
PerfExpert: An Automated HPC Performance
Measurement and Analysis Tool with Optimization

Recommendations

Martin Burtscher, Byoung-Do Kim, Jeff Diamond,
John McCalpin, Lars Koesterke, and James Browne

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

by

ICES REPORT 10-04

February 2010

1

PerfExpert: An Automated HPC Performance Measurement
and Analysis Tool with Optimization Recommendations

Martin Burtscher1, Byoung-Do Kim2, Jeff Diamond3, John McCalpin2, Lars Koesterke2, and
James Browne3

1Institute for Computational Engineering and Sciences, The University of Texas at Austin
2Texas Advanced Computing Center, The University of Texas at Austin

3Department of Computer Science, The University of Texas at Austin

ABSTRACT
HPC systems are notorious for operating at a small fraction of
their peak performance, and the ongoing migration to multi-core
and multi-socket compute nodes further increases the already high
complexity of performance optimization. The readily available
performance evaluation tools require considerable effort to learn
and utilize. Hence, most HPC application writers do not use them.

As remedy, we have developed PerfExpert, a tool that combines a
simple user interface with a sophisticated engine to automatically
detect probable core, socket, and node-level performance bottle-
necks in each important procedure and loop. For each bottleneck,
PerfExpert provides a concise performance assessment and sug-
gests steps that can be taken by the application developer to im-
prove performance. These steps include optimization strategies,
code examples, and compiler switches.

We have applied PerfExpert to several HPC production codes on
Ranger. In all cases, it automatically identified the critical code
sections and provided accurate assessments of their performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques.

General Terms
Measurement, Performance, Experimentation.

Keywords
Automatic performance evaluation, performance metrics, multi-
core performance, HPC systems.

1. INTRODUCTION
Most HPC applications attain only a small fraction of the potential
performance on modern supercomputers. Emerging multi-core
and multi-socket cluster nodes greatly increase the already high
dimensionality and complexity of performance optimization. Per-
formance optimization requires not only identification of code
segments that are performance bottlenecks but also characteriza-
tion of the causes of the bottlenecks and determination of code
restructurings that will improve performance. While identification
of code segments that may be performance bottlenecks can be
accomplished with simple timers, characterization of the cause of
the bottleneck requires more sophisticated measurements such as
the use of hardware performance counters. Most modern high-end
microprocessors contain multiple performance counters that can
each be programmed to count one out of hundreds of events [4].
Many of these events have cryptic descriptions that only computer
architects understand, making it quite difficult to determine the
right combination of events to track down a performance bottle-
neck. Moreover, interpretation of performance counter results can
often only be accomplished with detailed architectural knowledge.
For example, on Opteron CPUs, L1 cache miss counts exclude

misses to lines that have already been requested but are not yet in
the cache, which may make it appear as though there is no prob-
lem with memory accesses even when memory accesses are the
primary bottleneck. Diagnosing performance problems thus re-
quires in-depth knowledge of the core, chip, and node architec-
ture, system software, and compiler. However, most HPC applica-
tion writers are domain experts who are not and should not have
to be familiar with the architectural intricacies of each system on
which they want to run their code.

There are several widely available performance measurement
tools, including HPCToolkit [24], Tau [22], Open|SpeedShop [17]
and PAPI [18], that can be used to obtain performance counter
measurements. Such tools generally provide little guidance for
selecting which measurements to make or how to interpret the
resulting counter values. Hence, designing and making sense of
the measurements requires considerable architectural knowledge,
which changes from system to system. None of these tools pro-
vide guidance on how to restructure code segments to alleviate
bottlenecks once they have been identified. Thus, these tools pro-
vide only a part, albeit an essential part, of the solution. As a re-
sult, characterizing and minimizing performance bottlenecks on
multicore HPC systems with today’s performance tools is an ef-
fort-intensive and difficult task for most application developers1.

To make performance optimization more accessible to application
developers and users, we have designed and implemented PerfEx-
pert, a tool that captures and uses the architectural, system soft-
ware, compiler and language knowledge necessary for effective
performance optimization. PerfExpert employs the existing mea-
surement tool HPCToolkit to execute a structured sequence of
performance counter measurements. It analyzes the results of
these measurements and computes performance metrics to identi-
fy bottlenecks. For the identified bottlenecks (in each key code
section), it recommends a list of possible optimizations, including
code examples and compiler switches that are known to be useful
for speeding up similar bottlenecks. Thus, PerfExpert makes the
extensive knowledge base needed for performance optimization
available to HPC application writers. In summary, PerfExpert is
an expert system for automatically identifying and characterizing
intrachip and intranode performance bottlenecks and suggesting
solutions to alleviate the bottlenecks, hence the name PerfExpert.

Figure 1 illustrates the workflow of a typical code optimization
process using general performance evaluation tools on the left and
the corresponding workflow using PerfExpert on the right. When
optimizing an application with generic performance tools, users
normally follow an iterative process involving multiple stages,

1 A 2009 survey of Ranger users showed that fewer than 25% had

used any of the several performance tools available on Ranger.

2

and each stage has to be conducted manually. Moreover, the deci-
sion making is left to the user and is thus based on his or her (pos-
sibly limited) performance evaluation and system knowledge. In
contrast, almost the entire process is automated in PerfExpert. The
usually manual profiling and bottleneck determination process
(dotted box) is automatically executed by PerfExpert. Even for the
optimization implementation, PerfExpert guides the user by sug-
gesting optimizations from its knowledge base. This degree of
automation was made possible by confining the domain of analys-
es to the core, chip and node level. We believe some degree of
automation may also be possible for I/O and inter-node communi-
cation related bottlenecks.

Figure 1: Profiling and optimization workflow without (left)
and with PerfExpert (right)

The guiding principle behind the design of PerfExpert is to obtain
simplicity of use by fully automating the complex measurement
and analysis tasks and embedding expert knowledge about the
underlying architecture into the analysis of the measurements.
PerfExpert is launched through a single command line that takes
only three parameters. It automatically determines which perfor-
mance experiments to run, and its output is simple and graphical.
It is intended to make performance assessment simple, fast, and
available to users with little or no performance optimization ex-
pertise. Performance experts may also find PerfExpert useful be-
cause it automates most of the otherwise manual steps. However,
expert users will probably want to see the raw performance data,
which is normally not output, in addition to the processed and
summarized results.

To successfully accomplish analysis and characterization of per-
formance bottlenecks, we found it necessary to develop a new
performance metric. This metric combines performance counter
measurements with architectural parameters to compute upper
bounds on local cycle-per-instruction (LCPI) contributions of
various instruction categories at the granularity of loops and pro-
cedures. LCPI is designed to naturally lead to specific bottlenecks,

to highlight key performance aspects, and to hide misleading and
unimportant details. These and additional benefits are discussed in
more detail in Sections 2 and 4.

PerfExpert has been developed for and implemented on Ranger.
In the current version, the analysis and characterization of the
performance of each loop and procedure is based on 15 perfor-
mance counter measurements and 11 chip- and architecture-
specific resource characteristics. These parameters and counter
values, which are defined and discussed in Section 3, are readily
available or derivable for the standard Intel, AMD, and IBM chips
as well as the node structures typical of current supercomputers,
allowing PerfExpert to be ported to systems that are based on
other chips and architectures.

