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Abstract

We extend the hp Petrov-Galerkin method with optimal test functions of Demkowicz and Gopalakr-
ishnan to nonlinear 1D Burgers’ and compressible Navier—Stokes equations. With a fully resolved shock
structure, we are able to solve problems with Reynolds number up to Re = 10'° with double precision
arithmetic.
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1 Introduction

For the past half-century, problems in computational fluid dynamics (CFD) have been solved using a mul-
titude of methods, many of which are physically motivated, and thus applicable only to a small number of
problems and geometries. We consider more general methods, whose framework is applicable to different
problems in CFD; however, our specific focus will be on the nonlinear shock problems of compressible aero-
dynamics. Broadly speaking, the most popular general methods include (in historical order) finite difference

methods, finite volume methods, and finite element methods.

For linear problems, finite difference (FD) methods approximate derivatives based on interpolation of
pointwise values of a function. FD methods were popularized first by Lax, who introduced the concepts of

the monotone scheme and numerical flux. For the conservation laws governing compressible aerodynamics,



FD methods approximated the conservation law, using some numerical flux to reconstruct approximations
to the derivative at a point. Finite volume (FV) methods are similar to finite difference methods, but ap-
proximate the integral version of a conservation law as opposed to the differential form. FD and FV have
roughly the same computational cost/complexity; however, the advantage of FV methods over FD is that FV
methods can be used on a much larger class of discretizations than FD methods, which require uniform or

smooth meshes.

For nonlinear shock problems, the solution often exhibits sharp gradients or discontinuities, around
which the solution would develop spurious Gibbs-type oscillations. Several ideas were introduced to deal
with oscillations in the solution near a sharp gradient or shock: artificial viscosity parameters, total variation
diminishing (TVD) schemes, and slope limiters. However, each had their drawbacks, either in terms of
loss of accuracy, dimensional limitations, or problem-specific parameters to be tuned [24]. Harten, Enquist,
Osher and Chakravarthy introduced the essentially non-oscillatory (ENO) scheme in 1987 [17], which was
improved upon with the weighted essentially non-oscillatory (WENO) scheme in [19]. WENO remains a

popular choice today for both finite volume and finite difference schemes.

Well-adapted to elliptic and parabolic PDEs, finite element methods (FEM) gained early acceptance in
engineering mechanics problems, though FEM became popular for the hyperbolic problems of CFD later
than FD and FV methods. Early pioneers of the finite element method for CFD included Zienkiewicz, Oden,
Karniadakis, Hughes [10]. Of special note is the Streamline Upwind Petrov-Galerkin method (SUPG)
of Brooks and Hughes [6], which biases the standard test function by some amount in the direction of
convection. SUPG is still the most popular FEM stabilization method to date.

Discontinuous Galerkin (DG) methods form a subclass of FEM; first introduced by Reed and Hill in
[22], these methods were later analyzed by Cockburn and Shu [11] and have rapidly gained popularity
for CFD problems. Rather than having a continuous basis where the basis function support spans several
element cells, DG opts instead for a discontinuous, piecewise polynomial basis, where, like FV schemes,
a numerical flux facilitates communication between discontinuities (unlike FV methods, however, there is
no need for a reconstruction step). Advantages include easily modified local orders of approximation, easy
adaptivity in both A and p, and efficient parallelizability. Additionally, DG can handle complicated mesh
geometries and boundary conditions more readily than FV or FD methods, and boasts a stronger provable
stability than other methods. However, to maintain this stability in the presence of discontinuities/sharp
gradients would require additional user-tuned stabilizations, such as artificial viscosity or flux/slope limiters
[9].

The Discontinuous Petrov-Galerkin method introduced by Demkowicz and Gopalakrishnan in [13, 14,
15] (DPG), falls under the DG category, but avoids the restrictions and stabilizing parameters of the previous
methods. Inherent in the DPG is not only the flexibility of DG, but a stronger proven stability (in fact,
optimality) without extra stabilizing parameters, even in the presence of sharp gradients or discontinuities.



2 Discontinuous Petrov Galerkin Method

The concept and name of the Discontinuous Petrov Galerkin (DPG) method were introduced by Bottasso,
Micheletti, Sacco and Causin in [4, 5, 7, 8]. The critical idea of optimal test functions computed on the fly
was introduced by Demkowicz and Gopalakrishnan in [13, 14, 15].

In the following paragraphs, we recall the main ideas of the Petrov—Galerkin method with optimal test

functions, and discuss a generalization of it to non-linear problems.

2.1 Petrov-Galerkin Method with Optimal Test Functions

Variational problem and energy norm. Consider an arbitrary abstract variational problem,

{ uelU
@2.1)
b(u,v) =1l(v), YveV

Here U, V are two real Hilbert spaces and b(u, v) is a continuous bilinear formon U x V,
[b(u, v)] < Mjully [[v]lv (2.2)
that satisfies the inf-sup condition

inf  sup |b(u,v)]=:7>0 (2.3)

lullo=1||v||y,=1

A continuous linear functional [ € V' represents the load. If the null space of the adjoint operator,
Voi={veV :buv)=0 YuecU} (2.4)
is non-trivial, the functional [ is assumed to satisfy the compatibility condition:
llv)=0 Yvel 2.5

By the Banach Closed-Range Theorem (see e.g. [21], pp.435,518), problem (2.1) possesses a unique solution
u that depends continuously upon the data — functional /. More precisely,

M
[ulle < —IlUlv (2.6)
Y
If we define an alternative energy (residual) norm equivalent to the original norm on U,

lull g := Sup |b(u, v)| 2.7)
v||=1

both the continuity and the inf-sup constant become equal to one. Recalling that the Riesz operator,

R:V3v—(v)eV (2.8)



is an isometry from V into its dual V', we may characterize the energy norm in an equivalent way as

[ulle = llvullv (2.9)
where v, is the solution of the variational problem,
Uy €V
(2.10)
(Vy, 0V)y = b(u, dv) Yoév eV

with (-, )y denoting the inner product in the test space V.

