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Abstract

The paper reviews the construction of hierarchical H1-conforming shape functions for 1D (edge),
2D (triangle, quad) and 3D (hexahedron, tetrahedron, prism, pyramid) elements. The logic of imple-
mentation is based on identifying a set of core (kernel, bubble) 1D and 2D functions, and the use of
specific edge-to-element and face-to-element extensions. The resulting implementation allows for an
instanteneous modification (or redefinition) of core functions without any changes in the rest of the FE
code. The 3D shape functions conform automatically to 1D edge and 2D face shape functions defined
in local edge and face coordinates. In other words, the dependence of 3D shape functions on different
edge and face orientations is taken into account at the level of element shape functions routine. This
eliminates the use of sign factors during the assembly and simplifies dramatically the implementation
of constrained approximation allowing for the presence of hanging nodes. The construction of shape
functions is directly related to transfinite interpolation techniques used in Mesh Based Geometry (MBG)
descriptions.
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1 Introduction

Mesh Based Geometry (MBG) description. The definition of a domain of interest is the starting point for
the formulation of any boundary value problem. While this can be a trivial task for most academic problems,
it turns out to be a rather challenging issue when dealing with engineering and biomedical applications.
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Moreover, the standard definition of a 3D manifold that is known from differential geometry is not suitable
for finite element methods. A 3D manifold is an object such that, for any of its point, we can find an
open neighborhood (in the topology that the manifold naturally inherits from the Euclidean topology on R3)
surrounding the point and a diffeomorphism between such neighborhood and the unit ball of R3; in rough
terms, the smoothness of the diffeomorphisms gives the global smoothness of the manifold. The crucial
issue is that we can view the manifold as the union of overlapping images of the unit ball under regular
maps and this allows us to talk about global properties of the manifold, i.e. smoothness. When dealing
with finite elements the previous strategy is reversed: we define the master blocks (tetrahedron, hexahedron,
prism and pyramid) and describe the domain as the union of the images of those elements under some
suitable mappings. In other words, we are creating a mesh-like description of our 3D object; at this stage
no hanging nodes are allowed. This concept is known as mesh based geometry (MBG), see [1] and [2]. The
concept of MBG is a substantial link between the FE community and the mesh generators community such
as the development team of Sandia’s CUBIT let by S.J.Owen; additional references about MBG and mesh
generators are found in [10], [11], [12] and [13]. The price we have to pay when using a MBG description is
the loss of control over smoothness at the interfaces between the different physical blocks; more specifically,
since the maps overlap only at the interfaces, whoseH3-measure is zero, we are not allowed to use the usual
concept of Ck smoothness. Yet, for surfaces, we can still talk about G1 smoothness (continuity of the normal)
and G2 smoothness (continuity of the curvature), as we discussed in [16].

In order to obtain a MBG description of the domain we need to use a mesh generator, that indeed pro-
duces linear blocks, and successively we must upgrade such blocks to curvilinear ones. Our upgrading
procedure is based on the exact geometry of the domain, usually described in terms of bounding surfaces,
that is input for the mesh generator. Notice that, when two surfaces meet, a sharp edge, i.e. a curve, is
obtained. Construct of block parameterizations that match on the common faces and edges is a main issue;
such compatibility condition is achieved through a bottom-up strategy that we briefly outline. The starting
point is to construct parameterizations of all the curves, not only the sharp edges, that constitute our MBG
model: curves that do not lay on any surface can certainly be assumed to be straight lines, while curves that
lay on a surface but are not sharp edges can be reconstructed, e.g. as geodesics. The following step is to
produce figure parameterizations by extending curve parameterizations; this task can be achieved through
transfinite interpolation, a fairly well established technique that was first introduced by Gordon and Hall,
see [4]. If the figure also needs to conform to a surface we must resort to a more complicated construction
the employes transfinite interpolation in the parametric space; this construction, called parametric transfinite
interpolation, was first proposed by Düester, see [3]. Finally, we need to extend the figure parameterizations
to the blocks bounded by such figures; roughly speaking, this is accomplished by summing edge contribu-
tions and, possibly, face contributions, to a linear interpolation of the physical block. The main point of this
construction is that it relies on extension of parameterizations, hence the desired compatibility condition is
automatically met.
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Hierarchical shape functions of arbitrary order. When constructing hierarchical spaces of shape func-
tions it is convenient to group them into vertex modes, edge modes, face modes and interior modes. The
vertex modes are functions that are linear along the element edges, while the remaining modes are bubbles
of higher degree; for example, an edge bubble is supported on the pertaining edge, while it vanishes on
the remaining edges. The construction of shape functions is a fairly trivial task for elements with a tensor
product structure, such as the quad and the hexahedron: given a space of 1D shape functions – e.g Legen-
dre polynomial or integrated Legendre polynomials – the shape functions are simply tensor products of 1D
shape functions. This construction has been described in many works, among which we recall the famous
book “Finite Element Analysis” by Szabó and Babuška, see [5], and a paper by Szabó, Duster and Rank, [6].
A fairly well established way of constructing triangle shape functions is by means of the Duffy’s transfor-
mation that maps the master square onto the master triangle by collapsing one edge; this idea was originally
proposed by Dubiner in [8]. Successively, Karniadakis and Sherwin in [7] have employed the same idea to
extended the construction to tetrahedra; more recently, in [15], Zaglmair used the same approach to con-
struct shape functions for the prism. Shape functions that are constructed via the Duffy’s transformation are
automatically compatible between elements of different shapes and enjoy fast integration properties; more
precisely, for elements with a tensor product structure, an O(p7) fast integration algorithm can be imple-
mented, as discussed in [2]. In [3], Szabó and Babuška describe a construction of shape functions on the
master triangle that does not rest on the Duffy’s transformation; Devloo, in [9], taking inspiration from the
construction on master triangle, extends the construction to elements of all types, including the pyramid. A
similar construction of shape functions has been derived by Solin in [14], however he does not discuss the
pyramidal element. A parallel between the construction of shape functions and transfinite interpolation is
found in [5] for the triangular and the quadrilateral element, and in [6] for the quadrilateral element only.
Comparison between the construction of shape functions and transfinite interpolation for the 3D elements
in not discussed in any of the previously cited works. Finally, the pyramid is a much neglected element;
construction of shape functions were proposed by Zaglmayr in [18], and Nigam and Phillips in [17].

Orientations. Orientations of geometrical entities play a fundamental role in the design of any finite el-
ement code. Many FE codes interface with a mesh generator, such as CUBIT or NETGEN, to produce a
partition of the geometrical object; roughly speaking, the mesh generator outputs a list of points in the phys-
ical space and curves, figures and blocks connectivities by listing the pertaining vertices. The order in which
vertices are listed dictates a global orientation for the geometrical entities. On the other hand, as soon as
each figure is understood as the image of the master triangle or the master quad through some suitable map-
ping, local orientations for its edges are established; similarly, each block will induce local orientations on
its faces and edges. In general local and global orientations do not agree; this fact requires the development
of an assembly procedure of shape functions in order to construct globally continuous basis functions.

The development of an assembly procedure for 2D elements is fairly simple since orientations need to
be accounted for only in the assembly of edge modes. For the ease of discussion, let’s consider two adjacent
quadrilateral elements; if the local orientations of the common edge are opposite, the corresponding edge

3



modes of the two elements will not agree along the shared edge. Notice, however, that because of the tensor
product structure of the square, the edge modes reduce to the 1D shape functions along the pertaining edge.
Since the 1D bubbles are in general either even or odd functions, the solution is fairly simple: when the
local orientations do not agree, the odd modes of one element need to be premultiplied by -1; nothing needs
to be done for the even modes. This technique also applies to triangles as soon as the restriction of the edge
bubbles to the pertaining edge are the 1D shape functions; this is indeed the case for our construction.

