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Abstract

Tumor cells, upon loss of integrins or proteolytic machinery, are able to navigate through
complex matrices through adhesion-independent or amoeboid mechanism. While adhesion de-
pendent migration has been studied in both 2D and 3D environments, quantitative models
of amoeboid motion in native environments are lacking. We have developed two- and three-
dimensional models of an amoeboid cell crawling through extracellular matrix (ECM) gaps
using the finite element method. The model provides a powerful tool for the analysis of in-
teractions between a cell and extracellular matrix and fluids in vitro and in vivo. The cell is
modeled as an incompressible Newtonian fluid with surface tension on its boundary, where the
chemotactic gradient induces the cell migration through a micro-channel. The relationships
among the speed of the cell, diameter of a hole with respect to a size of the cell, the strength of
the gradient, surface tension, and viscosity of the fluid inside/outside of the cell are calculated.
Our results highlight the dependence of overall speed on both internal and external mechano-
chemical gradients, predict the centroid speed in 3D micro-channels and provide a quantitative
framework to develop a fundamental understanding of complex cell motion in 3D environments.

1 Introduction

1.1 Significance and Motivation

Tumor metastasis is the process by which cancer spreads from one part of the body to another.
The invasion of the tumor cells involve with the coordinated adhesion, proteolytic interaction with
the extracelullar matrix (ECM), which degrades and remodels the tissue barriers, and migration
through dense environments [10]. Recent studies suggest that inhibition of the ECM-degrading
enzymes results in a flexible amoeba-like morphology in a variety of the tumor cells, which is
characterized by the protrusion into preexisting matrix gaps and formation of constriction rings [25].
Therefore, identification of crucial factors regulating tumor cell motility in the absence of MMP
activity or reduced integrin expression has profound implications for curing cancer and controlling
cancer progression and dissemination [6, 8, 7, 26, 27].

Research performed over the last two decades depict a number of mechanisms responsible for
migration of the cells exhibiting amoeba-like behavior, which includes not only tumor cells, but also
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fibroblasts, macrophages, and leukocytes [14, 21, 22, 23, 28]. However, two fundamental problems
characterize these studies and critically hamper our understanding of cell migration. First, almost
all of these experiments and simulations were carried out on artificial two-dimensional substrates,
which are significantly different from the environment that characterizes the in vivo state. In 2D,
cells exhibit flattened morphology migrating slowly on substrates without any matrix resistance or
complex proteolytic interactions. On the other hand, in a 3D environment, cells exhibit dynamic
changes in its morphology in order to crawl through matrix gaps [26]. Second, while we know how
individual factors such as integrins, matrix structure, ECM-degrading enzymes, and spindle fibers
contribute individually to the cell motility, we lack the understandings of how these factors jointly
regulate the motility.

1.2 Mathematical Models

In recent years, numerous mathematical and computational models have been developed to improve
our understanding of the various aspects of cell motility. These models include reaction-diffusion
type models to describe kinetics and reactions, ordinary differential equation models for various sig-
naling pathways [20], molecular dynamics models to account for the molecular motors and molecules
at the cell-matrix interface [16, 24], continuum mechanics models to describe the force generation
and dissipation in various positions in migrating cells [15, 19, 1], or Monte Carlo and other prob-
abilistic models for cell-cell and cell-matrix interactions [30, 29, 31]. These approaches have been
extremely useful in providing quantitative frameworks for existing experimental data, for resolving
contradictions in experimental literature, for making a priori predictions, and for suggesting a se-
ries of new experiments to develop a richer understanding of processes underlying cell migration at
various length and time scales.

However, models describing migration of a whole cell in a three-dimensional matrix are lack-
ing [17]. One reason for this lack of three-dimensional models is due to inadequate experimental
data to support or validate the 3D modeling results. A new generation of detailed 3D migration
models would give us nevertheless a better understanding of cell migration in native-like environ-
ments. Therefore, three-dimensional axisymmetric models of an amoeboid cell crawling through
ECM gaps are developed and discretized using the finite element method. The models provide very
promising tools for analysis of the interaction between a cell and extracellular matrix and fluids in
vitro and in vivo.