Optimal test functions. Let U, C U be a finite-dimensional space with a basis e; = ¢;pp,J =
1,..., N = Ny,. For each basis frial function e;, we introduce a corresponding optimal test (basis) function

ej € V that realizes the supremum,

lb(ej, €j)] = sup |b(ej,v)] .11

llvllv=1

i.e. solves the variational problem,
€; € \%4
(2.12)
(€j,0v)y = b(ej,dv) Vov eV

The test space is now defined as the span of the optimal test functions, Vhp :=span{e;,j=1,..., N} C V.

The Petrov-Galerkin discretization of the problem (2.1) with the optimal test functions takes the form:

Upp € U, hp
{ _ (2.13)
b(uhp,vhp) = l(vhp) Vvhp S Vhp
It follows from the construction of the optimal test functions that the discrete inf-sup constant
inf sup  [b(unp, Vhp)| (2.14)
lunpll E=1 ||vp,,||=1
is also equal to one. Consequently, Babuska’s Theorem [2] implies that
||u—uthE < inf Hu—wthE (2.15)

u}hpe hp
i.e., the method delivers the best approximation error in the energy norm.

The construction of optimal test functions implies also that the global stiffness matrix is symmetric and
positive-definite. Indeed,

b(ei, €5) = (&i, €j)v = (&, &)v = blej, &) (2.16)
Once the approximate solution has been obtained, the energy norm of the FE error ey, := u — up, is

determined by solving again the variational problem

Ve, €V
2.17)
(Vep,» 00)v = b(u — upp, 0v) = 1(0v) — b(upy, dv) Vév €V
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We shall call the solution ve,,, to the problem (2.17) the error representation function since we have

lenpll B = lven, Ilv (2.18)

Notice that the energy norm of the error can be computed (approximately, see below) without knowledge of
the exact solution. Indeed, the energy norm of the error is nothing else than a properly defined norm of the

residual.

Approximate optimal test functions. In practice, the optimal test functions €; and the error representation
function ve,, are computed approximately using a sufficiently large “enriched” subspace Vi, C V. The
optimal test space V},, is then a subspace of the enriched test space V},,. For instance, if elements of order p
are used, the enriched test space may involve polynomials of order p + Ap. The approximate optimal test
space forms a proper subspace of the enriched space and should not be confused with the enriched space
itself, though.

2.2 Petrov-Galerkin Method for Nonlinear Problems

While DPG is only directly applicable to linear problems, typical approaches used to solve most nonlinear
partial differential equations involve some form of Newton-Raphson linearization; in other words, instead
of solving a single nonlinear equation, a sequence of linear equations is solved in hope that those solutions

will converge to the solution to the nonlinear problem.

Consider a nonlinear variational problem:

Find u € U such that
(2.19)

b(u,v) =1l(v), YweV
where b(u, v) is linear in v but not u, and [ € V'. By assuming u = uo+ Au, or that u is a small perturbation
of some initial guess for the solution ug, we can linearize form b at ug,

b(u,v) = b(ug + Au,v) = b(ug,v) + by, (Au,v) (2.20)

where bilinear form b,,, (Awu, v) corresponds to the Gateaux derivative of nonlinear operator B associated
with form b(u, v),
B:U—-V' <Buwv>=buv), YveV (2.21)

Replacing the nonlinear form b in (2.19) with approximation (2.20), we obtain a linear variational problem
for the increment Aw,
buy (D, v) = 1(v) — b(ug, v) =: Iy, (v) (2.22)

where both the bilinear form by, (-, -) and right hand side /,,,(v) depend in some way on the initial guess .

If we update our initial guess u; = wug + Awu, we can solve the linearized problem again with u; in

place of ug and, continuing this way, generate a sequence of solutions u,, that converge to the solution to the



nonlinear problem. For most of this paper, we will denote an arbitrary term in this sequence as u, with Au

being an update to the previous Newton-Raphson solution u satisfying
by (Au,v) = ly(v) :=l(v) — b(u,v) (2.23)

where b, (Au,v) depends on the previous solution u.

We can look at the problem using operator notation as well. If B denotes the nonlinear operator (2.21)

coresponding to form b(u, v), the original variational problem can be written in the operator form,
Bu = 1. (2.24)
The linearization of b(u, v) then corresponds to the linearization
B (u+ Au) ~ Bu+ B,Au, (2.25)
where B, is the Gateaux derivative of B at u,
(ByAu,v) = by (Au,v). (2.26)
Given some previous iterate u, our linearized problem in this notation is

B,Au=1— Bu (2.27)

Measuring convergence

Since the Petrov—Galerkin method’s error representation function only measures the error associated with a

given linear problem, we need measures of error for our nonlinear problem as well. Since the residual f,(v)

fu() == b(u,v) — I(v), (2.28)
is a functional in V", it is natural to measure it in the dual norm,
v
[ fu(v)|lvr = sup Fulv) (2.29)
veV ”UHV

Recalling that the Riesz operator is an isometry from V into its dual V’/, we can invert the Riesz operator

and compute the norm of the residual by finding v that satisfies
(vf,,00) = fu(v), VoveV (2.30)

and taking || fullv: = HUfUHV-

Note that for nonlinear problems, given approximate solutions uy;, € Uy, € U, we cannot interprete the

computable nonlinear residual

| Bupp — v = sup = || fun, (V) [lv7 (2.31)
ve



as the (energy) norm of the error ||u — upy|| £ as we could for linear problems.

