
ICES REPORT 12-05

January 2012

An Isogeometric Design-through-analysis Methodology
based on Adaptive Hierarchical Refinement of NURBS,

Immersed Boundary Methods, and T-spline CAD
Surfaces

by

D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes, An
Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS,
Immersed Boundary Methods, and T-spline CAD Surfaces, ICES REPORT 12-05, The Institute for
Computational Engineering and Sciences, The University of Texas at Austin, January 2012.



An Isogeometric Design-through-analysis Methodology based on

Adaptive Hierarchical Refinement of NURBS, Immersed Boundary

Methods, and T-spline CAD Surfaces

Dominik Schillingera,b,∗, Luca Dedèb, Michael A. Scottb,
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Abstract

We explore hierarchical refinement of NURBS as a basis for adaptive isogeometric and immersed

boundary analysis. We use the principle of B-spline subdivision to derive a local refinement proce-

dure, which combines full analysis suitability of the basis with straightforward implementation in

tree data structures and simple generalization to higher dimensions. We test hierarchical refinement

of NURBS for some elementary fluid and structural analysis problems in two and three dimensions

and attain good results in all cases. Using the B-spline version of the finite cell method, we illustrate

the potential of immersed boundary methods as a seamless isogeometric design-through-analysis

procedure for complex engineering parts defined by T-spline CAD surfaces, specifically a ship pro-

peller and an automobile wheel. We show that hierarchical refinement considerably increases the

flexibility of this approach by adaptively resolving local features.

Keywords: Isogeometric analysis, hierarchical refinement, adaptivity, NURBS, immersed
boundary analysis, finite cell method, T-spline surfaces

1. Introduction

Isogeometric analysis (IGA) was introduced by Hughes and co-workers [1] to bridge the gap

between computer aided design (CAD) and finite element analysis (FEA). Its core idea is to use the

same basis functions for the representation of geometry in CAD and the approximation of solutions

fields in FEA. This strategy bypasses the mesh generation process required for standard FEA and

supports a tightly connected interaction between CAD and FEA tools [2–4], which could potentially

reduce the time required for the analysis of complex engineering designs by up to 80% [1, 5]. In

addition, it has been shown that the use of a smooth, higher-order geometric basis is superior to
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(a) Standard h-refinement by knot insertion
leads to global refinement due to the tensor
product structure of NURBS.

(b) What is required is truly local refine-
ment, concentrated around the area at issue
without “spreading out” globally.

Figure 1: Example of a mesh of 4×4 NURBS elements that should be refined on the upper right corner.

standard C0 discretizations [6]. This has been demonstrated for a variety of application areas such

as structural vibrations [5, 7], incompressibility [8–10], shells [11–13], fluid-structure interaction

[14, 15], turbulence [16–18], phase fields [19, 20], contact [21, 22], fracture [23] and optimization

[24, 25]. From a practical perspective, the use of finite element forms based on Bézier extraction

allow for a simple integration of smooth, higher-order bases (i.e. B-splines, NURBS, and T-splines)

into existing finite element codes [26, 27].

1.1. Local refinement in isogeometric analysis

Local mesh refinement is commonly used in FEA to resolve local features. For example, an

adaptive local refinement algorithm can be used to resolve internal and boundary layers in advection

dominated flows and stress concentrations in structures. Due to their relative simplicity and

ubiquity in today’s CAD tools, isogeometric analysis has been largely based on non-uniform rational

B-splines (NURBS). However, in contrast to the standard nodal basis, a multivariate NURBS basis

does not provide a natural possibility for local mesh refinement [5, 28–30]. Figure 1 illustrates this

issue for the example of a simple bivariate NURBS patch. Due to its rigid tensor product structure,

refinement of NURBS is a global process that propagates throughout the domain.

The concept of hierarchical refinement of B-splines was introduced by Forsey and Bartels for

local surface refinement in CAD [31, 32] and later adopted by Höllig and co-workers for local mesh

refinement in B-spline finite elements [33–35]. In the framework of isogeometric analysis, hierarchi-

cal refinement of NURBS has recently attracted increasing attention [36, 37] due to the following

important advantages. First, hierarchical B-splines rely on the principle of B-spline subdivision

[38, 39], which makes it possible to maintain linear independence throughout the refinement pro-

cess. In addition, the maximal smoothness of NURBS is maintained in a hierarchically refined
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basis. Second, since hierarchical B-splines rely on a local tensor product structure, they can be

easily generalized to arbitrary dimensions. The rigidity and simplicity of the tensor product struc-

ture also facilitates automation of the refinement process. Third, a hierarchical organization of a

basis can be directly transferred into a tree-like data structure, which is a well-established con-

cept in computer science [40–42] and allows for a straightforward implementation with manageable

coding effort. Fourth, very similar refinement techniques based on a hierarchical split of stan-

dard finite element bases have existed in the FEA community for a long time (see for example

[43–46]), which can help one to become familiar with hierarchical B-spline refinement. In the first

part of this paper, we explore the behavior of hierarchical B-splines and NURBS in the context of

IGA. Specifically, we develop the ideas from both a theoretical and algorithmic viewpoint with an

emphasis on demanding applications in both solids and fluids.

We note that there are alternative approaches for local refinement in isogeometric analysis. An

analysis-suitable class of T-splines were recently introduced which are linearly independent, form

a partition of unity, and can be refined in a highly localized manner [30, 47, 48]. An important

distinction between local refinement of T-splines and the hierarchical methods presented in this

paper is that T-spline local refinement is performed on a single hierarchical “level” and all control

points have a similar influence on the shape of the surface. This is critical for design, but of less

importance for analysis, where a hierarchy of refinements can be used to effectively resolve local

features in a finite element solution. PHT-splines [49–52] are a further geometry representation

that naturally accommodates local mesh refinement. However, PHT-splines do not obtain the

maximal smoothness of B-splines, NURBS and T-splines that has been shown to be beneficial in

both design and analysis.

1.2. T-splines as an isogeometric design-through-analysis enabling technology

At this point in time, based on recent advances and understanding of T-spline technology [28–

30, 47, 48, 53, 54], it is our opinion that bi-cubic T-spline surface modeling has reached sufficient ma-

turity that it may be considered a nearly complete isogeometric engineering design-through-analysis

enabling technology. Currently, watertight parameterizations of surfaces can be constructed for

geometrically and topologically complex engineering designs that can be used directly as finite ele-

ment meshes in shell structural analysis and boundary element analysis of three-dimensional solids,

avoiding the necessity of geometry repair (e.g., eliminating gaps and overlaps of NURBS patches)

and feature removal of CAD files, from which meshes are usually generated. At the same time we

do not wish to imply that research on T-spline surfaces is finished, quite the contrary. There are

still numerous opportunities for improvements and deepening understanding, such as, for exam-

ple, generalization to arbitrary polynomial degree and mixed-degree T-splines, efficient quadrature

rules, more efficient local refinement schemes, development of convergence proofs in integral norms,

and perhaps most importantly, achieving optimal convergence rates when extraordinary points are

present. Nevertheless, analysis-suitable T-spline surfaces exist for many applications and may be
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considered an initial instantiation of the vision of isogeometric analysis.

However, there are many engineering designs that require full, three-dimensional (i.e., trivariate)

parameterizations. Presently, only partial isogeometric solutions to this problem exist (see, e.g.,

Zhang and co-workers [54–56]). This being the case, it is worthwhile to consider if the existing

T-spline surface modeling capability can somehow be utilized to facilitate the analysis of three-

dimensional solid and fluid domains. An obvious opportunity exists in the framework of so-called

immersed boundary and interface methods, also known as fictitious domain or embedded domain

methods. We will not attempt to review the immersed boundary methods literature here. Suffice

it to say it is large and growing. A recent textbook by Li and Ito [57] is quite comprehensive and

contains many references. There has also been a recent surge of interest in immersed methods,

due to their ability to address particularly complex moving boundary and interface problems. The

traditional philosophy of immersed boundary methods is to employ simple, mesh-aligned numerical

schemes, such as finite differences on a uniform Cartesian grid, and to treat the cells that are cut

by boundaries and/or interfaces with some special, and often ad hoc, technique. This view has

been enhanced in recent years to include adaptive, locally refined meshes, but it is generally

acknowledged that the fundamental problem facing immersed boundary methods is to stably and

accurately treat the cut cells. Clearly, immersed methods naturally give rise to a “staircase”

representation of boundaries and interfaces that needs to be improved in an appropriate way to

achieve acceptably accurate results. A common criticism of immersed methods is the inability to

accurately represent computed boundary and interface quantities (e.g., stress and heat flux), and

sharp layers at boundaries and interfaces.

1.3. The finite cell method

Recently, a new strategy for treating boundaries and interfaces has been developed within the

finite cell method (FCM) [58–60]. The rectilinear volumetric mesh may, or may not, be locally

refined in the vicinity of boundaries or interfaces. Obviously, local refinement helps, but this is

not the essential issue. The unique feature of the finite cell method is to create a highly refined

quadrature mesh of sub-cells surrounding the boundary and interfaces. It needs to be emphasized

that the sub-cells are utilized for numerical integration only and the basis functions are not defined

with respect to them, but rather to the original coarser mesh. The resolution of boundary and

interface phenomena is the responsibility of the refined quadrature mesh. Quadrature points within

the sub-cells are tagged as being either inside the physical domain, or outside it, that is, being

in the fictitious part of the domain, and treated accordingly. The procedure is very simple, but

has exhibited some remarkable properties. These are: optimal convergence rates in integral norms

have been demonstrated for uniformly h-refined finite element meshes, exponential convergence

has been attained for p-refinement of uniform finite element meshes, and point-wise convergence of

derivative quantities has been achieved up to, and on, the boundaries within the cut cells. In our

opinion, this represents a major step forward as we know of no other immersed boundary method
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that has achieved these attributes. Thus, the finite cell method, when combined with the geometric

modeling capability of T-spline surfaces, provides a pathway to the isogeometric design-through-

analysis of many problems involving complex, real-world engineering objects. These technologies

exist today and it is a primary aim of this paper to demonstrate their efficacy in the solution of three-

dimensional structural analysis problems of real engineering designs, specifically, a ship propeller

and an automobile wheel. Both these structures are impossible to classify within the traditional

categories of structural analysis and solid mechanics models, that is, beams, plates, shells, and

solids. Both have very thin shell-like regions, and also very thick solid-like regions, with transition

regions in between. Thus, the only analysis possibility is to utilize full three-dimensional solid

representation but, due to the complexity of these structures, it is exceedingly difficult to generate

quality unstructured meshes with even the most advanced meshing tools available. On the other

hand, the combination of T-spline surface models, the finite cell method, and hierarchically refined

NURBS provides a complete design-through-analysis methodology that can be fully automated.

We further wish to note that “trimming”, which is ubiquitous in engineering CAD, can also be

easily accommodated within the finite cell method. A trimmed NURBS or T-spline surface design

can be directly utilized as an isogeometric shell mesh in conjunction with the finite cell method,

as has been demonstrated in [61, 62].