2 Modeling of Cell Migration

The objective of this work is to provide a quantitative framework to model the migration of an
amoeboid cell through a micro-channel induced by a chemotactic gradient, as described in Fig. 1.
These scenarios are often encountered by cells migrating without anchorage or proteolytic machinery
in complex 3D environments. For the purposes of our simulation, the cell is composed of the nucleus
and cytosol and is immersed in a given extracellular fluid. The flow in the cytosol and in the
extracellular fluid is assumed to be incompressible because of the aqueous nature of the fluid and
the very slow motion. The nucleus is considered as non-deformable body, as seen in recent studies
performed using force probes. For the sake of simplicity, we will model it as a fluid with a very
large viscosity. Assuming that the cell and extracellular fluid occupy the domain D ⊂ R

3 and that
the motion is evaluated in the time interval [0, T ]. Migration of the cell within the fluid is governed
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by the incompressible Navier-Stokes equations:

ρ
∂u

∂t
+ ρu · ∇u + ∇p −∇ · 2µ E(u) = f in D × (0, T ) (1)

∇ · u = 0 in D × (0, T ) (2)

where u is the velocity field, p is the pressure, f represents body forces, ρ is the fluid density, µ is
the dynamic viscosity, and E(u) is the rate-of-strain tensor defined as:

E(u) =
1

2

(

∇u + (∇u)T
)

(3)

The governing equations will be supplemented below by adequate initial and boundary conditions.
We furthermore make the folllowing assumptions: 1) the fluid follows a Newtonian constitutive

relationship; 2) the Reynolds number is sufficiently small so that the advective term, ρu · ∇u is
negligible; 3) the body forces are identically zero, i.e. f = 0; 4) the inertial forces, ρ ∂tu are also
considered negligible with respect to the pressure and viscous contributions. The last assumption
suggests to integrate in time the system of equations as a quasi static process, that is, that the
system goes through a sequence of states that are infinitesimally close to equilibrium. We note
however that the configuration of the domain shall change at each instant of time t ∈ [0, T ], i.e.
D = D(t), since the cell will move within the extracellular fluid. Based on all these assumptions,
the Navier-Stokes equations (1)–(2) can be reduced to the time-independent Stokes equations to
be solved at each time t ∈ (0, T ]:

−µ∆u + ∇p = 0 in D(t) (4)

∇ · u = 0 in D(t) (5)

where ∆ is the Laplacian operator defined as ∆(·) = ∇·∇(·). The flows in the cell and extracellular
fluid are governed by these equations; however, because the cell migrates in the fluid, the geometries
of the cell and nucleus need to be updated at each time. We will employ an Arbitrary Lagrangian-
Eulerian approach (ALE) to predict the evolution of the cell position.

We will also assume that the initial state of the cell (nucleus and cytosol) and external geometry,
as well as the loadings and boundary conditions are axisymmetric; the three-dimensional problem
of interest can then be reduced to a two-dimensional problem as shown below.

2.1 Governing Equations

Let Ω ∈ R
2 be the open bounded domain shown in Fig. 2 with boundary ∂Ω. At a given time

t ∈ [0, T ], the domain Ω can be decomposed into three open subdomains Ωi, i = 1, 2, 3 such that
subdomain Ω1(t) is occupied by the cell nucleus, Ω2(t) by the cytosol, and Ω3(t) by the extracellular
fluid. We thus have

Ω(t) = Ω1(t) ∪ Ω2(t) ∪ Ω3(t) (6)

where Ω denotes the closure of the open set Ω. The boundary ∂Ω of Ω is decomposed in a similar
manner into four disjoint subsets, Γout, Γin, Γw, and Γaxi, as shown in Fig.9, such that

∂Ω = Γout ∪ Γin ∪ Γw ∪ Γaxi (7)

We denote by Γn and by Γc the interface between the nucleus and cytosol and the interface between
the cytosol and the fluid, respectively. We denote by n and t the normal and tangential unit vectors
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Figure 1: Schematic description of cell migration in a micro-channel.

associated with a boundary and we suppose that the dynamic viscosities of the nucleus, cytosol,
and extracellular fluid are µ1, µ2, and µ3, respectively.

The velocity u1 and pressure p1 of the fluid in the nucleus are governed by the time-independent
Stokes equations:

−µ1∆u1 + ∇p1 = 0 in Ω1(t) (8)

∇ · u1 = 0 in Ω1(t) (9)

while the flows in the cytosol and extracellular fluid are governed by:

−µ2∆u2 + ∇p2 = 0 in Ω2(t) (10)

∇ · u2 = 0 in Ω2(t) (11)

and

−µ3∆u3 + ∇p3 = 0 in Ω3(t) (12)

∇ · u3 = 0 in Ω3(t) (13)

These systems of equations are now supplemented with boundary conditions, interface conditions,
and initial conditions.