We are also interested in measuring the norm of our Newton-Raphson update. We have at our disposal

the energy norm (in which PG is optimal) of Aw implied by the linearized problem,

| dull = sup et 0,

(2.32)
veV ||U||V

It’s important to recognize that the meaning of ||Aul|z may be different from what is typically meant by
the size of the Newton-Raphson update. The convergence of Newton-Raphson is usually measured by
computing ||Au|| in some prescribed norm. Unlike typical norms (Lo, Hi, £;,), the energy norm || Aul| g
depends on the accumulated solution u and thus changes from step to step. What ||Au||g does tell us,

however, is when our measure of error in the energy norm stabilizes. When || Auy, || g is small,
lup, (V) = by, (Atipp, v) =2 Ly, (V) = 1(v) — b(upp, v) (2.33)
and our error representation function ey, obeys
(enps 0V)v = Ly, (V) = buy,, (Dtpp, 00) 2 Ly, (0v) = 1(v) — b(upyp, 6v) (2.34)

In other words, as the energy norm of Au becomes small, both the error and the error representation function
for the linearized problem tend towards the residual error and error representation function for the nonlinear

problem.

|[Au — Dupyl|p = ||luhp — Bupy — ByDuppllv = ||luhp — Bupypllyr — || Bulbupp||v (2.35)

Thus, given u, the exact solution to the nonlinear problem, Awu, the exact solution for a linearized
problem, uy,, the discrete approximate solution to the nonlinear problem (accumulated through a series of
Newton-Raphson updates), and Auy,,, the discrete approximate solution to a linear problem, we have three

different quantities with which we can measure convergence:

1. the energy norm of our Newton-Raphson update, || Aup, || £;
2. the discretization error in the energy norm for a given linearized problem ||Au — Aupy|| g;

3. the nonlinear residual ||I(-) — b(u, -)||yv’ = [|Bu — ||y

Note that the energy norm used in the first two quantities depends upon the accumulated solution w.

3 Burgers’ Equation

In order to demonstrate the behavior of DPG, we study first its application to the 1-D viscous Burgers’

equation, which first appeared in 1948 in J.M. Burgers’ model for turbulence [12, 18], where he notes the



relationship between the model theory and shock waves. While Burgers’ model for turbulence seems to
have been forgotten, his equation has become very popular as a test case for computational fluid dynamics

methods.

Burgers’ equation shows a roughly similar structure to the compressible Navier Stokes equations. It is
derivable from the Navier Stokes equations by assuming constant density, pressure, and viscosity, and is
found in other aerodynamical applications as well. Most importantly, it shows typical features of shock-
wave theory: the mathematical structure includes a nonlinear term tending to steepen the wave front and
create shocks, and a higher-order viscous term that regularizes the equation and produces a dissipative effect
on the solution near a shock. On a more physical side, the equation’s solution demonstrates irreversibility

in time, analogous to the irreversible flow of compressible fluids with shock discontinuities.

We consider the following initial boundary-value problem.

;

Find u(z,t) such that

ou  Pu 0 (1,
(%_66952+<935<2u ) =0
u(—3,t) =1, u(}, 1) = -1

(3.36)

u(z,0) = =2z

\

It is known for the inviscid case that after a finite time (¢ = %) the solution forms a shock at x = 0 [12].
The viscous solution behaves similarly, forming a smeared shock and eventually reaching its steady-state

governed by the following nonlinear boundary-value problem.

Find u(z) such that

2
_Fu 4 <1u2) _0 (3.37)

3.1 Sensitivity with respect to boundary condition data

We can use separation of variables to find the steady-state solution. Integrating the Burgers equation in z,

we get

du 1 5

Based on the expected form of the solution, we assume that the integration constant is positive, C' = %02, c>

0. This leads to separation of variables

2e du
— =dx
w2 — 2
and, upon integration,
€. |lu—c
—In =zx—d
c U+ c




€ d Auq Ausg
0.100 | -0.25 | -0.151716360042487E-000 | -1.105557273847199E-003
0.100 | 0.00 | -1.338570184856971E-002 | -1.338570184856971E-002
0.100 | 0.25 | -1.105557273847199E-003 | -0.151716360042487E-000
0.010 | -0.25 | -2.777588772954229E-011 | -5.357273923616156E-033
0.010 | 0.00 | -3.857499695927836E-022 | -3.857499695927836E-022
0.010 | 0.25 | -5.357273923616156E-033 | -2.777588772954229E-011
0.001 | -0.25 | -5.338380431082553E-109 | 0.000000000000000E+000
0.001 | 0.00 | -1.424915281348257E-217 | -1.424915281348257E-217
0.001 | 0.25 | 0.000000000000000E+000 | -5.338380431082553E-109

Table 1: Perturbation of the boundary conditions data for ¢ = 1 and various values of € and d.

where d is another integration constant. Assuming that the solution is decreasing, we obtain,

U _ )
c+u
Constant ¢ can now be interpreted now as the value of the (extension of the) solution at xt = —oo (—c is the

value at co0), and constant d determines the location of the shock, i.e. the point where u vanishes.

We assume now a possible slight perturbation of the boundary conditions,

1 1
u<—2):u1%1, u<2>:—u2z—1

Rather than attempting to determine the integration constants ¢, d in terms of boundary data uj,uz, we

represent u, uo in terms of ¢, d instead,

_ -5 __—c(1/2+d)
ul_cl—i—ﬁ’ B=e

11—y _—c(1/2-d)
u2_cl+"}/, =€

Table 1 shows the perturbations of w1, us from 1, for ¢ = 1, ¢ = 0.1,0.01,0.001, and d = 0, —0.25,0.25.
Starting with e = 0.001, the perturbations of the boundary data are beyond the machine precision.

Thus, for all practical purposes, we are attempting to solve numerically a problem with multiple solu-
tions. Without introducing an additional mechanism for selecting the solution with shock at x = 0, we have

little chance to converge to the “right” solution with the Newton-Raphson iterations.

3.2 Shock width

While the solution of the inviscid Burgers equation manifests a shock in the form of a discontinuous solu-
tion, the addition of viscosity “smears” the discontinuity, resulting in a continuous solution displaying high

gradients near the shock.



