the presence of

noise in the data (SNR = 100), the basal sliding coefficient

β can be reconstructed only approximately, as can be seen

in the bottom row of Figure 4. While the large wavelength

component is well recovered, the small wavelength variations

cannot be reconstructed by the inversion method. This can

be explained by the fact that the surface velocity response

to these small wavelength variations in β are small due to

the smoothing property of the parameter-to-observable map;
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Fig. 4. Inversion for a rough basal sliding coefficient β with a

linear rheology law and a domain of 10 km × 10 km × 1 km. Top

left: observations of surface velocity with SNR = 100; top right:

surface velocity based on reconstructed basal sliding coefficient.

Middle row: truth basal sliding coefficient; bottom row: inverted

β field based on noisy observations. The regularization parameter

γ is chosen according to Morozov’s discrepancy principle. Even

though the observations are fit to within the noise (top row), only

the smooth components of β can reconstructed (bottom row).

effectively, the solution of the Stokes problem acts as a low-

pass filter. These small observed velocities are overwhelmed

by the noise in the data, making the reconstruction of the

small wavelength component impossible.

We continue with a more systematic study of the interplay

between length scales in the basal variation, the SNR ratio,

the nonlinearity of the rheology, and the quality of the re-

construction, using the problem setting for Model III. First,

we solve the Stokes equations for the truth basal sliding co-

efficient for different wavelength L of the sliding coefficient.

Then, we add noise with a given signal-to-noise ratio to the

resulting surface velocities and use these synthetic observa-

tions to reconstruct the basal sliding coefficient. Results for

different noise levels and for linear and nonlinear rheology

are summarized in Table 2. The regularization parameters

are computed according to the Morozov discrepancy principle

(see Table 2a). The relative errors between the truth and the

reconstructed β coefficient field, i.e., ||βtrue−β||L2/||βtrue||L2

are reported in Table 2b. Besides the expected result that

larger noise makes the reconstruction of the truth sliding co-

efficient more difficult, we make the following observations:

(a) As the noise level decreases, for both linear and nonlinear

rheology, the basal sliding coefficient β reconstructed from

the noisy surface observations converges to the truth β

(i.e., the one that was used for the synthetic observations).

(b) The larger the wavelength L of the variation of the basal

sliding coefficient, the better it can be reconstructed. This

result is in agreement with findings reported in Gudmunds-

son and Raymond (2008), which are based on analytical

transfer functions along flow lines and, thus, describe the

effects of small-amplitude basal variations on the surface

velocity. Gudmundsson and Raymond (2008) find that for

1% noise (i.e., for SNR = 100), the variation in a basal

sliding coefficient with a mean value of 500 can be re-

constructed accurately only if its wavelength is about 50

times the ice thickness, which is equivalent to L = 50 in

our setup. Our finite-amplitude results, which are shown

in Table 2 suggest that, for a mean sliding coefficient of

1000, a reasonable reconstruction can be achieved already

for a smaller wavelength-to-ice thickness ratio of about 10

for linear rheology and 20 for nonlinear rheology.

(c) The reconstruction of β is significantly more difficult for

nonlinear than for linear rheology. To illustrate this, in

Figure 6 we show the basal sliding coefficient β recon-

structed from synthetic data with SNR = 100 for both

linear and nonlinear rheology. For a smaller wavelength in

the β field (of L = 10 km), β can be identified well using

a linear rheology (upper right image). However, nonlinear

rheology for the same L weakens the ability to reconstruct

β (lower left). On the other hand, the larger wavelength

in the β field (of L = 40 km) can be reconstructed well

even for nonlinear rheology (lower right).

(d) To interpret further the findings summarized in (b) and

(c), Figure 5 shows sections through the surface flow veloc-

ity field for small (L = 10) and large (L = 40) wavelength

β fields, and for linear (n = 1) and nonlinear (n = 3)

rheology. Note that the deviation from a constant flow at

the top surface grows with increasing L, and decreases

with the degree of nonlinearity (n) of the rheology. This

departure from a uniform flow is what allows the recon-

struction of a spatially-varying basal sliding coefficient,

through the solution of an inverse problem; larger devi-

ations from a constant are not as easily overwhelmed by

noise. This explains why the reconstruction of the sliding

coefficient in the presence of a certain noise level is better

for L = 40 than for L = 10 (see (b) above) and for linear

than for nonlinear rheology (see (c) above).