2.2 Boundary Conditions

We assume that the extracellular matrix is rigid and immobile. Thus the domain Ω preserves its
overall shape throughout the course of the simulation. Boundary conditions on ∂Ω (see Fig. 2) are

4



Ω

Γ

3
ΓwΓc

in

Γout

Γs

Γs

r

z

ΩΩ

Γ

12

c

Γn

Γn

Γs

Γs

Γs

r r

z z

Ω

Γ

Γw

in

Γout

Γs

r

z

δΩ

Figure 2: Decomposition of the computational domain Ω into subdomains Ω1 (nucleus), Ω2 (cy-
tosol), and Ω3 (extracellular fluid), and labeling of boundary and interface conditions (domain is
not to scale).

prescribed as:

No-slip BC: u3 = 0 on Γw (14)

Inflow BC: n3 · µ3 ∇u3 = 0 and p3 = pin on Γin (15)

Outflow BC: n3 · µ3 ∇u3 = 0 and p3 = pout on Γout (16)

Axisymmetry BC: ni · ui = 0 and ni · [−piI + µi∇ui] · ti = 0, i = 1, 2, or 3 on Γaxi (17)

where ni and ti are the normal outward and tangent unit vectors with respect to Ωi, respectively.
We note that the motion of the cell is driven by the pressure gradient ∆p = pin − pout and that
above conditions are all independent of time.

2.3 Interface Conditions between Cell Nucleus and Cytosol

The dynamic viscosity in the nucleus is assumed to be two to three orders of magnitude larger
than that in the cytosol so that the nucleus is nearly non-deformable during cell migration. This
assumption captures recent experimental results [13, 2, 11, 18, 12]. Moreover we imagine that the
content of the nucleus is separated from the cytosol by a thin “membrane” or “nuclear envelope.”
In this case, the interface conditions are continuity of the velocity fields and continuity of stresses
defined with respect to the surface of the interface Γn, that is,

u1 − u2 = 0 on Γn(t) (18)

n1 · [−p1I + µ1∇u1] + n2 · [−p2I + µ2∇u2] = 0 on Γn(t) (19)

where dependency in time is due to the moving interface Γn.

2.4 Interface Conditions between Cell and Extracellular Fluid

We suppose that the boundary of the cell is represented by a thin membrane that prevents fluid
diffusion from one region to the other. The interface conditions should then be similar to the ones
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Figure 3: Schematic description of interaction model between cell surface and wall boundary.

prescribed in the previous section; i.e., continuity of the velocity fields and continuity of stresses.
However, because the viscosities of the cytosol and of the extracellular fluid are assumed small
and comparable, the cell membrane is flexible and results in surface tensions proportional to the
mean curvature of the membrane κ with surface tension coefficient γ. Moreover, an additional
constraint needs to be enforced at the surface of the cell; indeed, the cell cannot be allowed to come
into contact with any of the wall boundaries as it would remain stuck to the wall otherwise. The
constraint is modeled as follows: we imagine that there exists a repulsive pressure force between
the cell and the wall whenever the cell approaches the wall within a user-defined distance, d0 from
the wall (see Fig. 3). Let x denotes a point on the cell surface Γc and let d = d(x) denote the
distance between x and the wall. Then the pressure governing the interaction between the cell and
the wall is modeled as:

pw(x) = Ew

(

d(x)

d0

− 1

)

H
(

d0 − d(x)
)

, ∀x ∈ Γc (20)

where H is the Heaviside step function and Ew is a spring constant. Such a boundary condition
intends to mimic a slip-boundary condition along the wall, with slippage controlled by the parameter
d0. This model for pressure pw is defined in terms of the two parameters Ew and d0 that will be
carefully chosen in order to obtain reasonable results.

The interface conditions on Γc are then prescribed as:

u2 − u3 = 0 on Γc(t) (21)

n2 · [−p2I + µ2∇u2] + n3 · [−p3I + µ3∇u3] − n2 · [−pwI + γκI] = 0 on Γc(t) (22)

where the surface tension coefficient γ is assumed uniform along the cell surface and time-indepen-
dent.

2.5 Time Evolution

At the initial time t0, we suppose that the cell is spherical and that its centroid is located on
the axis of symmetry. The time interval (0, T ) can be divided into uniform subintervals (tj−1, tj),
j = 1, 2, . . . , N , with constant time step ∆t = T/N .

Let us suppose that the domains Ω1, Ω2, and Ω3 are known at time tj−1, where j = 1, 2, . . . , or
N . In order to update the cell geometry within the extracellular fluid from time tj−1 to time tj , we
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solve the coupled system of equations presented above for the velocity fields u1(tj−1), u2(tj−1), and
u3(tj−1) on Ω1(tj−1), Ω2(tj−1), Ω3(tj−1), respectively. The domains are then updated by mapping
the interfaces Γn and Γc from time tj−1 to time tj, j = 1, . . . , N , as follows:

Φj
n : Γn(tj−1) → Γn(tj)

xj−1 → xj = xj−1 + ∆t u1(x
j−1, tj−1), ∀xj−1 ∈ Γn(tj−1) (23)

Φj
c : Γc (tj−1) → Γc (tj)

xj−1 → xj = xj−1 + ∆t u2(x
j−1, tj−1), ∀xj−1 ∈ Γc (tj−1) (24)

where the transformations (23) and (24) simply correspond to the discretization of the time differ-
ential equation u = dx/dt. Migration of the cell is thus approximated by a discrete quasi-static
process that depends on the discretization parameter ∆t. This process is illustrated in Fig. 4.