Let ur, and up represent the values of the solution at the left and right boundaries, respectively, and
assume the inviscid solution’s discontinuity lies directly in the middle of the interval, at x = z*. We can
then study the smearing effect of the viscosity on the shock by examining the shock width d,, defined to be
the distance in = that the maximum slope of u (which we can assume occurs at z = 0, the midpoint of our

interval) takes to traverse the difference between vy, and upg,

5, = LR UL (3.38)
u'(z*)
The exact solution to the viscous Burgers equation on (—oo, 00) is given in [3] as
urexp |(“5E) ] +ur
u(z) = [ELL_QuR ) 1] (3.39)
exp [(Hgh) @] + 1
If we use this, we can see that the shock width for Burgers equation is
8
o= —r (3.40)
UL, — UR
If we assume uy;, = 1, up = —1, the shock width just reduces to §; = 4v.
3.3 The DPG Method for Burgers’ Equation
Recall that the stationary Burgers’ equation on [0, 1] is !
1/2(u?) 2 = (vuz) o (3.41)
For boundary conditions «(0) = 1 and u(1) = —1, the solution to this equation develops shocks whose

width depends on v.

We begin by rewriting Burgers’ equation as a system of first order equations,

1

;U—U@:O

Given an element K with boundary 0 K, we multiply the equations with test functions 7 and v, integrate

over K, and integrate by parts to arrive at the variational form of the equations,

1
UTaK+AVJT+UT7z =0

U2 ’LL2
ov—|—|wv —1—/—01)1—&- — v, =0
2 6K K ’ 2 ’

'For convenience, we shift coordinates to (0, 1) when solving the problem numerically.
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After linearization, we obtain the variational formulation for the linearized equations,

1 1
—AoT — A’&T‘Ik-‘—l + AUTI = - —0T + ?l7'|xk+1 - UT g
KV Tk K ’ KV Tl K s
Boufe - @0 oz + [ (ubuBou, = — (6@ + [ (o2,
K K

Fluxes @ and 6 and their increments A« and A&, are identified as independent unknowns.

3.3.1 Test space

For our test functions, we use the scaled H; inner product introduced in [15]

(v, 0v) = /xk (v'60" 4 vév) a(z)da (3.42)

Tr—1

where a(z) is some scaling parameter. In our case, we let a(x) be equal to

x/xr, x < zp
ar) =< 1—z/zpg, T > TR (3.43)
1, otherwise

in order to de-emphasize the error measure near the boundaries, where we expect the solution to vary very

little. In the presented numerical experiments, we set x;, = .1 and xp = .9.

3.3.2 Adaptive strategy

When adapting and iterating Newton-Raphson at the same time, there is a choice to be made in whether to
adapt the mesh first and then perform Newton-Raphson iterations, or to do Newton-Raphson until converged,
and then adapt.

1 NR Step 1 mesh refinement

many mesh
refinements

VS many NR

iterations

(inner) (outer)
Figure 1: Inner vs. outer ordering of Newton-Raphson and adaptivity
This choice actually corresponds to the order in which we discretize/linearize. The linearization process

can be done in two ways; we can consider discretizing the nonlinear equations first, then linearizing the
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‘ Nonlinear Linearized

Continuous Bu=1 = B,Au=1— Bu
U J
Discrete Brpunp =lpp = Bu,,Aupp = lpp — Bup,

Figure 2: Two different ways to arrive at a discrete linearized problem using operator notation.

nonlinear discrete problem, or linearizing the continuous problem first, then discretizing the continuous

linearized problem.

Fig. 3 shows how reversing these two forms of linearization corresponds to our two choices concerning
the order of the adaptivity and Newton-Raphson loops. Doing Newton-Raphson on the outside and adap-
tivity on the inside (Fig. 3(a)) is equivalent to solving each continuous linearized problem “exactly” (in the

sense of minimizing discretization error).

Alternatively, doing adaptivity on the outside and Newton-Raphson on the inside (Fig. 3(b)) corresponds
to refining on the nonlinear problem. This approach uses discrete linearized solutions to approximate the
nonlinear discrete solution; essentially solving the nonlinear problem “exactly” on a fixed/given mesh (in
the sense of minimizing || Al g).

Bu=1 <« B,Au=1— Bu Bu=1
T T
BuhpAuhp = lhp — Buhp Bhpuhp = lhp = BuhpAuhp = lhp — Buhp
(a) Inner adaptivity, outer Newton-Raphson (b) Inner Newton-Raphson, outer adaptivity

Figure 3: Inner vs. outer ordering of Newton-Raphson and adaptivity

Motivation for the former ordering comes in part from the stability of DPG; since DPG is proven to
provide optimality for the linear problem, it is possible to completely resolve each linearized step. Numerical
experiments with Burgers’ equation on fixed meshes also showed that Newton-Raphson tended to stabilize
(|| Aul|g =~ 0) fastest when the element size was smaller than the shock width—in other words, when the
mesh could resolve the shock. Another motivation is the dependence of the energy norm on the previous
solution u; since this is the norm in which the solution is optimal, it is likely that resolving the previous

solution more closely could eliminate the effect of discretization error upon the norm.

However, in practice, the cost of resolving each linearized problem makes the process of converging to
the nonlinear solution much more expensive. Extra refinements are done in order to resolve the intermediate
Newton-Raphson iterates but are unnecessary to represent the final shock solution. The obvious solution
would be to implement unrefinements, but there will be some information accumulated from previous it-
erates lost in this process. Another drawback to resolving each linearized solution is that the degrees of
freedom (dofs) needed to resolve an intermediate Newton-Raphson step may be greater than the total de-
grees of freedom needed to support the final converged solution. For this paper, we implement refinements

using a Newton-Raphson loop on the inside and adaptivity on the outside.

12



3.3.3 hp-adaptive strategy

The previous papers used a so called “poor man’s greedy hp algorithm” summarized below to guide the
mesh refinements.
The strategy reflects old experiments with boundary layers [16], and the rigorous approximability results of

Set 6§=0.5
do while § > 0.1
solve the problem on the current mesh
for each element K in the mesh
compute element error contribution eg
end of loop through elements
for each element K in the mesh
if ex > 0°maxyx ex then
if new h>¢€ then
h-refine the element
elseif new p < Pmars then
p—-refine the element
endif
endif
end of loop through elements
if (new Ngof = old Ngof) reset 6=09/2
end of loop through mesh refinements

Figure 4: “Poor-man’s” hp-adaptivity for shock problems.