We have analyzed several HPC production codes on Ranger using
PerfExpert. In all instances, PerfExpert correctly determined the
important code sections along with their performance bottlenecks.
With help from the original application writers, we studied and
optimized these code sections to ensure that the optimizations
suggested by PerfExpert are useful. In this way, PerfExpert has,
for example, been instrumental in speeding up a global Earth
mantle convection simulation running on 32,768 cores by 40%,
even though we “only” performed node-level optimizations.

This paper makes the following contributions:
• It introduces a novel performance assessment tool for HPC ap-

plication writers, called PerfExpert, that is easy to learn and use
because it only requires the command line of the application to
be evaluated. It automatically evaluates the core, chip, and
node-level performance, including determining which perfor-
mance counters to measure, analyzing the results, determining
potential bottlenecks, and outputting only essential information.

• It presents the new LCPI metric that combines performance
counter measurements with architectural parameters to make the
measurements comparable, which is essential for determining
the relative severity of bottlenecks. This metric makes it easy to
see what aspect of a code section accounts for most of the run-
time and therefore represents a key optimization candidate.

• It evaluates PerfExpert and the LCPI metric on actual HPC
production codes running on the Ranger supercomputer.

The rest of this paper is organized as follows. Section 2 describes
PerfExpert in detail. Section 3 presents the evaluation methodolo-
gy. Section 4 discusses the results. Section 5 summarizes related
work. Section 6 concludes with a summary and future work.

2. DESIGN
This section describes PerfExpert’s operation and use, its LCPI
performance metric, as well as the input and output user interface.

2.1 Performance Metric
The primary performance metric used in PerfExpert is local cycles
per instruction (LCPI). It is local because separate CPI values are
computed for each procedure and loop. Moreover, an overall
LCPI as well as upper bounds for different LCPI categories are
computed for each procedure and loop. The currently supported
categories are data memory accesses, instruction memory ac-
cesses, floating-point operations, branches, data TLB accesses,
and instruction TLB accesses.

The LCPI is essentially the procedure or loop runtime normalized
by the amount of work performed. We found this normalization to
be the key to successfully combining measurements from multiple
runs because some timing dependent nondeterminism is common
in parallel programs. For example, it is unlikely that multiple ba-

���������	
���
��

����� �
������

�������	�����
��

������������

���������	�
�	
�

��

��������
�	����
�

�
��������

���
������	����

��
���������

��������
�

�����������	

�
���������

�����	���
�����	��
�

�
���	���
�	�	�
���

�� ��	�
���������!

���
������

�
�����	�������
��

�����������

�"�����
��

����	�
������
��

�
��������	���������

���	

��������
�

��������
�

���������	���	��
���

�������

��������
�

#�
����	������$ #�
����	���
�����$

%�
����	

��������
�	

&
����
&	&���	
�
������	�

��	
'
��������
�	&
����
&	&���	

(���)"
���

3

lanced threads will reach a synchronization primitive in the exact
same order every time the program executes. Hence, an applica-
tion may spend more or fewer cycles in a code section compared
to a previous run, but the instruction count is likely to increase or
decrease concomitantly. Hence, the (normalized) LCPI metric is
more stable between runs than absolute metrics such as cycle or
instruction counts.

Currently, PerfExpert measures 15 different event types (Section
2.1.1) to compute the overall LCPI and the LCPI contribution of
the six categories. Because CPUs only provide a limited number
of performance counters, e.g., an Opteron core can count four
event types simultaneously, PerfExpert runs the same application
multiple times. To be able to check the variability between runs,
one counter is always programmed to count cycles. The remaining
counters are configured differently in each run to obtain informa-
tion about data memory accesses, branch instruction behavior, etc.
To limit the variability and possible resulting inconsistencies,
events whose counts are used together are measured together if
possible. For example, all floating-point related measurements are
performed in the same experiment.

Based on the performance counter measurements, PerfExpert
computes an (approximate) upper bound of the latency caused by
the measured LCPI contribution for the six categories during a run
and reports bottlenecks for the code sections (procedures and
loops) with a high LCPI. We are interested in computing upper
bounds for the latency, i.e., worst case scenarios, because if the
estimated maximum latency of a category is sufficiently low, the
corresponding category cannot be a significant performance bot-
tleneck and can therefore safely be ignored. For instance, the
branch category’s LCPI contribution for a given code section is:

 (BR_INS * BR_lat + BR_MSP * BR_miss_lat) / TOT_INS

Bold print denotes performance counter measurements for the
code section and italicized print indicates system constants.
BR_INS, BR_MSP, and TOT_INS denote the measured number
of branch instructions, branch mispredictions, and total instruc-
tions executed, respectively. BR_lat and BR_miss_lat are the
CPU’s branch latency and branch mispredictions latency in
cycles. Thus, the above expression in parentheses represents an
upper bound of cycles due to branching related activity. It is an
upper bound because the latency is typically not fully exposed in a
superscalar CPU like the current CPUs from AMD, Intel, IBM,
etc., which can execute multiple instructions in parallel and out-
of-order, thereby hiding some of this latency. Dividing the com-
puted number of cycles by the measured number of executed in-
structions yields the LCPI contribution due to branch activity for a
given code section. Upper bounds on the LCPI contribution of the
other categories are computed similarly. For data memory ac-
cesses, PerfExpert uses the following expression:

(L1_DCA*L1_lat+L2_DCA*L2_lat+L2_DCM*Mem_lat)/TOT_INS

This is the number of L1 data cache accesses times the L1 data
cache hit latency plus the number of data accesses to the L2 cache
times the L2 cache hit latency plus the number of data accesses
that missed in the L2 cache times the memory access latency di-
vided by the total number of executed instructions. L3 accesses
will be discussed shortly. Again, this LCPI contribution represents
an upper bound because of CPU and memory parallelism. Note
that Mem_lat is not a constant as the latency of an individual load
can vary greatly depending on the DRAM bank and page rank it
accesses and memory traffic generated by the other cores, to name
just a few factors. Fortunately, PerfExpert is dealing, at the very

least, with millions of memory accesses, which tend to average
out so that a reasonable upper bound for Mem_lat can be used.
However, this opens up the possibility of underestimating the true
memory latency, in which case the LCPI contribution is not an
upper bound. Selecting a conservative Mem_lat makes this unlike-
ly in practice because experience with multiple codes on a given
architecture enables the Mem_lat value to be chosen judiciously.

Aside from the aforementioned advantage of not being overly
susceptible to the inherent nondeterminism of parallel programs,
PerfExpert’s performance metric has several additional benefits.

1) Highlighting key aspects. For example, a program with an ex-
tremely small L1 data cache miss ratio can still be impeded by
data accesses. If the program executes mostly dependent load
instructions, the Opteron’s L1 data cache hit latency of three
cycles will limit execution to one instruction per three cycles,
which is an order of magnitude below peak performance. The
LCPI contribution metric correctly accounts for this possibility.

2) Summarizing important factors. For instance, instead of listing
a hit or miss ratio for every cache level, PerfExpert’s performance
metric combines this information into a single meaningful metric,
i.e., the data access LCPI, to reduce the amount of output pro-
duced without losing important information.