Things become significantly more complicated for 3D elements; let’s again focus on the hexahedral
element. While the assembly procedure for the edge modes can be carried out with the same strategy
described for 2D elements, the assembly procedure of the face modes needs to take into account the eight
possible orientations of a quadrilateral face.

Scope of this presentation. In this paper we describe an implementation of H1-conforming shape func-
tions on the hexahedron, tetrahedron, prism and pyramid. We start by identifying sets of 1D, 2D, and 3D
shape functions that span polynomials of type P; since the 2D and 3D shape functions are only used to
generate the interior modes of the master triangle and tetrahedron, they need not to be related to each other,
nor to the set of 1D shape functions. This fact allows us to redefine the core functions at any time, greatly
enhancing portability of the FE code. Our construction is also completely hierarchical: any shape function,
when restricted to a face, coincides with the appropriate – recall that the face can be either a triangle or a
quad – 2D shape function expressed in the local system of coordinates, and, when restricted to an edge,
it coincides with a 1D shape function with respect to the local edge coordinate. Moreover, we realized
that, if orientations are taken into account at the level of the element shape functions routines, the assembly
procedure to generate globally continuous basis functions becomes trivial; this also simplifies dramatically
the implementation of constrained approximation allowing for the presence of hanging nodes. The element
orientation is given by a vector of edge orientations and a vector of face orientations; in general, the local
orientations of the element edges and faces do not agree with the global orientations they inherit from the
MBG model. A simple way to construct globally continuous basis functions is to generate shape functions
that conform to the global, instead of local, orientation of edges and faces; since the global orientation of a
particular geometrical entity (curve or figure) is known to all elements adjacent to such entity, then the shape
functions of adjacent elements will agree along the shared geometrical entity. Finally, we emphasize how
transfinite interpolation and our construction of shape functions closely resemble each other; this is a major
advantage towards a successful development of a logically consistent geometry modeling package for a FE
code.

In Section 2 we discuss the construction of shape functions on the unit interval and on the master triangle
and square, along with transfinite interpolation on such elements; moreover, we compare our construction of
edge modes for the master triangle with an alternative construction, that relies on the Duffy’s transformation,
proposed by Dubiner. Finally, we give a brief description of transfinite interpolation in parametric space and
how it is employed to construct the maps that are needed by a MBG description. The most relevant section of
the paper is Section 3; we discuss in full details the construction of shape functions for the most commonly
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used three dimensional elements, and we extend it to the highly degenerate pyramidal element. Notice that,
if we wish to create a mesh containing both tetrahedra and prisms, we need to have pyramids as connecting
elements; this was one of the reasons that convinced us to extend our construction to the pyramid. Finally, for
each element, we draw a parallel between the construction of shape functions and transfinite interpolation.
In section 4 we discuss the main issues that we faced during implementation of our construction of shape
functions and how we verified our code. In the last section of the paper we review its content and comment
on possible extensions to H(div) and H(curl) spaces.

2 One- and Two-Dimensional Elements

One dimensional hierarchical shape functions. Let’s present a quick overview of the most common
spaces of one dimensional hierarchical shape functions, since they are indeed quite well known. The sim-
plest choice are the Peano shape functions:

P1 = 1− ξ ; P2 = ξ ; Pi = P1(ξ)P2(ξ) (2ξ − 1)i−3 for i = 3, . . . , p+ 1

which span the space Pp[0, 1]; moreover, P1 and P2 are vertex shape functions, while the remaining modes
are either odd or even bubbles. Other common choices are the Legendre polynomials {Li}i and the in-
tegrated Legendre polynomials {`i}i. One possible definition of the Legendre polynomials is through the
recursive formula

L0 = 1 ; L1 = ξ ; Li =
2n− 1
n

ξ Li−1(ξ)− i− 1
i

Li−2 (ξ) for i = 2, . . . , p

Legendre polynomials span Pp[−1, 1] and enjoy the remarkable property of being a complete orthogonal
set for both L2(−1, 1) and H1(−1, 1). Finally, if Li’s now denote the Legendre polynomials rescaled to the
interval [0, 1], the integrated Legendre polynomials are defined as:

`1 = 1− ξ ; `2 = ξ ; `i =
∫ ξ

0
Li−2(s) ds for i = 3, . . . , p+ 1

they span Pp[0, 1] and it is easy to show that `3, `4, . . . are indeed bubbles. In the remaining of the paper we
will use the notation χ̂i for the shape functions and order them in a way such that χ̂1, χ̂2 are the vertex shape
functions, while the remaining (p− 1) ones are the bubbles. In order to keep the notation light, χ̂’s are also
the generic shape functions we construct in the following sections; since the 1D shape functions depend on
one variable only, no confusion arises.

Master square element. The master square element [0, 1]2, that is fully described in Fig. 1, is an
anisotropic element that supports the spaceQ(p,q)(ξ1, ξ2) = Pp(ξ1)⊗Pq(ξ2). Since the 1D shape functions
{χ̂i}i form a base for Pp, then a base for the tensor product space Q(p,q) is canonically constructed as

χ̂i,j = χ̂i(ξ1)⊗ χ̂j(ξ2) for i = 1, . . . , p+ 1 ; j = 1, . . . , q + 1
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Figure 1: Master square.

where the tensor product indeed reduces to the standard algebraic product. Using a different numbering
convention that more closely resembles the 1D case, the vertex shape functions are

χ̂1 = χ̂1(ξ1) χ̂1(ξ2) ; χ̂2 = χ̂2(ξ1) χ̂1(ξ2) ; χ̂3 = χ̂2(ξ1) χ̂2(ξ2) ; χ̂4 = χ̂1(ξ1) χ̂2(ξ2)

The edge shape functions associated to the first edge are

χ̂1,i = χ̂i+2(ξ1) χ̂1(ξ2) for i = 1, . . . , p− 1 (2.1)

with similar definitions for the remaining edge; we remark that, in the context of equation (2.1), χ̂1(ξ2) is
sometimes referred to as the edge blending function. Finally, we use the following notations for the interior
modes, i.e bubbles:

χ̂bub
i,j = χ̂i+2(ξ1) χ̂j+2(ξ2) for i = 1, . . . , p− 1 ; for j = 1, . . . , q − 1

Transfinite Interpolation on a rectangle. As anticipated, transfinite interpolation strictly resembles the
construction of shape functions. Let αi’s be the parameterizations of the four edges of a rectangle K –
possibly exhibiting curved edges – lying in a two dimensional physical space and having vertices vi’s. A
surjective map [0, 1]2 7→ K is obtained adding together the bilinear interpolation between the vertices, Φlin,
and four vector-valued edge bubbles Φedge

i . The bilinear interpolation is easily expressed in terms of vertex
shape functions as Φlin =

∑4
i=1 χ̂i vi; mimicking the construction of edge shape functions, the first edge

bubble is obtained as
Φedge

1 =
[
α1(ξ1)− χ̂1(ξ1) v1 − χ̂2(ξ1) v2

]
χ̂1(ξ2)

where the term in brackets is a bubble in the ξ1 direction and χ̂1(ξ2) is the edge blending function; notice the
similarity between the last formula and equation (2.1). The previous construction extends to the remaining
edges with obvious modifications; the transfinite interpolation of K is given by Φlin +

∑4
i=1 Φedge

i .
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Figure 2: Master triangle.

Master triangle. The master triangle {(ξ1, ξ2) s.t. ξ1, ξ2 ≥ 0 ; ξ1 + ξ2 ≤ 1}, described in Fig. 2, is
an isotropic element that supports the space Pp(ξ1, ξ2). While the construction of the edge bubbles still
relies on the set {χ̂i}i of 1D shape functions, construction of the interior modes will require a set {ψ̂j}j of
functions that span Pp. Vertex shape functions coincide with the affine coordinates of the master triangle,
i.e.