Inversion for Glen’s flow law exponent n
In this section, we present inversion results for Models IV

and V. We find that the reconstruction of a spatially-varying
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Fig. 5. Surface velocity response for Stokes flow problem described in Model III for linear and nonlinear rheology. The plots show

x-component velocities at y = L/4 for variations in β with wavelengths L = 10 km (top row) and L = 40 km (bottom row). The left

column depicts surface velocities based on the truth basal sliding coefficient. The middle column shows these synthetic observations with

added noise (SNR = 100). The right columns displays surface velocities based on reconstructed β field. Note that the noise in the data for

L = 40 km (bottom row, middle) appears smaller than for L = 10 km (top row, middle) due to the plotting range for the y-axis, which is

chosen according to the velocity variation. The deviation from a constant in the surface flow velocity (i.e., the observations for the inverse

problem) decreases with L and with increasing nonlinearity in the rheology, which makes the reconstruction of β more difficult (compare

with the bottom right image in Figure 6.).

Fig. 6. Reconstruction of basal sliding coefficient β from noisy

synthetic observations (SNR = 100) from Model III. Shown are the

truth β field (top left) and the reconstruction for L = 10 with linear

rheology (top right) and with nonlinear rheology (bottom left).

The bottom right image shows the reconstruction for a nonlinear

rheology with L = 40.

Glen’s flow law exponent field n (i.e., the rheology param-

eter field) from surface observations is possible, and works

particularly well when n varies smoothly. For both cases the

inversion was started with a spatially uniform n field, namely

n = 3.

Figures 7 and 8 present results of inversion for Models IV

and V, respectively. For each of these models, the top row

shows the noisy observations of the surface velocity (left) and

the velocity field obtained solving the Stokes equations with

the reconstructed n field (right). These images demonstrate

that the inversion is matching the observations to within the

noise. The middle rows in Figures 7 and 8 show the truth

n rheology parameter fields (used to generate the synthetic

observations) and their reconstructed values. Slices through

the same truth and reconstructed n fields for Models IV and

V are shown in the bottom rows of Figures 7 and 8.

The n parameter fields, which are either smoothly varying

(Model IV) or highly localized (Model V), can be well recon-

structed from the surface observations. The surface-to-volume

ratio of observations to parameters makes the inversion of a

spatially-varying n parameter field an underdetermined prob-

lem and, thus, regularization is essential in the noise-free case

as well as the noisy case.

Despite this ill-posedness, the sharp horizontal variation

in the n parameter field of Model V, which could originate

for instance from spatially-varying crystal fabric orientation,

impurity content, or fracture, is well reconstructed. Note that
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1) linear rheology 2) nonlinear rheology

SNR SNR

L 500 100 20 10 500 100 20 10

(a) The optimal regularization parameter γ

5 0.015 0.1 - - - - - -

10 0.2 1.2 8 35 0.03 0.15 - -

20 1.5 10 70 200 0.8 5 25 55
40 8 60 550 1600 6 40 300 800

(b) The relative error
‖β−βtrue‖L2

‖βtrue‖L2

5 0.031 0.112 - - - - - -
10 0.022 0.049 0.157 0.310 0.032 0.165 - -

20 0.017 0.041 0.109 0.177 0.026 0.045 0.118 0.285

40 0.013 0.039 0.125 0.191 0.015 0.036 0.097 0.149

Table 2. (a) The optimal regularization parameters computed

from the discrepancy principle. A “-” indicates cases for which no

finite regularization parameter exists that satisfies the discrepancy

principle since the noise level is larger than the variance of the

surface velocity. In these cases, the noise dominates the data and

the sliding coefficient cannot be reconstructed from the data. (b)

the error with linear (1) and nonlinear (2) rheology for signal-to-

noise ratios SNR = 500, 100, 20 and 10.

in the upper part of the slab the reconstructions are close to

the truth n fields, but they degrade in the deeper parts of the

slab.

5. CONCLUSIONS

We have presented an adjoint-based inexact Newton method

for estimating uncertain (or unknown) parameters in ice sheet

models that are governed by the nonlinear full Stokes equa-

tions. We have applied this method to the inverse problem

of inferring the basal sliding coefficient and the exponent in

Glen’s flow law from observations of ice surface velocity. To

address the ill-posedness of the inverse problem, a Tikhonov-

type regularization is used. This penalizes oscillatory com-

ponents in the unknown parameter fields, which cannot be

reconstructed reliably in the inversion.

We have studied the performance of the proposed method

in comparison with the nonlinear conjugate gradient (NCG)

method, which has been applied previously to glaciology in-

verse problems (Vieli and Payne, 2003; Goldberg and Sergienko,

2011; Morlighem and others, 2010). We conclude that the

Newton method is significantly (of the order of six times)

more efficient than the NCG method and that the cost of

solving the inverse problem measured in number of Stokes

solves is insensitive to the number of inversion parameters.