1.4. Structure and content of the paper

After a brief review of B-spline and NURBS basis functions in Section 2, we present in detail

a hierarchical refinement scheme for axis-aligned B-splines for the representation of cuboidal ge-

ometries, drawing on ideas of hierarchical B-splines, the hp-d adaptive approach and established

hierarchical refinement of standard nodal based FEA. Section 3 focuses on concepts and a basic

illustration for a simple 1D example, and Section 4 illustrates hierarchical refinement in multiple

dimensions and outlines the main aspects of an efficient implementation. Section 5 generalizes the

hierarchical refinement principle to NURBS for the representation of arbitrary geometries. Sec-

tion 6 shows the validity and efficiency of hierarchical refinement of NURBS for a range of two-

and three-dimensional benchmark examples from fluid and structural mechanics. In Section 7,

a short summary of the recently introduced B-spline version of the finite cell method is given,

which combines the higher-order continuity of a B-spline approximation with the simple geometry

handling of immersed boundary methods. In Section 8, we illustrate its potential as a seamless

IGA design-through-analysis procedure for complex engineering parts and assemblies. We present

two applications, a ship propeller and a rim of an automobile wheel, where we demonstrate that

hierarchical refinement considerably increases the flexibility of immersed boundary methods by

adaptively resolving local features in geometry and solution fields. In Section 9, we close our

discussion with a brief summary, conclusions and suggestions for future research.
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(b) B-spline curve generated from the above basis using control points P i.

Figure 2: Example of cubic B-spline basis functions and a corresponding B-spline curve in 2D.

2. B-spline and NURBS basis functions

We start with a brief review of some technical aspects of B-spline and NURBS bases for iso-

geometric analysis, placing particular emphasis on the features important for understanding the

concepts and algorithms of their hierarchical refinement. Readers interested in a broader and more

detailed introduction are referred to the fundamental works of Hughes and co-workers [1, 5] for

isogeometric analysis and to Piegl and Tiller [63], Rogers [64] and Farin [65] for a comprehensive

review of the underlying geometric concepts and algorithms.

2.1. Univariate B-splines

A B-spline basis of degree p is formed from a sequence of knots called a knot vector Ξ =

{ξ1, ξ2, . . . , ξn+p+1}, where ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 and ξ ∈ R is called a knot. A univariate

B-spline basis function Ni,p(ξ) is defined using a recurrence relation, starting with the piecewise

constant (p = 0) basis function

Ni,0 (ξ) =







1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(1)

For p > 0, the basis function is defined using the Cox-de Boor recursion formula

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (2)
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(a) Tensor product structure of open knot
vectors in the parameter space.

(b) Cubic basis function generated from
Ξ=(0, 1, 2, 3, 4) in ξ- and η-directions.

Figure 3: Bivariate cubic knot spans and a corresponding uniform B-spline basis function.

A repeated knot in Ξ is said to have multiplicity k. In this case, the smoothness of the B-spline

basis is Cp−k at that location. Figure 2a illustrates a B-spline basis of polynomial degree p = 3 and

knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, where knots at the beginning and the end are repeated

to make the basis interpolatory.

Having constructed the corresponding basis functions, we can build a B-spline curve in ds

dimensions by a linear combination of basis functions

C(ξ) =
n
∑

i=1

P i Ni,p(ξ) (3)

where coefficients P i ∈ R
ds are called control points. Piecewise linear interpolation of the con-

trol points defines the control polygon. An example generated from the B-spline basis shown in

Figure 2a is provided in Figure 2b.

2.2. Multivariate B-splines

Multivariate B-splines are a tensor product generalization of univariate B-splines. We use ds

and dp to denote the dimension of the physical and parameter spaces, respectively. Multivariate

B-spline basis functions are generated from dp univariate knot vectors

Ξℓ = {ξℓ1, ξℓ2, ..., ξℓnℓ+pℓ+1} (4)

where ℓ = 1, . . . , dp, pℓ indicates the polynomial degree along parametric direction ℓ, and nℓ is

the associated number of basis functions. The resulting univariate B-spline basis functions in each

direction ℓ can then be denoted by N ℓ
iℓ,pℓ

, from which multivariate basis functions Bi,p(ξ) can be

constructed as

Bi,p (ξ) =
d
∏

ℓ=1

N ℓ
iℓ,pℓ

(ξℓ) (5)

7



(a) NURBS elements. (b) Corresponding control mesh.

Figure 4: NURBS surface of a quarter of a cylinder, generated with the bivariate B-spline basis of Figure 3
and a set of suitable control points P i and weights wi.

Multi-index i = {i1, . . . , idp} denotes the position in the tensor product structure, p = {p1, . . . , pdp}
indicates the polynomial degree, and ξ = {ξ1, . . . , ξdp} are the parametric coordinates in each

parametric direction ℓ. A bivariate parametric space and B-spline basis function are shown in

Figures 3a and 3b, respectively.

B-spline surfaces (dp = 2) and solids (dp = 3) are a linear combination of multivariate B-spline

basis functions and control points in the form

S(ξ) =
∑

i

P i Bi,p (ξ) (6)

where the sum is taken over all combinations of multi-index i. In the multivariate case, the control

points P i ∈ R
ds form the so-called control mesh.

2.3. Non-uniform rational B-splines

NURBS can be obtained through a projective transformation of a corresponding B-spline in

R
ds+1. Univariate NURBS basis functions Ri,p(ξ) are given by

Ri,p (ξ) =
wiNi,p(ξ)

∑n
j=1wjNj,p(ξ)

(7)

where Ni,p(ξ) are polynomial B-spline basis functions and wi are weights. Multivariate NURBS

basis functions are formed as

Ri,p (ξ) =
wiBi,p(ξ)

∑

j wjBj,p(ξ)
(8)
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(a) Linear B-spline.
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(b) Quadratic B-spline.
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(c) Cubic B-spline.
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(d) Quartic B-spline.

Figure 5: Subdivision of an original uniform B-spline into p+2 contracted B-splines of half the knot span
width, illustrated for polynomial degrees p=1 through 4.

NURBS curves, surfaces and solids are then defined as

S(ξ) =
∑

i

P i Ri,p (ξ) (9)

The NURBS example of Figure 4a represents a quarter of a cylinder exactly. It is generated by

inserting the bivariate cubic B-spline basis of Figure 3 together with a suitable set of control points

and weights into the NURBS Equations (8) and (9). Figure 4b shows the corresponding control

mesh composed of the control points P i. Suitable control points and weights can be derived in

this simple case from [63–65] or for more complex examples from CAD tools such as Rhino [4, 66].

3. A concept for hierarchical refinement based on B-spline subdivision

In the following, we briefly review B-spline subdivision and show how this concept can be

deployed to set up a hierarchical scheme for local refinement of B-spline basis functions, which

combines an intuitive principle, full analysis suitability and straightforward implementation. We

illustrate basic ideas of our hierarchical refinement strategy with a simple advection-diffusion ex-

ample in one dimension.

3.1. Refinability of B-spline basis functions by subdivision

A remarkable property of uniform B-splines is their natural refinement by subdivision. For a

univariate B-spline basis function Np of polynomial degree p, the subdivision property leads to the
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following two-scale relation [38, 39, 67]

Np(ξ) = 2−p
p+1
∑

j=0

(

p+ 1

j

)

Np(2ξ − j) (10)

where the binomial coefficient is defined as

(

p+ 1

j

)

=
(p+ 1)!

j! (p+ 1− j)!
(11)

In other words, a B-spline can be expressed as a linear combination of contracted, translated and

scaled copies of itself, which is illustrated for B-splines of different polynomial degrees in Figure 5.

Equation (10) does not hold for non-uniform B-splines with repeated knots, but similar subdivision

rules can be constructed [68, 69].

Due to their tensor product structure, the generalization of subdivision to multivariate B-splines

is a straightforward extension of Equation (10) and can be written as

Bp (ξ) =
∑

j

(

d
∏

ℓ=1

2−pℓ

(

pℓ + 1

jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

(12)

Following Section 2.2, multi-indices j={i1, . . . , idp}, p={p1, . . . , pdp} and ξ={ξ1, . . . , ξdp} denote

the position in the tensor product structure, the polynomial degree and the independent variables

in each direction ℓ of the dp-dimensional parameter space. Figure 6 illustrates the new basis

functions resulting from the multivariate two-scale relation Equation (12) applied to the bivariate

cubic B-spline of Figure 3b. The most widely known application of Equations (10) and (12) is the

development of highly efficient subdivision algorithms for the fast and accurate approximation of

smooth surfaces by control meshes in computer graphics [38, 39, 68, 69].

3.2. Construction of adaptive hierarchical approximation spaces

In the following, we will derive step by step a hierarchical scheme for local refinement of B-

splines in one dimension, which combines concepts from B-spline subdivision, the hp-d adaptive

approach [36, 70, 71] and existing hierarchical refinement techniques for B-spline finite elements

[31, 33, 35] and for standard nodal based FEA [43, 45]. Our main goal is to arrive at a local

refinement strategy, which maintains theoretical consistency, can be straightforward generalized

to two and three dimensions and NURBS, but can be implemented in arbitrary dimensions with

manageable coding efforts.

3.2.1. Element and basis viewpoints on refinement

Traditionally, refinement in FEA adopts an element viewpoint, since the centerpiece of standard

mesh refinement consists of the geometric division of elements [44, 45]. Furthermore, an element
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(a) Contracted, translated and scaled B-splines. (b) Cut along ξ=2.0.

Figure 6: Subdivision of the bivariate cubic B-spline shown in Figure 3.

by element view accommodates most error estimators [72], which specify the error element wise,

and naturally corresponds to the way finite element procedures are traditionally implemented. In

isogeometric analysis, however, it is often more suitable to look at the complete basis, since an

element centered viewpoint may obstruct an intuitive understanding of refinement principles for

basis functions, which extend over several knot span elements [5, 44]. Therefore, we will adopt

the element viewpoint, wherever we feel that aspects can be reasonably explained from there.

Wherever it becomes too restrictive or interferes with the consistency of the hierarchical methods

at issue, we switch to the more comprehensive basis viewpoint.

3.2.2. Two-level hierarchical refinement for one element

In a first step, let us define a nucleus operation, from which we start our development: the

refinement of one knot span element. Figure 7 exhibits a portion of a B-spline patch, where

the element in the center should be refined. A straightforward approach, introduced for B-spline

FEA by Kraft [33] and Höllig [35] and recently extended to isogeometric analysis by Vuong and

coworkers [37], is the application of the two-scale relation Equation (10) to all basis functions with

support in the knot span element under consideration. Contracted B-splines resulting from the

subdivision of different B-spline basis functions, but with the same support, are superposed by

adding their scaling factors. This leads to full hierarchical B-spline basis functions in the center of

the refinement, while hierarchical B-splines at the boundary are gradually decreased as shown in

Figure 7a. However, the direct subdivision based refinement strategy results in a large spread of

the refinement beyond the bounds of the knot span element under consideration, which obstructs

the localization of refinement. Due to the increase of the spread with p, this is especially true for
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(a) Subdivision refinement, splitting original B-splines with support in the element (dotted lines) according to
the two-scale relation. The refined basis consists of all functions shown with solid lines.
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(b) Hierarchical refinement, inspired by the hp-d adaptive approach [36]. The combination of the original
patch and three contracted B-splines yields the refined basis.

Figure 7: Nucleus operation: the refinement of one knot span element, illustrated with cubic B-splines.

higher polynomial degrees. In addition, it requires a correct book-keeping and addition of scaling

factors, which considerably complicates its implementation.

