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Abstract

A Reissner-Mindlin shell formulation based on a degenerated solid is implemented for
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set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were
performed with LS-DYNA, an industrial, general-purpose finite element code, for which a
user-defined shell element capability was implemented. This new feature, to be reported on
in subsequent work, allows for the use of NURBS and other non-standard discretizations
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1 Introduction

Isogeometric analysis is a new computational method that is based on geometry
representations (i.e. basis functions) developed in computer-aided design (CAD),
computer graphics (CG), and animation, with a far-reaching goal to bridge the ex-
isting gap between CAD and analysis [29]. For the first instantiation of the isoge-
ometric methodology, non-uniform rational B-splines (NURBS) were chosen as a
basis, due to their relative simplicity and ubiquity in the worlds of CAD, CG, and
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animation. It was found that not only are NURBS applicable to engineering anal-
ysis, in many cases they were better suited for the application at hand, and were
able to deliver accuracy superior to standard finite elements (see, e.g., [1, 2, 4–
6, 19, 30, 40]). Subdivision surfaces [15–17] and, more recently, T-Splines [3, 20],
were also successfully employed in the analysis context.

CAD, CG and animation make use of boundary or surface representations to model
geometrical objects, while analysis often requires a full volumetric description of
the geometry. This makes integration of design and analysis a complicated task be-
cause no well-established techniques exits that allow one to go from a boundary to
a volumetric representation in a fully automated way. A polycube spline technique
developed by Wang et al. [41] constitutes a promising solution to this problem.

A well-developed branch of computational engineering, with a wide range of in-
dustrial applications, that does not require a volumetric description of the underly-
ing geometry is shell analysis. As a result, bridging design and shell analysis does
not constitute such a daunting task. Provided that the geometry surface description
makes use of basis functions with good approximation properties, and that they are
conforming to a given function space, one may, in principle, perform shell analyses
directly off of CAD data. Unfortunately, most CAD descriptions make use of the
trimmed surface technology, which is not directly applicable to analysis. Höllig and
co-workers developed the concept of web splines, based on appropriate boundary
weighting functions, to address the issue of trimmed surfaces in the B-Spline finite
element method [25]. Although good computational performance was achieved on
a set of benchmark problems, this technique appears somewhat cumbersome for
real-life applications. An alternative solution to the trimmed surface problem was
recently proposed by Sederberg et al. [38] in which a trimmed spline surface is
replaced by a locally refined T-Spline representation. The latter, in principle, leads
to an explicit, analysis-suitable discretization of the resulting surface, and, in our
opinion, constitutes a solution to the trimmed surface problem that can be applied to
problems of engineering interest. Of course, numerical evidence and mathematical
theory must be provided in support of this claim.

The shell formulation presented here was implemented using the LS-DYNA user-
defined elements. The elements, which may have an arbitrary number of nodes,
are defined entirely in the input file by the integration rule and the values of the
basis functions and their derivatives at the integration points. This capability was
developed to facilitate the rapid prototyping of elements without programming,
and therefore the execution speed is much less than the standard elements within
the LS-DYNA. A detailed description will be provided in a future article.

The paper is outlined as follows. In Section 2 we give a brief review of isogeomet-
ric analysis based on NURBS. In Section 3 we describe the details of the Reissner-
Mindlin shell formulation. In Section 4 we solve a linear benchmark problem from
the shell obstacle course, the pinched cylinder. In Section 5 we present computa-
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tional results for several nonlinear elastic-plastic cases. We draw conclusions and
outline current and future research directions in Section 6.

2 NURBS-based isogeometric analysis fundamentals

Non-Uniform Rational B-Splines (NURBS) are a standard tool for describing and
modeling curves and surfaces in computer aided design and computer graphics
(see, e.g., Piegl and Tiller [35], Rogers [36], and Cohen, Riesenfeld and Elber [18]).
The aim of this section is to introduce them briefly and to present an overview of
isogeometric analysis, for which an extensive account has been given in Hughes,
Cottrell and Bazilevs [29].

B-splines are piecewise polynomial curves composed of linear combinations of B-
spline basis functions. The coefficients are points in space, referred to as control
points. A knot vector, Ξ, is a set of non-decreasing real numbers representing coor-
dinates in the parametric space of the curve:

Ξ =
{
ξ1, ξ2, . . . , ξn+p+1

}
, (1)

where p is the order of the B-spline and n is the number of basis functions (and
control points) necessary to describe it. The interval [ξ1, ξn+p+1] is called a patch.