3 Finite Element Discretization of coupled problem

3.1 Weak Formulation

We first derive the weak formulation of the Stokes problems in Ωi, i = 1, 2, 3:

−µi∆ui + ∇pi = 0 in Ωi = Ωi(t) (25)

∇ · ui = 0 in Ωi = Ωi(t) (26)

subjected to the boundary and interface conditions described above. The weak form of the equations
is obtained by multiplying the momentum equation (25) and continuity equation (26) by smooth
test functions vi and qi, integrating over the whole domain Ωi, integrating by parts, and applying
the divergence theorem. We thus have:

∫

Ωi

µi∇ui : ∇vi dx −

∫

Ωi

pi∇ · vi dx +

∫

∂Ωi

ni · [−piI + µi∇ui] · vi ds = 0, ∀vi smooth (27)

−

∫

Ωi

qi∇ · ui dx = 0, ∀qi smooth (28)
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We now apply the boundary conditions for each of the domain. We first note that the boundary
contributions defined on the axisymmetric boundary necessarily vanish since r = 0. We then have:

∫

Ω1

µ1∇u1 : ∇v1 dx −

∫

Ω1

p1∇ · v1 dx +

∫

Γn

n1 · [−p1I + µ1∇u1] · v1 ds = 0, ∀v1 (29)

−

∫

Ω1

q1∇ · u1 dx = 0, ∀ q1 (30)

∫

Ω2

µ2∇u2 : ∇v2 dx −

∫

Ω2

p2∇ · v2 dx +

∫

Γn

n2 · [−p2I + µ2∇u2] · v2 ds

+

∫

Γc

n2 · [−p2I + µ2∇u2] · v2 ds = 0 ∀v2 (31)

−

∫

Ω2

q2∇ · u2 dx = 0, ∀ q2 (32)

∫

Ω3

µ3∇u3 : ∇v3 dx −

∫

Ω3

p3∇ · v3 dx +

∫

Γc

n3 · [−p3I + µ3∇u3] · v3 ds

−

∫

Γin

pin n3 · v3 ds −

∫

Γout

pout n3 · v3 ds = 0, ∀v3 (33)

−

∫

Ω2

q3∇ · u3 dx = 0, ∀ q3 (34)

where the test functions v3 are chosen to vanish on the boundary Γw. Summing up the momentum
equations and continuity equations above, applying the interface conditions on Γn and Γc, intro-
ducing µ = µ(x) such that µ = µ1 on Ω1, µ = µ2 on Ω2, and µ = µ3 on Ω3, introducing (u, p)
and (v, q) defined in a similar manner in terms of (u1, p1), (u2, p2), (u3, p3), and (v1, q1), (v2, q2),
(v3, q3), respectively, observing that the velocity fields u1 and u2 and u2 and u3 are continuous at
the interfaces Γn and Γc, and finally, introducing the spaces of trial and test functions V and Q
such as:

V =
{

v ∈ (H1(Ω))2; v = 0, on Γw

}

(35)

Q =
{

q ∈ L2(Ω);

∫

Ω

q dx = 0
}

(36)

the weak form of our coupled problem can be recast in the simple form:

Find (u, p) ∈ V × Q such that
∫

Ω

µ∇u : ∇v dx −

∫

Ω

p ∇ · v dx =

∫

Γc

(−pw + γκ)n · v dx

+

∫

Γin

pin n · v ds +

∫

Γout

pout n · v ds, ∀v ∈ V

−

∫

Ω

q ∇ · u dx = 0, ∀ q ∈ Q

(37)

where the normal vector n on Γc is chosen as n2. The above Stokes problem is a classical symmetric
mixed problem for which existence and uniqueness of solutions have long been established [9].

3.2 Finite Element formulation

The domain Ω is first discretized into a triangulation Th made of triangular elements Ke, e =
1, . . . , Ne, Ne being the total number of elements, in such a way that the interfaces Γn and Γc are
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Figure 5: Example of initial unstructured mesh and corresponding meshes at times t = 150 s and
t = 250 s. The profiles of the nucleus and cell are shown in red.
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approximated as Γh
n and Γn

c , respectively, as shown in Fig. 5. We define the computational domain
as Ωh = ∪eKe and observe that the wall boundary is discretized into a new boundary Γh

w due to
its curvilinear shape. At each time step, the domain Ωh is updated by simply re-meshing the new
geometry based on the solution of the Stokes problem at the previous instant of time. We define
the finite element subspaces V h and Qh of V and Q, respectively, as:

V h =
{

vh ∈ (C0(Ω
h))2; vh|Ke

∈ (P2)
2, ∀Ke ∈ Th; vh = 0, on Γh

w

}

(38)

Qh =
{

qh ∈ C0(Ω
h); qh|Ke

∈ P1, ∀Ke ∈ Th;

∫

Ωh

qh dx = 0
}

(39)

where Pk denotes the space of polynomials of degree k, k = 1, 2, and C0(Ω
h) the set of continuous

functions on Ωh. This choice of finite element spaces ensures that the discrete finite element problem
defined below actually satisfied the inf-sup condition. The finite element problem corresponding
to (37) then reads:

Find (uh, ph) ∈ V h × Qh such that
∫

Ωh

µ∇uh : ∇vh dx −

∫

Ωh

ph ∇ · vh dx =

∫

Γh
c

(−pw + γκh)n · vh dx

+

∫

Γin

pin n · vh ds +

∫

Γout

pout n · vh ds, ∀vh ∈ V h

−

∫

Ωh

qh ∇ · uh dx = 0, ∀ qh ∈ Qh

(40)

where κh is the mean curvature of the interface Γh
c . A priori error estimates show that the finite

element solution (uh, ph) of (40) converges to the solution (u, p) of (37) as the mesh is refined, i.e.
as the mesh size h tends to zero [9].

3.3 Numerical Algorithm

The finite element application of the cell migration problem was implemented in the commercial
COMSOL Multiphysics using the “fluid dynamics” option and the “mesh-deformation” option. The
numerical algorithm for one simulation of the problem can be described as follows:

1. Generate the initial mesh Ωh
0 .

2. For j = 1, . . . , N

(a) Solve the steady-state Finite Element problem (40) for the velocity field u
j−1

h and pres-

sure pj−1

h in the whole domain Ωh
j−1;

(b) Given the velocity field inside the cell, compute the deformation of the cell using the
mesh-deformation solver;

(c) Map the updated geometry of the cell back to the initial configuration.

(d) Generate the new mesh Ωh
j .

(e) If j < N , go to Step 2.

3. End.
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4 Numerical Experiments

We now present numerical experiments for the simulation of cell migration through micro-channels.
We shall in particular make a parameter study in which the hole diameter, the surface tension of
the cell membrane, and the viscosity of the cytosol are varied.

4.1 Numerical Setting

4.1.1 Input Parameters

Table 1 collects the list of input modeling parameters used in the following numerical experiments.
We model a typical cell with diameter Dc = 10 µm containing a nucleus with diameter Dn varying
between 0.0 µm (no nucleus) and 7.0 µm. The cell is considered as a liquid droplet consisting
of cell membrane, cytosol, and nucleus. Here, the existence of cytoskeletal network and other
important organelles in the cytosol is ignored. The cell migrates through a micro-channel of length
Lh = 1 µm and diameter Dh varying within the range 5.0 µm to 15 µm. The wall of the channel
has a semi-circular shape so that the flow is smoother than in the case of a rectangular shape. The
overall dimensions of the computational domain are chosen sufficiently large in order to minimize
boundary effects as we are primarily interested in the flow in the vicinity of the channel. The
pressure gradient ∆p from one end of the domain to the other end is set so that the entire course
of migration takes minutes to tens of minutes. The extracellular fluid is assumed to be water.
Since the nucleus is supposed to be non-deformable, we choose its viscosity to be of at least three
orders of magnitude larger than that of the cytosol. The surface tension γ of the cell is arbitrarily
chosen but it cannot be too large as otherwise the cell could not be able to migrate through the
channel. The gap d0 between the cell surface and wall is also arbitrarily chosen, as well as the
spring constant Ew associated with the wall, but the latter needs to be sufficiently large in order to
overcome the total pressure from the cell. These parameters could alternatively be calibrated using
some experimental data; we chose not to in this study as we are more interested in the comparison
of the behavior of the cell as other parameters are varied (e.g. the diameter of the nucleus Dn, the
diameter of the channel/hole Dh, and the surface tension γ).

4.1.2 Output Quantities

For comparison purposes, we now introduce some relevant quantities of interest. The solution of
the problem consists in the velocity and pressure fields in the whole domain and for the whole time
interval (assuming that the fields vary linearly within each time subinterval). We can then post-
process the solution to compute the longitudinal displacement at the top, bottom, and centroid of
the cell as well as at the centroid of the nucleus. We shall denote these displacements by zt, zb, zc,
and zn, respectively. Using the displacement zc of the centroid of the cell, we also introduce the
discrete velocity along the axis at each time step calculated as:

uc(tj) =
zc(tj+1) − zc(tj)

∆t
, j = 0, . . . , N − 1 (41)

Note that zc is easily obtained from the geometry of the cell at each time step. The quantity of
interest is defined as the “average velocity” of the cell with respect to the time that the cell spends
in the channel. The period during which the cell is “in the channel” is defined as the difference
between the time tout at which the bottom of the cell exits the channel and the time tin at which the
top of the cell enters the channel. We denote by Nout and Nin the iteration indices corresponding
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Table 1: Parameters used in the numerical simulations of the cell migration process.