χ̂1 = λ1 = 1− ξ1 − ξ2 ; χ̂2 = λ1 = ξ1 ; χ̂3 = λ1 = ξ2

while construction of edge shape functions is more complicated because of the lack of a tensor product
structure on the element. Let’s focus our attention on the first edge, [v1,v2]; a projection from the master
triangle onto the interval [0, 1] is defined as

(ξ1, ξ2) 7→ ζ ; ζ =
λ2 − λ1 + 1

2
(2.2)

Indeed this is equivalent to setting up a local coordinate on the first edge and projecting onto it in the
direction of the median. A first attempt to define edge shape functions is the following:

χ̂1,i = χ̂i+2(ζ)λ1(ξ1, ξ2)λ2(ξ1, ξ2)

where λ1λ2 is the edge blending function; notice, however, that the restrictions of such functions to the edge
does not recover the set of 1D shape functions. While this is not a problem if we aim to develop a code
that supports only triangles, it becomes a major issue if we want to support both triangles and quads: in fact
we cannot generate continuos basis functions for the edges that are shared between a quad and a triangle by
simply gluing shape functions together. We overcome this problem by adopting the construction:

χ̂1,i =
χ̂i+2(ζ)
(1− ζ)ζ

λ1(ξ1, ξ2)λ2(ξ1, ξ2)
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We will refer to χ̂ker
i = χ̂i+2(ζ)/(1 − ζ)ζ as the i-th edge kernel function; notice that since χ̂i+2 is a

polynomial bubble, then kernel functions are not singular at the endpoints as it might seem at first glance.
Finally, the interior modes are products of the ψ̂i’s with the blending function λ1λ2λ3:

χ̂bub
i = ψ̂i(ξ1, ξ2)λ1(ξ1, ξ2)λ2(ξ1, ξ2)λ3(ξ1, ξ2)

Transfinite Interpolation on a triangle. Transfinite interpolation on a triangle resembles the construction
described on a rectangle, i.e. the sum of a linear interpolation and edge contributions, with the understanding
that kernel functions are used in place of the bubble functions in the construction of the vector-valued
edge bubbles. Recalling the notations we introduced for the rectangle, the linear interpolation is Φlin =∑3

i=1 χ̂i vi, while the first edge bubble is

Φedge
1 =

[
α1(ζ)− χ̂1(ζ) v1 − χ̂2(ζ) v2

(1− ζ)ζ

]
λ1(ξ1, ξ2)λ2(ξ1, ξ2)

where the map (ξ1, ξ2) 7→ ζ was defined in (2.2). The term in brackets is a vector-valued kernel function;
notice that while the kernel function defined in the context of shape functions is not singular at the endpoints
of the edge it pertains to, this is not the case for transfinite interpolation. The numerator indeed vanishes at
the endpoints, but since the edge parameterization is not a priori a polynomial function, in general we cannot
factor out (1 − ζ)ζ. The previous construction extends to the remaining edges with obvious modifications
and the the transfinite interpolation is given by Φlin +

∑3
i=1 Φedge

i .

Dubiner’s construction for a triangle. An alternative construction of edge bubbles for the triangle, that
relies on the Duffy’s transformation, was proposed by Dubiner. Let (x1, x2) and (ξ1, ξ2) be the coordinates
of the master square and the master triangle respectively, then the map

ξ1 = x1(1− x2) ; ξ2 = x2

is the Duffy’s transformation relative to the bottom edge of the square. It can be shown that the Duffy
transformation maps the spaceQ(p,p)(x1, x2) onto a space that strictly containsPp(ξ1, ξ2). Let u ∈ Pp0 [0, 1],
i.e. the space of polynomials of degree at most p on [0, 1] vanishing at the endpoints, then, using the Duffy’s
transformation, we have that:

u(x1) (1− x2)p 7→ u

(
ξ1

1− ξ2

)
(1− ξ2)p

where the right-hand side is not a singular function on the line [ξ2 ≡ 1], since u is a polynomial of degree
at most p. Notice that we need to take the edge bubble u(x1) (1 − x2)p, that indeed belongs to the space
Q(p,p), over the master square in order to cancel the singularity of the Duffy’s transformation. This points to
the fact that we need to start from an isotropic master square element in order to use Dubiner’s construction;
this fact poses a conflict with our overall logic.
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Finally, we remark that every edge will require a different Duffy’s transformation; also, such construc-
tion does not fit into our general framework. Suppose that u is an arbitrary bubble function (not necessarily
a polynomial), then the function u

(
ξ1/(1− ξ2)

)
(1− ξ2)p is in general singular on the line [ξ2 ≡ 1] since in

this case the choice of the blending function is not suitable; on the other hand, there is no appropriate choice
of a blending function to accommodate the singularity of the Duffy’s transformation for an arbitrary bubble
function. Therefore, this construction is not suitable for our transfinite interpolation.

Transfinite Interpolation in parametric space. The transfinite interpolations for the rectangle and the
triangle are easily generalized to the hexahedron and the tetrahedron; they indeed produce physical elements
whose edges conform to the images of the parameterizations αi’s. Yet, if a physical element has a face
adjacent to a bounding surface, its transfinite interpolation, in general, does not conform to the bounding
surface; in order to address this issue we need to include a face contribution, i.e. a face bubble, in the
interpolation procedure. The first step to construct a face bubble is to find a map from the appropriate 2D
master element – triangle or quad – onto the face in physical space; this task is performed through parametric
transfinite interpolation. Suppose that, beside the edge parameterizations (x1, x2, x3) = αi(s), an explicit
parameterization (x1, x2, x3) = F (u, v) of the bounding surface is known; then, at least in principle, maps
(u, v) = γi(s) where s is the curvilinear abscissa, can be obtained. The maps γi’s describe the edges of
the face in the parametric space (u, v); hence the problem has been reduced to a 2D transfinite interpolation
between the reference space (ξ1, ξ2) and the parametric space (u, v). Finally, the parametric transfinite
interpolation βj of the face is the composition of the 2D transfinite interpolation and map F .

Example: parametric transfinite interpolation on a spherical surface. Let’s analyze the case of a
spherical surface of unit radius; while the implicit parameterization of this surface is x2

1 + x2
2 + x2

3 = 1, the
explicit parameterization F is given by

x1 = sinϕ cos θ , x2 = sinϕ sin θ , x3 = cosϕ

where θ ∈ [−π, π) and ϕ ∈ [0, π) are suitable choices for the surface parameters. Let’s consider a triangular
figure laying on the spherical surface; the three edge parameterizations (x1, x2, x3) = αi(s) are known,
since the bounding curves are either sharp edges, which are determined by the intersection of two or more
surfaces, or have been reconstructed employing the fact that they lay on the surface (in this case geodesics
are a natural choice), see Fig. 3. Focusing again on the case of the sphere, the first step towards building
the desired interpolation, is determining parameterizations (θ, ϕ) = γi(s) for the edges in the parametric
space; in theory, this can achieved through the composition γi = F−1 ◦ αi, which requires inverting map
F . While in this case map F can inverted analytically for every point beside the south and north pole,
in the general framework it can be inverted numerically, e.g through Newton-Rapson iterations, and the
implicit function theorem needs to be used to determine derivatives. The fact that map F 1 is singular at the
south and north pole does not constitute a big issue, since by means of a rigid body motion we can always
reduce to a triangular figure such that its first vertex belongs to the x1 axis, and its second vertex lays on the
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Figure 3: Edge and surface parameterizations in physical space

(x1, x2) plane; if the figure has reasonable shape, this motion rules out the fact that the third vertex is near
to either the south or the north pole. Therefore we have reduced the problem to determining a 2D transfinite
interpolation between the master triangle and a triangular figure in (θ, ϕ) whose three edge parameterization
γi are known; we employ the technique of transfinite interpolation on a triangle. We start by building the
linear interpolation and then we add the edge contributions, i.e the edge bubbles. Finally, if R is the 2D
interpolation thus obtained, the parametric transfinite interpolation β is obtained through the composition
β = F ◦R; this whole construction is outlined in Fig. 4.