Therefore, we follow a different approach here and borrow the main idea of the hp-d adaptive

approach, which was originally introduced for the p-version of the FEM [70] and successfully applied

to B-spline bases in [36]. In an hp-d sense, we add an overlay of three B-splines of contracted knot

span width to the original B-spline basis. At this point, no changes in the original basis functions

are required, since we can infer from Equation (10) that single B-splines of contracted knot span

width are linearly independent to original B-splines of full knot span width. The resulting basis

is the combination of B-splines shown in Figure 7b, where original and overlay basis functions are

plotted on separate levels, which reflects the two-level hierarchy between the original basis and its

refinement overlay. Furthermore, we do not change the amplitude of contracted B-splines, thus

ignoring the presence of scaling factors in Equation (10). We show later on that this simplification

can be maintained, when we generalize this refinement strategy to higher dimensions and NURBS.
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Figure 8: Hierarchical refinement in the sense of the hp-d adaptive approach for the three rightmost knot
span elements in a row. The overlay is generated by repeating the nucleus operation of Figure 7b.

3.2.3. Two-level hierarchical refinement for several elements

The refinement rule introduced in Figure 7b for one element adds an overlay consisting of

the contracted B-spline central to the element at issue as well as its right and left neighbor. Let

us proceed one step further to the refinement of several knot span elements in a row. Figure 8

illustrates the two-level hierarchical basis, which results from a repetition of the nucleus operation

illustrated in Figure 7b for the three rightmost elements in the patch. We do not add contracted B-

splines a second time, if already generated from the refinement operation of a neighboring element.

In particular, this procedure does not affect the higher-order continuity of the refined basis, since

the first p − 1 derivatives of the hierarchical B-spline basis functions are zero at their support

boundaries.

The reason for the specific choice of the nucleus operation becomes clear by consideration of

the number of contracted B-splines. If we take fewer B-splines for each element refinement than

shown in Figure 7b and omit the left and right neighbor, we would not obtain a complete row of

contracted B-splines in Figure 8, since every second contracted B-spline would be missing. If we

take more, the refinement would again spread out further beyond the leftmost element at issue,

which would counteract the localization of refinement. The refinement rule of Figure 7b is valid for

polynomial degree p=3, but can be easily transferred to B-spline bases of other polynomial degrees

by looking for the minimum number of contracted B-splines per element, with which a complete

row of contracted B-splines in the overlay level can be achieved, when several elements are refined.

3.2.4. Multi-level hierarchical refinement

In order to increase the degree of local refinement, we can repeat the procedure described in

the previous paragraphs several times. In doing so, we proceed from the two-level hierarchy of a

single refinement step to a general multi-level hierarchy, consisting of several overlay levels. Let us

introduce the level counter k, where k=0 denotes the original B-spline patch. In each refinement

step, the nucleus operation is applied to elements of the currently finest level k to produce a new
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Figure 9: Hierarchical multi-level refinement: B-splines of level k plotted in dotted line can be represented by
a linear combination of B-splines of the next level k+1 according to the two-scale relation Equation (10) and
therefore need to be removed from the basis.

overlay level k+1. Hierarchically contracted B-splines of the new level k+1 are found by bisecting

the knot span width with respect to level k, so that the specific width hk of each level can be found

by the relation

hk = 2−k h, 1 ≤ k ≤ m (13)

where h denotes the original knot span width of the unrefined B-spline patch and m the total

number of levels in the hierarchy. The multi-level refinement procedure is illustrated in Figure 9,

where the nucleus operation is successively applied to the three rightmost knot span elements of

each level k. The resulting grid consists of a nested sequence of bisected knot span elements, and

multiple hierarchical overlay levels of repeatedly contracted uniform B-splines.

3.2.5. Recovering linear independence

In order to guarantee full analysis suitability of the hierarchically refined B-spline basis, we

have to ensure its linear independence. Comparing the different levels in the hierarchy of Figure 9,

one can immediately observe that each overlay level k+1 consists of more than p+2 consecutive

refined B-splines. As a consequence, their linear combination is capable of representing some of

the B-spline basis functions of the previous level k according to the two-scale relation Equation

(10). Therefore, we need to identify all B-spline basis functions that are a combination of refined

B-spline basis functions of the next level k+1 and remove them from the hierarchical basis. In
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Figure 10: Convergence of cubic hierarchical B-spline bases for the 1D advection-diffusion example.

Figure 9, basis functions to be taken out are shown as dotted lines, while the final linear independent

hierarchical B-spline basis consists of all basis functions shown as solid lines. The removal of linearly

dependent basis functions improves the conditioning and the sparsity of the corresponding stiffness

matrix, since the coupling of more contracted to less contracted B-splines through the hierarchy is

considerably reduced. This can be observed in Figure 9, where basis functions of the lowest and

the highest levels are completely decoupled, since they have no overlapping support.

3.3. A simple model problem in 1D

We test the efficiency of the hierarchically refined B-spline basis with a standard steady advection-

diffusion problem in 1D, governed by the following equation and Dirichlet constraints

a
∂u

∂x
+ D

∂2u

∂x2
= 0 (14a)

u(x = 0) = 0; u(x = L) = 1 (14b)

Parameters a = 100, D = 1 and L = 3 denote the velocity, the diffusion coefficient and the length

of the domain, respectively, and u is the unknown concentration. Dirichlet constraints are specified

at both ends. Here, the nature of the problem is dominated by advection, indicated by the high

global Péclet number Pe = aL/D = 300. This leads to a boundary layer at the right hand end of

the 1D domain, which involves ver high gradients in the solution. An in-depth discussion of this

problem and its exact solution can be found in [73, 74].

We apply a standard Galerkin discretization, where the dominance of the non-symmetric ad-

vection operator over the diffusion operator in Equation (14a) leads to spurious oscillations. While

these issues are usually addressed by consistent stabilization techniques [74, 75], we use a sequence

15



Knot spans to be refined

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

Level k = 0

Level k = 1

Level k = 2

Level k = 3

Parameter space ξ

Figure 11: The subtraction procedure removes multiplicities of hierarchical B-splines according to the two-
scale relation, which further reduces the coupling of B-splines throughout the hierarchy.

of cubic hierarchical bases in the sense of Figure 9 to obtain an accurate solution. In each refinement

step, we generate an additional overlay level by adaptively refining the three rightmost elements.

Since they are not interpolatory at the ends, the hierarchical basis requires weak enforcement of

Dirichlet constraints, for which a simple penalty method [76, 77] with penalty parameter β = 106

is applied here. Figures 10a and 10b show the convergence in the H1 semi-norm and L2 norm,

respectively, obtained with uniform h-refinement and adaptive hierarchical refinement. Uniform

refinement doubles the number of equidistant knot span elements in each refinement step, which

leads to optimal rates of convergence. Due to their adaptivity, the hierarchical bases achieve rates

of convergence, which are far higher. To arrive at the final error level in both the H1 and L2 cases,

the hierarchical bases require about one order of magnitude fewer degrees of freedom than uniform

h-refinement. After seven refinement steps, the largest part of the error does not stem from the

excessively refined right boundary anymore, so that the convergence rate levels off.

3.4. Condition number and sparsity of the stiffness matrix

In the hierarchically refined basis of Figure 9, some basis functions occur explicitly as refinement

functions on some level k, but are also contained implicitly in some B-spline basis function of higher

level according to the two-scale relation Equation (10). We can achieve a further improvement of

the conditioning and sparsity of the stiffness matrix, if we detect and remove these multiplicities.

In principle, this can be achieved by checking each hierarchical B-spline of the next level k+1 to
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Number of dofs: 41
Number of non-zero entries: 399
Maximum bandwidth: 17

(a) Without subtraction procedure.

Number of dofs: 41
Number of non-zero entries: 307
Maximum bandwidth: 9

(b) With subtraction procedure.

Figure 12: Sparsity pattern of a stiffness matrix without and with subtraction procedure.

determine if it has common support with a B-spline of the current level k. If it does, we check

whether the former is part of the linear combination of subdivision B-splines that result from

the two-scale relation Equation (10) applied to the latter. If this is also true, we subtract the

hierarchical B-spline of the next level k+1, multiplied by the corresponding scaling factor, from

the B-spline of the current level k. Applying this subtraction procedure to the example basis of

Figure 9, we arrive at the improved hierarchical basis of Figure 11, where initial basis functions are

plotted as dotted lines, while the final basis functions after subtraction are plotted as solid lines.

We observe that the overlapping of hierarchical levels is further reduced.

Analogous to the previous sub-section, we create two sequences of hierarchically refined bases

with and without subtraction procedure, respectively, which are based on a refinement of the

last three elements of each hierarchical level, and apply them to the advection-diffusion problem

of Equation (14). To exclude any effect from weak boundary conditions, we replace uniform

boundary basis functions by interpolatory basis functions created from open knot vectors, so that

Dirichlet constraints can be satisfied strongly. The sparsity pattern of the stiffness matrices without

and with subtraction procedure and the evolution of the corresponding condition numbers with

increasing levels of hierarchical refinement are illustrated in Figure 12 and Table I, respectively.

# of hierarchical levels k 0 1 2 3 4 5 6 7 8

Without subtraction 42.0 84.8 85.6 84.5 88.3 106.3 197.6 388.6 774.1

With subtraction 42.0 51.2 44.2 41.4 44.8 67.0 126.3 250.8 502.3

Table 1: Condition number of the stiffness matrix for different numbers of hierarchical levels without and
with subtraction procedure.

17



The subtraction procedure has a beneficial effect on the structure of the sparse matrix, reducing

both bandwidth and number of matrix entries. Note that the ordering of matrices was optimized

by the symmetric reverse Cuthill-McKee algorithm [78]. The condition number of the matrix is

improved by the subtraction of multiplicities, but still remains in the order of magnitude of its

counterpart without subtraction in the one-dimensional case. We note that in higher dimensions,

the difference in the condition number might be more pronounced, since there are many more basis

functions that have common support and belong to different hierarchical levels.

From an implementation point of view, the detection of multiplicities requires complex al-

gorithms, which obstruct automation of the refinement process. Its advantages are likely to be

moderate, since the performance of iterative solvers is dominated by the condition number of the

matrix, while the bandwidth plays a subordinate role. Therefore, we omit the subtraction proce-

dure in the following, when we will focus on efficient and easy-to-implement hierarchical refinement

schemes for isogeometric analysis in multiple dimensions.

4. Hierarchical refinement of B-splines in multiple dimensions

Due to their tensor-product structure, the concept of hierarchical refinement in 1D directly

carries over to multivariate B-splines. We discuss its implementation in the framework of tree-like

data structures and suggest corresponding algorithms. To keep things simple at this stage, we

confine ourselves to axis-aligned B-spline discretizations of cuboidal domains.

4.1. Transition from the 1D concept to multiple dimensions

The tensor product structure of multivariate B-splines permits a straightforward generalization

of the one-dimensional hierarchical refinement concept presented in Section 3 to multiple dimen-

sions. Assume a dp-dimensional B-spline patch, which is generated according to Section 2.2 by dp

univariate knot vectors in each parametric direction ξℓ. An adaptive multi-level B-spline basis can

be generated by successively applying the 1D procedures of the previous section, since the tensor

product structure allows for a decoupling of refinement operations in each parametric direction ℓ

and subsequent dp-dimensional assembly by multiplication. We will illustrate this by commenting

briefly on each refinement step:

• Nucleus operation (refinement of a single dp-dimensional element): Depending on the poly-

nomial degree pℓ of each parametric direction, we choose a suitable number of contracted

B-splines for each direction ℓ according to the principles outlined in Section 3.2.2. Assum-

ing p = 3, the nucleus operation in each parametric direction ℓ corresponds to Figure 7b,

from which dp-dimensional hierarchical B-splines can be generated by multiplying the one-

dimensional functions in the sense of Figure 6.
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(a) System sketch.