3) Hiding misleading details. For example, if a program executes
thousands of instructions, two of which are branches and one of
them is mispredicted, the branch mispredictions ratio is 50%,
which is considered very bad. However, it does not matter be-
cause so few branches are executed. The LCPI contribution metric
will not report a branch problem in this case because the total
number of cycles due to branching is miniscule.

4) Extensibility. If a future or different CPU generation supports
an important new category of instructions (as well as countable
events for them), it should be straightforward to define an LCPI
computation for the new category and include it in the output.

5) Refinability. If more diagnostically effective performance
counter events become available, the existing LCPI calculations
can be improved to make the upper bounds more accurate. For
example, with hit and miss counts for the shared L3 cache due to
individual cores, the above LCPI computation for data accesses
can be refined by replacing L2_DCM*Mem_lat with
L3_DCA*L3_lat+L3_DCM*Mem_lat.

2.1.1 Performance counters and system parameters
PerfExpert currently measures the following 15 performance
counter events on each core for each executed procedure and loop:
total cycles, total instructions, L1 data cache accesses, L1 instruc-
tion cache accesses, L2 cache data accesses, L2 cache instruction
accesses, L2 cache data misses, L2 cache instruction misses, data
TLB misses, instruction TLB misses, branch instructions, branch
mispredictions, floating-point instructions, floating-point addi-
tions and subtractions, and floating-point multiplications.

The LCPI metric combines these measurements with the follow-
ing 11 system parameters (the numbers in parentheses reflect the
values for Ranger in cycles): L1 data cache hit latency (3), L1
instruction cache hit latency (2), L2 cache hit latency (9), floating-
point add/sub/mul latency (4), maximum floating-point div/sqrt
latency (31), branch latency (2), maximum branch misprediction
penalty (10), CPU clock frequency (2,300,000,000), TLB miss
latency (50), memory access latency (310). It further uses a “good
CPI threshold” (0.5), which is used for scaling the performance
bars in the output. The first eight parameters are constant or vary a

4

little, in which case the maximum values should be chosen. The
TLB miss latency and the memory access latency are highly vari-
able and system dependent. PerfExpert uses conservative values
that are not guaranteed but likely to result in an upper bound for
most applications. The values are based on the expert opinions of
the authors and may well be adjusted as we gain more experience.

2.2 Operation
PerfExpert comprises two stages, a measurement stage and an
analysis stage. The analysis stage can be run multiple times. The
measurements are passed through a database file from the first to
the second stage, making it easy to preserve the results. The user
may want to run the analysis stage several times with different
thresholds to control the amount of output generated (see below).
The analysis stage supports correlating multiple measurements
from the same application. This is useful for detecting bottlenecks
in on-chip resources that are shared by multiple cores (Section
2.3.2) and for tracking the optimization progress as application
code is being improved (Section 4.3).

2.2.1 Measurement stage

On Ranger, PerfExpert’s measurement stage consists of using a
provided submission script. All the user has to do is specifying the
project name, the path to the executable, the command line, the
number of threads and tasks with which to run the application, and
an estimate of the runtime. Note that this information is also re-
quired in “normal” submission scripts. Once the submitted job
starts running, PerfExpert generates the files needed by
HPCToolkit and runs the application several times on top of
HPCToolkit to gather the necessary performance counter data. At
the end, it stores the measurements into a database file.

2.2.2 Analysis stage

PerfExpert’s analysis stage requires two or three inputs from the
user: 1) a threshold, 2) the path to a measurement file produced by
the first stage, and, optionally, 3) the path to a second measure-
ment file for comparison. The analysis stage first checks the va-
riability, runtime, and consistency of the data in the measurement
file, which typically contains results from multiple cores and mul-
tiple HPCToolkit experiments. PerfExpert emits a warning if the
runtime is too short to gather reliable results or if the runtime of
important procedures or loops varies too much between experi-
ments. Furthermore, PerfExpert checks the consistency of the data
to validate the assumed semantic meaning of the performance
counters, e.g., the number of floating-point additions must not
exceed the number of floating-point operations.

Once the data are deemed reliable, PerfExpert determines the
hottest procedures and loops, computes the LCPI performance
metrics for them, and outputs the resulting performance assess-
ment. To help the user focus on important code regions, PerfEx-
pert only generates assessments for the top few longest running
code sections. The user can control how many code sections
should be output by changing the threshold. A lower threshold
will result in more code sections being assessed, which is useful
when multiple important code sections have similar runtimes or
when users cannot or do not want to optimize the top few code
sections. For example, the HOMME benchmark (Section 3.2.2)
has ten procedures that represent between 5% and 13% of the total
runtime, and we found the bottom five of them, which account for
28% of the application’s runtime, to be easier to optimize.

2.3 Output
2.3.1 Analyzing a single input
Figure 2 shows the output generated by PerfExpert for a simple
2000 by 2000 element matrix-matrix multiplication (MMM) that
uses a bad loop order. The output first lists the path to the data-
base (“mmm/”) and the total runtime. The next two lines specify
where the suggested code optimizations, compiler flags, and ex-
amples for bottleneck remediation for each category can be found.
The suggestions are not directly included so as not to clutter the
output. The rest of the output is the performance assessment.
 total runtime in mmm/ is 166.00 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 matrixproduct (99.9% of the total runtime)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>>
 - floating-point instr >>>
 - branch instructions >>
 - data TLB >>>
 - instruction TLB >

Figure 2: Output for MMM

For each critical code section (one in this example), PerfExpert
lists its name (“matrixproduct”) and the fraction of the total run-
time that it represents, followed by the performance assessment
below the dashed line. The length of the bar made of “>” symbols
specifies how bad the corresponding performance is. The overall
assessment for MMM is “problematic”. The remaining assess-
ments list the upper bounds on the LCPI contribution of six cate-
gories: data memory accesses, instruction memory accesses, float-
ing-point instructions, branch instructions, data TLB (translation
look-aside buffer) accesses, and instruction TLB accesses. Branch
instructions as well as instruction memory and TLB accesses are
not a problem, as one might expect from the small MMM kernel.
The kernel executes mostly memory accesses that miss in the
cache and TLB as well as dependent (and therefore slow) multi-
cycle floating-point instructions. The corresponding categories
and the overall performance are correctly assessed as problematic.
Note that PerfExpert users do not have to know, for example,
what a TLB is. The category names simply serve as labels for
specifying which optimizations apply to which category.

2.3.2 Correlating two inputs
Figure 3 shows the output for DGELASTIC, a global earthquake
simulation code based on the MANGLL library (Section 3.2.1),
with two inputs, one with one thread per chip and one with four
threads per chip, to illustrate PerfExpert’s correlation ability to
detect bottlenecks in shared resources.
 total runtime in dgelastic_4/ is 196.22 seconds
 total runtime in dgelastic_16/ is 75.70 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 dgae_RHS (runtimes are 136.93s and 45.27s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>>>>>>>>>>2222222
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>>>>
 - floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>1
 - branch instructions >>
 - data TLB >
 - instruction TLB >

Figure 3: Output for DGELASTIC correlating two runs

The format of the correlated output is almost identical to the for-
mat with one input except that both database paths and their total
runtimes are listed and that absolute runtimes are given for each
critical code section. The difference in the metrics between the

5

two inputs is expressed with 1’s and 2’s at the end of the perfor-
mance bars. The number of 1’s indicates how much worse the first
input is than the second input. Similarly, 2’s indicate that the
second input is worse than the first. In Figure 3, the upper LCPI
bound for floating-point instructions in the dgae_RHS procedure
is slightly worse with four threads per compute node than it is
with 16 threads per node. More importantly, the overall perfor-
mance is substantially worse with 16 threads than with 4 threads,
which highlights a known problem with many modern multi-core
processors, including the quad-core Opteron: they do not provide
enough memory bandwidth for all cores when running memory
intensive codes. This performance problem is borne out by the
row of 2’s. Note that the upper bound estimates are basically the
same between the two runs, which they should be because the
upper bounds are independent of the processor load.