Given a knot vector, Ξ, B-spline basis functions are defined recursively starting
with p = 0 (piecewise constants):

Ni,0(ξ) =

 1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(2)

For p = 1, 2, 3, . . ., the basis is defined by the following recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3)

Using tensor products, B-spline sufaces can be constructed starting from knot vec-
tors Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
andH =

{
η1, η2, . . . , ηm+q+1

}
, and an n×m net of control

points xi, j, also called the control mesh. One-dimensional basis functions Ni,p and
M j,q (with i = 1, . . . , n and j = 1, . . . ,m) of order p and q, respectively, are defined
from the corresponding knot vectors, and the B-spline surface is constructed as:

S (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)M j,q(η)xi, j. (4)
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The patch for the surface is now the domain [ξ1, ξn+p+1] × [η1, ηm+q+1]. Identifying
the logical coordinates (i, j) of the B-spline surface with the traditional notation of a
node, A, and the Cartesian product of the associated basis functions with the shape
function, NA(ξ, η) = Ni,p(ξ)M j,q(η), the familiar finite element notation is recovered,
namely,

S (ξ, η) =

nm∑
A=1

NA(ξ, η)xA. (5)

Non-uniform rational B-splines (NURBS) are obtained by augmenting every point
in the control mesh xA with the homogenous coordinate wA, then dividing the ex-
pression (5) through by the weighting function, w(ξ, η) =

∑nm
A=1 NA(ξ, η)wA, giving

the final spatial surface definition,

S (ξ, η) =

∑nm
A=1 NA(ξ, η)wAxA

w(ξ, η)
=

nm∑
A=1

N̄A(ξ, η)xA. (6)

In equation (6), N̄A(ξ, η) = NA(ξ, η)/w(ξ, η), are the rational basis functions. These
functions are pushed forward by the surface mapping S (ξ, η) in (6) to form the ap-
proximation space for NURBS-based shell analysis. Note that wA’s are not treated
as solution variables, they are data coming from the description of the NURBS sur-
face. In Figure 1 we present an example consisting of a 6 × 6 quadratic NURBS
mesh of a quarter hemisphere and selected corner, edge, and interior NURBS basis
functions defined on the actual geometry.

(a) Corner (b) Edge (c) Interior

Fig. 1. NURBS mesh of a quarter hemisphere consisting of 6 × 6 quadratic elements. Se-
lected corner, edge, and interior basis functions are plotted on the actual geometry, which
is represented exactly.

In the remainder of the paper, we will suppress the superposed bar on the rational
basis functions.
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3 The Reissner-Mindlin shell formulation

The primary applications for the shell element involve large deformation plasticity,
and therefore it is formulated using an updated Lagrangian approach. Although
the increased continuity (C1 or higher) of the NURBS basis functions permits
a Kirchhoff-Love formulation, a Reissner-Mindlin formulation, for which a C0-
continuous discretization is sufficient for well-posedness, is used here because it is
more appropriate for metal forming applications that often involve sharp creases in
both the initial geometry and solution. For and excellent review of shell theories
and numerical formulations see Bischoff et al. [14].

3.1 The principle of virtual power

The starting point is the principle of virtual power in three dimensions,∫
V
ρaδv + σ : δDdV =

∫
Γ

tδvdΓ +

∫
V

bδvdV (7)

where ρ is the density, a is the acceleration, σ is the Cauchy stress, t is the trac-
tion, b is the body force, and V and Γ are the volume and the appropriate surface
area, respectively. On the boundary Γvi , the velocity component vi is specified, and
the virtual velocity component δvi is zero. The virtual rate of deformation, δD, is
defined as

δL =
∂δv
∂x

, δD = 1
2

(
δL + δLT

)
. (8)

3.2 Shell kinematics

The shell kinematics are based on the degenerated solid element approach devel-
oped by Hughes and Liu [27]. They are derived by starting with a solid element
that has linear interpolation through the thickness coupled with the desired form
of interpolation on the laminae. Pairs of control points on the upper and lower sur-
faces define a material fiber, y, that remains straight during the deformation. The
motion of the fiber is therefore a rigid body motion (although this contradicts the
zero normal stress condition) that may be described in terms of three translational
velocities and either two or three rotational velocities (the rotation about the axis of
the fiber does not contribute to the deformation but it is simpler computationally to
use three angular velocities in the global coordinate system).

The kinematics are therefore reduced to approximating a shell by a surface in space
defined by the translational coordinates of a set of nodes, and the rotation of the
fiber vectors attached to them. The current shell geometry is therefore expressed
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mathematically by

x(ξ) =
∑

A

NA(ξ, η)
(
xA +

hA

2
ζ ŷA

)
(9)

where x is the current coordinate vector, ξ is the vector of parametric coordinates
(ξ, η, ζ), h is the thickness, and ŷ is the unit fiber vector. The coordinates ξ and η are
from the parametric space, and therefore their ranges are defined by the appropriate
knot vectors, and the third coordinate, ζ ∈ [−1,+1], is used with the standard linear
interpolation functions through the thickness of the shell.