Parameters Symbols Units Values

Initial cell diameter Dc µm 10.0
Initial nucleus diameter Dn µm 0.0 – 7.0
Hole length Lh µm 1.0
Hole diameter Dh µm 5.0 – 15.0
Domain diameter Dd µm 80.0
Domain length Ld µm 120.0
Gap between cell surface and wall d0 µm 0.5
Viscosity of nucleus µ1 mPa · s 20000.0
Viscosity of cytosol µ2 mPa · s 20.0
Viscosity of extracellular fluid µ3 mPa · s 0.894
Pressure gradient ∆p mPa 0.5
Spring constant of wall Ew mPa 50.0
Surface tension γ µPa · m 0.0 – 0.005

to tout and tin respectively. The output quantity of interest is then defined as:

v̄c =
1

Nout − Nin

Nout
∑

j=Nin

uc(tj) (42)

We note here that v̄c is actually an approximation of the true averaged velocity due to the dis-
cretization parameters h and ∆t. We verify below that the computed average velocity is nevertheless
accurate with respect to these two parameters.

4.1.3 Verification Tests

Verification tests are first run using different mesh sizes and time steps in order to assess the
accuracy of the numerical solutions for a given set of input parameters. The displacements of the
cell over time as well as the average velocity v̄c were compared. To verify the convergence of the
solution with respect to the mesh size, we considered along the mesh of reference a coarser mesh
and a finer mesh as shown in Fig. 6. The simulations with coarser and finer meshes yield virtually
the same results (see Fig. 7). Simulation with a larger time step and a smaller time step were
also performed and yield very similar results once again, as shown in Fig. 8. Actually, for both
comparisons, the difference in the displacement zc of the cell at each time step is smaller than one
percent. We are thus confident that the mesh size and time step are chosen small enough for the
solutions to be converged.

4.2 Description of the Dynamics of Migration

The entire course of a typical migration is illustrated in Fig. 9. One should note that the cell
dynamically changes its shape to crawl through the channel, where it exhibits a contractile ring
formation and vertical elongation. It deforms back to circular shape upon exiting the channel and
the time taken to recover its initial shape directly depends on the pressure gradient ∆p and the
strength of the surface tension coefficient γ. These sequence of events are qualitatively very similar
to the experimental studies by Friedl and co-workers [4], [5]. We observe that the cell nucleus
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Figure 6: Reference mesh (center) along with coarser mesh (left) and finer mesh (right).
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Figure 7: Evolution in time of displacement zc of a cell migrating through a channel with Dh = 10
µm for different meshes.
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Figure 8: Evolution in time of displacement zc of a cell migrating through a channel with Dh = 10
µm for three different values of the time step ∆t.
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does not deform during the simulation, as expected, and essentially remains at the center of the
cell, as observed in 3D amoeboid cell migration experiments. The gap between the cell membrane
and the wall is of course introduced by the interfacial pressure model introduced earlier. The time
evolutions of the displacements zt, zb, and zc for the cell, and zn for the nucleus are shown in Fig. 10
and Fig. 11, respectively. In these experiments, the diameter of the nucleus Dn and surface tension
coefficient γ are set constant. However, in Fig. 10, the diameter of the channel is set to Dh = 10
µm whereas it is set to 8 µm for the simulation of Fig. 11. It is clear that a cell takes a much longer
time to crawl through a smaller channel. While the cell is in the hole, vertical elongation of the cell
can be observed. The smaller the hole, the longer the cell elongates due to the incompressibility
assumption. Also, we can verify that the nucleus does not necessarily move together with the
centroid of the cell. When a cell crawls through a relatively small hole, the centroid of the nucleus
exits the channel ahead of the centroid of the cell and the position of the two centroids coincide
again after a certain period of time. This is particularly interesting since the nuclear dynamics have
not been fully quantified in experimental studies. We believe that our simulations provide a first of
its kind look on the internal dynamics of the cell that will improve our understanding of cytoskeletal
reorganization in 3D cell motion. The velocity uc with respect to time is illustrated in Fig. 12. It
is noticeable that the velocity of the centroid reaches a local maximum right before and right after
the cell moves in and out of the channel. Between these two peaks, the cell experiences low and
relatively constant velocities. The cell is accelerated before entering and after exiting the channel
because of sudden pressure changes in these regions. The low and relatively constant velocity of the
cell inside the channel is observed because of large viscosity coefficients inside the cell as compared
to the one outside and because of the slow fluid motion between the cell membrane and matrix
wall, which drives the cell forward. These behaviors of the cell velocity are characteristic in the
dynamics of cell migration. They can be observed in actual laboratory experiments and were also
observed by Dembo while using a micropipet aspiration model [3].