Elements of variable order. In the discussion carried out so far, we characterized the order of approxima-
tion of quadrilateral elements by (p, q), and the order of approximation of triangular elements by p. Those
are indeed the orders of approximation associated to the interior nodes of the elements; when elements of
different order are placed next to each other, an appropriate order of approximation needs to be determined
for the common edge. Let’s focus on the quadrilateral element, since discussion of the triangle is analogous:
clearly the order of approximation of the horizontal edges cannot exceed p, while the order of approximation
of the vertical edges cannot exceed q. We choose to pick the minimum between the orders of approximation
the edge inherits from the adjacent elements. Although we feel like this is the most natural choice, other
ones are possible. For example, Szabó assigns to the shared edge the maximum order of approximation; this
requires the non trivial task of extending a high order polynomial defined on the edge to a lower order one
defined on the entire element.
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Figure 4: Transfinite interpolation in parametric space.

3 Three Dimensional Elements

The construction of shape functions for three dimensional elements rests upon the space {χ̂i}i of 1D shape
functions previously defined, along with two additional spaces: a space {ψ̂j}j of bubble functions on the
master triangle, and a space {ϕ̂k}k that spans Pp(ξ1, ξ2, ξ3). Notice that we are committing a slight abuse
of notation since in the subsection about the master triangle ψ̂j’s were not bubbles; in the new contest we
can certainly choose ψ̂j = χ̂bub

j where the χ̂bub
j ’s are the interior modes for the master triangle previously

defined.

Master hexahedron. The master hexahedron [0, 1]3, which is described in Fig. 5, is an immediate exten-
sion of the master square; it is an anisotropic element that supports the space Q(p,q,r) = Pp ⊗ Pq ⊗ Pr.
Because of its tensor product structure, the shape functions are products of the 1D shape functions {χ̂i}i; in
particular the vertex shape functions are

χ̂1 = χ̂1(ξ1) χ̂1(ξ2) χ̂1(ξ3) χ̂2 = χ̂2(ξ1) χ̂1(ξ2) χ̂1(ξ3)

χ̂3 = χ̂2(ξ1) χ̂2(ξ2) χ̂1(ξ3) χ̂4 = χ̂1(ξ1) χ̂2(ξ2) χ̂1(ξ3)

χ̂5 = χ̂1(ξ1) χ̂1(ξ2) χ̂2(ξ3) χ̂6 = χ̂2(ξ1) χ̂1(ξ2) χ̂2(ξ3)

χ̂7 = χ̂2(ξ1) χ̂2(ξ2) χ̂2(ξ3) χ̂8 = χ̂1(ξ1) χ̂2(ξ2) χ̂2(ξ3)
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The first edge bubbles are

χ̂
edge
1,i = χ̂i+2(ξ1) χ̂1(ξ2) χ̂1(ξ3) for i = 1, . . . , p− 1

and the first face bubbles are

χ̂face
1,i,j = χ̂i+2(ξ1) χ̂j+2(ξ2) χ̂1(ξ3) for i = 1, . . . , p− 1 ; j = 1, . . . , q − 1

Generalizations to the remaining edges and faces is obvious. Finally, the interior modes are

χ̂bub
i,j,k = χ̂i+2(ξ1) χ̂j+2(ξ2) χ̂k+2(ξ3) for i = 1, . . . , p− 1 ; j = 1, . . . , q − 1 ; k = 1, . . . , r − 1

Transfinite interpolation on a hexahedron. As anticipated, when dealing with three dimensional ele-
ments, transfinite interpolation needs to take also into account face bubbles. Edge parameterizations αi’s
are supposed to be known and face parameterizations βj’s can be obtained through parametric transfinite in-
terpolation as previously discussed. The linear interpolation is Φlin =

∑8
i=1 χ̂i vi; for the sake of simplicity

let’s focus on the first edge, [v1,v2], and the first face, [v1,v2,v3,v4]. The edge bubble is obtained as

Φedge
1 =

{
α1(ξ1)−

[
χ̂1(ξ1)v1 + χ̂2(ξ1)v2

]}
χ̂1(ξ2) χ̂1(ξ3)

For ease of notation let’s first define the local face bubble Φface bub
1 ; it is obtained subtracting the bilinear

interpolation of the face, which is the first bracketed term in the following expression, and the local edge
bubbles, which are enclosed between curly braces, to the face parameterization β1:

Φface bub
1 = β1(ξ1, ξ2)−

[
χ̂1(ξ1)χ̂1(ξ2)v1 + χ̂2(ξ1)χ̂1(ξ2)v2 + χ̂2(ξ1)χ̂2(ξ2)v3 + χ̂1(ξ1)χ̂2(ξ2)v4

]
−
{[
α1(ξ1)− χ̂1(ξ1)v1 − χ̂2(ξ1)v2

]
χ̂1(ξ2)

}
−
{[
α2(ξ2)− χ̂1(ξ2)v2 − χ̂2(ξ2)v3

]
χ̂2(ξ1)

}
−
{[
α3(ξ1)− χ̂1(ξ1)v4 − χ̂2(ξ1)v3

]
χ̂2(ξ2)

}
−
{[
α4(ξ2)− χ̂1(ξ2)v1 − χ̂2(ξ2)v4

]
χ̂1(ξ1)

}
where e1, e2, e3, e4 are indeed the edges of the first face, as can be deduced from Fig. 5. Because of the
tensor product structure of the hexahedron, the previous expression simplifies to:

Φface bub
1 = β1(ξ1, ξ2)−

{[
α1(ξ1)− χ̂2(ξ1)v2

]
χ̂1(ξ2)

}
−
{[
α2(ξ2)− χ̂2(ξ2)v3

]
χ̂2(ξ1)

}
−
{[
α3(ξ1)− χ̂1(ξ1)v4

]
χ̂2(ξ2)

}
−
{[
α4(ξ2)− χ̂1(ξ2)v1

]
χ̂1(ξ1)

}
this makes the implementation of the transfinite interpolation computationally cheaper than it looks at first
glance. The face bubble is obtained multiplying the local face bubble by the appropriate face blending
function, Φface

1 = Φface bub
1 χ̂1(ξ3). Finally, the transfinite interpolation we seek is

Φlin +
12∑
i=1

Φedge
i +

6∑
j=1

Φface
j
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Master tetrahedron. The construction of shape functions on the master tetrahedron, which is fully de-
scribed in Fig. 6 and whose domain are the points (ξ1, ξ2, ξ3) ∈ R3 such that ξ1, ξ2, ξ3 ≥ 0 and ξ1 + ξ2 +
ξ3 ≤ 1, extends the philosophy previously developed for the master triangle. Let’s first define a projection
onto edge [vi,vj ]:

(ξ1, ξ2, ξ3) 7→ ζ ; ζ =
λj − λi + 1

2
(3.3)

where λi’s are the affine coordinates with respect to the master tetrahedron. This is indeed the projection
parallel to the plane passing through the mid-point of edge [vi,vj ] and the endpoints of the opposite edge;
such a projection sets up a local coordinate ζ in the direction [vi → vj ], as illustrated in Fig. 6. Projection
onto face [vi,vj ,vk] is defined as

(ξ1, ξ2, ξ3) 7→ (ζ1, ζ2) ; ζ1 = λj +
λl
3
, ζ2 = λk +

λl
3

(3.4)

where l refers to the vertex opposite to the face. This is the projection in the direction of the line connecting
the center of mass of the face to the opposite vertex; it sets up local coordinates ζ1, in the direction [vi → vj ],
and ζ2 in the direction [vi → vk]. While the vertex shape functions are the affine coordinates

χ̂1 = λ1 = 1− ξ1 − ξ2 − ξ3 ; χ̂2 = λ2 = ξ1 ; χ̂3 = λ3 = ξ2 ; χ̂4 = λ4 = ξ3

construction of the remaining modes relies on 1D bubbles {χ̂i}i≥3, 2D bubbles {ψ̂j}j , and the space {ϕ̂k}k.
Let’s focus on the first edge and the first face; construction of the first edge modes relies on the edge kernel
functions previously defined:

χ̂
edge
1,i = χ̂ker

i (ζ)λ1(ξ1, ξ2, ξ3)λ2(ξ1, ξ2, ξ3)

where ζ is determined by the projection on the first edge and λ1λ2 is the edge blending function. Construc-
tion of face bubbles is done in a similar fashion:

χ̂face
1,i =

ψ̂i(ζ1, ζ2)
(1− ζ1 − ζ2)ζ1ζ2

λ1(ξ1, ξ2, ξ3)λ2(ξ1, ξ2, ξ3)λ3(ξ1, ξ2, ξ3)

where ζ1, ζ2 are determined by the projection on the first face and λ1λ2λ3 is the face blending function.
Similarly to the 1D case, we refer to function χ̂face ker

i = ψ̂i(ζ1, ζ2)/(1 − ζ1 − ζ2)ζ1ζ2 as the face kernel
function.