To simplify the notation, the dependence of the functions on the parametric coordi-
nates is dropped, however, all are assumed to be evaluated at the integration point
under consideration. Additionally, since the product of NA and ζ appears throughout
the terms associated with the rotational degrees of freedom, the additional functions
N̂A = NAζ are introduced. For example, the expression for the current geometry is
now written as

x =
∑

A

NAxA +
hA

2
N̂A ŷA (10)

and the resulting Jacobian, J, is therefore

J =
∂x
∂ξ

=
∑

A

∂NA

∂ξ
xA +

hA

2
∂N̂A

∂ξ
ŷA. (11)

The velocity, v, is defined in terms of the translational velocity, vA, and the angular
velocity, ωA, of the control points, both in the global coordinate system,

v =
∑

A

NAvA +
hA

2
N̂AωA × ŷA. (12)

This choice is motivated by the simplicity of joining multiple non-smooth surfaces
(e.g., a honeycomb structure). Using three rotational degrees of freedom introduces
a singularity associated with the rotation about ŷ for smooth surfaces, which we
address later. The test space, or virtual velocity, δv has the same structure as the
velocity field,

δv =
∑

A

NAδvA +
hA

2
N̂AδωA × ŷA. (13)

3.3 Departures from the standard formulation

The basic degenerated solid formulation is modified in three ways, motivated by
Belytshcko et al. [8, 9]. First, ŷ is replaced by n, the unit normal in the shell lam-
inae, throughout. The motivation for this simplification is to alleviate the artificial
thinning that sometimes occurs with explicit time integration, which is caused by
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the scaling of the rotational inertias to maintain a large time step size. Addition-
ally, the definition of a unique fiber direction for structures with intersecting shell
surfaces is often problematical.

Second, in contrast to the standard formulations, which are focused on elements
with linear basis functions, nothing is done to alleviate shear locking in the current
formulation because we are interested in the higher order NURBS basis functions
where shear locking is generally not a problem. For lower degree NURBS, the
generalization of B̄ for volumetric locking developed for isogeometric elements
[21] may be modified for shear locking.

Finally, a corotational formulation [9] for the stress is used here instead of the
Truesdell rate originally used by Hughes and Liu [27]. This choice was motivated
by our desire to use the isogeometric shells for metal forming, where the corota-
tional formulation has been found to provide extra robustness.

3.4 Discrete gradient operator

The spatial velocity gradient, Lg, and spatial virtual velocity gradient, δLg, in global
coordinates, are given by

Lg =
∂v
∂x

=
∑

A

∂NA

∂x
vA +

hA

2
∂N̂A

∂x
ωA × ŷA (14)

δLg =
∂δv
∂x

=
∑

A

∂NA

∂x
δvA +

hA

2
∂N̂A

∂x
δωA × ŷA (15)

and the corresponding rates of deformation, Dg and δDg, are

Dg = 1
2

[
Lg + (Lg)T

]
and δDg = 1

2

[
δLg + (δLg)T

]
. (16)

The B matrix is defined by

Dg = Bv and δDg = Bδv (17)

where Dg is the strain rate vector obtained using Voigt notation,

Dg = {Dg
11 Dg

22 Dg
33 2Dg

12 2Dg
23 2Dg

31
} (18)

and v is the generalized velocity vector,

v = {..., vA1, vA2, vA3, ωA1, ωA2, ωA3, ...}. (19)

The contribution of control point A to B = [B1...BA...Bn] is

BA =
[
Bv

A, B
ω
A
]

(20)
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where

Bv
A =



∂NA
∂x1

∂NA
∂x2

∂NA
∂x3

∂NA
∂x2

∂NA
∂x1

∂NA
∂x3

∂NA
∂x2

∂NA
∂x3

∂NA
∂x1


(21)

Bω
A =

hA

2



−
∂ÑA
∂x2

ŷA3
∂ÑA
∂x2

ŷA1

∂ÑA
∂x3

ŷA2 −
∂ÑA
∂x3

ŷA1

−
∂ÑA
∂x1

ŷA3
∂ÑA
∂x2

ŷA3
∂ÑA
∂x1

ŷA1 −
∂ÑA
∂x2

ŷA2

∂ÑA
∂x2

ŷA2 −
∂ÑA
∂x3

ŷA3 −
∂ÑA
∂x2

ŷA1
∂ÑA
∂x3

ŷA1

∂ÑA
∂x1

ŷA2
∂ÑA
∂x3

ŷA3 −
∂ÑA
∂x1

ŷA1 −
∂ÑA
∂x3

ŷA2


(22)