4.3 Numerical Studies and Parameter Sensitivities

4.3.1 Effect of channel diameter

Figure 13 shows the average velocity of the cell in the channel with respect to the diameter of the
channel. The diameter of the cell is set to Dc = 10 µm and the diameter of the nucleus is taken
as Dn = 2 µm. Thus the cell needs to elongate in order to migrate through the channel. We
observe that the velocity approaches zero as the diameter of the channel Dh is decreased. However,
the velocity of the cell reaches zero for a critical value of Dh due to surface tension and the fact
that the nucleus is non-deformable. Indeed, the cell asymptotically reaches a static equilibrium
while it migrates through the channel as soon as the surface tension is greater than a “critical
surface tension” or when the width of the channel is smaller than the diameter of the nucleus. This
critical surface tension depends on the channel diameter and pressure gradient. When the channel
is smaller than the initial cell radius, the velocity of the cell follows an exponential behavior. In
contrast, when the channel diameter is larger, the velocity of the cell has a linear behavior because
the interactions between the cell membrane and the wall become negligible.

4.3.2 Effect of surface tension

Figure 14 shows the average velocity v̄c of the cell with respect to different values of the surface
tension γ when the channel diameter is smaller than the cell diameter. These curves exhibit a
similar behavior when the channel diameter is sufficiently large and the velocity tends to zero as
channel diameter is decreased. Unfortunately, it becomes very difficult to exactly evaluate the
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Figure 9: Snapshots of the process of cell migration through a small channel. Arrows and colors
represent the distribution of the velocity vector and velocity magnitude of the flow.
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Figure 10: Time evolution of approximated displacements zc, zt, zb, and zn for a cell migrating
through a channel with Dh = 10 µm.
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Figure 11: Time evolution of approximated displacements zc, zt, zb, and zn for a cell migrating
through a channel with Dh = 8 µm.
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Figure 12: Time evolution of computed velocity uc of the cell.
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Figure 13: Average velocity v̄c of the cell versus channel diameter Dh.
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Figure 14: Average velocity v̄c of the cell versus channel diameter Dh for different values of the
surface tension γ.

critical channel diameter at which v̄c vanishes as it would require infinitely long simulations. For
large values of the channel diameter, the average velocities are nevertheless similar independently
of the surface tension since the cell deforms into very similar shapes when it migrates through the
channel. We also observe that when the surface tension γ becomes larger, v̄c slightly decreases;
this can be explained by the fact that, in that case, the cell membrane moves closer to the walls
of the channel where the flow motion is necessarily slower. Therefore, the average velocity of the
cell is directly related to the distance d between the cell surface and the channel walls. The cell is
actually maintained at a constant distance d throughout the migration because the total pressure
from outside corresponds with the total pressure from inside. This distance could nevertheless be
modified by considering different values of d0 and Ew in our model. Below a certain diameter of the
channel, the cell reaches a static equilibrium whenever the surface tension γ becomes larger than
a “critical surface tension” γcrit as the force driven by the pressure gradient, ∆p, cannot overcome
the surface tension force. The velocity of the cell should then rapidly drop right at this critical
surface tension.

When the cell reaches static equilibrium, we assume that the cell and wall decompose the whole
domain Ω into three: the region represented by the flow downstream of the cell, Ωds, the domain
upstream of the cell, Ωus, and the region occupied by the cell, Ωc (see Fig. 15). At equilibrium, the
velocity of the cell as well as of the extracellular fluid vanishes. Therefore, from the continuity and
momentum equations, the pressure in these three domains should be constant. Let us denote the
boundary between Ωus and Ωc as Γuc, the boundary between Ωds and Ωc as Γdc, and the one shared
by the wall and the cell as Γwc. Using the boundary conditions between the cell and extracellular
fluid, we derive the following relation:
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Figure 15: Description of the cell in equilibrium configuration for theoretical modeling of the critical
surface tension.