(b) Hierarchical mesh.
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(c) Multi-level structure of hierar-
chically contracted knot spans.

Figure 13: Multi-level hierarchical B-splines of p=3 for adaptive refinement along an internal layer in a
square domain. The original patch of level k=0 consists of 5×5 knot span elements.

• Multi-level hierarchy : The local increase of refinement follows the same concept as described

in Sections 3.2.3 and 3.2.4, where the repetition of the nucleus operation in each overlay level

k and the repetition of hierarchical refinement with successively contracted B-splines for the

generation of the next overlay level k+1 lead to a multi-level B-spline basis, which naturally

accommodates adaptivity in dp dimensions.

• Recovering linear independence: A linear combination of multivariate hierarchical B-splines of

the next level k+1 can represent B-splines of the current level k in the sense of the multivariate

two-scale relation Equation (12). These linear dependencies need to be identified through the

multi-level hierarchy and eliminated by a removal of corresponding higher-level B-splines. In

analogy with Section 3.2.5, this can be achieved by determining in each parametric direction

if the required p+2 contracted B-splines of level k+1 exist in the hierarchical structure.

• Dirichlet constraints: Dirichlet boundary conditions can be incorporated weakly by varia-

tional methods [77, 79–82] or strongly by a least squares fit of boundary basis functions

[5, 83]. Homogeneous boundary conditions can be imposed strongly by removing all basis
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Connect neighbors by pointers

Tree node: Quadrisected knot spans of level k < 3

Tree leaf: Unpartitioned knot spans of level k < 3

Tree leaf: Knot span of deepest level k = 3

Figure 14: Quadtree example illustrating the hierarchical data organization of part of an adaptive mesh. The
neighboring relations within each hierarchical level are established by pointers, which are shown here for one
element of the finest level (in red color).

functions with support at the Dirichlet boundary from the basis.

Multivariate hierarchical refinement is illustrated for the example of a 2D square domain, which

should be refined along its diagonal as shown in Figure 13a. Figure 13b shows the hierarchical

mesh, which represents the element structure, over which numerical integration is carried out, so

that the coupling of basis functions from different levels can be taken into account. Basis functions

of different levels are defined over knot spans, which are hierarchically contracted in the sense of

Equation (13). The corresponding multi-level overlay structure is illustrated in Figure 13c, where

the sequence of hierarchical knot spans is plotted.

4.2. Geometry representation and hierarchical mapping

In the general case, tensor-product B-splines are mapped from a regular grid with respect to

the parameter space to an arbitrarily shaped physical geometry via control point values according

to Equation (6). In the special case of an axis-aligned regular B-spline mesh, we can use the

simplicity of its cuboidal geometry to describe the mapping from parameter space ξ to physical

space x analytically by the following transformation

x = x0(ξ) +H ξ (15)

where x0 denotes the origin of the physical domain in the parameter space, and H is a diagonal

matrix, containing the physical knot span width hξℓ of each parametric direction ℓ. The Jacobian

determinant directly follows as

J = detH (16)

Due to Equations (15) and (16), the B-spline basis can be disconnected completely from the

geometry and serves exclusively for the approximation of the solution fields.
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Figure 15: Illustration of Algorithm 1: Apply nucleus operation to the first two knot span elements, which
creates new knot spans of level k+1 and flag knot spans, where contracted basis functions start. Also split and
flag all related ghost knot spans in order to ensure a correct treatment of boundary basis functions.

Numerical integration is performed over the hierarchical mesh (see Figure 13b). Depending on

the hierarchical level k of the respective element, an additional mapping with Jacobian

j =

(

1

2k

)dp

(17)

is required, where dp is the number of dimensions of the B-spline discretization. In the scope of

the present paper, integrals are evaluated by Gauss integration, which places (p+ 1)dp integration

points in each element of the hierarchical mesh.

4.3. Efficient implementation in tree data structures

A considerable advantage of hierarchical refinement in the present form is the preservation of its

intuitive multi-level concept irrespective of the dimensionality of the B-spline basis, which allows for

an easy generalization of corresponding algorithms in the framework of the tensor product structure.

Additionally, its direct correspondence to standard multi-level data structures [40] constitutes the

basis for its straightforward and efficient implementation.

4.3.1. Quad- and octrees

Hierarchal data structures provide a natural way to decompose and organize spatial data ac-

cording to different levels of complexity and offer fast access to relevant parts of a dataset [40].

For their efficient implementation, binary, quad- and octrees are usually employed in one, two and

three dimensions, respectively [41, 42, 84]. The quadtree concept shown in Figure 14 illustrates the

analogy between an adaptive hierarchical quadrilateral mesh and the two-dimensional tree. In our

implementation of hierarchical B-spline refinement, the tree is the fundamental entity, where each

node or leaf holds all the information of the corresponding knot span on the respective hierarchical

level and of the basis functions defined therein. Additionally, we equip each node or leaf with point-

ers that connect it with all direct neighbors of the same hierarchical level (see Figure 14). These
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Figure 16: Illustration of Algorithm 2: Identify linear dependencies, remove corresponding degrees of freedom
and store them in VacantDofs for later reassignment.

“horizontal” neighboring relations are frequently needed during refinement to establish contracted

basis functions, check for linear dependencies and correctly assign degrees of freedom.

4.3.2. Evaluation of basis functions

Hierarchical B-splines Nk of knot span width h/2k are generated by contraction of unrefined

B-splines. Thus, they do not have to be implemented separately, but can be directly computed on

each overlay level k in each parametric direction ℓ from their original unrefined counterparts N0

as follows

Nk(ξℓ) = N0(2kξℓ) (18a)

∂Nk(ξℓ)

∂ξℓ
=

1

2k
∂N0(2kξℓ)

∂ξℓ
(18b)

According to their tensor-product structure, multivariate B-splines can be subsequently assembled

by simple multiplication of their components from each parametric direction.

4.3.3. Degree of freedom organization

Handling degrees of freedom within the hierarchical tree structure is complicated by the removal

of basis functions during the refinement process and therefore requires special care. The degrees

of freedom attributed to the basis functions with support in a knot span element are contained

in an array structure, denoted as DofIndx here, and stored in the corresponding node or leaf of

the tree. In particular, the last entry of DofIndx corresponds to the B-spline whose support starts

in the current knot span and continues over the successive p+1 knot spans in positive parametric

direction. A zero in DofIndx indicates that the corresponding basis function does not exist in the

basis. This idea can be easily generalized to dp dimensions, where the support of the B-spline that

starts in the current dp-dimensional knot span continues over a regular polytope spanned by the

successive (p + 1)dp knot spans (a line in 1D, a square in 2D, a cube in 3D, etc.). A 1D example

of this numbering concept, which is similar to the one devised in Höllig [35], is given in Figure 15.
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Figure 17: Illustration of Algorithm 3: On the basis of FuncFlag, add contracted basis functions of level
k+1 that have support outside the ghost knot spans. Assign degrees of freedom by filling DofIndx in positive
parameter direction. Consume degrees of freedom buffered in VacantDofs first.

During refinement, contracted B-splines of the next hierarchical level k+1 are first initiated via

a Boolean, called FuncFlag here, to flag the respective leaf, where the new basis function starts.

This allows us to check for linear dependencies first, to remove corresponding B-splines of level k

by setting their DofIndx entries to zero and to buffer their degree of freedom numbers in the array

VacantDofs. Later on, we can reassign these numbers to basis functions of the new hierarchical

level k+1, until the buffer VacantDofs is empty. In order to carry out the same operations on

boundary knot spans, we introduce ghost knot spans [42, 85] that are taken into account only

during refinement, but not during analysis (see Figures 15 through 17).

4.3.4. Basic algorithmic sketch

We roughly outline the basic algorithmic ideas of a single hierarchical refinement step. As input,

we assume the tree structure of the current hierarchical level k and the result of an error estimator,

which specifies for each leaf of the tree if it is to be refined or not. For simplicity, we consider here

only the leaves of the currently finest level k. The refinement procedure consists of three parts.

The first part is outlined in pseudocode in Algorithm 1 and illustrated in Figure 15 by a small

example. It carries out the nucleus operation for each element to be refined, creates new leaves of

level k+1 and fills in corresponding contracted basis functions via FuncFlag. The second part is

given in pseudocode in Algorithm 2 and illustrated in Figure 16. It removes linear dependencies

between basis functions of level k and k+1. The third part is outlined in pseudocode in Algorithm

3 and illustrated in Figure 17. It assigns degrees of freedom for the new basis functions of level

k+1. As output, we receive the refined B-spline patch, organized in a tree structure of level k+1.

5. Hierarchical refinement of NURBS

Up to this point, we have dealt with B-splines over structured grids for the discretization of

axis-aligned cuboidal domains. The concept of subdivision can also be applied to NURBS bases,
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Data: Tree data structure, deepest level of leaves is k; result of the error estimator for each
knot span element of level k;

Result: Adds new leaves of level k+1 to the tree; initialize index structure DofIndx ; mark
all new leaves with FuncFlag, where a new basis function starts;

// Loop over all knot span elements of level k (currently deepest level);
// Arguments of for-loops are in the sense of iterators, pointing to leaves in the tree;
for i ele k ← 1 to n ele k do

if error estimator requires refinement in i ele k then

// Apply nucleus operation to current i ele k;
// Loop over all elements affected: In case of p=3, these are the current element
// i ele k and its surrounding direct neighbors (see Figure 7b);
// if i ele k is located at the boundary, also refine all neighboring ghost elements;
for j ele← 1 to n ele affected do

// Create new knot span elements of level k+1 ;
if element j ele is unrefined then

Append 2/4/8 new leaves of level k+1 in the tree structure
(bi-, quadri- or octasection of element in 1/2/3D, respectively);

Initialize in each new leaf DofIndx = [0]; FuncFlag = false;

Connect neighboring leaves of level k+1 by pointers and update pointers in
all surrounding other leaves, if existing;

end

// Loop over all new leaves of j ele;
for i leaf k+1← 1 to n leaves do

// Fill in hierarchical basis functions of level k+1, if required by the
// nucleus operation (see Figure 7b and Section 3.2.3);
if a basis function starts in i leaf k+1 then

Set i leaf k+1.FuncF lag = true;
end

// Ensure the proper handling of boundary basis functions;
if i leaf k+1 contains a ghost element then

Set i leaf k+1.FuncF lag = true;
end

end

end

end

end

Algorithm 1: Find elements and basis functions of the next hierarchical level k+1
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which discretize arbitrarily shaped domains. A hierarchical refinement scheme for adaptive analysis

with NURBS can be derived with minimal effort on the basis of the algorithms and data structures

described in Section 4.3.