3.5 Definition of the local coordinate system

The local corotational coordinate system, e`i , i = 1, 2, 3, for the stress is defined
at the integration points using the invariant scheme of Hughes and Liu [27] with
the convention that e`3 is the direction normal to the reference surface. The tangent
vectors ti are defined as

ti =
∑

A

∂NA

∂ξi
xA (23)

and the normal vector is

p = t1 × t2 (24)

n = e`3 =
p
||p||

(25)

where || · || is the usual three-dimensional Euclidean norm. Defining tα and tβ by

tα =
t1 + t2

||t1 + t2||
, (26)

tβ =
n× tα
||n× tα||

, (27)
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the remaining local coordinate vectors are

e`1 =

√
2

2

(
tα − tβ

)
, (28)

e`2 =

√
2

2

(
tα + tβ

)
. (29)

The rotation matrix from the local to the global coordinate system, vg = Rv`, is

R =

[
e`1 e`2 e`3

]
. (30)

3.6 Stress update in the co-rotational formulation

The stress is updated in the local coordinate system using the local rate of defor-
mation, D`,

D` = RT DgR (31)

The normal component, D`
33, is calculated within the constitutive model to satisfy

the zero normal stress conditionσ`
33 = 0. The algorithm for calculating D`

33 depends
on the particular constitutive model [24, 37, 39]. The updated stress is rotated into
the global coordinate system at the end of the time step for evaluating the residual,

σ = Rσ`RT . (32)

3.7 Evaluation of the residual, the stiffness matrix, and the rotational stiffnesses

The integration of the residual and the stiffness matrix are performed using the stan-
dard tensor product of one-dimensional Gauss quadrature rules over the lamina and
through the thickness [26]. The parametric domain for an element over the lamina
is [ξi, ξi+1] × [η j, η j+1], the product of adjacent pairs of knots in each parametric
direction. Note that repeated knots routinely occur in the knot vector definitions for
B-Splines and NURBS, introducing elements with zero area that are skipped within
the element evaluation loop.

The residual contribution from the stress is

F =

Fv

Fω

 = −

∫
V

(Bv)T

(Bω)T

σdV. (33)

where the stress tensor has been reduced to a vector using Voigt notation, σ =

{σ11, σ22, σ33, σ12, σ23, σ31}
T .
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The material tangent contribution to the stiffness matrix is

K =

Kvv Kvω

Kωv Kωω

 =

∫
V

(Bv)T

(Bω)T

 C
[
Bv Bω

]
dV (34)

where C is the material tangent matrix.

The singularity of the stiffness matrix associated with the rotations about the normal
direction at the control points is addressed by adding a small rotational stiffness in
the normal direction on a control point-by-control point basis,

Kωω
AA ← Kωω

AA + sknA ⊗ nA, (35)

where Kωω
AA is the 3 × 3 diagonal sub-matrix associated with control point A, s is

a small number on the order of 10−4 ∼ 10−6, k is the maximum value along the
sub-matrix diagonal, and nA is the normal for node A. This procedure was adopted
during the current research for expediency, and because it has been successfully
used in LS-DYNA for many years for some of its shell elements. The formulation
of the geometric stiffness is omitted because the only implicit problem considered
later is linearly elastic; all the large deformation calculations are explicit.

3.8 Mass matrix

A lumped mass based on row summing is used with the explicit formulation. The
translational mass for node A contributed by an element is

MA =

∫
V
ρNAdV = h

∫
A
ρNAdA (36)

where dV = hdA, where dA is the differential area on the reference lamina. The
rotational inertia is

JA = α
h3

12

∫
A
ρNAdA = α

h2

12
MA (37)

where α is chosen so that the time step is not controlled by the rotational inertia
[26]. Note that, due to the pointwise positivity of NURBS, NA, and consequently
MA, is guaranteed to be positive. More sophisticated lumping schemes [26] have
been tested, but there was no significant difference between them for the problems
presented later in this paper.

3.9 Boundary conditions

Distributed boundary conditions, such as contact and pressure loads, are currently
handled in an approximate manner. Each isogeometric element is uniformly sub-
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divided in the parametric coordinate system into a patch of n × n interpolation
quadrilateral elements defined by (n + 1)2 nodes that are interpolated from the iso-
geometric element geometry,

xI
B =

∑
A

NA(ξB, ηB)xA (38)

where the superscript I indicates a variable associated with an interpolation node.
After the distributed loads are evaluated for interpolated nodes and elements using
the standard routines within LS-DYNA, the control point forces are evaluated

FA =

NIN∑
B=1

NA(ξB, ηB)FI
B (39)

where NIN is the number of interpolated nodes.

The accuracy of this approximation of the distributed loading is clearly a func-
tion of the number of interpolation elements used to approximate the isogeometric
element geometry. In the example calculations, the number of elements in each di-
rection is equal to order of the interpolation, p. A quadratic isogeometric element
is divided into four interpolation elements with bilinear basis functions. The exam-
ple calculations presented here that use these approximate boundary conditions are
therefore accurate, but do not attain the maximum possible accuracy possible with
the isogeometric formulation.