Given PerfExpert’s assessment of DGELASTIC, it is easy to see
that shared resources (scaling), data accesses, and floating-point
instructions are potential performance bottlenecks in the critical
dgae_RHS procedure. This information alone is already valuable.
For example, the authors of DGELASTIC assumed their code to
be compute bound until we performed our analysis. Based on
PerfExpert’s assessment, they refocused their optimization efforts
to target memory accesses, which yielded substantial speedups.

2.3.3 Optimization suggestions
PerfExpert goes an important step further by providing an exten-
sive list of possible optimizations to help users remedy the de-
tected bottlenecks. These optimizations are accessible through a
web page, which catalogs code transformations and compiler
switches for each performance assessment category. A much sim-
plified version of the floating-point instruction category is given
in Figure 4. For each category, there are several subcategories that
typically list multiple suggested remedies. The potential remedies
include code examples (a through d) or Intel compiler switches (e)
to assist the user. For example, an application writer may not re-
member what the distributivity law is (a), but upon seeing the
code example, it should be clear what kind of patterns to look for
in the code and how to make it faster.

If floating-point instructions are a problem
Reduce the number of floating-point instructions
 a) eliminate floating-point operations through distributivity
 d[i] = a[i] * b[i] + a[i] * c[i]; → d[i] = a[i] * (b[i] + c[i]);
Avoid divides
 b) compute the reciprocal outside of loop and use multiplication inside the loop
 loop i {a[i] = b[i] / c;} → cinv = 1.0 / c; loop i {a[i] = b[i] * cinv;}
Avoid square roots
 c) compare squared values instead of computing the square root
 if (x < sqrt(y)) {} → if ((x < 0.0) || (x*x < y)) {}
Speed up divide and square-root operations
 d) use float instead of double data type if loss of precision is acceptable
 double a[n]; → float a[n];
 e) allow the compiler to trade off precision for speed
 use the “-prec-div”, “-prec-sqrt”, and “-pc32” compiler flags

Figure 4: Simplified list of optimizations with examples

We envision the following usage of this information. For exam-
ple, after running PerfExpert on DGELASTIC, the programmer
would look up the suggestions for optimizing data memory ac-
cesses. A simplified version of this information (without code
examples for brevity) is provided in Figure 5. Studying the critical
dgae_RHS procedure will reveal that suggestions (a), (b), and (e)
do not apply because the code linearly streams through large
amounts of data. Suggestions (g) and (i) also do not apply because
the code only uses a few large arrays. We believe eliminating

inapplicable suggestions in this way can be done by someone
familiar with the code who is not a performance expert.

If data accesses are a problem
Reduce the number of memory accesses
 a) copy data into local scalar variables and operate on the local copies
 b) recompute values rather than loading them if doable with few operations
 c) vectorize the code
Improve the data locality
 d) componentize important loops by factoring them into their own procedures
 e) employ loop blocking and interchange (change the order of memory accesses)
 f) reduce the number of memory areas (e.g., arrays) accessed simultaneously
 g) split structs into hot and cold parts and add pointer from hot to cold part
Other
 h) use smaller types (e.g., float instead of double or short instead of int)
 i) for small elements, allocate an array of elements instead of individual elements
 j) align data, especially arrays and structs
 k) pad memory areas so that temporal elements do not map to same cache set

Figure 5: Simplified list of optimizations without examples

The next step is to test the remaining suggestions. We have expe-
rimentally verified suggestions (c), (j), and (k) to improve the
performance substantially. We were unable to apply suggestion (f)
without breaking suggestion (c). However, suggestion (f) aims at
reducing cache conflict misses and DRAM bank conflicts, which
were already addressed by applying suggestion (k). We have not
yet tried suggestions (d) and (h) but believe that they will help
speed up the code further. In summary, all the user has to do is try
out the suggested optimizations to see which ones apply and help.

2.4 Performance Metric Discussion
PerfExpert explicitly targets intra-node performance to help users
with problems related to multi-core and multi-socket issues. Op-
timizing such problems can have a large performance impact on a
parallel application, even when running on many nodes. For ex-
ample, the intra-node optimizations we applied to DGADVEC
(Section 3.2.1) resulted in a combined speedup of around 40% on
a 32,768-core run, which is akin to having over 13,000 additional
cores. Moreover, PerfExpert also evaluates the procedures in the
communication library and will output an assessment for them if
they represent a sufficient fraction of the total runtime.

Like any performance evaluation tool, PerfExpert may produce
incorrect assessments. For example, a false positive can be pro-
duced for a code section that misses in the L1 data cache a lot but
contains enough independent instructions to fully hide the L2
access latency. In this case, PerfExpert may list the code section
as having a data access problem, even though optimizing the data
accesses will not improve performance. False negatives are also
possible but unlikely for the assessed categories because the upper
bounds have a tendency to overestimate the severity. Finally, it is
possible that an application has a performance bottleneck that is
not captured by PerfExpert’s categories. The current measure-
ments and analyses target what our past experiences have taught
us is important and what the performance counters can measure.
We expect to improve the effectiveness of the assessment as more
experience with PerfExpert accumulates.

Currently, PerfExpert uses HPCToolkit with a performance coun-
ter sampling rate of one per million events, which seems to work
well in practice. This means that after a counter has counted one
million events, it will trigger an interrupt and HPCToolkit will
record this counter’s events along with information about what
procedure or loop the application was executing at the time of the
interrupt. Because events that occur fewer times than the sampling
rate are not recorded, PerfExpert emits a warning if the runtime is

6

too short. If the runtime is long but a counter still never triggered
an interrupt, the corresponding event is rare and can be ignored.

PerfExpert only uses exclusive performance counter measure-
ments, that is, the counts for procedure X do not include counts
for other procedures that are called from X, but they do include
the counts from all loops inside of X. Thus, if a programmer fac-
tors a piece of code into a number of small procedures (and the
compiler does not inline them), the individual contributions of
each procedure will be smaller than the contribution of the origi-
nal piece of code. Hence, the refactored code will be ranked lower
by PerfExpert and users may have to decrease the threshold to see
the performance assessment of these smaller code sections.

PerfExpert indicates whether the performance metrics are in the
good, bad, etc. range, but deliberately does not output exact val-
ues. Rather, it prints bars that allow the user to quickly see which
category is the worst so he or she can focus on that. In this sense,
the performance assessment is relative instead of absolute, mean-
ing that the value-to-range assignment does not have to be very
precise. This way, we avoid the problem of having to define ex-
actly what constitutes a “good” CPI, which is application depen-
dent, and can instead use a fixed value per system.