Pds − Pc = κdcγ, on Γdc (43)

Pus − Pc = κucγ, on Γuc (44)

where Pus, Pds, and Pc are the equilibrium pressures in Ωus, Ωds, and Ωc, respectively, and κdc

and κuc are the curvatures of the boundaries Γdc and Γuc, respectively. Because the cell is in
equilibrium, Γdc and Γuc should be spherical, and thus κdc and κuc should be constant over these
boundaries. Therefore, we can derive the expression,

Pds − Pus = ∆p = (κdc − κuc)γ (45)

We can determine the shape of the cell at equilibrium from its initial radius and shape of the
channel. We could thus calculate the radii rds and rus of the semicircles downstream and upstream
of the cell. Since the curvature of a circle is the inverse of its radius, we can derive the “critical
surface tension” of the cell, which defines the minimum value of the surface tension at which
equilibrium occurs, i.e. at which the cell gets “stuck” in the channel,

γcrit =
∆p

1/rds − 1/rus

. (46)

This critical surface tension is actually an approximation of the actual one as we do not take
into account in the present analysis the gap between the cell membrane and matrix wall where
there is actually a flow. We also ignore here the part of the cell boundary, Γwc. Thus, the smaller
the prescribed value of the gap d0 is, the better the approximation should be.

Figure 16 shows the critical surface tension computed by the theory described above and nu-
merical values. Note that the critical surface tension reaches infinite as the hole width exceeds
the initial diameter of the cell. The computed critical surface tensions take a range because it is
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Figure 16: Comparison of theoretical and numerical critical surface tension with respect to the
diameter Dh of the micro-channel.

impossible to calculate the minimum surface tension at which the cell reaches equilibrium. The
computed values are always below the theoretical value. The discrepancy mainly comes from the
fact that it is hard to determine whether the cell is at equilibrium or moving extremely slowly.
Also, near the equilibrium, the simulation becomes unstable, prone to numerical errors. Thus the
numerical computation always underestimates the value. Other than that, the theory estimates
the critical surface tension very accurately. Finally, note that the diameter of the nucleus does no
effect on the critical surface tension unless it exceeds the hole width.

4.3.3 Effect of Nucleus Size

Figure 17 shows the average velocity v̄c of the cell with respect to different nucleus diameters. Each
curve is obtained for a different channel diameter. Because the nucleus is assumed non-deformable
and is constrained to be contained within the cell, its diameter cannot exceed the smallest dimension
of the cell nor the channel diameter. The figure shows that the larger the nuclear diameter, the
smaller the average velocity of the cell. In other words, the cell becomes more “viscous” as a whole
and thus moves slower. The discussion about the critical surface tension demonstrates that the
dimension of the nucleus does not affect the critical surface tension unless the size of the nucleus
exceeds the size of the channel. If the surface tension is smaller than the critical surface tension
and the size of the channel, the cell should be able to go through the channel. Therefore, the curve
showing the average velocity v̄c with respect to the size of the nucleus is discontinuous at the critical
nucleus diameter, which is just the size of the hole. If the size of the nucleus exceeds the critical
nuclear size, the average velocity should inevitably become zero.
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Figure 17: Average velocity v̄c versus the diameter Dn of the nucleus for different values of the
channel diameter Dh.

5 Conclusions

While our simulation provides a first of its kind quantitative framework to model amoeboid cell
motion in 3D, and studies the role of both sub-cellular and extra-cellular parameters, there are
a number of limitations in our model. First of all, we note that the computation of the critical
surface tension is impossible because as the surface tension approaches the critical tension, the
computation time becomes infinite. Also, as the channel becomes narrower, it becomes harder to
simulate the cell because the cell elongates too long and meshing fails. Therefore, it is very hard
to characterize the extreme behavior of the cell going through a narrow hole with strong surface
tension. Also, in this simulation, the cell is treated as a viscoelastic Newtonian fluid. However, it is
known from experiments that the cell has much more complex characteristics with cytoskeleton and
organelles inside. It behaves nonlinear viscoelastic materials. Also, the cell membrane behaves in
much more complicated ways too. Therefore, future studies will incorporate these more-complicated
properties of the cell for more realistic simulations. In this simulation, the interactions between the
cell membrane and matrix fiber is simplified. The non-slip condition between the extracellular fluid
and the wall and existence of “inner” and “outer” surface of the wall mimic the friction between
the cell membrane and matrix: as the rest distance, d0 increases, the less friction between the cell
membrane and the matrix fiber occurs. Also, in this simulation, the cell is treated as a passive
liquid droplet in the pressure gradient. The cell does not generate any force by itself. Therefore,
the simulation of the cell locomotion should be the next goal as well as the interactions between
the cell surface and matrix fiber, such as the adhesion between these two surfaces. Despite these
limitations, we believe that our simulation provides new insights that not only agree with current
state-of-the-art experimental results but also predict results for future experiments. To date, the
dynamics of cell centroid in 3D environments have not been fully probed. Our results predict how
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the cell centroid speed would vary as a function of time and the size of the micro-channel. The
effects of surface tension, viscosity and the size of the cell have also been predicted and would guide
future experiments. We hope that our simulations will be a first step in guiding future experiments
and experimental validations will further improve the accuracy of our predictions and enhance our
understanding of complex modes of migration during tumor invasion and metastasis.
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