Schwab and Suri [23] and Melenk [20] on optimal hp discretizations of boundary layers: we proceed with

h-refinements until the diffusion scale € is reached and then continue with p-refinements.

For nonlinear problems, we adopt the same algorithm, but interpret the line “solve the problem on the
current mesh” as solving the nonlinear problem for that given mesh. In other words, we iterate Newton-
Raphson on that mesh until || Au/| g is smaller than a certain tolerance, and we consider that the solution of
the nonlinear problem. Note that for a solution converged in Newton-Raphson, since on the K'th element
both the nonlinear residual ||I(-) — b(upyp, -)||y+ and the error || Au — Aup, || g are equivalent to the element
error ex, using the error to guide refinements should decrease the nonlinear residual and take us closer to

the exact solution v of the nonlinear problem.

With this, our strategy for inner loop Newton-Raphson and outer loop adaptivity is

13



do while ||Bu—I|y' > ¢
do while |[Au|g > tol
solve by(Au,v) =1(v) — b(u,v)
update u:=u+ Au
end of Newton—-Raphson loop
do one hp refinement using the "poor man" algorithm
end of refinement loop

Figure 5: Inner Newton-Raphson refinement algorithm.

3.4 Numerical results

3.4.1 Viscous Burgers

Using outer adaptivity with inner Newton-Raphson (so that refinements are only placed after a solution’s
Newton-Raphson iterates have converged on a given mesh) coupled with our “poor-man’s” hp-adaptive

strategy, we apply DPG to the viscous Burgers’ equation.

Figure 6: Burgers equation with v = 1072 and initial mesh of 2 elements. Solution after nine refinements,
with [[Aul|p = 1.28 x 1073 and nonlinear residual error of 2.33 x 107F.

For an illustration of how inner Newton-Raphson/outer adaptivity behaves, we examine how both || Au|| g

and the nonlinear residual error change as we iterate Newton-Raphson and add refinements.

The error plots in Fig. 7, Fig. 8, and Fig. 9 show the progression of both ||Au||g and the nonlinear
residual error with Newton-Raphson iterates. The circled points are iterates of Newton-Raphson where
|| Aul is smaller than a given tolerance and, at the next point, a refinement is done. ||Au| g decreases until

a refinement is done, at which point both the residual and || Aul|| g change again.
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Figure 7: Burgers’ equation error plots for v = 102

The increase in both ||Au| g and the nonlinear residual after a refinement actually comes in two parts.
During refinement, an element is broken into two new elements. The previous solution u over the origi-
nal unbroken element is reproduced using the degrees of freedom on the two new elements; however, the
previous solution’s flux at the boundary between the two new elements remains to be initialized. In this
paper, we’ve simply set those values equal to the pointwise values of the solutions on the original element.

However, it turns out that this change in itself causes the nonlinear residual to change.

We examine the simplest case of a pure convection problem to illustrate the point. Suppose we wish to
solve the initial-value problem,

u' =0, u(0)=ug (3.44)
with the corresponding variational form,
zj
/ NERT >
—/ ' + uv]xj__l =0, (3.45)
Tj—1

over the jth element. For such an element in the interior, where the source is 0, we have that the error

representation function v satisfies

5 zj

/ V'6v + vdv = / udv' — advly? (3.46)
Tj—1 Tj—1 J
By integrating by parts again, we can retrieve the classical problem corresponding to the above variational
problem.

" +v =

v'(zg) = ulz;) — dz) (3.47)
—v'(zj-1) = d(zj-1) —u(z;)



Now, assuming the element is broken at z;_; /o, we aim to assign the flux U(wj_q /2) such that the error
representation function is the same as before being broken. In other words, we seek to assign @(x;_y /2)
such that the new error representation functions on [z;_1,2;_1 /2] and [2;_; 2, ;] are identical to the error

representation function over [x;_1, ;).

The error representation function over [z;_1,7;_1 /o] satisfies

Tj_1/2 Tj—1/2 .
/ TS+ wde = / T s - adv|y) ") (3.48)
Tj—1 Tj—1
If we integrate by parts over [z;_1,2;_; /2], we can recover the classical problem
—"4+v =—u
V(zj12) = u(xj_1/2) — W(Tj_1/2) (3.49)
—v'(zj—1) = d(zj-1) — u(zj-1)

Doing the same over [x;_; /9, 7;], we get

" +v ==
—U,(Cﬁjﬂ/z) = ﬁ(l’jfl/z) - U(Cﬂjﬂ/z) (3.50)
v'(x;) = alz;) — u(z))
implying that
fL(I’j,l/Q) = U(.Z'j,l/Q) — v'(xj,l/z) (351)

and leaving us with the non-intuitive result that, in order to keep the error the same, the flux at a new
element boundary must be initialized using not only the field variable within the element, but the derivative
of the error function as well. Thus, initializing the flux any other way may change the error. An analogous
lesson holds for nonlinear problems; initializing the previous solution flux just using pointwise values of the
solution means that the nonlinear residual can change. The jump in nonlinear residual after a refinement
actually happens in between one Newton-Raphson solve and the next through our process of assigning the

flux for a refined element.

Notice in Fig. 9 (for v = 1le — 4) that between the 70th and 80th Newton-Raphson solve,

longer decreases monotonically between refinements near the end, and instead oscillates before decreasing.

Aul|g no

We believe that this is a consequence of the sensitivity to boundary conditions exhibited by Burgers’ equation

that was discussed earlier.

3.4.2 Smaller shock widths

Due to issues with conditioning of the stiffness matrix (which in turn are due to large gradients in the solution

for small shock widths), we follow [15] and introduce a mesh-dependent norm

(v,0v) = /Ik (hv'60" + vov) a(z)da (3.52)

k—1
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Figure 8: Burgers’ equation error plots for v = 1073
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Figure 9: Burgers’ equation error plots for v = 10~4

where hy, is the kth element size. This allows us to resolve shocks for v as small as 10711,

Unfortunately, for v smaller than 10~#, we begin to see effects from Burgers’ problem sensitivity to
boundary conditions; as we resolve the shock more fully, the size of the Newton step ||Au|| g begins to
oscillate, indicating the solution is, at least to double precision arithmetic, non-unique. Thus, it is no longer
meaningful to talk about convergence to a solution. Even if ||Au||g and the nonlinear residual are both
small in one Newton-Raphson step, taking another Newton-Raphson step may introduce enough floating

point error to cause || Au|| g and the nonlinear residual to change drastically.