In some cases, it may be of interest to subdivide the data access
category to separate out the individual cache levels. For example,
the array blocking optimization requires a blocking factor that
depends on the cache size and is therefore different depending on
which cache level represents the main bottleneck. However, most
of our recommended optimizations help no matter which level of
the memory hierarchy is the problem. For this reason and to keep
PerfExpert simple, we currently provide only one data access
category. Of course, resolution of data accesses to multiple levels
can be readily added if experience shows this addition leads to
worthwhile improvement in optimizations.

3. EVALUATION METHODOLOGY
3.1 System
PerfExpert is currently installed on the Ranger supercomputer
[21], a Sun Constellation Linux cluster at the Texas Advanced
Computing Center (TACC). Ranger consists of 3,936 quad-
socket, quad-core SMP compute nodes built from 15,744 AMD
Opteron processors. In total, the system includes 62,976 compute
cores and 123 TB of main memory. Ranger has a theoretical peak
performance of 579 TFLOPS. All compute nodes are intercon-
nected using InfiniBand in a seven-stage full-CLOS fat-tree to-
pology providing 1 GB/s point-to-point bandwidth.

The quad-core 64-bit AMD Opteron (Barcelona) processors are
clocked at 2.3 GHz. Each core has a theoretical peak performance
of 4 FLOPS/cycle, two 128-bit loads/cycle from the L1 cache, and
one 128-bit load/cycle from the L2 cache. This amounts to 9.2
GFLOPS per core, 73.6 GB/s L1 cache bandwidth, and 36.8 GB/s
L2 cache bandwidth. The cores are equipped with four 48-bit
performance counters and a hardware prefetcher that prefetches
directly into the L1 data cache. Each core has separate 2-way
associative 64 kB L1 instruction and data caches, a unified 8-way
associative 512 kB L2 cache, and each processor has one 32-way
associative 2 MB L3 cache that is shared among the four cores.

3.2 Applications
We have tested PerfExpert on the following production codes that
represent various application domains and programming languag-
es. They were compiled with the Intel compiler version 10.1.

3.2.1 MANGLL/DGADVEC
MANGLL is a scalable adaptive high-order discretization library.
It supports dynamic parallel adaptive mesh refinement and coar-
sening (AMR), which is essential for the numerical solution of the
partial differential equations (PDEs) arising in many multiscale
physical problems. MANGLL provides nodal finite elements on
domains that are covered by a distributed hexahedral adaptive
mesh with 2:1 split faces and implements the associated interpola-
tion and parallel communication operations on the discretized
fields. The library has been weakly scaled to 32,768 cores on
Ranger, delivering a sustained performance of 145 TFLOPS.
DGADVEC [6] is an application built on MANGLL for the numer-
ical solution of the energy equation that is part of the coupled
system of PDEs arising in convection simulations, describing the
viscous flow and temperature distribution in Earth’s mantle.
MANGLL and DGADVEC are written in C.

3.2.2 HOMME
HOMME (High Order Method Modeling Environment) is an at-
mospheric general circulation model (AGCM) consisting of a
dynamic core based on the hydrostatic equations, coupled to a
sub-grid scale model of physical processes [27]. We use the
benchmark version of HOMME, which was one of NSF’s accep-
tance benchmark programs for Ranger. It solves a modified form
of the hydrostatic primitive equations with analytically specified
initial conditions in the form of a baroclinically unstable mid-
latitude jet for a period of twelve days, following an initial pertur-
bation [20]. Whereas the general version is designed for using
hybrid parallel runs (both MPI and OpenMP), the benchmark
version uses MPI-only parallelism. Although a semi-implicit
scheme is used for time integration, the benchmark version is
simplified and spends most of its time in explicit finite difference
computation on a static regular grid. It is written in Fortran 95.

3.2.3 LIBMESH/EX18
The LIBMESH library [13] provides a framework for the numeri-
cal approximation of partial differential equations using conti-
nuous and discontinuous Galerkin methods on unstructured hybrid
meshes. It supports parallel adaptive mesh refinement (AMR)
computations as well as 1D, 2D, and 3D steady and transient si-
mulations on a variety of popular geometric and finite element
types. The library includes interfaces to solvers such as PETSc for
the solution of the resulting linear and nonlinear algebraic sys-
tems. We use example 18 (EX18) of the LIBMESH release [14],
which solves an unsteady nonlinear system of Navier-Stokes equ-
ations for low-speed incompressible fluid flow. EX18 performs a
large amount of linear algebra computations and solves the tran-
sient nonlinear problem using the heavily object-oriented FEM-
System class framework. LIBMESH and EX18 are written in C++.

3.2.4 ASSET
ASSET (Advanced Spectrum Synthesis 3D Tool) is an astrophysi-
cal application that allows computing spectra from 3-dimensional
input models as they are provided by hydrodynamical (CFD) si-
mulations of the Sun and other stars. ASSET is fully parallelized
with OpenMP and MPI. On clusters and on multi-socket worksta-
tions, a hybrid setup usually results in the best performance. A
single MPI task is started on every socket and OpenMP threads
are spawned according to the number of cores per socket. Scaling
with OpenMP on quad-core CPUs is good. No domain decompo-
sition is applied for the MPI parallelization, and different MPI
tasks handle different and independent frequencies. Information is
only communicated at the beginning and at the end of a calcula-

7

tion. Consequently, the MPI scaling is very good and only limited
by load balancing because the amount of work per frequency va-
ries slightly. ASSET is written in Fortran 90.

4. RESULTS
To validate PerfExpert, we assessed the performance of the appli-
cations described in the previous section on Ranger using Tau
[26], PAPI [18], HPCToolkit [12], and PIN [19], and compared
the results with those of PerfExpert. Moreover, we optimized the
key code sections of several of these applications to verify the
usefulness of PerfExpert’s suggestions. To keep the output small,
we only show the assessment for procedures (no loops) with a
threshold of 0.1, that is, only procedures that account for at least
10% of the runtime.

4.1 DGADVEC
DGADVEC is dominated by two procedures that together account
for over half of the total runtime. They contain several important
loops that perform a large number of small dense matrix-vector
operations. Even though these loops touch hundreds of megabytes
of data, they have L1 data-cache miss ratios below 2% in part
because of the hardware prefetcher, which is able to prefetch the
data directly into the L1 cache. Yet, the loops execute only half an
instruction or less per cycle, which is quite bad.

Our analysis identified the L1 load-to-use hit latency of three
cycles to be the main culprit for this poor performance. This la-
tency cannot be hidden because there are not enough independent
instructions available to execute. In other words, DGADVEC is
memory bound and the primary performance bottleneck is ac-
cesses to the L1 data cache. Because of its low L1 miss ratio, this
application was previously believed to be compute bound.

Since the L1 load-to-use hit latency is fixed in hardware, we can
only reduce the average load-to-use latency by increasing the
bandwidth, i.e., reading and writing multiple data items per mem-
ory transaction through the use of SSE instructions. Unfortunate-
ly, neither the Intel nor the PGI compiler vectorizes the memory
accesses in these loops. Hence, we rewrote the loops so that the
compiler emits SSE load and store instructions. The full set of
code modifications we made is described elsewhere [11].