5.1. Refinability of NURBS basis functions by subdivision

Subdivision rules for univariate NURBS are derived by inserting the two-scale relation of Equa-

tion (10) into the construction rule for NURBS basis functions, Equation (7), which yields

Ri,p (ξ) =
wi 2−p

∑p+1
j=0

(

p+1
j

)

Ni,p(2ξ − j)
∑n

j=1wjNj,p(ξ)
(19)

Data: Tree data structure, deepest level of leaves is k+1;
Result: Degrees of freedom of linearly dependent basis functions of level k are erased from

DofIndx in the tree and stored in VacantDofs for later reassignment;

// Loop again over all knot span elements of level k;
for i ele k ← 1 to n ele k do

if i ele k has leaves of level k+1 then

// Implementation sketch of conditional clauses:

// - start from the leaves of level k+1 of the current element i ele k;

// - regular polytope at issue consists of (p+2)d successive leaves of level k+1;
// - it is spanned by (p+2) leaves of level k+1 in d positive parametric directions;
// - walk through the polytope using pointers that connect neighboring leaves;
// - determine existence of neighboring element by checking corresponding pointer;

// Note that due to the ghost element concept (see Figures 15 through 17), this
// strategy also works for boundary basis functions;

if at least one of the leaves of the polytope does not exist then break;

if FuncFlag == false in at least one of the leaves of the polytope then break;

// Since in each leaf of the polytope, a basis functions of level k+1 starts, the
// basis function of level k starting in i ele k has to be removed and its degree
// of freedom needs to be remembered for reassignment later on;

Identify degree of freedom dof that starts in i leaf k and append to VacantDofs

// Loop over polytope spanned by (p+1)d leaves of level k and erase dof;
for j ele k ← 1 to n ele polytope do

Set j ele k.DofIndx ( position of dof ) = 0;
end

end

end

Algorithm 2: Remove linear dependencies between current level k and next level k+1
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According to the isogeometric paradigm [1, 5], the geometry is described exactly by the original

unrefined NURBS basis, so that geometry refinement in the framework of isogeometric analysis is

not required. Therefore, we keep the weights wj and corresponding control points P j unchanged

and always take the sum of the original B-splines Nj,p in the denominator of Equation (19).

Nonetheless, using the refined NURBS basis for enhancing the geometry representation would be

of course possible [86, 87].

A multivariate subdivision rule for NURBS can be derived analogously by substituting Equation

(12) into Equation (8)

Rh
i,p (ξ) =

wi

∑

j

(

∏d
ℓ=1 2

−pℓ
(

pℓ+1
jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

∑

j wjBj,p(ξ)
(20)

Data: Tree data structure, deepest level of leaves is k+1; list of unassigned degrees of
freedom in VacantDofs; total number of degrees of freedom numDofs;

Result: In leaves of level k+1 with FuncFlag==true, a degree of freedom is assigned to the
basis function starting there;

// Loop over all new knot span elements of level k+1;
for i leaf k+1← 1 to n leaves k+1 do

// Prevent dof assignment to basis functions that consist of ghost knot spans only;

// Consider polytope spanned by (p+1)d leaves of level k+1;
if all leaves of the polytope are ghost knot spans then break;

else if i leaf k+1.FuncF lag == true then

if VacantDofs is empty then

// Loop over polytope spanned by (p+1)d leaves of level k+1 and assign new dof;
for j leaf k ← 1 to n polytope do

Set i leaf k+1.DofIndx ( position of numDofs ) = numDofs;
end

numDofs++;

else

// Assign degree of freedom from VacantDofs;
for j leaf k ← 1 to n polytope do

Set i leaf k+1.DofIndx ( position of numDofs ) = VacantDofs.First();
end

Erase first entry of VacantDofs;

end

end

end

Algorithm 3: Activate new basis functions
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where the multi-index notation exactly follows the one introduced in Section 2.2 for multivariate

B-splines and Section 3.1 for multivariate B-spline subdivision. Since the geometry is not refined,

B-splines Bj,p and corresponding weights in the denominator of Equation (20) refer again to the

original B-spline patch.

5.2. Hierarchical refinement of NURBS

On the basis of Section 5.1, we introduce some adaptations to the hierarchical refinement

scheme for B-splines to also accommodate NURBS. First, we separate Equations (19) and (20) in

a B-spline part (numerator) and a rational part (denominator), which are treated separately. The

numerator carries out hierarchical refinement on the B-spline level, so that we can make full use of

the concepts and algorithms introduced in Sections 3 and 4. Thus, the resulting refined NURBS

basis is also constructed from a nested sequence of bisected knot span elements, over which multiple

hierarchical overlay levels of repeatedly contracted B-splines are defined.

As shown in the previous sub-section, the denominator is always computed with the original

B-spline basis B0
j,p(ξ)

sum(ξ) =
∑

j

wjB
0
j,p(ξ) (21)

where multi-index j includes all B-splines with support at the parameter space location ξ. The

basis functions Ri of the hierarchical NURBS basis and its derivatives follow as

Ri,p (ξ) =
Bi,p(ξ)

sum(ξ)
(22a)

∂Ri,p (ξ)

∂ξℓ
=

∂Bi,p (ξ)/∂ξ
ℓ sum(ξ) − Bi,p (ξ) ∂ sum(ξ)/∂ξℓ

sum(ξ)2
(22b)

where we additionally drop the weights wi in the numerator of Equation (22a) for further simplifi-

cation. Standard rules for generating higher order derivatives [63] can be adapted in the same way.

The geometry mapping by way of the Jacobian matrix and determinant are computed throughout

the hierarchical refinement procedure from the unrefined NURBS basis

x(ξ) =
∑

j

wjB
0
j,p(ξ)

sum(ξ)
P j (23)

with the initial set of weights wj and control points P j .

6. Numerical examples of adaptive isogeometric analysis

In the following, the versatility of hierarchical refinement in the framework of isogeometric anal-

ysis is demonstrated for a series of fluid and solid mechanics problems in two and three dimensions.

B-spline and NURBS basis functions exhibiting higher order continuity have been shown to be an
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Figure 18: Advection skew to the mesh in 2D: Problem definition.

ideal candidate for approximating these problems in the framework of the finite element method

[1, 5]. Therefore, we will not discuss their general solution characteristics, but directly concentrate

on their hierarchical refinement. All examples are discretized with cubic B-splines or NURBS.

For the solution of the linear system of equations, we use an iterative GMRES solver with ILU

preconditioning provided by the library framework Trilinos [88].

6.1. Error estimation and automatic refinement

In the following, elements to be refined are selected automatically by means of a simple gradient

based error indicator ε. Since we aim at capturing steep gradients in the solution, we use

εe =
1

Ve

(
∫

Ωe

|∇u|2 dΩe

)1/2

(24)

where u is the solution field evaluated from the current mesh of hierarchical level k. The indicator

is evaluated over the domain Ωe of each element and subsequently normalized with respect to the

corresponding element volume Ve. If εe is larger than its average

εe >
C

nele

nele
∑

i=1

εie (25)

with nele being the number of all elements in the current mesh, the element is refined. We introduce

an additional constant C to empirically fine-tune the threshold for the specific problem. For more

elaborate error estimators, see for example [72].
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(a) Uniform mesh k=0.
ndof = 49

(b) Mesh of level k=1.
ndof = 119

(c) Mesh of level k=2.
ndof = 279

(d) Mesh of level k=3.
ndof = 612

(e) Mesh of level k=4.
ndof = 1,319

(f) Mesh of level k=5.
ndof = 3,017

Figure 19: Sequence of hierarchical meshes generated by an automatic refinement scheme that makes use of
a simple gradient-based error indicator and the algorithms described in Section 4.4.

6.2. Cuboidal B-spline geometries

We will first focus on problems over cuboidal axis-aligned domains, which can be discretized

exactly by B-splines defined over a structured grid of knot span elements. As outlined in Section 4.2,

this allows for a particularly simple geometry handling.

6.2.1. Advection skew to the mesh in 2D

The first model problem is illustrated in Figure 18a and involves the solution of the linear

advection-diffusion equation

a · u−∇u · (D∇u) = f (26)

where u denotes the solution, a is the velocity, D is the diffusivity and f is a source term. In

particular, the velocity is inclined to the mesh at 45◦ and the diffusivity is chosen extremely small,

so that the problem is dominated by advection, resulting in a very high global Péclet number of

Pe = 104. Thus, we expect sharp interior and boundary layers, which require stable numerical
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Figure 20: Sequence of knot span elements for each hierarchical level k, corresponding to the hierarchical
meshes for the 2D advection problem.

techniques in addition to increased resolution to be accurately captured. The problem is a well-

studied benchmark [75, 79], examined for uniform k-refinement in [5] and local T-spline refinement

in [89, 90].

We investigate the adaptive resolution of the internal and boundary layers with the present

hierarchical refinement approach, starting from a 5×5 grid of cubic B-splines. We satisfy bound-

ary conditions weakly at the inflow boundary with Nitsche’s method [80–82], where the penalty

parameter β is 50, and strongly at the outflow boundaries [79]. Furthermore, we apply standard

SUPG stabilization [74, 75, 79] in addition to refinement. The corresponding stabilization param-

eter is chosen to be τ = ha/(2 |a|), where ha is the element length of in flow direction. In the

current example, ha =
√
2 2−kh, where k is the finest level of hierarchical refinement present in the

element under consideration and h is the original knot span spacing of the unrefined discretiza-

tion. Employing an automatic refinement scheme based on the error indicator of Equation (24)

and the algorithms described in Section 4.3, we obtain a sequence of hierarchical meshes shown in

Figure 19. The hierarchy of knot spans defining B-splines of each level k is shown in Figure 20. It

can be observed that the refinement captures the location of the internal as well as the boundary

layers very well.

An overkill solution obtained with a uniform cubic B-spline discretization of 160×160 elements

and SUPG stabilization and the adaptive solution obtained with a refined mesh of hierarchical level

k = 5 are shown in Figure 20. We can observe over- and under-shooting of the adaptive solution

along the internal layer as also reported in [89, 90] for T-spline refinement. Nonetheless, the

comparison of adaptive and uniform solution fields demonstrates that hierarchical refinement leads
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(a) Solution obtained with a uniform dis-
cretization of 160×160 cubic elements.

(b) Solution obtained with the adaptive
hierarchical mesh of k = 5.

Figure 21: Solution fields of the advection dominated problem in 2D.

to a qualitatively similar result. While both meshes provide a comparable element size around the

location of the layers, the adaptive mesh with 3,017 dofs requires only about 12% of the degrees of

freedom of the uniform mesh with 26,244 dofs. Finally, we would like to point out the high quality

of the refinement in terms of locality, as the hierarchical elements of the finest level show no

propagation through the mesh. This is an improvement in comparison to recent works on adaptive

isogeometric analysis [89, 90], where automatic local refinement employing cubic T-splines was

reported to result in globally refined T-meshes when applied to a very similar advection-diffusion

problem. However, in a recent work, an effective T-spline local refinement algortihm has been

developed [30].

6.2.2. Advection skew to the mesh in 3D

We construct an analogous advection-diffusion problem in three dimensions, whose details are

given in Figure 22a. It exhibits the same challenges in terms of strong advection dominance (global

Péclet number Pe = 104), a sharp internal layer and several boundary layers (see Figure 22b).

Following the previous sub-section, we apply SUPG stabilization and the error indicator of Equation

(24). We also impose weak and strong boundary conditions at the inflow and outflow boundaries,

respectively, where the penalty parameter β of Nitsche’s method is set to 50 again. Figure 23 shows

the resulting hierarchical mesh of level k = 4, generated automatically from an initial 6×6×6 cubic

B-spline grid, and the corresponding solution field. The mesh captures the location of internal

and boundary layers accurately and its refinement is local without propagating throughout the

entire domain. Similar to the 2D case, the solution field exhibits slight under- and overshooting

along the internal layer. While the adaptive mesh of Figure 23a features only 116,314 degrees of
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Figure 22: Advection skew to the mesh in 3D.

freedom, a uniform cubic B-spline discretization, which uses a global mesh size corresponding to the

finest elements of the adaptive mesh, requires a resolution of 96×96×96 knot span elements, which

amounts to 941,192 degrees of freedom. In Section 4, we shown that our hierarchical refinement

approach can be generalized easily to three dimensions from algorithmic and implementation points

of view. The present result confirms that hierarchical refinement in 3D also yields high quality

adaptive meshes and accurate solution fields, comparable to the 2D case of the previous sub-section.