As with convection-dominated diffusion, we see in Fig. 11(b) when our diffusion parameter is O(10711)

that our error function becomes discontinuous. Since the error function was proven to be continuous in [15],
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Figure 10: Zoomed out Burgers’ equation solution u for v = 10711

(a) Zoomed in u for v = 10~

gyl
\)

(b) Zoomed in error function for »r = 107!'. The
discontinuity indicates that finite precision arithmetic is
starting to affect our solution.

this gives some indication that » = 107!! is the smallest resolvable shock width using double precision

arithmetic.

3.4.3 Inviscid Burgers

The inviscid Burgers equation is given as

1/2(u?) 2

18
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(3.53)



The linearized variational form is then

2]

2

—/ uAuvm:/ 1/2(u?)v,
oK JK K

where the §[u?v] term is identified as a new flux unknown.

Unlike the viscous Burgers equation, the inviscid case is a first order system, without a higher order
viscous term to smooth out a shock, so the solution exhibits a discontinuity. We tested DPG on the inviscid
Burgers’ equation to see how it would handle actual discontinuities, which can develop even in the case of
the full Navier-Stokes equations?.

036 0s6]

000 000

2 -1
000 0.5 050 075 000 0.5 050 015

(c) First Newton-Raphson iterate (d) Second Newton-Raphson iterate

Figure 11: First and second Newton-Raphson iterates for inviscid Burgers

DPG handles the discontinuity very well, converging with both nonlinear error and ||Aul||g to under
machine precision in 6 Newton-Raphson iterates.

We converge to an exact solution, a step function from [—1, 1] with the discontinuity located in the
middle. The steady-state inviscid Burgers’ equation has infinitely many solutions, and the location of the
shock very sensitive to the initial data. With an even number of elements and the interval mid-point exactly
at an element boundary, DPG seems to perform well.

Unfortunately, we note that in 1D, the mesh makes achieving the exact solution almost trivial. For an
even number of elements, the discontinuity lies right at the boundary between two elements, while for an
odd number of elements, a single refinement to the middle element will put an element boundary right at
the discontinuity as well. For uniform refinements of initial meshes with odd numbers of elements, we can
see in Fig. 13 that the overshoot and undershoot near x = 1/2 is localized to one element. We plan to study
higher dimensional discontinuous solutions, where more complex shock structures make it much less likely
that shocks will lie exactly on element boundaries.

2Contact discontinuities.
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Figure 12: The fifth NR iterate. Both ||Au|| g and nonlinear error are 8.223 x 10711

4 Navier-Stokes

4.1 Stationary Shock Formulation

We consider the compressible Navier-Stokes equations on a stationary, one-dimensional shock.® Under the
assumption that the fluid is inviscid, the Euler equations admit a discontinuous (shock) solution. However, a
consequence of the second law of thermodynamics is that no fluid is entirely inviscid; with viscous effects,

we expect to see graphs with large gradients and a “smeared” shock.

4.1.1 Physical Assumptions

Our derivation makes the following physical assumptions:

the system is steady,

the only contributions to energy are mechanical and thermal energy,

Fourier’s law of heat conduction (with constant ) % = —/ﬁ?% applies,

the fluid is a perfect gas—that is, p = pRT, and

the fluid is Newtonian; 7yisc = (2 + A) %, where 1 and )\ are temperature-dependent fluid and bulk

viscosity terms.

3We use a moving reference in which the shock is stationary.
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Figure 13: Converged solutions for inviscid Burgers on meshes with odd numbers of elements.

4.1.2 Boundary Conditions

To determine appropriate boundary conditions for our problem, we consider the system as inviscid—the
Navier-Stokes equations then reduce to the Euler equations. The result is a set of conditions known as the
normal shock conditions (also known as the Rankine-Hugoniot jump conditions). Together with the perfect

gas law and the shock strength equation ([1], p.90), we then have the following relations:
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Palla = PpUp

paug +Pa = pbug + Dy
b
Palla <Ea + pa) = PoUp <Eb + p>
Pa Po
U2
p= (/7 - 1)pEthermal = (7 - 1)p <E - 2>
1
ul = 1+ r+1 (pb - 1>
2y Pa

where + is the ratio of specific heats, and subscripts a and b denote values of the corresponding quantities at

the endpoints of the interval (a, b) in which the problem is formulated.

We then fix the values of p, (density at the left end) and u, (the Mach number we would like to impose

on the left), and determine the following formulas:

Pa
Pa = —
~y
2y 4
= 1 -1
Py pa( +7+1(ua ))
=D+ O+
ST GRS
_ Palaq
up =
Pb
E — u7621,+ pa
¢ 2 (v = 1)pa
2
U Py
Eb = 7b_'_
2 (v=Dp

As we will see, once we have derived the linearized variational form, there is a small subtlety in imposing

these boundary conditions using the DPG method, because DPG applies boundary conditions to the fluxes.

4.1.3 Basic Equations

We begin with the non-dimensionalized Navier-Stokes equations in 1D over x € [0, 1], choosing density p,
velocity v and total energy e for unknowns. Assuming steady-state, a Newtonian fluid, Fourier’s law, and

constant Prandtl number, the conservation equations are

(pu),ac =0
(pu2),x + (p),a: - é( ),x =0
(peU)’x " Re Pr(lfy -1) ( (T)J*’) T (pu)ﬂf - é(Tu),a: =0



with constitutive equations

T
p="

v
T=02u+N)(u)z

Rewriting this as a system of five first-order equations, we obtain:

and, if we define the fluxes f; as

fi1(1@) =0
fo(t)z =0
f3(@),z =0
T— fa(t) o =0
w— f5(d) =0
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4.1.4 Variational Formulation

After multiplying by test functions v1, . . . , v5 and integrating by parts, we arrive at our nonlinear variational
form
f — 1)v1 2 =0 \Z
froal,o = [ At u
; —~ D)va,p =0 v
faoa| /K fo(@)v2z vy
. - @)v3z = 0 \
f3vs oK /K f3(@)vs o v3
- f4v4‘ +/ TUg + fa(W)vae =0 Yoy
0K K
— f51)4 + / wvs + f5(l_[)v57$ =0 Vs
oK K

where boundary fluxes fz have been identified as new unknowns.