This finding suggests that the inexact Newton method is de-

sirable for large-scale ice sheet inverse problems. Moreover,

the additional linear system solves entailed by the inexact

Newton method are characterized by linearized Stokes oper-

Fig. 7. Reconstruction of n exponent field in Glen’s flow law in

Model IV. Noisy synthetic observations of the surface velocity (top

left) are contrasted with the velocity field corresponding to the

reconstructed n field (top right). The center and bottom rows show

the truth (left) and reconstructed (right) n parameter fields.

ators that are identical to that of the adjoint system (which in

turn is identical to that of a Newton solver for the nonlinear

forward problem); they differ only in the source terms. Thus,

implementation of the inexact Newton method for the inverse

problem is conceptually straightforward and builds on exist-

ing Newton-based solvers for the nonlinear Stokes forward

problem.

We have formulated and solved five model problems to

study the invertibility of the basal sliding coefficient, β, and

Glen’s flow law exponent parameter n. First, we focused on

inversion for β fields characterized by wavelengths of oscilla-

tion that vary from smooth to rough, with linear and non-

linear rheology, and for different signal-to-noise ratios. We

found that the reconstructions converge to the truth basal

sliding coefficient as the noise in the synthetic observations

decreases, and that the nonlinear rheology makes the recon-

struction of the basal sliding coefficient more difficult. We

attribute this difficulty associated with nonlinear rheology to

the fact that the surface velocity from the nonlinear model

is less sensitive to the basal coefficient field, and hence con-

tains less information for the inversion. For the n inversion,

the goal was to study how well a spatially (volumetrically)

varying Glen’s flow law exponent field can be reconstructed
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Fig. 8. Same as Figure 7, but for Model V.

from surface observations. We found that the reconstruction

of the (volumetric) rheological parameter—although highly

underdetermined due to the surface-to-volume ratio of obser-

vations to parameters, and in spite of the fact that the target

n fields induced a high degree of nonlinearity in the Stokes

equations—is very good at the surface and deteriorates with

depth.

To date we have employed synthetic observations on ide-

alized geometries to study the performance of the proposed

method as well as to probe the limits of invertibility for basal

and rheological parameters. In future work we intend to ap-

ply this inversion framework to continental-scale ice flow in-

verse problems with field observations. A step in this direction

has been made in Price and others (2011), where estimates

of the basal sliding coefficient for the Greenland ice sheet

are used to predict its contribution to sea level rise by the

year 2100. In practice it may be necessary to impose bound

constraints on inversion parameters, e.g., to keep the sliding

coefficient positive, or to restrict the flow law exponent pa-

rameter to an acceptable range. Therefore, in future work

we also plan to incorporate a priori knowledge about the

inversion parameters by extending our inversion method to

handle inequality bound constraints. To conclude, we believe

the proposed adjoint-based inexact Newton method provides

an efficient, scalable, and robust framework for solving large-

scale ice sheet inverse problems.
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APPENDIX A

A.1. Adjoint-based computation of
derivatives

In this section, we derive expressions for the gradient of the

regularized least squares functional (5), which involves so-

lution of the Stokes equations (4). Gradients of functionals

defined by solutions of PDEs can be derived systematically

using the method of Lagrange multipliers (Borz̀ı and Schulz,

2012; Gunzburger, 2003; Ito and Kunisch, 2008; Tröltzsch,

2010); for an illustrative application of this approach to model

problems see also Petra and Stadler (2011). Variations of the

Lagrangian functional, which is a sum of the cost functional

and the weak form of the PDE, can be used to derive the

weak forms of the adjoint and incremental equations, as well

as expressions for the gradient and Hessian. For an introduc-

tion to the mathematical theory of the finite element method

(and in particular strong and weak forms of partial differential

equations), we refer the reader to Oden and Reddy (1976),

Braess (1997), and Gockenbach (2006). The weak forms of

the forward and adjoint equations can then be transformed

to strong forms by application of Green’s identity (a multi-

dimensional analogue of integration by parts (Evans, 1998;

Gockenbach, 2006)), which, for the inverse problem consid-

ered in this paper, results in the equations presented in Sec-

tion 3. For simplicity of the presentation, in the derivation

below we focus on the particular case described in Model I,

that is, inversion for the basal sliding coefficient in the linear

Stokes equations.