(a) Hierarchical mesh of level k=4. (b) Accurate approximation of sharp layers.

Figure 23: Adaptive mesh and corresponding solution for the 3D advection problem. To reveal internal
features, only one half of the domain is plotted according to Figure 23b.
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(a) Mesh of level k=4. (b) Isolines of the stream function Ψ.

Figure 24: The lid driven cavity problem: Adaptive hierarchical mesh and corresponding solution field.

6.2.3. Lid driven cavity

To demonstrate the versatility of the hierarchical refinement approach in the framework of a

further physical model, we consider the two-dimensional stationary incompressible Navier-Stokes

equation in stream function formulation [91]

−ν∆2Ψ+Ψy (∆Ψ)x −Ψx (∆Ψ)y = f (27)

where Ψ denotes the stream function, ν the viscosity, and f the applied body force. A standard

benchmark is the lid driven cavity problem [91, 92], which models flow in a unit square domain

Ω = (0, 1)2, whose upper boundary moves to the right, whereas the rest of the boundaries are

fixed. Corresponding boundary conditions are Ψ = 0 on all boundaries, Ψx = 0 and Ψy = 0 on

the left, right and bottom boundaries (“no slip” requirement), Ψx = 0 and Ψx = 1 on the top

boundary (the driven surface). At all boundaries, we impose Ψ strongly, while its derivatives are

imposed weakly by a variant of Nitsche’s method [79, 81] with a penalty parameter β = 50. The

nonlinearities in Equation (27) are handled by a fixed point iteration scheme [93].

The solution characteristics of the driven cavity problem are strongly determined by the choice

of viscosity. We set ν = 1.25 · 10−3, which results in a Reynolds number of Re = 800. A flow

separation in the lower edges can thus be expected. Since we are also interested in accurately

tracking the location of separation at Ψ = 0, we add an additional term to the gradient-based error

indicator of Equation (24) as follows

εe =
1

Ve

[

(
∫

Ωe

|∇Ψ|2 dΩe

)1/2

+

(
∫

Ωe

|Ψ|2 dΩe

)

−1/2
]

(28)
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(a) Control mesh. (b) NURBS mesh.

Figure 25: Geometry description of half a cylinder. The structure is modeled as a continuum with cubic
NURBS in surface directions and 3 quadratic NURBS basis functions through the thickness.

so that εe also grows in the vicinity of Ψ = 0. The resulting hierarchical mesh of level k =

4, generated from an initial cubic B-spline discretization of 8×8 knot span elements, and the

isolines of the corresponding stream function solution are plotted in Figure 24. They show that

the refinement can be concentrated around the boundary layers and locations of flow separation.

The adaptive mesh of Figure 24a with 3,517 dofs requires about 80% fewer degrees of freedom than

a corresponding uniform discretization with 16,641 that uses the size of the smallest element of

Figure 24a as the global mesh size.

6.3. NURBS geometries

According to the isogeometric paradigm, the NURBS basis of the geometry description should

be also used for analysis, thus superseding geometry approximation and mesh generation of stan-

dard FEM [4, 5]. However, in most cases, the complexity in geometry and in the solution of the

physical model do not coincide, so that the NURBS basis can represent the geometry exactly with

a limited number of basis functions, while analysis requires local refinement to achieve satisfactory

accuracy. The hierarchical refinement approach for NURBS based isogeometric analysis introduced

in Section 5 maintains the initial geometry description by a given set of control points, weights and

NURBS basis functions throughout the refinement process, while introducing additional levels of

hierarchical basis functions, which achieve an adaptive refinement of the solution fields only.

6.3.1. The pinched cylinder

The first NURBS example is the pinched cylinder problem from the shell obstacle course [5, 94,

95]. Its geometry is given here by the control mesh and the corresponding mapped NURBS mesh

of Figure 25, modeling one half of the cylinder. All geometrical mapping procedures throughout

the adaptive analysis will revert to this model, which will not be refined, since it represents the

geometry exactly. Following [5, 96], the shell is modeled as a three-dimensional solid and no

shell assumptions are employed (see Figure 25a). The polynomial degree is cubic in the surface
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Figure 27: Convergence of the vertical displacement
under the load.

(a) Hierarchical mesh of level k = 4. (b) Corresponding vertical displacements plotted
on the deformed structure.

Figure 28: Adaptive mesh and solution for the pinched cylinder problem. The results for the complete
structure are obtained by mirroring the results obtained for the half cylinder.

directions, whereas only one quadratic NURBS element is used through the thickness, which has

been shown to be adequate to obtain sufficiently accurate results [5, 97]. The problem definition

of Figure 26 illustrates the external loading by two opposite concentrated forces, which results in

highly localized deformation under the loads. At the longitudinal edges of the half cylinder, we

apply symmetry boundary conditions. Automatic hierarchical refinement based on the concepts of

Sections 4 and 5, with the error indicator of Equation (24), is applied to the initial discretization
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Figure 29: Advection-diffusion in an annular section.

(a) Hierarchical mesh of level k=4. (b) Corresponding solution.

Figure 30: Adaptive mesh and solution for the 2D advection-diffusion problem.

of 8×4×1 NURBS elements shown in Figure 25b. It carries out local refinement only in the surface

directions and keeps one quadratic NURBS element in the thickness direction.

Convergence in terms of vertical displacements under the applied point load is shown in Fig-

ure 27, for which the analytical solution is given as 1.82488 ·10−5 [5]. Uniform refinement converges

to a slightly softer solution than the reference, which agrees well with previous results [5, 89]. In

contrast, adaptive hierarchical refinement converges to a slightly smaller displacement. This can

be attributed to the influence of the unrefined parts of the shell, which are not sufficiently resolved,

but not detected by the simple gradient-based error indicator due to their relatively small gradients.

Nonetheless, hierarchical refinement achieves a comparable level of accuracy with about one order
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Figure 31: Problem sketch. Figure 32: Initial solution.

(a) Hierarchical NURBS mesh of level k=3. (b) Corresponding solution.

Figure 33: Adaptive mesh and solution for the 3D advection-diffusion problem.

of magnitude fewer degrees of freedom than uniform refinement. The hierarchical mesh of level

k = 4 and the corresponding displacement plot on the deformed structure are given in Figure 28,

where deformations are largely magnified to clearly highlight of the deformation pattern.

6.3.2. Advection-diffusion in an annular section

We focus again on linear advection-diffusion described by Equation (26). The present 2D

example is defined over an annular quarter section, which is described exactly by an initial mesh of

10×13 cubic NURBS elements. The two-dimensional flow field corresponds to a rotational vortex

with tangential velocity aθ = ωr and radial velocity ar = 0. A sketch of the problem definition
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(a) Initial knot spans of k=0. (b) Hierarchical knot spans of k=1.

(c) Hierarchical knot spans of k=2. (d) Hierarchical knot spans of k=3.

Figure 34: Sequence of knot span elements, over which contracted basis functions of successive hierarchical
levels k are defined. The combination of all levels results in the hierarchical NURBS mesh of Figure 33a.

is given in Figure 29a. Boundary conditions are prescribed weakly at the inflow and strongly at

the outflow boundaries [79], where the penalty parameter β in Nitsche’s method is 50. The Péclet

number of this problem is Pe = 10. Over part of the inflow, the concentration u is set to 1, creating

boundary and internal layers, which is illustrated by the reference solution of Figure 29b, obtained

from a standard Galerkin discretization of 160×208 cubic NURBS elements. Applying automatic

hierarchical refinement based on the gradient-based error indicator of Equation (24) and the initial

standard Galerkin discretization, we obtain an adaptive mesh of level k = 4, plotted in Figure 30a.

The corresponding solution in Figure 30b shows qualitatively no difference in terms of boundary

and internal layers as well as absolute values in comparison to Figure 29b. However, the uniformly

refined solution requires 33,810 degrees of freedom, whereas the adaptive mesh requires only 1,387,
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but both provide the same resolution of the concentration jumps at the boundaries.

6.3.3. Advection-diffusion in a rotating cylinder

Finally, we consider advection-diffusion in a three-dimensional cylinder that rotates around its

axis with tangential velocity aθ = ωr and radial velocity ar = 0. At the same time, we assume

a flow of constant axial velocity az, which results in a helical pattern of the concentration that

emerges from the fixed local inflow boundary condition u = 1. The Péclet number of this problem

is Pe = 360. The geometry of the cylinder is described exactly by two equal NURBS patches,

each of which covers one half of the cylinder and consists of a standard Galerkin discretization of

5×10×20 cubic NURBS elements in (r, θ, z)-directions, respectively (see Figure 34a). Boundary

conditions are prescribed weakly at the inflow and strongly at the outflow boundaries [79] with a

penalty parameter of β = 50. A sketch of the problem and the initial isogeometric solution are

shown in Figures 31 and 32, respectively. The initial NURBS discretization is unable to accurately

resolve the boundary and internal layers along the plume. Automatic hierarchical refinement based

on the gradient-based error indicator of Equation (24) results in an adaptive mesh of level k = 3,

plotted in Figure 33a. The corresponding solution in Figure 33b exhibits a considerably improved

resolution of the boundary and internal layers. Figure 34 illustrates the sequence of knot spans,

over which the contracted hierarchical basis functions are defined. The finest level k = 3 shown in

Figure 34d demonstrates that the automatic refinement procedure is able to accurately track the

revolving plume in the form of a helix. A uniform discretization that yields a plume resolution

with the same element size requires a globally refined mesh of 40×80×160 NURBS elements with

1,391,380 degrees of freedom, whereas the present adaptive mesh requires only 125,271 dofs.

7. The B-spline version of the finite cell method

Immersed boundary methods, also known as embedded domain methods, operate on a Cartesian

fixed grid, which can be arbitrarily intersected by the physical boundary [57, 85, 98, 99]. They

require special concepts for the accurate integration of elements cut by geometric boundaries, for

the incorporation of Dirichlet boundary conditions [81, 100–103] and for the preservation of well-

conditioned system matrices [35, 104, 105]. From a range of related approaches that combine the

immersed boundary concept with axis-aligned grids of B-spline basis functions [34, 35, 80, 106, 107],

we apply the recently introduced B-spline version of the finite cell method [60, 108] to illustrate the

benefits of hierarchical refinement in the framework of B-spline based immersed boundary analysis.

Before embarking on its hierarchical refinement in the next section, we briefly outline its principles

and demonstrate its solution characteristics with a simple example in the following.

7.1. The fictitious domain approach and adaptive integration

The B-spline version of the finite cell method, which is a further development of the original

p-version of the finite cell method (FCM) [58, 59, 61], combines the fictitious domain approach
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α ≪ 1.0

Figure 35: The fictitious domain concept: The physical domain Ωphys is extended by the fictitious domain
Ωfict into the embedding domain Ω to allow easy meshing of complex geometries. The influence of Ωfict is
penalized by α.

with a regular Cartesian grid of axis aligned B-splines and an adaptive integration procedure for

cut elements. Using the higher order and higher continuity of B-spline basis functions, it has

been shown to preserve exponential rates of convergence under p-refinement for both linear and

geometrically nonlinear structural problems, and to be well-suited for the analysis of voxel-based

geometries of arbitrary complexity [60, 108].