Transfinite interpolation on a tetrahedron. Recalling the notation introduced for the master hexahedron,
the transfinite interpolation for the master tetrahedron is given by:

Φlin +
6∑
i=1

Φedge
i +

4∑
j=1

Φface
j

where the linear interpolation is of course Φlin =
∑4

i=1 χ̂i vi. As usual let’s focus on the first edge [v1,v2]
and the first face [v1,v2,v3]; recall that the first face is bounded by edges e1, e2, e3. The edge bubble is

13



given by

Φedge
1 =

[
α1(ζ)− χ̂1(ζ) v1 − χ̂2(ζ) v2

(1− ζ)ζ

]
λ1(ξ1, ξ2, ξ3)λ2(ξ1, ξ2, ξ3)

where ζ is given by the appropriate choice of equation (3.3); the term in brackets is the edge kernel and
λ1λ2 is the edge blending function. Construction of the face bubble follows the same philosophy employed
for the hexahedron, however the local face bubble needs to be replaced by the local face kernel because of
the lack of tensor product structure. The face kernel function is defined as:

Φface ker
1 =

(
β1(ζ1, ζ2)−

[
(1− ζ1 − ζ2)v1 + ζ1v2 + ζ2v3

]
−
{[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

]
λ1(ζ1, ζ2)λ2(ζ1, ζ2)

}
−
{[
α2(ζ)− χ̂1(ζ)v2 − χ̂2(ζ)v3

]
λ2(ζ1, ζ2)λ3(ζ1, ζ2)

}
−
{[
α3(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v3

]
λ1(ζ1, ζ2)λ3(ζ1, ζ2)

})/
(1− ζ1 − ζ2)ζ1ζ2

where the first bracketed term is the linear interpolation and the terms in curly braces are the local edge
bubbles; we remark that the λi’s are the affine coordinates with respect to the master triangle. Coordinates
ζ1, ζ2 are determined using (3.4); moreover the different instances of ζ need to be interpreted as the local
coordinate on the first, second and third edge respectively, which are determined by (3.3). Finally, the face
bubble is obtained multiplying the face kernel by the face blending function λ1λ2λ3, where λi’s are the
affine coordinates with respect to the master tetrahedron.

Master prism. The master prism, described in Fig. 7, is an element with a partial tensor product structure;
it is isotropic in the (ξ1, ξ2) plane and supports the space Pp(ξ1, ξ2) ⊗ Pq(ξ3). Shape functions on the
prism are immediately obtained by considering tensor products of the form χ̂i(ξ1, ξ2) χ̂j(ξ3) where χ̂i’s are
the master triangle shape functions and χ̂j’s are the 1D shape functions previously constructed; the shape
functions thus obtain are indeed vertex, edge, face, and interior modes. For ease of implementation, as
we will explain in the next section, it is convenient to express the modes associated to horizontal edges
as products of a 1D kernel function and a blending function, and the modes associated to vertical edges
as products of a 1D bubble and a blending function; similarly, since the vertical faces are rectangles, the
vertical face bubbles turn out to be products of a 1D bubble, a 1D kernel, and a blending function.

The vertex shape functions are products of the 1D vertex shape functions χ̂1, χ̂2 and the master triangle
affine coordinates λ1, λ2, λ3:

χ̂1 = λ1(ξ1, ξ2)λ2(ξ1, ξ2)χ̂1(ξ3) χ̂2 = λ2(ξ1, ξ2)λ3(ξ1, ξ2)χ̂1(ξ3)

χ̂3 = λ1(ξ1, ξ2)λ3(ξ1, ξ2)χ̂1(ξ3) χ̂4 = λ1(ξ1, ξ2)λ2(ξ1, ξ2)χ̂2(ξ3)

χ̂5 = λ2(ξ1, ξ2)λ3(ξ1, ξ2)χ̂2(ξ3) χ̂6 = λ1(ξ1, ξ2)λ3(ξ1, ξ2)χ̂2(ξ3)

14



In order to discuss edge bubbles let’s focus on a horizontal edge, e1 = [v1,v2], and a vertical edge, e7 =
[v1,v4]; the horizontal edge modes are

χ̂
edge
1,i = χ̂1,i(ξ1, ξ2)χ̂1(ξ3) = χ̂ker

i (ζ)λ1(ξ1, ξ2)λ2(ξ1, ξ2)χ̂1(ξ3)

where χ̂1,i’s are the bubbles associated to the first edge of the master triangle, χ̂ker
i are the 1D kernel function

and the coordinate ζ is determine by the projection on the first edge of the master triangle; we can refer to
function λ1λ2χ̂1 as the blending function relative to edge e1. The construction of the vertical edge modes is
simpler:

χ̂
edge
7,i = χ̂i+2(ξ3)λ1(ξ1, ξ2)

where χ̂i+2’s are the 1D bubbles and λ1 is the edge blending function. Let’s now consider the horizontal
face f1 = [v1,v2,v3] and the vertical face f3 = [v1,v2,v5,v4]; we have, respectively, that

χ̂face
1,i = χ̂bub

i (ξ1, ξ2)χ̂1(ξ3)

where χ̂bub
i ’s are the master triangle bubbles, and

χ̂face
3,i,j = χ̂1,i(ξ1, ξ2) χ̂j+2(ξ3) = χ̂ker

i (ζ)λ1(ξ1, ξ2)λ2(ξ1, ξ2) χ̂j+2(ξ3)

where χ̂1,i’s are the bubbles associated to the first fist edge of the master triangle and ζ is the coordinate on
such edge. Finally, the interior modes are simply products of bubble functions

χ̂bub
i,j = χ̂bub

i (ξ1, ξ2) χ̂j+2(ξ3)

where χ̂bub
i are the master triangle interior modes.