4.1.5 Linearization
If we linearize both f; and fz and rearrange terms, we get
Afiv —/ Afwm:/ fvre — fivt
oK K K
A fovy —/ Afwz,x:/ fovae — fovs
0K K K
A favs —/ Af3v3,1‘:/ favs,e — favs
oK K K

- Afﬂ/K’aK + /K ATvg+ Afyvy e = ]F4UK‘6K - /K?vz; + fava

—AA‘JF/A +A :A‘—/-i-
fsvi o T wus f5U52 = f5vK ok va5 f5U5.2
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where our flux updates A f; are

Afy =Apu+ Aup

A fy =20utip 4+ Apa? — 1 Ar
Re
’L_L2

a - .
Afs =(Apu+ Aup) e + pulle RePrAw
2

+(v—-1) [ﬁa (Ae — Aua) + (pAu+ ul\p) ( — 1;)]

1

— — (Atu+ Aut

Re( TU + AuT)
Afy =vAu

Afs =(n(be — Lua)

and our accumulated Newton-Raphson fluxes f; are
fr =pu
fo=pu® + (v — 1) (p [e— U;D —é?
fs =pue — ﬁw +(y = 1)p <é - a2> ~ra

fa=vu

_ 2
fs = (6— 2)

4.2 Implementation Notes

4.2.1 Enforcing boundary conditions

Since our boundary conditions are enforced on the linearized problem, we can only enforce the Rankine-

Hugoniot normal shock conditions on u indirectly by enforcing boundary conditions on Aw.

If we examine the fluxes f; that depend on our previous solution, we can see that fi,f4, and f5 only
depend on p, u, and e, whose boundary values are determined by the normal shock conditions. Setting

u(0) = uq equal to the Mach number Ma and p(0) = p, = 1, we can determine py,,up, €, and ep.
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We set our initial guesses for p, u, and e such that

and use those values to determine the values of the fluxes fl, f4, and f5 at the boundaries. Then, by
setting the fluxes of our Newton-Raphson update Aw at the boundaries equal to zero, we enforce that each

accumulated solution u + Aw satisfies our normal shock conditions.

4.2.2 Line Search

Our early implementations of the solver used an unweighted Newton-Raphson step, such that our update
looked like
u=u+ Au

Since intermediate Newton-Raphson solutions showed significant undershoots and overshoots, our solution
variables often displayed non-physical values, such as negative density or internal energy. In these cases,

Newton-Raphson would often fail to converge. To avoid this, we used a weighted Newton-Raphson step,
u:i=1u+ alu

where we allowed « to vary depending on « and Auw.

Set a=1.
Set constraintFlag = 0.
do while constraintFlag = 0
Set «a:=a/2
if p and thermal energy >0
constraintFlag = 1
end of if loop
end of while loop

Figure 14: Simple line search algorithm for determining Newton-Raphson step size a.

To select o, we used a simple line search algorithm, summarized in Fig. 14. Whenever the sum of
Au and the previous solution v would take on non-physical values (our constraint), we would divide the
Newton-Raphson step by two. If the new Newton-Raphson step still causes the solution to take on non-

physical values, we divide again by two, repeating until v + a/Aw is physical.
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4.2.3 Adaptivity

9.9

As described above, we use the “poor-man’s” hp-adaptivity scheme described in Fig. 4 that refines in A until
the smallest element width is smaller than the shock width, after which it refines in p. The shock width for

our stationary shock solution is given by

5. — 1
® Re(M —1)2
In practice, we found
5. — 8
* 7 Re(M —1)2

to be a more effective measure of the shock width.

4.3 Numerical Results

We note that, since Burgers is derived from Navier-Stokes, the numerical sensitivity of the boundary condi-

tions for Burgers also affects solutions for Navier-Stokes.

4.3.1 Low Reynolds numbers

For the calculations in this section, we’ve used the weighted, mesh-independent inner product mentioned

earlier

(v,0v) = /xk (v'60" + vév) a(z)da

Tp—1
We again use our inner Newton-Raphson refinement scheme described in Fig. 5. Fig. 4.3.1 and Fig. 4.3.1
are plots of the solution for Re = 10 and Ma = 2.

Note that our adaptivity scheme uses a single mesh for all solution variables; hence, refinement is guided

by the combined error over all solution components.

In the error plots in Fig. 17 and Fig. 18, we note similarities to the error plots for Burgers’ equation; both
exhibit similar jumps of || Au|| g and the nonlinear residual at refinements, and for both, the error decreases

monotonically as a function of degrees of freedom.

4.3.2 Results for higher Reynolds numbers

For higher Reynolds numbers, we use a mesh-dependent weighted inner product which improves the condi-

tioning of the stiffness matrix when there are large gradients in the solution.

Tk
(v,0v) = / (hv'60" + vov) az)da

k-1

where h;, is the kth element size.
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Figure 15: p, u, and e for Re = 10? and Ma = 2 after 10 refinements with an initial mesh of 8 quadratic
elements, with ||Aul|g = 6.349 x 107! and nonlinear residual 7.9776 x 10~1°.

Fig. 19 shows the zoomed-out velocity u after a certain number of refinements. Qualitatively, the other
solution variables look similar, and at this length scale, these solutions give little information. Zooming in
near the shock for a finer resolution of the solutions shows that the shock is in fact a smooth function, and

resembles qualitatively the solutions obtained for lower Reynolds numbers.