3.10 Time step size estimation

Since the cost of an explicit simulation is inversely proportional to the stable time
step size, an accurate estimate of time step size is necessary for efficient simula-
tions. The traditional approach to obtaining the time step size invokes two mathe-
matical bounds on the maximum frequency of structural model. The first bound is
the maximum frequency of the system is bounded from above by the maximum of
the individual maximum frequencies of the elements,

ω
system
max ≤ max

e=1,NEL
(ωe

max). (40)

A short proof is given in [26], where the original proofs were attributed to Irons
[31] and Hughes et al. [28].

The second required bound is on the maximum frequency of the individual ele-
ments. The first bounds of this type were originally obtained for finite difference
methods using linear basis functions in one dimension,

2
ωe

max
= 4te ≤

`e

ce
eff

(41)
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where `e is the length of the element and ce
eff

is the effective sound speed (which is
a function not only of the material properties but also the shock viscosity formula-
tion [11]). Each constitutive model used in an explicit analysis therefore calculates
effective elastic moduli in addition to updating the stress and internal history vari-
ables. This applies even to materials that may not have a classical elastic response,
e.g., a viscous fluid. In two and three dimensions, the same expression is often used
with a heuristic formula for a characteristic element length. A more rigorous bound
[22] has been obtained in terms of the discrete gradient operator.

A more precise estimate of the maximum system frequency may be obtained using
the power iteration method developed by Benson for multi-material arbitrary La-
grangian Eulerian (MMALE) methods [12]. Power iteration [42] obtains the maxi-
mum eigenvalue of the system by the iterative scheme(

ω2
maxΨ

)i+1
= M−1KΨi (42)

(ω2
max)i+1 = max

n=1,NEQN

(
(ω2

maxΨ)i+1
n

Ψi
n

)
(43)

where M and K are the mass and elastic stiffness matrices of the system, i is the
iteration number, n is the equation number, and NEQN is the number of equations
in the system. Twelve iterations are usually sufficient for convergence.

In practice, in an explicit code, the product KΨ is evaluated using the standard strat-
egy of evaluating the internal force contribution on the element level from the strain
calculated from the eigenvector and the effective elasticity matrix, C, that is calcu-
lated from the same effective elastic moduli used in the sound speed calculation,
namely,

εΨ = BΨ (44)
σΨ = CεΨ (45)

KΨ =

∫
BTσΨdx (46)

and then the element contribution is assembled into the global vector. Note that
boundary conditions, such as contact, that contribute terms to the stiffness matrix
also contribute to the product KΨ.

The ratio, R, of the actual maximum system eigenvalue and the bound obtained
from a traditional element characteristic length evaluation has been observed to
change slowly with time even for problems involving large strains and material
nonlinearities [12], allowing the actual maximum stable time step size to be safely
approximated as

4tactual ≈ R4te. (47)

where 4te is the traditional bound obtained by taking minimum time step size over
all the elements. In practice, the ratio R is updated infrequently, with one power
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iteration performed each time step, for a fixed small number of time steps in a
larger time interval. The time interval between the updates of R depends on the
particular problem; see Benson [12] for more details.

4 Numerical Examples

In this section we present one linear elastic and four nonlinear elastic-plastic com-
putational examples. In all cases p + 1 integration points in each in-plane direction
between knots, and 3 integration points in the through-thickness direction are em-
ployed, where p is the polynomial order of the NURBS basis. We denote by E, ν,
ρ, σy, and EH the Young’s modulus, Poisson’s ratio, density, initial yield stress, and
plastic hardening modulus, respectively.

4.1 Linear elastic benchmark example – Pinched cylinder

To assess the accuracy and convergence of the proposed approach, we solve a
pinched cylinder linear elastic shell problem from the so-called “shell obstacle
course” described in Belytschko et al. [10]. This problem was also solved using
trivariate NURBS in [29] and, more recently, trivariate T-Splines in [3]. Note that
the use of rational functions allows the exact representation of the problem geome-
try.

L = 600 in
R = 300 in
h = 3.0 in

E = 3 × 106 psi
ν = 0.3
P = 1.0 lb

Fig. 2. Pinched cylinder: problem description. Cylinder is constrained at each end by a rigid
diaphragm, ux = uy = θz = 0.
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(a) Mesh 1 (b) Mesh 3 (c) Mesh 5

Fig. 3. Pinched cylinder: meshes.

The problem setup is illustrated in Figure 2. The loading consists of the application
of inward directed point loads at the diametrically opposite locations on the cylin-
der surface. The displacement under the point load is the quantity of interest. A
sequence of five meshes obtained by global h-refinement is used for this example.
The first, third and fifth mesh from the sequence are shown in Figure 3. Quadratic
through quintic NURBS are employed, with maximal continuity of the basis (i.e.,
p − 1) in each case. One eighth of the geometry is modeled with appropriate sym-
metry boundary conditions.