Comparing the old and new loop implementations, we found that
the number of executed instructions is 44% lower and the number
of L1 data-cache accesses is 33% lower due to the vectorization.
Note, however, that we did not rewrite DGADVEC to fully incor-
porate our changes because the authors had moved on to write
DGELASTIC, a new application that simulates the global propaga-
tion of earthquake waves. As DGELASTIC is also based on the
MANGLL library, we opted to implement our changes in the new
application. While this work has not yet been completed, we al-
ready see great benefits. For example, the key loop in DGELAS-
TIC, which accounts for over 60% of the total execution time
(Figure 3), is vectorized by the compiler and executes 1.4 instruc-
tions per cycle, representing a more than two-fold improvement
over the DGADVEC loop performance. Note, however, that the
two MANGLL-based applications solve different problems and are
therefore not entirely comparable.

Looking at PerfExpert’s assessment of DGADVEC shown in Fig-
ure 6, we find that it correctly identifies the main procedures.
Moreover, it correctly points to a memory access problem in the
top two procedures despite their low L1 data-cache miss ratios.
These two procedures perform so many memory accesses (almost
one out of every two executed instructions accesses memory) that

the estimated upper bound on the LCPI contribution is high
enough to make memory accesses the most likely bottleneck.
PerfExpert’s suggested optimizations include vectorization as well
as other optimizations that have helped boost the performance (cf.
Section 2.3.3) Overall, PerfExpert proved very helpful by identi-
fying the main bottlenecks and pointing out several optimizations
that has resulted in significant speedup.
 total runtime in dgadvec/ is 681.74 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 dgadvec_volume_rhs (29.4% of the total runtime)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>>>
 - floating-point instr >>>
 - branch instructions >
 - data TLB >
 - instruction TLB >

 dgadvecRHS (27.0% of the total runtime)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>>>>
 - floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 - branch instructions >>
 - data TLB >
 - instruction TLB >

 mangll_tensor_IAIx_apply_elem (14.9% of the total runtime)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>
 upper bound by category
 - data accesses >>>>>>>>>>>>>>>>>
 - instruction accesses >>>>>>>>>>
 - floating-point instr >>>>>>>>>>>>>>>>
 - branch instructions >>>>>>>
 - data TLB >
 - instruction TLB >

Figure 6: Assessment of DGADVEC

4.2 HOMME
HOMME exhibits near perfect weak scaling. During acceptance
testing of Ranger, HOMME was run on 16,384 cores with linear
speedup. The benchmark version of HOMME contains roughly
ten procedures that combined represent 90% of the total execution
time. PerfExpert correctly identified that about half of these pro-
cedures are severely memory bound, with a CPI above four, and
illustrated HOMME’s poor performance when utilizing more than
two cores per chip.
 total runtime in homme-4x64/ is 356.73 seconds
 total runtime in homme-16x16/ is 555.43 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 prim_advance_mod_mp_preq_advance_exp_ (runtimes are 86.35s and 159.20s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>2222222222222222222
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>>>>>
 - floating-point instr >>>1
 - branch instructions >
 - data TLB >
 - instruction TLB >

Figure 7: Assessment of HOMME with 1 and 4 threads/chip

Figure 7 shows how dramatically performance drops when run-
ning the same workload with 16 threads per node instead of just 4
threads per node, and that the single largest problem is data ac-
cesses. All the problematic functions have little data reuse but
reasonably high cache hit ratios. Because performance drops in
these functions when the thread density increases, the primary
issue must lie with shared on-chip resources. Because of the small
L1 and L2 miss ratios, we assume that L3 cache capacity and L3
conflict misses are not the issue. The primary issue appears to be
DRAM page conflicts. On a Ranger node, only 32 DRAM pages
can be open at once, each covering 32 kilobytes of contiguous

8

memory. With 16 threads operating, each thread can access at
most two different memory areas simultaneously without severe
performance losses. We corrected this problem by applying loop
fission so that each loop body only processes two arrays. Howev-
er, because the compiler automatically fused the loops again, we
had to take the additional step of breaking out each loop into a
separate procedure, which results in great speedup despite the call
overhead. Applying the loop fission optimization to the
preq_robert procedure resulted in a 62% performance increase and
much better utilization of four cores. We still have to apply loop
fission to other functions in HOMME. Again, PerfExpert users do
not have to know about DRAM page conflicts. They can just fol-
low PerfExpert’s recommendation to fission loops and factor them
out into separate procedures to improve performance, without
necessarily understanding why this optimization helps.

4.3 LIBMESH
The EX18 application of LIBMESH contains 22 procedures that
represent one percent of the total runtime or more but only one
procedure that represents over 10% of the runtime. Figure 8 com-
pares the performance of this procedure before and after we opti-
mized it, thus providing an example of how PerfExpert can be
used to track code optimization progress.
 total runtime in ex18/ is 144.78 seconds
 total runtime in ex18-cse/ is 137.91 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 NavierSystem::element_time_derivative (runtimes are 33.29s and 25.24s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>>>>222
 upper bound by category
 - data accesses >>2
 - instruction accesses >>>>>>>
 - floating-point instr >>>>>>>>>>>>>>>>>1111111111
 - branch instructions >
 - data TLB >
 - instruction TLB >

Figure 8: Assessment of EX18 before and after optimization

The element_time_derivative procedure has somewhat poor float-
ing-point performance and quite poor data access performance.
We were able to improve the floating-point performance by fac-
toring out common subexpressions and moving loop invariant
code. Based on simple tests, the author of EX18 assumed that the
compiler would do this. However, several of the common subex-
pressions we found involve C++ templates and most of them in-
volve pointer indirections, which makes the code too complex for
the compiler to analyze and perform these optimizations.

The runtimes in Figure 8 show that these relatively simple optimi-
zations (for a human) made element_time_derivative 32% faster.
Because this procedure represents roughly 20% of the total run-
time, the node-level code modification yielded an application-
wide speedup of 5%. We have not yet tried to perform the other
optimizations PerfExpert suggests nor have we attempted to op-
timize any of the other procedures in EX18.

As Figure 8 highlights, our optimizations substantially reduce the
upper LCPI bound of the floating-point instructions (because so
many fewer floating-point instructions are executed). However,
the overall assessment is worse for the optimized procedure, even
though the runtimes clearly show that it executes much faster. The
reason is that reducing one bottleneck emphasizes the remaining
bottlenecks more, in this case the memory accesses. Thus, Perf-
Expert’s assessment correctly reflects that instructions execute
more slowly on average in the optimized code (but the optimized
code executes a lot fewer instructions, resulting in a speedup).

4.4 ASSET
Figure 9 shows the performance assessment of the OpenMP-based
ASSET application. The top two procedures represent about half
of the total runtime. They calculate the flux that is emitted from
the volume at a given frequency by integrating intensities along
rays pointing inwards starting at the outermost layer of the com-
putational domain. The second procedure, which is called by the
first procedure, is a hand-coded exponentiation function that pro-
vides a 50% speedup compared to the built-in exp function for a
limited argument range. PerfExpert’s assessment shows that the
second procedure scales perfectly to 16 threads per node and per-
forms well in general. This part of the calculation is performed in
double precision.