Transfinite interpolation on a prism. Transfinite interpolation on a prism follows the usual construction

Φlin +
9∑
i=1

Φedge
i +

5∑
j=1

Φface
j

where the linear contribution is given by Φlin =
∑

i=6 χ̂ivi. Mimicking the construction of shape functions,
contributions due to horizontal edges involve kernel functions, while contributions due to vertical edges
involve bubble functions; as usual, let’s focus on a specific horizontal edge, e1 = [v1,v2], and vertical edge,
e7 = [v1,v4]. We have that

Φedge
1 =

[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

(1− ζ)ζ

]
λ1(ξ1, ξ2)λ2(ξ1, ξ2)χ̂1(ξ3)

where the bracketed term is indeed the edge kernel and ζ is the coordinate along the first edge of the master
triangle; construction for the vertical edge is as follows:

Φedge
7 =

[
α7(ξ3)− χ̂1(ξ3)v1 − χ̂2(ξ3)v4

]
λ1(ξ1, ξ2)
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where the local edge bubble, the term in brackets, has replaced the edge kernel function. Let’s now turn our
attention to the face contributions; specifically, let’s consider a horizontal face, f4 = [v1,v2,v3], and the
vertical face, f1 = [v1,v2,v5,v4]. The contribution from the horizontal face involves use of the local face
bubble, i.e. the term between parenthesis in the following expression:

Φface
1 =

(
β1(ξ1, ξ2)−

[
λ1(ξ1, ξ2)v1 + λ2(ξ1, ξ2)v2 + λ3(ξ1, ξ2)v3

]
−
{[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

]
λ1(ξ1, ξ2)λ2(ξ1, ξ2)

}
−
{[
α2(ζ)− χ̂1(ζ)v2 − χ̂2(ζ)v3

]
λ2(ξ1, ξ2)λ3(ξ1, ξ2)

}
−
{[
α3(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v3

]
λ1(ξ1, ξ2)λ3(ξ1, ξ2)

})
χ̂1(ξ3)

Notice that the first bracketed term is the linear interpolation of the face and the terms in curly braces are
the local edge bubbles; moreover, the three instances of ζ need to be interpreted as the local coordinate on
the first, second and third edge of the master triangle respectively. Construction of the vertical face bubble
requires the face kernel which is defined as:

Φface ker
3 =

(
β3(ζ, ξ3)−

[
χ̂1(ζ)χ̂1(ξ3)v1 + χ̂2(ζ)χ̂1(ξ3)v2 + χ̂2(ζ)χ̂2(ξ3)v5 + χ̂1(ζ)χ̂2(ξ3)v4

]
−
{[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

]
χ̂1(ξ3)

}
−
{[
α8(ξ3)− χ̂1(ξ3)v2 − χ̂2(ξ3)v5

]
χ̂2(ζ)

}
−
{[
α4(ζ)− χ̂1(ζ)v4 − χ̂2(ζ)v5

]
χ̂2(ξ3)

}
−
{[
α7(ξ3)− χ̂1(ξ3)v1 − χ̂2(ξ3)v4

]
χ̂1(ζ)

})/
(1− ζ)ζ

The first term in brackets is the bilinear interpolation of the face and the following four terms in curly
braces are the linear interpolation of the edges; ζ is the coordinate along the first edge of the master
triangle. The face bubble is obtained multiplying by the appropriate face blending function: Φface

3 =
Φface ker

3 λ1(ξ1, ξ2)λ2(ξ1, ξ2).

Master pyramid. The master pyramid is described by Fig. 8; as anticipated, the pyramid is needed as
a connecting element in any mesh that includes tetrahedra and prisms. Construction of an appropriate
functional space on the pyramid is a non trivial task; we follow the construction proposed by Zaglmayr, see
[18], that relies on the Duffy’s transformation. Such a transformation, defined as

ξ1 = x1(1− x3) ; ξ2 = x2(1− x3) ; ξ3 = x3

maps the master hexahedron to the master pyramid by collapsing the top face onto vertex v5. With this tool
in place, an appropriate functional space for the pyramid is determined by applying the Duffy’s transforma-
tion to the spaceQp,q,r, supported by the hexahedron, and imposing appropriate constraints. It is convenient
to apply the Duffy’s transformation to monomials of the form xi1x

j
2(1− x3)k, where 0 ≤ i ≤ p, 0 ≤ j ≤ q,

and 0 ≤ k ≤ r, since:
xi1x

j
2(1− x3)k 7→ ξi1ξ

j
2(1− ξ3)k−i−j
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Appropriate constraints are determined by requiring that the previous functions reduce to polynomials of
type P on the lateral faces. In particular, on face ξ1 + ξ3 = 1 we obtain ξj2(1 − ξ3)k−j , hence 0 ≤ j ≤ k,
and on face ξ2 + ξ3 = 1 we have that ξi1(1− ξ3)k−i, which implies 0 ≤ i ≤ k. This shows that the pyramid
is indeed an isotropic element, p = q = r, and leads and it supports the space spanned by the monomials
ξi1ξ

j
2(1 − ξ3)k−i−j under the condition 0 ≤ i, j ≤ k ≤ p. Notice that the restrictions to face ξ1 = 0 and to

face ξ2 = 0 are indeed the desired ones, provided we set i = 0 and j = 0 respectively, and define 00 = 1;
moreover, the space supported by the pyramid contains the space of polynomials Pp and some rational
functions. Vertex shape functions are defined as

χ̂1 =
(1− ξ1 − ξ3)(1− ξ2 − ξ3)

1− ξ3
χ̂2 =

ξ1(1− ξ2 − ξ3)
1− ξ3

χ̂3 =
ξ1ξ2

1− ξ3
χ̂4 =

ξ2(1− ξ1 − ξ3)
1− ξ3

χ̂5 = ξ3

Notice that first four vertex shape functions are indeed singular at the pyramid vertex, although in the limit
we indeed recover χ̂i(vj) = δij ; moreover, the vertex shape functions are linear along the pyramid edges.
In order to construct edge and face modes we must define some suitable projection operators. Projections
on vertical edges [vi,vj ] are defined in terms of vertex shape functions as:

(ξ1, ξ2, ξ3) 7→ ζ ; ζ =
χ̂j − χ̂i + 1

2

where the local coordinate ζ is set in the direction [vi → vj ]. Such a construction is indeed the projection
parallel to the surface [χ̂j − χ̂i + 1 − 2ζ ≡ 0] where ζ can be interpreted as a parameter. A graph of
such a surface for edge [v1,v5] and ζ = 1/2 is shown in Fig. 9; notice that the surface is made up of two
bilinear sheets, however only the lower one intersects the edge of interest. Projections on the horizontal
edges parallel to the ξ1 axis and on the edges parallel to the ξ2 axis are defined, respectively, as

(ξ1, ξ2, ξ3) 7→ ζ , ζ = ξ1 +
ξ3

2
; (ξ1, ξ2, ξ3) 7→ ζ , ζ = ξ2 +

ξ3

2

while projections on faces [v1,v2,v5] and [v4,v3,v5], and on faces [v2,v3,v5] and [v1,v4,v5] are defined,
respectively, as

(ξ1, ξ2, ξ3) 7→ (ζ1, ζ2) ; ζ1 = ξ1 , ζ2 = ξ3 ; (ξ1, ξ2, ξ3) 7→ (ζ1, ζ2) ; ζ1 = ξ2 , ζ2 = ξ3

Finally, the projections on the bottom face is defined as:

(ξ1, ξ2, ξ3) 7→ (ζ1, ζ2) ; ζ1 =
ξ1

1− ξ3
, ζ2 =

ξ2

1− ξ3
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For ease of exposition it is convenient to first define all the blending functions; the edge blending functions
are defined as:

Λ1 =
ξ1(1− ξ1 − ξ3)(1− ξ2 − ξ3)

1− ξ3
Λ2 =

ξ1ξ2(1− ξ2 − ξ3)
1− ξ3

Λ3 =
ξ1ξ2(1− ξ1 − ξ3)

1− ξ3
Λ4 =

ξ2(1− ξ1 − ξ3)(1− ξ2 − ξ3)
1− ξ3

Λ5 =
ξ1ξ2(1− ξ2 − ξ3)

1− ξ3
Λ6 =

ξ1ξ2ξ3

1− ξ3

Λ7 =
ξ2ξ3(1− ξ1 − ξ3)

1− ξ3
Λ8 =

ξ1(1− ξ1 − ξ3)(1− ξ2 − ξ3)
1− ξ3

while the face blending functions are defined as

Ξ1 = ξ3Λ1 =
ξ1ξ3(1− ξ1 − ξ3)(1− ξ2 − ξ3)

1− ξ3
Ξ2 = ξ3Λ2 =

ξ1ξ2ξ3(1− ξ2 − ξ3)
1− ξ3

Ξ3 = ξ3Λ3 =
ξ1ξ2ξ3(1− ξ1 − ξ3)