Number of control points per side

D
isp
la
ce
m
en
t(
in
)

0 5 10 15 20 25 30 35 400

2E-06

4E-06

6E-06

8E-06

1E-05

1.2E-05

1.4E-05

1.6E-05

1.8E-05

2E-05

Reference

Cubic

Quartic

Quadratic

Quintic

Fig. 4. Pinched cylinder: displacement convergence under the point load.

Displacement convergence under the point load is presented in Figure 4. The quadratic
NURBS exhibit locking, which is gradually alleviated with the increasing order and
continuity of NURBS. The results are consistent with those reported for volumetric
NURBS [29] and T-Splines [3].
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4.2 Nonlinear elasto-plastic examples

Conventional higher-order elements using Lagrangian interpolation are well known
for their sensitivity to element distortion. To assess the robustness of the proposed
elements in the presence of significant mesh distortion, a series of nonlinear shell
example problems are solved. Improved performance of volumetric NURBS under
severe mesh degeneration and distortion relative to standard finite element interpo-
lations was noted in the recent work of Lipton et al. [33].

4.2.1 Plate loaded by pressure impulse

L = 10 in
h = 0.5 in

E = 107 psi
ν = 0.3

ρ = 2.588 × 10−4 lb-s2/in4

σy = 3 × 104 psi
P = 300 psi

Fig. 5. Plate loaded by pressure impulse: problem description. All sides of the plate are
simply supported.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Fig. 6. Plate loaded by pressure impulse: meshes.

The problem setup is given in Figure 5. A simply supported plate is subjected to
a uniform impulsively applied pressure load. An elastic-perfectly-plastic material
is considered. Material parameters and problem dimensions are taken from Be-
lytschko et al. [8] and are summarized in Figure 5. The full problem is modeled
without symmetry assumptions in contrast to reference [8]. Meshes of 2 × 2, 4 × 4
and 8 × 8 quadratic, cubic, and quartic NURBS elements are used in the compu-
tations and are shown in Figure 6. To emphasize that the locations of the control
points are not in one-to-one correspondence with the domains of elements, the lo-
cations of the control points for a quartic element mesh are shown in Figure 7.
Computational results employing a mesh of 64×64 bi-linear Belytschko-Tsay shell
elements are taken as the reference.
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Fig. 7. One element in the quartic mesh and its associated control points.

Figures 8 shows the time histories of the displacement of the center point of the
plate for quadratic, cubic, and quartic NURBS. The finest mesh solutions closely
approximate the reference result for all polynomial orders. Figure 8 also suggests
that higher-order and higher-continuity NURBS perform better than their lower-
order, lower-continuity counterparts on coarser meshes.

4.2.2 Roof loaded by velocity impulse

The problem setup is given in Figure 9. This problem was also taken from [8]
and consists of a 120◦ cylindrical panel loaded impulsively by specifying an initial
velocity distribution. The problem dimensions and material data are summarized in
Figure 9. An initial velocity normal to the shell surface is specified over a region
marked on the figure.

Quadratic, cubic, and quartic isogeometric elements are used in the calculations.
The meshes are shown Figure 10. Maximum continuity NURBS are used almost
everywhere except along the parametric lines that define the region where the initial
pulse is prescribed. Along these mesh lines the continuity of the NURBS basis is
reduced to C0 so as to confine the impulse to the desired area. The normal velocity
is specified on the control points by first extracting a consistent normal (see [23])
and then multiplying it with a prescribed velocity magnitude. The problem is solved
on the entire domain with no symmetry assumptions.

Displacement histories of the point, initially located at x = 0, y = 3, and z = 6,
on each mesh are shown in Figure 11. Results are compared with the reference
computations employing two meshes of 224 and 4512 Belytschko-Tsay elements,
as well as experimental data from [34]. The quadratic NURBS solutions on the
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Fig. 8. Plate loaded by pressure impulse: center point displacement histories and conver-
gence to the reference solution under h−refinement.

coarse mesh exhibit some locking, while on the fine meshes all the NURBS results
are nearly identical to those using the finest Belytschko-Tsay mesh.

We attempted to solve the problem without isolating the impulse region with C0

lines on the same meshes as in Figure 10. In this case, the full continuity of the
soltion space is preserved. The initial conditions are imposed using the same def-
inition of the control point normal as before. The initial velocity distributions and
the comparison between the final roof shapes are given in Figure 12 (a) and (b).
Due to the increased support of the fully continuous basis functions, the impulse
discontinuity is smeared over a larger number of elements. It is also clear from the
figure that the final shape of the roof in this case is significantly different from the
expected result.