The other half of the CPU time is spent in cubic interpolations in
1, 2, or 3 dimensions, which are (mainly) needed to populate a ray
with data provided at the grid points of the computational mesh.
The interpolation procedure “bez3_mono_r4_l2d2_iosg” is one of
the many single-precision procedures that are hand-tuned for
slightly different purposes. It scales poorly because of data ac-
cesses that exhaust the processors’ memory bandwidth.
 total runtime in asset_4/ is 140.78 seconds
 total runtime in asset_16/ is 52.25 seconds

 Suggestions on how to alleviate performance bottlenecks are available at:
 http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

 calc_intens3s_vec_mexp (runtimes are 45.96s and 14.44s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>>2222
 upper bound by category
 - data accesses >>
 - instruction accesses >>>>>>>>>
 - floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>2
 - branch instructions >
 - data TLB >
 - instruction TLB >

 rt_exp_opt5_1024_4 (runtimes are 27.72s and 7.11s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>
 upper bound by category
 - data accesses >>>>>>>>>>>>>>>>>>>>1
 - instruction accesses >>>>>>>>1
 - floating-point instr >>>>>>>>>>>>1
 - branch instructions >>>>
 - data TLB >
 - instruction TLB >

 bez3_mono_r4_l2d2_iosg (runtimes are 21.67s and 9.52s)
 --
 performance assessment great.....good......okay......bad.......problematic
 - overall >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>222222222222222222222
 upper bound by category
 - data accesses >>>
 - instruction accesses >>>>>>
 - floating-point instr >>>
 - branch instructions >
 - data TLB >
 - instruction TLB >

Figure 9: Assessment of ASSET with 1 and 4 threads/chip

ASSET was developed and heavily optimized by a member of
TACC’s High-Performance Computing group (Lars Koesterke)
before we analyzed it with PerfExpert. For instance, many of the
most demanding loops are manually blocked and unrolled. Data
are aligned to 128-bit boundaries to enable the use of SSE instruc-
tions. Consequently, all performance optimizations that PerfEx-
pert suggests for this code do not apply or are already included.

5. RELATED WORK
Many performance measurement tools exist. We discuss only
those that incorporate some automated analysis and diagnosis.

The IBM PERCS project is building an automated system target-
ing the identification and analysis of performance bottlenecks [9]
in application codes and providing automated remediation [10] for
each bottleneck. The discovery and analysis framework has a
control GUI, which allows the user to control the tuning process
and presents hotspot and bottleneck information back to the user.

9

The Bottleneck Detection Engine (BDE), which is the core of the
framework, utilizes a database of rules to detect bottlenecks in the
given application. The BDE compiles, executes and controls
modules via a scheduler and feeds the information on bottleneck
locations, including metrics associated with the bottlenecks, to the
user. It may also suggest how much improvement could be ob-
tained by the optimization of a given bottleneck. Data is collected
by both performance estimates derived from static analysis and
from execution measurements conducted with the IBM High Per-
formance Computing Toolkit [28]. In addition to suggestions to
the user, IBM’s tool also supports directly modifying the source
code and applying standard transformations through the compiler
[3], a feature that we hope to add to PerfExpert in the future. The
major differences between our approach and that of the IBM
group are the following. 1) We are targeting performance bottle-
necks originating in single core, multicore chip, and multi-socket
nodes of large-scale clusters, including in communication library
code, whereas the IBM project is attempting diagnosis and opti-
mization of both intra-node and inter-node bottlenecks including
inter-node communication and load balancing. PerfExpert is fo-
cused on making intra-node optimization as automated and simple
as possible. We have chosen this narrower target because it
enables simpler user interactions and more focused solutions. 2)
The user interface of PerfExpert provides a higher degree of au-
tomation for bottleneck identification and analysis. 3) The internal
use of HPCToolkit allows a wider range of measurement methods
spanning sampling, dynamic monitoring, and event tracing. 4)
The implementation of PerfExpert is open source and adaptable to
composition with a variety of tools.

Acumem AG [1] sells the commercial products ThreadSpotter
(multithreaded applications) and SlowSpotter (single-threaded
applications), which capture information about data access pat-
terns and offer advice on related losses, specifically latency ex-
posed due to poor locality, competition for bandwidth, and false
sharing. SlowSpotter and ThreadSpotter also recommend possible
optimizations. While good data access patterns are essential for
performance, other things also matter. PerfExpert attempts a com-
prehensive diagnosis of bottlenecks, targeting not only data locali-
ty but also instruction locality, floating-point performance, etc.
Acumem’s tools do not attempt automated optimizations.

Continuous program optimization (CPO) [7] is another IBM con-
ducted project. CPO provides a unifying framework to support a
whole system approach to program optimization that cuts across
all layers of the execution stack opening up new optimization
opportunities. CPO is a very broad effort combining runtime
adaptation through dynamic compilation with diagnosis of hard-
ware/software interactions.

The Performance Engineering Research Institute (PERI) has many
performance optimization projects. The project most closed re-
lated to PerfExpert is the PERI Autotuning project [1], which
combines measurement and search-directed autotuning in a mul-
tistep process. It can be viewed as a special case of an expert sys-
tem where one flexible solution method is applied to all types of
bottlenecks. However, it is unclear whether autotuning by itself
can effectively optimize the wide spectrum of bottlenecks that
arise when executing complex codes on multi-core chips and mul-
ti-socket nodes. Nevertheless, we hope to be able to incorporate
methods from this project in a future version of PerfExpert.

The Parallel Performance Wizard [23] has goals similar to Perf-
Expert. It attempts automatic diagnosis as well as automated op-
timization. It is based on event trace analysis and requires pro-

gram instrumentation. Its primary applications have been prob-
lems associated with the partitioned global address space (PGAS)
programming model, although it applies to other performance
bottleneck issues as well.

Paradyn [15], based on Dyninst [5], is a performance measure-
ment tool for parallel and distributed programs. Performance in-
strumentation is inserted into the application and modified during
execution. The instrumentation is controlled by a Performance
Consultant module. Its goal is to associate bottlenecks with specif-
ic causes and program parts similar to the diagnostics of our tool.

KOJAK (Kit for Objective Judgment and Knowledge-based De-
tection of Performance Bottlenecks) [16] is a collaborative re-
search project aiming at the development of a generic automatic
performance analysis environment for parallel programs. It in-
cludes a set of tools performing program analysis, tracing, and
visualization. In terms of analysis, KOJAK provides several op-
tions including tree-style hotspot analysis. The user can identify
performance bottlenecks by exploring the tree. KOJAK is based
on event trace analysis. It requires user interactions in its evalua-
tion process.

Active Harmony [8][25] is a framework that supports runtime
adaptation of algorithms, data distribution, and load balancing. It
exports a detailed metric interface to applications, allowing them
to access processor, network, and operating system parameters.
Applications export tuning options to the system, which can then
automatically optimize resource allocation. Measurement and
tuning can therefore become first-class objects in the program-
ming model. Programmers can write applications that include
ways to adapt computation to observed performance and changing
conditions. Active Harmony requires adaptation of the application
and is mostly concerned with distributed resource environments.

6. CONCLUSIONS AND FUTURE WORK
This paper presents and describes PerfExpert, a novel tool that can
automatically detect core, socket, and node performance bottle-
necks in parallel HPC applications at the procedure and loop lev-
el. PerfExpert features a simple user interface and a sophisticated
new performance metric. We believe simple input and easy-to-
understand output are essential for a tool to be useful to the com-
munity. PerfExpert’s performance metric combines performance
counter measurements with system parameters to compute upper
bounds on the LCPI (local CPI) contribution of various instruction
categories. The upper bounds instantly eliminate categories that
are not performance bottlenecks and can therefore safely be ig-
nored when optimizing the corresponding code section.