1− ξ3
Ξ4 = ξ3Λ4 =

ξ2ξ3(1− ξ1 − ξ3)(1− ξ2 − ξ3)
1− ξ3

Ξ5 = χ̂1χ̂3 =
ξ1ξ2(1− ξ1 − ξ3)(1− ξ2 − ξ3)

(1− ξ3)2

Finally, the interior mode blending function is

Ψ = ξ3χ̂1χ̂3 =
ξ1ξ2ξ3(1− ξ1 − ξ3)(1− ξ2 − ξ3)

(1− ξ3)2

Edge shape functions are computed employing the kernel functions; the edge modes associated to the i-th
edge are

χ̂
edge
i,j = χ̂ker

j (ζ) Λi(ξ1, ξ2, ξ3) for j = 1, . . . , p− 1

where ζ is the local coordinate along the first edge. Similarly, vertical face modes are computed by means
of the triangle kernel functions; hence, for i = 2, . . . , 5, we have that

χ̂face
i,j = χ̂ker

j (ζ1, ζ2) Ξi(ξ1, ξ2, ξ3) for j = 1, . . . ,
(p+ 1)(p+ 2)

2
− 3

Construction of the bottom face modes and the interior modes is more complicated because we need to take
into account the singularities of the blending functions. Let’s start by considering the bottom face modes.
Although the pyramid is an isotropic element, its bottom face is anisotropic of order (p, q) since it is a quad;
the face modes are constructed in the following way:

χ̂face
1,i,j = χ̂ker

i (ζ1)χ̂ker
j (ζ2)(1− ξ3)max{i−1,j−1} Ξ1(ξ1, ξ2, ξ3) for i = 1, . . . , p ; j = 1, . . . , q

Let now p be the order of approximation associated to the pyramid; then the interior modes are constructed
in a similar fashion as:

χ̂bub
i = χ̂i(ζ1)χ̂j(ζ2)(1− ξ3)k−1 Ψ(ξ1, ξ2, ξ3) for i, j = 1, . . . , k ; k = 1, . . . , p− 1
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Transfinite interpolation on a pyramid. Using the pyramid blending functions we just constructed, trans-
finite interpolation on the pyramid turns out to be a rather easy task; as usual, the transfinite interpolation is
expressed as

Φlin +
8∑
i=1

Φedge
i +

5∑
j=1

Φface
j

where Φlin =
∑5

i=1 χ̂1vi is the linear interpolation. Construction of the edge bubbles relies on the kernel
functions. For ease of discussion let’s consider the first edge; we define

Φedge
1 =

[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

(1− ζ)ζ

]
Λ1(ξ1, ξ2, ξ3)

where ζ is the local coordinate along the first edge and the bracketed expression is indeed the edge kernel
function. In order to construct lateral face bubbles we need to use the face kernel functions; if we focus our
attention on the first lateral face, f1 = [v1,v2,v5], then we have that

Φface ker
1 =

(
β1(ζ1, ζ2)−

[
(1− ζ1 − ζ2)v1 + ζ1v2 + ζ2v5

]
−
{[
α1(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v2

]
λ1(ζ1, ζ2)λ2(ζ1, ζ2)

}
−
{[
α2(ζ2)− χ̂1(ζ)v2 − χ̂2(ζ)v5

]
λ2(ζ1, ζ2)λ3(ζ1, ζ2)

}
−
{[
α6(ζ)− χ̂1(ζ)v1 − χ̂2(ζ)v5

]
λ1(ζ1, ζ2)λ3(ζ1, ζ2)

})/
(1− ζ1 − ζ2)ζ1ζ2

where ζ1, ζ2 are the local coordinates on the face and λ1, λ2, λ3 are the affine coordinates with respect to the
master triangle. Notice that the first bracketed expression is the linear interpolation of the face, while the
three terms in curly braces are local edge bubbles; moreover, the three instances of ζ need to be interpreted,
respectively, as the local coordinate along the first, second, and third edge of the triangular face. The face
bubble is obtained multiplying by the appropriate blending function: Φface

1 = Φface ker
1 Ξ1(ξ1, ξ2, ξ3). Finally,

in order to construct the bottom face bubble, we first define the face kernel function:

Φface ker
5 =

(
β5(ζ1, ζ2)−

[
χ̂1(ζ1)χ̂1(ζ2)v1 + χ̂2(ζ1)χ̂1(ζ2)v2 + χ̂2(ζ1)χ̂2(ζ2)v3 + χ̂1(ζ1)χ̂2(ζ2)v4

]
−
{[
α1(ζ1)− χ̂1(ζ1)v1 − χ̂2(ζ1)v2

]
χ̂1(ζ2)

}
−
{[
α2(ζ2)− χ̂1(ζ2)v2 − χ̂2(ζ2)v3

]
χ̂2(ζ1)

}
{[
α3(ζ1)− χ̂1(ζ1)v3 − χ̂2(ζ1)v4

]
χ̂2(ζ2)

}
−
{[
α4(ζ2)− χ̂1(ζ2)v4 − χ̂2(ζ2)v1

]
χ̂1(ζ1)

})/
ζ1ζ2(1− ζ1)(1− ζ2)

As in the previous expression, ζ1, ζ2 are the local coordinates on the face, the first bracketed expression is
the bilinear interpolation of the face, and the four terms in curly braces are local edge bubbles; we finally
have that Φface

5 = Φface ker
5 Ξ5(ξ1, ξ2, ξ3).
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Generalization to elements of variable order. In the previous discussion, the hexahedron has order of
approximation (p, q, r), the tetrahedron and the pyramid have order of approximation p, since they are indeed
isotropic elements, and the prism has order of approximation (p, q), where p is the order in the (ξ1, ξ2) plane
and q in the order in the ξ3 direction. As already pointed out in the discussion for the 2D elements, those
are indeed the orders of approximation associated to the interior nodes; when elements are placed next to
each other, an appropriate order of approximation needs to be determined for the common edges and faces.
Things are rather trivial for the hexahedron: edges that are oriented in the ξ1, ξ2 and ξ3 direction inherit
order of approximation, respectively, equal to p, q, and r. Similarly, faces parallel to the (ξ1, ξ2) plane have
order (p, q), faces parallel to the (ξ1, ξ3) plane have order (p, r), and faces parallel to the (ξ2, ξ3) plane have
order (q, r). Since the tetrahedron is an isotropic element, all faces and edges inherit order of approximation
p; similarly, all triangular faces of the pyramid and edges have order of approximation p, while the bottom
face has order (p, p). Finally, the vertical faces of the prism have order of approximation (p, q), while
the horizontal ones have order p; the vertical edges have order q, and the horizontal ones have order p.
When two quadrilateral faces having order (pi, qi) are placed next to each other, the order of approximation
associated to the middle node of the figure is again determined by the minimum rule p = min{p1, p2},
q = min{q1, q2}; similarly p = min p1, p2 when two triangular faces of order p1 and p2 are glued together.
Things are slightly more complicated for edges, since we need to take into account all figures that are
attached to given edge. The edge will inherit from the attached faces orders of approximation pi according
to the minimum rule described for 2D element; clearly we choose p = min{pi}.

4 Implementation

Data structures. In our code elements are described by the following user defined prototype:

type element

character(len=5) :: type

integer, dimension(:), pointer :: bcond

integer, dimension(:), pointer :: nodes

integer :: edge_orient

integer :: face_orient

integer, dimension(:), pointer :: neig

end type element

Let us briefly describe the geometrical variables we are interested in: edge_orient and face_orient
are, respectively, the edge and face orientations and neig is a pointer to the neighboring elements. We keep
track of the nodes pertaining to the element by means of the pointer nodes; vertex nodes are listed first,
followed by mid-edge and mid-face nodes and, finally, by the interior node. The face and edge orientations
of the elements in the initial mesh are directly inherited from the corresponding GMP blocks. Globally,
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the nodes are ordered as interior (prisms, hexas, tets and pyramids), vertex (points), mid-edge (curves), and
mid-face (rectangles, triangles). Finally, the nodes are described by the following prototype:

type node

character(len=5) :: type

integer :: order

integer :: bcond

double precision, dimension(:,:), pointer :: coord

double precision, dimension(:,:), pointer :: zdofH

end type node

We describe only a few variables: case store the kind of physical attributes associated to the node, order
is the order of approximation and, finally, zdofH is a pointer to the degrees of freedom associated to the
node.