In order to obtain a better solution using a fully-continous basis (i.e., no C0 lines),
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L = 12.56 in
l = 10.205 in

R = 3.0 in
r = 3.08 in
h = 0.125 in

E = 1.05 × 107 psi
ν = 0.33

ρ = 2.5 × 10−4 lb-s2/in4

σy = 4.4 × 104 psi
V0 = 5650 in/s

Fig. 9. Roof loaded by velocity impulse: problem description. The curved ends of the roof
are hinged and the lateral boundaries are fixed.

(a) Mesh 1 (b) Mesh 2

Fig. 10. Roof loaded by velocity impulse: meshes.

we constructed a new set of meshes, shown in Figure 13, in which we added small
elements around the impulse region to reduce the spreading of the discontinuity.
The initial velocity profile and the final shape are shown in Figure 12 (c). In this
case, an improved response is obtained. The displacement history presented in Fig-
ure 14 is nearly identical to the C0 case.

This example demonstrates that in nonlinear shell analysis relatively small pertur-
bation in the initial data may lead to drastically different results. One should keep
this point in mind when designing automated procedures for going from design to
analysis.
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Fig. 11. Roof loaded by velocity impulse: displacement histories and convergence to the
reference solution under k−refinement on meshes with C0 lines.

(a) With C0−lines

(b) Without C0−lines (fully continuous)

(c) Fully continuous with refinement

Fig. 12. The effect of the smoothness of the velocity boundary condition on the final results.
Initial velocities (left) and final displacements (right) are taken from 1 row of elements of
cubic mesh 1.

4.2.3 Buckling of a cylindrical tube

This test case deals with nonlinear dynamic buckling of an imploded cylindrical
tube. The problem geometry, boundary conditions, and material parameters are
given in Figure 15. An isotropic elastic-plastic material with linear plastic hard-
ening is used to model the material response. The problem is driven by an external
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(a) Mesh 1, refined (b) Mesh 2, refined

Fig. 13. Roof loaded by velocity impulse: refined meshes.
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Fig. 14. Roof loaded by velocity impulse: displacement histories and convergence to the
reference solution on cubic meshes without C0 lines. The C0 results are shown for compar-
ison.

pressure. Quadratic, cubic, and quartic NURBS are used in the computations. The
computational mesh consisting of 1440 NURBS elements is shown in Figure 16.
The end zones with the sliding boundary conditions are isolated with C0 mesh lines
from the rest of the cylindrical domain.

The experiment by Kyriakides and Lee [32] provides a test of how well the NURBS
elements model dynamic buckling. The experimental results, which show the tube
collapsed in its third buckling mode, are shown in Figure 17. An analytical solution
[32] to the buckling problem predicts a pressure of 441.43 psi to initiate buckling
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L = 5.63 in
l = 1.0 in

R = 0.7497 in
h = 0.0276 in

E = 1.008 × 107 psi
ν = 0.3
ρ = 0.100434 lb-s2/in4

σy = 4.008 × 104 psi

EH = 9.2 × 104 psi

Fig. 15. Buckling of a cylindrical tube: problem setup. P is the pressure load. Sliding bound-
ary conditions (ux = uy = 0, θx = θy = θz = 0) at the end zones and axial compression due
to pressure ( fz = PR

2 ) at the two edges are applied.

Fig. 16. Cylinder mesh

in the third mode, while the critical pressure in the experiment was found to be 410
psi.

Simulation results using 9210 Beltyschko-Tsay elements in LS-DYNA are also
used for comparison. In the calculations, in all cases, the pressure is linearly ramped
up over a period of 1.0 ms and then held constant; the meshes are perturbed in the
third mode by scaling the x and y coordinates of the control points by 1+ 1

20 cos(3θ)
[7]. We also note that no failure criterion is included in the calculations to model
the fracture near the ends of the tube that is present in the experimental results.

The computational results are presented in Figures 18 and 19. The final shapes of
the buckled tube are shown. The primary effect of elevating the degree and smooth-
ness was a reduction in the pressure required for initiating buckling. Evidence of
small amounts of shear locking in the quadratic elements is indicated by the 435 psi
required to cause the buckling, while the cubic and quartic elements buckled at 405
psi. There was some variation in the maximum plastic strain on the mid-surface
lamina, with the higher pressures giving slightly higher values for a fixed degree.
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For example, the cubic solution had a maximum plastic strains of 0.266 at 435 psi
and 0.214 at 405 psi, while the quartic solution had maxima of 0.252 and 0.241
at 435 and 405 psi, respectively. The reference solution with Belytschko-Tsay el-
ements (see Figures 18 and 19) buckled at 410 psi, with a peak plastic strain of
0.226.