Due to the sensitivity of the solution to boundary conditions, after the mesh is refined to the point of
begins to oscillate between refinements instead of decreasing monotonically. The result is similar to what

being able to resolve the shock width, the shock location tends to shift around. As a consequence,

we observed with Burgers’ equation—convergence to a particular solution doesn’t make sense in light of a

numerically non-unique solution.
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Figure 16: Viscous stress 7 and heat flux w for Re = 102 and Ma = 2 after 10 refinements.
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Figure 17: Navier-Stokes error plots for Re = 10? and Ma = 2, with ||Au|| = 6.34923 x 107! and
nonlinear residual 7.977 x 10710,

5 Conclusions and Further work

We’ve formulated a methodology for applying DPG to nonlinear problems, including a strategy for doing
hp-refinements with Newton-Raphson iterates. We’ve also introduced measures of convergence for the

nonlinear problem (|| Aul|| g and the nonlinear residual).

For modest shock widths, numerical experiments have shown monotonic decrease of the nonlinear resid-
ual as the number of degrees of freedom increase. While we haven’t been able to drive our nonlinear residual
to machine zero for very small shock widths (due to sensitivity of the Burgers’ and Navier-Stokes equations
to perturbations in the boundary conditions), we believe that the problems are simply artifacts of the 1D test

problems we’ve chosen.
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Figure 18: Navier-Stokes error plots for Re = 10% and Ma = 2, with |Au|| = 3.02496 x 10~!! and
nonlinear residual 3.8336 x 10710,
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Figure 19: Zoomed out u for Re = 10'° and Ma = 2.

We hope to study alternative strategies for doing hp-refinements in context of a Newton-Raphson lin-
earization. Theoretically, we hope to be able to prove the well-posedness of our nonlinear variational prob-
lems. Future work also includes applying these methodologies to 2D shock problems in fluid dynamics,
by first studying DPG’s behavior on reduced problems (Burgers’ equation, incompressible Euler equations,
the Stokes equation), then by implementing DPG for the isentropic Navier-Stokes, from which we hope to

move on to the full 2D compressible Navier-Stokes equations.
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Figure 21: Zoomed in viscous stress 7 and heat flux w for Re = 10'° and Ma = 2.

31



References

[1] J.D. Anderson. Modern Compressible Flow With Historical Perspective. McGraw—Hill, Boston, 3rd
edition, 2004.

[2] 1. Babuska. Error-bounds for finite element method. Numer. Math, 16, 1970/1971.

[3] Garrett E. Barter. Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-
Order Discontinuous Galerkin Finite Element Method. PhD thesis in Aeronautics and Astronautics,
Massachusetts Institute of Technology, 2008.

[4] C.L. Bottasso, S. Micheletti, and R. Sacco. The discontinuous Petrov-Galerkin method for elliptic
problems. Comput. Methods Appl. Mech. Engrg., 191:3391-3409, 2002.

[5] C.L. Bottasso, S. Micheletti, and R. Sacco. A multiscale formulation of the discontinuous Petrov-
Galerkin method for advective-diffusive problems. Comput. Methods Appl. Mech. Engrg., 194:2819—
2838, 2005.

[6] A. N. Brooks and T. J. R. Hughes. Streamline upwind/petrov-galerkin formulations for convection
dominated flows with particular emphasis on the incompressible navier-stokes equations. Computer
Methods in Applied Mechanics and Engineering, 32(1-3):199-259, 1982.

[7] P. Causin and R. Sacco. A discontinuous Petrov-Galerkin method with Lagrangian multipliers for
second order elliptic problems. SIAM J. Numer. Anal., 43, 2005.

[8] P.Causin, R. Sacco, and C.L. Bottasso. Flux-upwind stabilization of the discontinuous Petrov-Galerkin
formulation with Lagrange multipliers for advection-diffusion problems. M2AN Math. Model. Numer.
Anal., 39:1087-1114, 2005.

[9] Juan Cheng and Chi-Wang Shu. High order schemes for cfd: a review. Technical report, Brown
University, 2009.

[10] T.J. Chung. Computational Fluid Dynamics. Cambridge University Press, 1st edition edition, 2002.

[11] B. Cockburn and C. W. Shu. The runge kutta discontinuous galerkin method for conservation laws v
multidimensional systems. Journal of Comp. Phys., 141(2):199-224, 1998.

[12] J. D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quarterly of Appl. Math.,
9(3):225-236, 1951.

[13] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part I: The
transport equation. Comput. Methods Appl. Mech. Engrg., 2009. accepted, see also ICES Report
2009-12.

32



[14] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part II:
Optimal test functions. Technical Report 16, ICES, 2009. Numer. Meth. Part. D. E., in review.

[15] L. Demkowicz, J. Gopalakrishnan, and A. Niemi. A class of discontinuous Petrov-Galerkin methods.
Part III: Adaptivity. Technical Report 1, ICES, 2010.

[16] L. Demkowicz, J.T. Oden, and R. Rachowicz. A new finite element method for solving compressible
Navier-Stokes equations based on an operator splitting method and hp adaptivity. Comput. Methods
Appl. Mech. Engrg., 84:275-326, 1990.

[17] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high-order accurate non-oscillatory
schemes. SIAM Journal on Numerical Analysis, 24(1):279-309, 1987.

[18] Eberhard Hopf. The partial differential equation u; + uu, = pug,. Comm. Pure and Appl. Math.,
3:201-230, 1950.

[19] X.D. Liu, S. Osher, and T. Chan. Weighted essentially nonoscillatory schemes. Journal of Comp.
Phys., 115:200-212, 1994.

[20] J.M. Melenk. hp-Finite Element Methods for Singular Perturbations. Springer, Berlin, 2002.

[21] J.T. Oden and L.F. Demkowicz. Applied Functional Analysis for Science and Engineering. Chapman
& Hall/CRC Press, Boca Raton, 2010. Second edition.

[22] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Technical
Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[23] C.Schwab and M. Suri. The p and hp versions of the finite element method for problems with boundary
layers. Math. Comput., 65(216):1403—-1429, 1996.

[24] C. W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic

conservation laws. Lecture notes, Brown University.

33