Verification of shape functions. Numerical verification of shape functions is essential for building a re-
liable FE code; more specifically, we need to check whether our routines indeed produce consistent ori-
entations and whether we can reproduce polynomial solutions up to machine precision. In order to ad-
dress the latter issue, we employ an L2 and an H1 projection onto the space of polynomials ξi1ξ

j
2ξ
k
3 for

0 ≤ i+ j + k ≤ p:

L2 projection:
∫

Ω
uh vh =

∫
Ω
u vh ∀vh

H2 projection:
∫

Ω
uh vh +

∫
Ω
∇uh · ∇vh =

∫
Ω
u vh +

∫
Ω
∇u · ∇vh ∀vh

We are indeed interested in the H1 projection only; however, since the H1 projection is made up of two
contributions, it is convenient to first check the contribution due to the L2 projection of the function, and
then, if the test were successful, add the contribution due to the L2 projection of the gradient. We anticipate
that our shape functions have been verified up to order p = 6, since for higher orders our routines fail on the
pyramid due to bad conditioning of our core sets of shape functions. In order to account for elements of all
types and all possible adjacencies we constructed three different toys meshes of affine elements, see Figures
10, 11, 12: a single tetrahedron surrounded by four tetrahedra; a pyramid surrounded by four tetrahedra on
the lateral faces, and a pyramid on the bottom face; and a prism surrounded by three prisms across the lateral
faces and two tetrahedra across the horizontal faces. We used affine elements so that the functional spaces
supported on the reference elements and the corresponding physical ones are indeed the same. Finally, the
issue of consistency of orientations was addressed by rotating the surrounding elements in each mesh and
comparing all solutions to the problem. More specifically, for every mesh, we identified the shared edges
and faces; then we reversed the orientation of on edge at a time and compared the result to the previous
solution. The same procedure was finally repeated for triangular and rectangular faces.
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Mesh generation. Our code works with isoparametric elements, i.e. shape functions of the same order of
the element are used to generate approximate geometry maps; we remark that if the exact geometry maps
were used, then the bulk of the computations of the FE code would take place inside the geometry modeling
package. In order to determine such maps, we need to generate geometry degrees of freedom; we call this
procedure mesh generation. We determine geometry d.o.f.’s through Projection-Based Interpolation, see [1]
and [2], whose guiding principles are locality, optimality and global continuity; by locality we imply that
we want to project over one element only at a time, and by optimality we mean that we want to minimize the
difference between the exact geometry map and the interpolation, according to some suitable norm. Without
loss of generality we restrict our attention to only one component, call it uFE, of the geometry map; let u be
the corresponding component of the exact geometry map. The Projection-Based interpolation is determined
by solving the following variational problem:

u(vi) = uFE(vi) for each vertex vi ∈ K∫
e

(
du

ds
− duFE

ds

)
dχe

ds

ds

dζ
= 0 for each edge bubble χe , for each edge e ∈ K∫

f
(∇u−∇uFE) · ∇χf = 0 for each face bubble χf , for each face f ∈ K∫
K

(∇u−∇uFE) · ∇χbub = 0 for each bubble χbub

where χ’s are the edge and face bubble functions and ds/dζ can be regarded as a weight function. Verifi-
cation of this interpolation procedure is done by checking p-convergence rates; in other words, we should
observe that

‖u− uFE‖H1 → 0

as p ↓ 0.

A numerical example. The described shape functions have been employed in solving a simplified model
for the study of propagation of high intensity acoustic waves inside the human head; this problem falls
in the class of acoustics coupled with elasticity. More specifically, we are interested in the study of bone
conduction of sounds and its effects on the middle ear, with emphasis on the damages it might cause to an
organ called cochlea. Figures 13 and 15 describes the pressure distribution on the simplified model of the
middle ear, while Fig. 14 describes the real part of the displacement; we remark that this model is built with
tetrahedra, prisms, and pyramids. The cylinder representing the ossicles is made of tetrahedra; the elements
inside the three membranes are prisms while the ones on the brim are either tetrahedra or pyramids.

5 Conclusions

The starting point for the application of the FE method to a problem is the definition of a domain of interest;
a convenient way to achieve this objective is through a MBG description of the domain which relies on maps
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of the master elements onto the physical elements. We have discussed how those maps can be constructed
thorough a technique called transfinite interpolation; moreover, we have considered the full family of 3D
elements: hexahedron, tetrahedron, prism and pyramid. We have reviewed the well known construction
of shape functions on the quad and the hexahedron and have given a literature overview on the subject,
including some possible extensions to 3D elements. In the main section of the paper we have proposed a
bottom up approach for the construction of shape functions on the master tetrahedron, prism and pyramid. A
set of 1D shape functions was extended inside the element in order to obtain edge modes and, on triangular
faces, a set of 2D shape functions was extended inside the element to create face modes; on rectangular faces
we extended tensor products of 1D shape functions. We were brought to this approach because we think it
is the most logically coherent: this construction parallels transfinite interpolation and, because of its bottom
up nature, the sets of 1D and 2D shape functions can be replaced at any moment to better accommodate for
the application we are dealing with. Finally, we have quickly described the main challenges that we faced
during implementation of the shape functions in our hp FE code and we discuss how we have dealt with
orientations and how we have verified our new routines; we have included some picture and data from an
ongoing acoustics project we are currently working on.

It is necessary to point out that our construction conflicts with fast integration, while this is not the case
for constructions that rely on the Duffy’s transformation, such as those proposed by Zaglmayr, Karniadakis
and Sherwin. Yet, we feel like the logical cleanness of our construction and the parallel with transfinite
interpolation is a remarkable achievement; it is also worth recalling that the Duffy’s transformation is edge
and face depending, hence constructions that rely on it need to take into account different transformations
on different geometrical entities. When facing the challenge of implementation, this fact leads to more
complicated routines. Also, we are very satisfied with our new approach of taking edge and face orientations
into account at the level of the element shape functions routines, since it dramatically reduces the complexity
of the assembly procedure; this is indeed a major improvement over our previous logic of implementation.
We have not addressed yet possible extensions of our construction to the other spaces of the exact sequence,
i.e. H(div) and H(curl); we recall that the construction of Zaglmayr indeed extends to those spaces. This
will the be the purpose of future work.

References

[1] L. Demkowicz, Computing with hp-adaptive Finite Elements, vol. 1, Chapman and Hall 2007

[2] L. Demkowicz et. al., Computing with hp-adaptive Finite Elements, vol. 2, Chapman and Hall 2008
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Figure 5: Master hexahedron.
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Figure 6: Master tetrahedron.
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Figure 7: Master prism.
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Figure 8: Master pyramid.
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Figure 9: Graph of surface [χ̂5 − χ̂1 ≡ 0].

Figure 10: First toy mesh: a central tetrahedron is surrounded by four tetrahedra; for clarity only two surrounding tetrahedra are
shown.
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Figure 11: Second toy mesh: a central prism is surrounded by three prisms and two tetrahedra; for clarity only two surrounding
prism and one tetrahedra are shown.

Figure 12: Third toy mesh: a central pyramid is surrounded by four tetrahedra and a pyramid; for clarity only two surrounding
tetrahedra and the pyramid are shown.
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Figure 13: Distribution of real part of pressure on the middle ear.

Figure 14: Distribution of real part of displacement on the middle ear.
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Figure 15: Distribution of absolute value of pressure on the middle ear.
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