Fig. 17. Experimental results from Kyriakides and Lee [32]

Fig. 18. Computational results using 1440 cubic NURBS elements and 9216 Beltyschko-T-
say. Contours of plastic strain on the final configuration.

One interesting result noted in the computations that does not appear in the exper-
iment is that the cylinder bounced back outward after the implosion, as indicated
by the lobes near the axis, see Figure 19. There are many possible reasons for the
discrepancy, ranging from the absence of modeling the fracture in the experiment
to the choice of the surface stiffness used in the penalty contact, however the reason
definitely appears to be independent of the underlying basis functions employed.
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Fig. 19. Sectioned view of the buckled cylinders.

4.2.4 Buckling of a square tube

The simulation of a square tube buckling into an accordion mode is a good test of
the robustness of a shell element under large deformations. Originally solved as a
demonstration of the single surface contact method [13] and now routinely used in
automobile crashworthiness calculations, it remains a popular problem, even ap-
pearing on the cover of an excellent recent textbook [9].

The problem definition, geometry, material parameters and the NURBS mesh of
the quarter of the domain are all given in Figure 20. An isotropic elastic-plastic
material with linear plastic hardening is used to model the material response. The
deformation is driven with a constant velocity at one end of the tube with the other
end fixed. Quadratic and quartic NURBS meshes of 640 elements, and with 858 and
1156 control points, respectively, are used in the current simulations with symmetry
boundary conditions. The standard single surface contact algorithm in LS-DYNA
[13] is applied to the interpolation elements, where each quadratic and quartic iso-
geometric element is subdivided into 4 and 16 interpolation elements respectively.

A geometric imperfection with an amplitude of 0.05 mm, as shown in Figure 20,
triggers the buckling at a height of 67.5 mm from the base. This imperfection is
implemented by perturbing the initial coordinates of a mesh line of control points.
Since the meshes are uniformly quadratic and quartic, the imperfections are slightly
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L = 320 mm
l = 70 mm

hp = 67.5 mm
h = 1.2 mm
E = 1.994 GPa
ν = 0.3
ρ = 7850 kg/m3

σy = 3.366 × 102 MPa
EH = 1.0 MPa

V = 5.646 m/s

Fig. 20. Buckling of a square tube: problem description and the mesh. Only one quarter of
the geometry is modeled with appropriate symmetry boundary conditions.

different between the two calculations.

A sequence showing the formation of the buckles with quartic elements is shown
in Figure 21, and the final states of the quadratic and quartic element calculations
are shown in Figure 22. This is a problem that is sensitive not only to the ge-
ometry of the initial perturbation, but also to the element formulation. Given the
differences between initial perturbations, the agreement between the two solutions
is very good. To the best of our knowledge, this problem has never been solved
before with quadratic, much less quartic, shell elements.

5 Conclusions

An isogeometric formulation of the Reissner-Mindlin shear deformable shell the-
ory has been developed by extending the degenerated solid element approach of
Hughes and Liu [27]. The implementation uses the new user-defined element ca-
pability in LS-DYNA, defining the elements entirely through the input file. The
current implementation is therefore not optimized for performance, but an exami-
nation of the formulation indicates that the isogeometric formulation should be no
more expensive than elements using Lagrange interpolation polynomials of equal
order. Full integration, without any attempt to reduce shear locking, was used on
the quadratic, cubic, and quartic elements in the example calculations.
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(a) t = 0.00 (b) t = 0.01 (c) t = 0.02

(d) t = 0.03 (e) t = 0.04

Fig. 21. A sequence of deformed shapes for the buckling of a square tube using quartic
isogeometric elements.

(a) p = 2 (b) p = 4

Fig. 22. The final deformed shapes for the quadratic (left) and quartic (right) shell elements
solutions for the buckling of a square tube.

Based on the numerical results, the following conclusions are drawn:

• The isogeometric shell elements converge for the linear elastic shell problem
as well as the isogeometric solid elements using quadratic displacements in the
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thickness direction.
• There is a small amount of shear locking still present in the quadratic elements,

but it almost entirely disappears in the cubic elements.
• The level of continuity maintained near discontinuities in the boundary condi-

tions is an important analysis decision with a substantial effect on the accuracy
of the solution.

• Higher order Lagrange element are notoriously sensitive to distortion. For ex-
ample, the mid-side nodes of quadratic elements are sometimes deliberately po-
sitioned to model the singularity of a crack tip for linear fracture analysis [26].
This sensitivity to distortion prevents their use in many types of large deforma-
tion problems. In contrast, isogeometric elements using NURBS basis functions
appear to be quite robust out to at least p = 4. In the study of Lipton et al. [33],
it is noted that robustness of isogeometric NURBS elements increases with or-
der. This robustness make them potentially attractive for many large deformation
problems of industrial interest including sheet metal stamping and automobile
crashworthiness.
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