Let L2(Ω) denote the space of square-integrable functions,

and let H1(Ω) = (H1(Ω))3, where H1(Ω) denotes the sub-

space of L2(Ω) consisting of functions whose first derivatives

also belong to L2(Ω), and the domain Ω is a three-dimensional

rectangular section of an ice sheet. In addition, to impose the

necessary boundary conditions, we define,

H̃(Ω) = {u ∈H1(Ω) | u|Γl
= u|Γr

, u · n|Γb
= 0},

where Γl, Γr and Γb are the pairs of opposing boundaries

and the boundary at the base, respectively (as decribed in

Section 2). For u,v ∈ H̃(Ω) and p, q ∈ L2(Ω), we intro-

duce the bilinear forms A(·, ·) : H̃(Ω) × H̃(Ω) → R and

B(·, ·) : H̃(Ω) × L2(Ω) → R, the trilinear form S(·, ·, ·) :

H̃(Ω) × H̃(Ω) × H1(Γb) → R, and the linear form F (·) :
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H̃(Ω)→ R, defined by

A(u,v) :=

∫
Ω

2ηε̇u : ε̇v dx, B(u, p) :=

∫
Ω
−p∇ · u dx,

S(u,v;β) :=

∫
Γb

βTu · Tv ds, F (u) :=

∫
Ω
f · u dx.

Furthermore, let us define

Q(u, p;v, q;β) := A(u,v) +B(v, p) +B(u, q) + S(u,v;β).

Then, the weak form of the Stokes equation is: find (u, p) ∈
U := H̃(Ω)× L2(Ω) such that:

Q(u, p;v, q;β) = F (v), for all (v, q) ∈ U . (A1)

The Lagrangian functional L : U×U×H1(Γb)→ R, which we

use to derive the expressions for optimality system, is given

by

L(u, p;v, q;β) :=J (β) +Q(u, p;v, q;β)− F (v) , (A2)

where J (β) is the cost functional correspondig to the β in-

version given by

J (β) :=
1

2

∫
Γt

|u(β)− uobs|2 ds+
γβ
2

∫
Γb

|T∇β|2 ds. (A3)

Lagrange function theory states that variations of the La-

grangian functional with respect to β are equivalent to the

gradient of J given in Equation (5), i.e.,

Jβ(β̂) = Lβ(u, p;v, q;β)(β̂) = Rβ(β)[β̂]+S(u,v, β̂), (A4)

provided variations with respect to (u, p;v, q) in all directions

(û, p̂; v̂, q̂) vanish, i.e.,

L(v,q)(u, p;v, q;β)(v̂, q̂) = Q(u, p; v̂, q̂;β)− F (v̂)=0, (A5)

L(u,p)(u, p;v, q;β)(û, p̂) = Wu(u)[û] +Q(û, p̂;v, q;β) = 0,

(A6)

where the variations (û, p̂; v̂, q̂; β̂) are taken from the same

spaces as (u, p;v, q;β), and

Wu(u)[û] =

∫
Γt

(u− uobs)û dx,

Rβ(β)[β̂] = γβ

∫
Γb

T∇β · T∇β̂ ds.

In the above equations, the subscripts for the operators de-

note the variables with respect to which we take variations.

Note that (A5) is the weak form of the forward equation, and

(A6) is the weak form of the adjoint equation. The solutions

of the forward and adjoint equations are used to evaluate the

gradient of J (β) given in weak form by (A4). In order to

recover the strong form of the forward, adjoint, and gradient

equations, one applies Green’s identity.

Next, we derive the second-order variational derivatives of

the Lagrangian, which are needed for solution of the optimal-

ity system by Newton’s method. In abstract form, Newton’s

method computes an update direction (ũ, p̃; ṽ, q̃; β̃) from the

following Newton step:

Wuu(û)[ũ] + S(û,v; β̃) +Q(û, p̂; ṽ, q̃;β)=− L(u,p),

(A7)

S(ũ,v; β̂) +Rββ(β̂)[β̃] +S(u, ṽ; β̂) =− Lβ , (A8)

Q(ũ, p̃; v̂, q̂;β) + S(u, v̂; β̃) =− L(v,q),

(A9)

for all variations (û, p̂; v̂, q̂; β̂), where Lβ , L(u,p), and L(v,q)

denote the first-variations of the Lagrangian, given by Equa-

tions (A4)-(A6), respectively. Here Equations (A7) and (A9)

are the weak forms of the incremental adjoint and incremental

forward equations, respectively, and

Wuu(û)[ũ] =

∫
Γt

ũû dx,

Rββ(β̂)[β̃] = γβ

∫
Γb

T∇β̃ · T∇β̂ ds.