For each important procedure and loop, PerfExpert assesses the
performance of each supported category with the LCPI metric and
ranks the categories as well as the procedures and loops to help
the user focus on the biggest bottlenecks in the most critical code
sections. Because most HPC application writers are domain ex-
perts and not performance experts, PerfExpert suggests perfor-
mance optimizations (with code examples) and compiler switches
for each identified bottleneck. We have populated this database of
suggestions with code transformation that we have found useful to
improve performance during many years of optimizing programs.

We tested PerfExpert on four production codes on the Ranger
supercomputer. In all cases, the performance assessment was in
agreement with an assessment by performance experts who used
other tools. In two cases, PerfExpert’s automatic assessment cor-
rectly pointed the application developers to a key bottleneck that

10

they were not aware of. Moreover, we found many of PerfEx-
pert’s suggested optimizations to substantially improve the intra-
node as well as the overall performance of HPC applications run-
ning on thousands of cores.

In the future, we intend to perform more case studies, especially
with applications where the bottleneck is not memory accesses,
and to expand the capabilities of PerfExpert by including non-
standard performance counters and non-performance-counter-
based measurements. We will continue to grow our optimization
and example database and plan to port PerfExpert to other sys-
tems. The most challenging goal we have is to extend PerfExpert
to automatically implement the suggested solutions for the most
common core-, socket-, and node-level performance bottlenecks.
In the longer term we plan to develop separate implementations of
PerfExpert for I/O optimization and communication optimization.

7. ACKNOWLEDGMENTS
This project is funded in part by the National Science Foundation
under OCI award #0622780. We are very grateful to Omar Ghat-
tas, Carsten Burstedde, Georg Stadler, and Lucas Wilcox for pro-
viding the MANGLL code base and working with us extensively,
John Mellor-Crummey, Laksono Adhianto, and Nathan Tallent
for their help and support with HPCToolkit, and Chris Simmons
and Roy Stogner for providing and helping with LIBMESH.

8. REFERENCES
[1] ACUMEM: http://www.acumem.com/. April 12, 2010.

[2] D. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. Hol-
lingsworth, P. Hovland, S. Moore, K. Seymour, J. Shin, A.
Tiwari, S. Williams, and H. You. “PERI Auto-Tuning.”
Journal of Physics: Conference Series, 125(1):012089, 2008.

[3] C. Bastoul. “Code generation in the polyhedral model is
easier than you think.” Proc. 13th Int. Conference on Paral-
lel Architecture and Compilation Techniques, pp. 7-16, 2004.

[4] BKDG: http://support.amd.com/us/Processor_TechDocs/
31116.pdf. Last accesses April 12, 2010.

[5] B. R. Buck and J. K. Hollingsworth. “An API for Runtime
Code Patching.” Journal of High Performance Computing
Applications, 14:317-329, 2000.

[6] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T.
Tu, L. C. Wilcox, and S. Zhong, “Scalable Adaptive Mantle
Convection Simulation on Petascale Supercomputers.” Proc.
SC’08, 2008.

[7] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wis-
niewski. “Performance and environment monitoring for con-
tinuous program optimization.” IBM J. Res. Dev.,
50(2/3):239–248, 2006.

[8] I.-H. Chung and J. K. Hollingsworth. “Automated Cluster-
Based Web Service Performance Tuning.” Proc. 13th IEEE
International Symposium on High Performance Distributed
Computing, pp. 36-44. 2004.

[9] I. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and
H-F. Wen. “A Framework for Automated Performance Bot-
tleneck Detection.” 13th Int. Workshop on High-Level Paral-
lel Progr. Models and Supportive Environments. 2008.

[10] G. Cong, I-H. Chung, H. Wen, D. Klepacki, H. Murata, Y.
Negishi, and T. Moriyama. “A Holistic Approach towards
Automated Performance Analysis and Tuning.” Proc. Euro-

Par 2009 (Parallel Processing Lecture Notes in Computer
Science 5704, Springer-Verlag). 2009.

[11] J. Diamond, B. D. Kim, M. Burtscher, S. Keckler, and K.
Pingali. “Multicore Optimization for Ranger.” 2009 TeraGr-
id Conference. 2009.

[12] HPCToolkit: http://www.hpctoolkit.org/. April 12, 2010.

[13] B. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey.
“libMesh: A C++ Library for Parallel Adaptive Mesh Re-
finement/Coarsening Simulations.” Engineering with Com-
puters, 22(3/4):237-254. 2006.

[14] LIBMESH: http://libmesh.sourceforge.net/. April 12, 2010.

[15] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hol-
lingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapa-
dam, and T. Newhall. “The Paradyn Parallel Performance
Measurement Tool.” IEEE Computer, 28:37-46. 1995.

[16] B. Mohr and F. Wolf. “KOJAK - A Tool Set for Automatic
Performance Analysis of Parallel Applications.” Proc. Inter-
national Conf. on Parallel and Distributed Computing. 2003.

[17] Open|SpeedShop: http://www.openspeedshop.org/wp/. Last
accessed April 12, 2010.

[18] PAPI: http://icl.cs.utk.edu/papi/. April 12, 2010.

[19] PIN: http://www.pintool.org/. Last accessed April 12, 2010.

[20] L. M. Polvani, R. K. Scott, and S. J. Thomas, “Numerically
Converged Solutions of the Global Primitive Equations for
Testing the Dynamical Core of Atmospheric GCMs.” Ameri-
can Meteorological Society, 132(11):2539-2552. 2004.

[21] Ranger: http://www.tacc.utexas.edu/resources/hpc/#
constellation. Last accessed April 12, 2010.

[22] S. Shende and A. Malony. “The Tau Parallel Performance
System.” International Journal of High Performance Com-
puting Applications, 20(2): 287-311.

[23] H-H. Su, M. Billingsley, and A. D. George. “Parallel Per-
formance Wizard: A Performance Analysis Tool for Parti-
tioned Global-Address-Space Programming.” 9th IEEE In-
ternational Workshop on Parallel & Distributed Scientific
and Engineering Computing. 2008.

[24] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W.
Fagan, and M. Krentel. “HPCToolkit: performance tools for
scientific computing.” Journal of Physics: Conference Se-
ries, 125. 2008.

[25] C. Tapus, I.-H. Chung, and J. K. Hollingsworth. “Active
harmony: towards automated performance tuning.” Proc.
ACM/IEEE Conference on Supercomputing, pp. 1–11. 2002.

[26] Tau: http://www.cs.uoregon.edu/research/tau/home.php. Last
accessed April 12, 2010.

[27] S. J. Thomas and R. D. Loft, “The NCAR Spectral Element
Climate Dynamical Core: Semi-Implicit Eulerian Formula-
tion.” Journal of Scientific Computing, 25(1/2). 2005.

[28] H. Wen, S. Sbaraglia, S. Seelam, I. Chung, G. Cong, and D.
Klepacki. “A productivity centered tools framework for ap-
plication performance tuning.” Proc. Fourth International
Conference on the Quantitative Evaluation of Systems, pp.
273-274. 2007.