Its main idea, illustrated in Figure 35, consists of the extension of the physical domain of interest

Ωphys beyond its physical boundaries into a larger embedding domain of simple geometry Ω, which

can be meshed easily by a structured grid. To preserve consistency with the original problem, the

influence of the fictitious domain extension Ωfict := Ω\Ωphys is mitigated by penalizing its material

parameters. In linear elasticity, this is achieved by complementing the elasticity tensor C relating

stresses and strains by a scalar factor α

σ = αC : ε (29)

which leaves the material parameters unchanged in the physical domain, but penalizes the contri-

bution of the fictitious domain

α (x)







= 1.0 ∀x ∈ Ωphys

≪ 1.0 ∀x ∈ Ωfict

(30)

Using a structured grid of knot span elements (see Figure 35), kinematic quantities are discretized

with uniform B-splines, where all basis functions without support in the physical domain Ωphys are

omitted.

During numerical integration, elements cut by the geometric boundary are adaptively integrated

by composed Gauss quadrature, based on a hierarchical decomposition of the original element into

integration sub-cells [59, 60]. In d dimensions, the sub-cell structure can be built up in the sense

of a d-dimensional tree [40]. Figure 36 outlines the sub-cell partitioning procedure for an example

in 2D. Starting from the original element of level k = 0, each sub-cell of the current level k = i,

i > 0, is first checked whether it is cut by a geometric boundary. This is simply achieved by a point

location query, which determines for each integration point, whether it is located in Ωphys or Ωfict.
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Figure 36: 2D sub-cell structure (blue lines) for adaptive integration of elements (black lines) cut by the
geometric boundary (dashed line). The quadtree is built by iterating over the sub-cells of the current level k,
until the max. depth is reached.

If integration points of the same element are located in both domains (hence a geometric boundary

must be present), the element is replaced by 2d equally spaced sub-cells of level k = i+ 1, each of

which is equipped with (p+1)d Gauss points. Partitioning is repeated for all sub-cells of the current

level k, until a predefined maximum depth k = m is reached. This approach keeps its simplicity in

the presence of arbitrarily complex boundaries, while its implementation is straightforward. While

elements completely outside the physical domain can be neglected, integration points of all sub-

cells must be taken into account with a finite value of α to prevent extreme ill-conditioning of the

stiffness matrix [58, 59]. Depending on the accuracy required, values of α may range between 10−3

and 10−15.

7.2. Solution characteristics of the B-spline version of the FCM

The FCM solution behavior is briefly described with the help of the example of an infinite

plate with a circular hole under in-plane tension. Geometry, material, boundary conditions and

the analytical solution [109] correspond to the classical example shown in [1, 5] and are given in

Figure 37. Due to symmetry, only one quarter of the problem is considered.

Figure 38 illustrates the discretization procedure in the framework of the immersed boundary

concept. B-spline basis functions are defined over an axis-aligned knot span mesh, which embeds

the physical domain Ωphys of the plate in a simple square. The circular hole constitutes a fictitious

domain Ωfict, whose influence is mitigated by penalizing the elasticity matrix at integration point

level with a finite value α=10−12 according to Equations (29) and (30). The integration accuracy

in cut elements is ensured by adaptive integration sub-cells, which lead to an aggregation of Gauss

points around the boundary of the circular hole. It is important to note that integration sub-cells
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Figure 37: Linear elastic plate with a circular hole: problem definition and exact solution.

do not affect the B-spline basis functions, but only increase the number of integration points around

the geometric boundary. The element located completely outside Ωphys is not integrated. Basis

functions with support in the lower left element only are eliminated from the basis, while Dirichlet

constraints can be incorporated strongly here.

The accuracy of the B-spline version of the FCM relies on the smooth extension of the solution

fields into the fictitious domain, illustrated in Figure 39 by von Mises equivalent strains plotted

along the diagonal cut line (see Figure 37). While the exact solution is only defined over the physical

domain Ωphys, the immersed boundary solution extends smoothly into the fictitious domain Ωfict,

although the elasticity matrix is discontinuous due to the penalization factor α. A tentative

explanation for this important characteristic can be found by considering the total strain energy

U =

∫

Ω

Ψ dV =
1

2

∫

Ω

σ : ε dV (31)

B-spline grid

Not
integrated

Sub-cell grid

Integration
point ∈ Ωfict

Integration
point ∈ Ωphys

Figure 38: B-splines are defined over an axis-aligned grid of knot spans (black lines). A sub-cell grid (blue
lines) leads to an aggregation of Gauss points around the boundary, where the elasticity matrix is penalized
according to Equation (29) at all points outside the physical domain Ωphys (marked in red).
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Figure 40: Convergence in energy norm, when the
B-spline grid is uniformly refined.

(a) 3×3 elements. (b) 6×6 elements. (c) 12×12 elements.

Figure 41: Normal stresses σx, plotted over Ωphys, for different cubic B-spline meshes.

where Ψ represents the strain energy function, defined over the complete domain Ω. The best

approximation property to the total strain energy U states that the solution of a Galerkin finite

element scheme represents a least-squares best fit to the exact solution [110, 111]. Due to the

penalization with α, which is present in σ of Equation (31) due to Equation (29), deviations from

the exact solution in the fictitious domain Ωfict have a considerably smaller impact on the strain

energy than deviations in the physical domain Ωphys. Therefore, a minimization of the strain energy

error by the B-spline basis of the immersed boundary scheme results in an accurate approximation

in the physical domain Ωphys.

In particular, this implies a smooth extension of the solution fields into the fictitious domain,
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Figure 42: Convergence of circumferential stresses σθ(R, θ) at the circular boundary of the hole (R = 1.0)
for the immersed boundary case and the body-fitted IGA case [5].

so that its gradients in the physical domain remain accurate up to the geometric boundary (see

Figure 39). Furthermore, the solution can converge uniformly all over the physical domain, so

that optimal rates of convergence can be achieved. Figure 40 shows the convergence behavior in

strain energy under uniform h-refinement [110, 111], starting from a mesh of 3×3 B-spline ele-

ments. Note that the strain energy of the immersed method is computed by taking into account

contributions of Ωphys only. For linear, quadratic and cubic B-splines, the optimal rates of 0.5, 1.0

and 1.5 are met. Another benefit of the smooth extension property is the accuracy in stresses that

can be achieved with immersed boundary methods. Figure 41 shows plots of the normal stress in

horizontal x-direction for different cubic immersed boundary meshes, which can be compared to

corresponding plots given in [5] that were obtained with body-fitted NURBS discretizations. While

the two coarsest meshes of 3×3 and 6×6 elements distinctly differ from the expected solution, the
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stress pattern of the 12×12 mesh shows no difference to the best solution shown in [5]. Of partic-

ular interest in this respect is the stress accuracy that can be achieved directly on the geometric

boundary cutting through elements. We therefore plot the circumferential stress component on

the circular boundary of the hole obtained with different cubic immersed boundary meshes in Fig-

ure 42a through 42d. We compare the immersed boundary results to stresses that were obtained

with corresponding body-fitted cubic NURBS discretizations generated in the same as shown in

[5]. The plots illustrate that the immersed boundary stresses converge to the analytical reference.

A comparison with the standard IGA results reveals that the stresses of the body-fitted NURBS

discretization are more accurate on coarse meshes as might be expected.

8. Hierarchical refinement and immersed boundary methods

The translation of complex CAD based geometrical models into conforming finite element

discretizations is computationally expensive, difficult to fully automate and often leads to error-

prone meshes, which have to be improved manually by the user. Immersed boundary methods do

not require body-fitted meshes, but embed the domain into a regular grid of axis-aligned elements,

which can be generated irrespective of the geometric complexity involved. The corresponding

meshing procedure, which is based on a simple point location query, requires no user interaction

and thus can be fully automated. This opens the door to a seamless IGA design-through-analysis

procedure for complex engineering parts and assemblies, which we demonstrate in the following

by the examples of a ship propeller and a rim of an automobile wheel. We apply the B-spline

version of the finite cell method, reviewed in Section 7, for modal and stress-displacement analysis.

We furthermore demonstrate that hierarchical refinement of B-splines can considerably increase the

flexibility of the method by adaptively resolving local features in geometry and solution fields while

thanks to its straightforward implementation, the key benefit of full automation can be maintained.

8.1. Modal analysis of a ship propeller

The geometry of the propeller is given by a smooth, watertight T-spline surface (i.e., there are

no gaps or overlaps). It is exported from the CAD package Rhino [66] in conjunction with the T-

spline plug-in [112] in the form of Bézier elements as shown in Figure 43a. Its maximum diameter

and height is 0.695 m and 0.334 m, respectively, and it is made out of steel with Young’s modulus

2.1·1011 N/m2, Poisson’s ratio 0.28 and density 7,850 kg/m3. The thickness of the cylindrical hub in

the center is about four times larger than the average thickness of the surrounding propeller blades.

The structure can neither be characterized as a typical shell nor as a true solid. Configurations like

this usually require specialized and time consuming meshing procedures to produce good quality

discretizations.

We apply the B-spline version of the finite cell method to illustrate the discretization proce-

dure in the framework of the immersed boundary concept and its combination with hierarchical
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(a) Bézier elements of a T-spline
surface (Output from CAD package
Rhino with T-spline plug-in).

(b) The complete structure is immersed in a bounding
box of 16×16×4 axis-aligned cubic B-spline elements.

Figure 43: Propeller example: CAD based geometry description and immersed boundary discretization.

(a) Deletion of elements without support in the
propeller domain creates a reduced set of ele-
ments, which homogeneously resolve the struc-
ture irrespective of the local thickness.

(b) Hierarchical refinement of the propeller
blades achieves a homogeneous through-the-
thickness resolution. Corresponding elements are
octasected twice.

Figure 44: Propeller example: The role of hierarchical refinement
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(a) 18,499 sub-cells of level k=1. (b) 226,272 sub-cells of level k=2.

Figure 45: Propeller example: Sub-cell partitioning of elements cut by the geometric boundary. The parti-
tioning scheme shown in Figure 38 is carried out up to level k=2.

refinement. First, the complete structure is embedded in a regular grid of axis-aligned B-splines as

illustrated in Figure 43b. In this example, we apply uniform B-splines of polynomial degree p=3,

which offer higher order approximation, but still are computationally efficient due to their rela-

tively local support. Second, all those knot span elements without support in the propeller domain

Ωphys are eliminated from the discretization, which leads to a reduced set of elements displayed

in Figure 44a. The decision whether an element is to be kept or not is based on a simple point

location query, which checks if at least one integration point is located in Ωphys. An efficient point

location query can be achieved for example by a voxelization of the embedding domain [113, 114],

where a boolean flag indicates for each voxel whether it is located in- or outside of the physical

domain, or by search algorithms based on special space-partitioning data structures such as k-d

trees [40, 115, 116].

An axis-aligned discretization with elements of the same size does not account for the inhomo-

geneous thickness of the different regions of the structure. In a third step, we therefore apply two

levels of hierarchical refinement to the propeller blades, while we leave the discretization of the

central hub as it is, in order to achieve a homogeneous resolution of the two different thicknesses.