Since we assume that (u, p) and (v, q) satisfy the forward and

the adjoint equations, the right hand sides of Equations (A7)

and (A9) vanish. Then, we apply block elimination to elimi-

nate the incremental forward variables (ũ, p̃) from the incre-

mental forward equation,

Q(ũ, p̃; v̂, q̂;β) = −S(u, v̂; β̃), (A10)

and the incremental adjoint variables (ṽ, q̃) from the incre-

mental adjoint equation,

Q(û, p̂; ṽ, q̃;β) = −Wuu(û)[ũ]− S(û,v; β̃). (A11)

This results in the following linear system for the Newton

step

H(β)[β̃, β̂] = −G(β)(β̂),

where the gradient, G, is given by the first variation of the

Lagrangian with respect to β (given by the left hand side in

Equation (A4)), and the Hessian, H, is given by

H(β)[β̃, β̂] = Rββ(β̂)[β̃] + S(ũ,v; β̂) + S(u, ṽ; β̂),

where (ũ, p̃), and (ṽ, q̃) satisfy the incremental forward (A10)

and incremental adjoint (A11) equations, respectively. We

note that to obtain the Gauss-Newton approximation of the

Hessian, we ignore the terms proportional to the adjoint vari-

ables (i.e., S(ũ,v; β̂)).

A.2. Discretization

We discretize the weak form of the forward and adjoint Stokes

equations (A5)-(A6) using the finite element method with

a hexahedral mesh and employ Taylor-Hood finite elements

for the velocity-pressure solution, which satisfies the inf-sup

stability condition required for numerical stability (Elman

and others, 2005). Bilinear elements for the β, the unknown

inversion field in the basal boundary conditions of the Stokes

model, are used.

Let us denote by ũ, ṽ, p̃, q̃, β̃ the vectors of discrete un-

knowns corresponding to the functions ũ, ṽ, p̃, q̃, β̃. The dis-

cretized Newton step (at iteration k) is given by the following

linear systemWuu Wuβ AT

Wβu R CT

A C 0

 ũk
β̃k
ṽk

 = −

 g(u,p)

gβ
g(v,q)

 , (A12)

where Wuu, Wuβ , Wβu, and R are the components of the

Hessian matrix of the Lagrangian, A is the discrete forward

operator, and C is the Jacobian of the forward equation with

respect to the optimization variable, β, and g(u,p), gβ , and

g(v,q) are the discrete gradients of the Lagrangian with re-

spect to (u, p), β, and (v, q), respectively. As before, we as-

sume that (uk, pk) and (vk, qk) satisfy the forward and the



Petra, Zhu, Stadler, Hughes and Ghattas: A Newton method for inversion in a nonlinear Stokes ice sheet model 15

adjoint equations such that g(u,p) = g(v,q) = 0, and that

terms proportional to the adjoint variable, i.e., Wuβ and

Wβu, can be neglected. We recall that the latter assumption

gives rise to the Gauss-Newton approximation of the Hessian.

The incremental forward and adjoint variables, ũk and ṽk,

are computed from the first and last equations in (A12),

namely

ũk = −A−1C β̃k,

ṽk = −A−TWuuũk,

where A−T is the adjoint operator. Finally, the discretized

Newton system (for the inverse problem)

H β̃k = −gβ , with H := R + CTA−TWuuA−1C

is solved iteratively using an inexact preconditioned CG method

with preconditioning by the inverse of the regularization op-

erator R.

A.3. Newton’s method for the nonlinear
Stokes equations

In this section, we consider solution of the nonlinear Stokes

problem (4) using Newton’s method. We state the energy

minimization problem that can be used to implement a line

search for finding the appropriate step length for the New-

ton direction. It is known that the Stokes problem can be

written as the following optimization problem (see for exam-

ple Dukowicz and others (2010)):

min
u
J (u) :=

∫
Ω

(Φ− f · u)dx+
1

m+ 1

∫
Γb

β|Tu|m+1ds,

(A13)

subject to

∇ · u = 0, (A14)

where

Φ(u) =
2n

n+ 1
A−

1
n ε̇

1+n
2n

II .

The corresponding Lagrangian is

L(u, p) := J (u) + (∇ · u, p)Ω,

where the pressure acts as a Lagrange multiplier. The op-

timality conditions for the minimization problem given by

Equation (A13) are computed as before, by taking variations

of the Lagrangian with respect to u and p, and by using the

fact that at the solution these variations with respect to all

variables must vanish. It can be seen that the variation of Φ

with respect to u in the direction of v is 2η(u)ε̇u : ε̇v, and

hence, after applying Green’s identity one recovers the strong

form of the nonlinear Stokes equations. Note that since the

current iterate as well as the update satisfy the incompress-

ibility condition (A14), using the linearity property of the

divergence operator, we conclude that the incompressibility

condition is satisfied for all iterates as well.
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