Whereas a uniformly refined mesh of the propeller that provides the same resolution of the blades

has 80,922 dofs, the adaptive mesh shown in Figure 44b has only 53,052 dofs. In a fourth step, we

equip each element cut by the geometric boundary by additional sub-cells, which are organized in

an octree of depth two, generated by the partitioning procedure described in Section 7.1. The sub-

cells corresponding to the leaves of the first and second levels of the octree are shown in Figure 45a
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and 45b, respectively. It should be noted again that the blue sub-cells of Figure 45 do not affect

B-spline basis functions, which are still defined over the set of elements shown in black lines in

Figure 44b. Each sub-cell contains 4×4×4 Gauss points, leading to an aggregation of integration

points in cut elements to accurately take into account the geometric boundary during numerical

integration. If a point location query indicates that an integration point is located outside the

propeller domain Ωphys, its contributions to the stiffness matrix and the mass matrix are penalized

by factor α=10−3 in the sense of Equations (29) and (30).

The hierarchically refined mesh of Figure 44b is analysis suitable and is used in combination

with the sub-cells of Figure 45 to conduct a modal analysis of the structure, where the mass matrix

is lumped according to the row sum method [110]. For the solution of the Eigenvalue problem, we

use the library package ARPACK [117]. Figure 46 illustrates the first seven mode shapes. The

three lowest mode shapes, each of which corresponds to one pair of opposing blades, exhibit a

rotational symmetry in the propeller plane around the center of the hub. The next two mode

shapes are the same, but the second is rotated 90◦ compared to the first within the plane of the

propeller. They are thus symmetric with respect to the two axes that span the propeller plane. The

sixth mode shape is single and denotes a rotationally symmetric bending of the blades out of the

propeller plane. The seventh mode shape shows an out-of-plane bending of two opposite blades.

The reflection of geometric symmetries in the mode shapes corresponds very well to engineering

experience and indicates a good quality of the first modes.

8.2. Stress-displacement analysis of the rim of an automobile wheel

The second example is a rim of an automobile wheel. Analogous to the propeller, its geometry

is originally described by a T-spline surface, which is exported from the CAD package Rhino [66]

using the T-spline plug-in [112] in the form of Bézier elements as shown in Figure 47a. Its maximum

diameter and height are 239.26 mm and 223.28 mm, respectively, and its material is aluminium

with Young’s modulus 7.0·104 N/mm2 and Poisson’s ratio 0.34. We apply an ellipsoidal line load at

the bottom outer edge of the rim in the direction of the global y-axis, and homogeneous Dirichlet

constraints at the hub fix the structure, simulating the suspension of the wheel. Horizontal loadings

typically occur due to centrifugal forces, when the vehicle enters into a curve, and are transferred

from the road surface onto the outer edge of the rim by the tire. Boundary conditions are further

specified in Figure 47b.

The discretization procedure in the framework of the finite cell method is illustrated in Fig-

ure 48. In a first step, the structure is completely immersed into a cuboidal bounding box of

axis-aligned knot span elements, over which uniform B-splines are defined (Figure 48a). In a sec-

ond step, elements located completely outside the physical domain Ωphys of the wheel are erased

from the discretization (Figure 48b). The location of the elements is determined by the straight-

forward point location query based procedure described in Section 8.1. In a third step, we apply

hierarchical refinement to adaptively resolve those parts of the structure, where we expect larger

48



(a) The first, second and third mode shapes exhibit
a rotational symmetry around the center, corre-
sponding to the three pairs of opposing propeller
blades. We display mode 2.

(b) The fourth and fifth mode shapes exhibit a
symmetry with respect to the two axis of the pro-
peller plane. We display mode 5.

(c) The sixth mode shape is single and shows bend-
ing of the blades out of the propeller plane.

(d) The seventh mode shape shows the bending of
opposing blades out of the propeller plane.

Figure 46: Modal analysis of the ship propeller. Most of the activity occurs in the propeller blades, whose
resolution has been adaptively increased by hierarchical refinement. The color scale refers to the absolute
displacement (dark blue - no displacement, red - highest displacement).
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(a) Bézier elements of a T-spline surface (Out-
put from CAD package Rhino with T-spline
plug-in).

u=0

x

y

z

ΓN :

ΓD:

fy(x)=10
√

1− x2

b2

(b) Horizontal loading on the outer edge of
the rim, fixture at the hub of the wheel. (Ra-
dius R=239 mm and b=R sinπ/5)

Figure 47: Rim of an automobile wheel: Geometry description and boundary conditions.

gradients in the solution fields (Figure 48c). The first level of refinement addresses the complex

geometric parts of the spokes, the central hub and the upper part of the tire bearing. The second

level of refinement is applied to the lower part of the tire bearing, where the loading is imposed.

In a last step, we apply the simple partitioning procedure of Section 7.1 to elements cut by the

geometric boundary, which generates two levels of sub-cells that accurately resolve the geometric

boundary by integration points (Figure 48d). The stiffness contribution of integration points lo-

cated outside the rim domain are penalized by factor α=10−6 in the sense of Equations (29) and

(30).

Dirichlet constraints are considered in a weak sense by applying Nitsche’s method, whose vari-

ational formulation requires an integration over the Dirichlet boundary. Taking advantage of the

axis-aligned Dirichlet surface ΓD shown in Figure 47b, corresponding integrals can be evaluated

by a projection of Gauss points onto ΓD in each sub-cell that cuts ΓD. The discrete system of

equations is passed to the direct solver Pardiso [118]. The resulting deformation of the rim is illus-

trated in Figure 49, where the displacements imposed on the structure are magnified by a factor of

300 for better visibility. It can be observed that the solution in the vicinity of the loading area at

the outer edge of the rim exhibits steep gradients, which confirm the necessity of local hierarchical

refinement there. The adaptive mesh of Figure 48c with 105,807 dofs considerably decreases the

computational effort in comparison to uniform refinement, which requires 622,989 dofs for the same

resolution of the loading area. Figure 50 shows von Mises stresses, plotted on the boundaries of
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(a) The complete structure is immersed in
a bounding box of 30×15×30 axis-aligned B-
spline elements.

(b) Elements without support in the physical
domain of the rim are deleted.

(c) Hierarchical refinement adaptively in-
creases the resolution, where high gradients
of the solution are expected.

(d) Cut elements are adaptively partitioned
twice for accurate integration of the geomet-
ric boundary (473,641 sub-cells).

Figure 48: Immersed boundary discretization of the rim of an automobile wheel with the B-spline version of
the finite cell method and hierarchical refinement for adaptive stress-displacement analysis.
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Figure 49: Total displacements in mm, plotted on the deformed structure. Steep gradients of the solution
around the loading area on the lower edge have been adaptively resolved by hierarchical refinement.

the undeformed structure. Large stresses occur predominantly around the lower tire bearing, the

two lower spokes and the central hub, thus tracing the flow of forces from the loading area to

the support, while the rest of the structure remains unstressed. According to the symmetry in

geometry and boundary constraints, the stress solution is completely symmetric and exhibits the

typical stress concentration phenomena at reentrant sharp curves (see front view of Figure 50a).

Due to the superposition of tensile membrane and bending stress, the maximum von Mises stress

occurs at the sharp reentrant bend, where the loaded boundary ring bends into the main cylinder

of the tire bearing (bottom-up view of Figure 50b).

9. Summary and conclusions

In this paper, we derived a hierarchical refinement procedure based on the concept of B-spline

subdivision, which combines full analysis suitability with direct generalization to higher dimensions,

in particular 3D, and a straightforward implementation in tree data structures. We discussed

in detail theoretical concepts as well as algorithmic and implementation aspects for hierarchical

refinement of B-splines, and presented their extension to NURBS. Using some elementary fluid and

structural analysis problems, we successfully tested hierarchical refinement as a basis for adaptive

NURBS based isogeometric analysis. We found that the method leads to adaptive meshes with

highly localized refinement, and we experienced no mesh propagation away from the areas of

interest. Comparing adaptive hierarchical with standard uniform refinement, we observed that

the computational effort in terms of degrees of freedom is in general reduced about one order of

magnitude at a comparable level of accuracy. We demonstrated that these beneficial characteristics

carry over fully to three-dimensional solid NURBS elements. We therefore believe that hierarchical
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(a) Front view. (b) Bottom-up view.

Figure 50: Von Mises stress in the rim of an automobile wheel.

refinement in this form has great potential to establish itself as an efficient and versatile technique

for local refinement in NURBS based isogeometric analysis.

We also explored the application of hierarchical refinement of B-splines in the framework of im-

mersed boundary analysis. From a range of related methods that combine B-spline approximations

with immersed boundary methods, we chose the B-spline version of the finite cell method, for which

we provided a concise review. In particular, we illustrated that this approach achieves optimal rates

of convergence and is able to yield accurate stress results not only within the domain of interest,

but also directly on the immersed boundary. We then applied the B-spline version of the finite

cell method to a ship propeller and a rim of an automobile wheel, whose geometry description was

given by T-spline surfaces. The examples demonstrated the potential of the immersed boundary

approach for a full automation of the discretization process irrespective of the geometric com-

plexity involved. Furthermore, we showed that hierarchical refinement can considerably increase

the flexibility of immersed boundary methods in terms of adaptive resolution of local features in

geometry and solution fields, while due to its simplicity and straightforward implementation, the

key advantage of automated mesh generation for complex geometries can be fully maintained. We

therefore believe that immersed boundary methods can open the door for a seamless isogeometric

design-through-analysis procedure for complex engineering parts and assemblies.

Nevertheless, considerable work remains to be done. Some particular topics that need to
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be investigated are the performance optimization of adaptive integration schemes, which could

dramatically increase the computational efficiency, the analysis of topology changes and moving

boundaries, for which immersed boundary methods offer potential advantages over ALE-type ap-

proaches, and the introduction of immersed boundary coupling schemes for multiphysics problems.

It will be also necessary to perform careful studies of a variety of immersed boundary and inter-

face problems to determine the resolution requirements of hierarchically refined NURBS to attain

sufficiently accurate quantities of engineering interest. Further comparisons should also be made

between surface-fitted unstructured meshes and immersed T-spline models to determine trade-offs.

In addition, consideration should be given to engineering parts and systems of increased complexity

that are very difficult to mesh in traditional ways. There will always be situations where surface-

fitted three-dimensional meshing is preferable, but we believe that the present developments have

provided a viable alternative pathway for many engineering design and analysis problems.

Acknowledgments. This work was accomplished during a three month visit of Dominik Schillinger

at the Institute of Computational Engineering and Sciences (ICES) in summer 2011, for which

financial support from the Centre of Advanced Computing (MAC) and the International Graduate

School of Science and Engineering (IGSSE) of the Technische Universität München is gratefully

acknowledged.

The ICES team gratefully acknowledges the support of the following research grants and

contracts: ONR Grant N00014-08-1-0992, ARO contract W911NF-10-1-216, NSF GOALI CMI-

0700807/0700204, NSF CMMI-1101007 and a grant from SINTEF. John Evans was partially sup-

ported by a DOE Computational Science Graduate Fellowship provided under grant DE-FG02-

97ER25308, and Michael Scott was partially supported by an ICES CAM Graduate Fellowship.

The authors also acknowledge the Texas Advanced Computing Center (TACC) of the University

of Texas at Austin for providing HPC resources that have contributed to the research results

reported within this paper (URL: http://www.tacc.utexas.edu). The authors also thank Martin

Ruess for his help with the modal analysis of the propeller.

References

[1] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and

mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005; 194:4135–4195.

[2] Kagan P, Fischer A. Integrated mechanically based CAE system using B-spline finite elements. Computer Aided

Design, 2000; 32(8-9):539–552.

[3] Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld R. Analysis-aware modeling: Understanding quality consid-

erations in modeling for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010;

199:335–356.
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